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C A N C E R

Heat selection enables highly scalable methylome 
profiling in cell-free DNA for noninvasive monitoring 
of cancer patients
Elsie Cheruba1,2, Ramya Viswanathan1,2, Pui-Mun Wong3, Howard John Womersley1,2, 
Shuting Han4, Brenda Tay4, Yiting Lau3, Anna Gan3, Polly S. Y. Poon3, Anders Skanderup3,4,  
Sarah B. Ng3, Aik Yong Chok5, Dawn Qingqing Chong4,6, Iain Beehuat Tan3,4,6*, Lih Feng Cheow1,2*

Genome-wide analysis of cell-free DNA methylation profile is a promising approach for sensitive and specific de-
tection of many cancers. However, scaling such assays for clinical translation is impractical because of the high 
cost of whole-genome bisulfite sequencing. We show that the small fraction of GC-rich genome is highly enriched 
in CpG sites and disproportionately harbors most of the cancer-specific methylation signature. Here, we report on 
the simple and effective heat enrichment of CpG-rich regions for bisulfite sequencing (Heatrich-BS) platform that 
allows for focused methylation profiling in these highly informative regions. Our novel method and bioinformat-
ics algorithm enable accurate tumor burden estimation and quantitative tracking of colorectal cancer patient’s 
response to treatment at much reduced sequencing cost suitable for frequent monitoring. We also show tumor 
epigenetic subtyping using Heatrich-BS, which could enable patient stratification. Heatrich-BS holds great poten-
tial for highly scalable screening and monitoring of cancer using liquid biopsy.

INTRODUCTION
Recent studies have demonstrated the promising use of methylation 
profiling in cell-free DNA (cfDNA) for multicancer detection, le-
veraging on tissue- and cancer-specific methylation patterns (1, 2). 
Compared to mutation-based circulating tumor DNA detection 
methods, where there are a limited number of recurrent mutations 
available to distinguish between tumor and normal cfDNA, tissue- 
and cancer-specific DNA methylation patterns are more abundant. 
A distinct pattern of methylation change—hypermethylation of CpG 
islands (CGIs) and hypomethylation of the rest of the genome—is 
widely regarded as a hallmark of cancer (3). Hence, methylation 
profiling of cfDNA has been shown to outperform mutation assays 
in cancer detection and tissue of origin localization (2).

At present, cfDNA methylation profiling methods can be cate-
gorized into two groups: untargeted and targeted methods. Untar-
geted methods [e.g., whole-genome bisulfite sequencing (WGBS)] 
provide unparalleled breadth for interrogating ~30 million CpG sites, 
enabling broad characterization and discovery of cancer-associated 
methylation patterns, but it comes at a high cost for sequencing the 
whole genome (3000 Mb). Targeted approaches, exemplified by 
hybridization capture methods, reduce sequencing requirement by 
capturing genomic regions that are informative for specific diseases 
using synthetic probes, but characterization is restricted to the en-
riched target. In a recent report (2), multicancer detection is demon-
strated from targeted sequencing using a panel of methylation probes 

capturing 17.2 Mb of the genome and targeting 1.1 million CpG 
sites. Nonetheless, there is substantial upfront and operational cost 
for designing, synthesizing, validating, and using these capture 
probes. Commercial hybridization capture kits of comparable 
coverage cost >$200 (4), setting a minimum cost for performing 
these assays. Furthermore, once a panel is designed, it is inflexible to 
be applied to other types of diseases or subtypes that have a different 
set of differentially methylated regions (DMRs). To date, there is 
still a lack of a universal, simple, and cost-effective method to enrich 
for disease-relevant loci in the liquid biopsy context.

To overcome these problems, we developed heat enrichment of 
CpG-rich regions for bisulfite sequencing (BS) (Heatrich-BS), which 
very effectively enriches for CpG-dense regions harboring cancer-
associated methylation changes. Together with a bioinformatic 
approach that enables quantitative tumor fraction measurement from 
low-depth sequencing, this universal probe-free method enables 
scalable genome-wide methylation profiling of cfDNA at very low 
cost (<$30). In a proof-of-principle study, we demonstrate the 
improved sensitivity of Heatrich-BS for noninvasive longitudinal moni-
toring of tumor progression in patients with colorectal cancer (CRC). 
In addition, we showed tumor methylation subtyping from cfDNA 
enabled by enhanced coverage of Heatrich-BS in epigenetic regula-
tory regions. Together, these results demonstrate that Heatrich-BS 
is a cost-effective, scalable platform that can complement existing 
cancer diagnosis and monitoring tools to enable early intervention 
and personalized therapy in cancer.

RESULTS
CpG-rich DMRs are highly enriched in regions with  
high GC content
The sequence content in the human genome is highly nonuniform. 
Long stretches of CpG-poor regions are punctuated by short stretches 
of CpG-dense regions that coincide with important gene regulatory 
elements such as promoters. These CpG-dense regions are often 
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differentially methylated between tissues and disease such as cancer 
(1, 5, 6). Of the DMRs we identified between CRC tissue and healthy 
plasma (Materials and Methods), nearly 45% of the DMRs lie with-
in CGIs (Fig. 1A), which originates from less than 1% of the genome 
(Fig. 1B). CGIs are also highly overrepresented in manually curated 
DNA methylation arrays (e.g., Infinium HumanMethylation450 
Bead Chip) (Fig. 1B), reflecting their functional importance and 
fundamental interest to biology. Hence, it is of value to focus on this 
small fraction of CpG-rich genome for epigenetic profiling.

While there is no known means to physically enrich for CpG-
dense DNA, it is long known that the G + C content of a double-​
stranded DNA (dsDNA) fragment is closely related to its thermal 
stability. It has been shown that the G-C bond in DNA has a bind-
ing energy of 25.4 kcal mol−1, which is two times stronger than the 
A-T bond (7). As the presence of a CpG dinucleotide in a fragment 
adds two GC bonds to the duplex, we ask whether effective selection 
of CpG-dense fragments can be achieved by selection of GC-rich 
fragments. To verify this hypothesis, we calculated the GC content 
and number of CpGs in 200–base pair (bp) fragments of the human 
genome (Fig. 1C). Our results showed a strong correlation between 
GC content and number of CpGs in each fragment. DNA fragments 
with GC content greater than 0.6 constitutes only 2.5% of the ge-
nome but disproportionately includes 85% of CGIs and 58% of 
identified DMRs between CRC tissues and healthy plasma. We fur-
ther verified the relationship between different cancer-specific DMRs 
and GC content (Fig. 1D). Selection of fragments above 0.6 GC con-
tent affords nearly eightfold enrichment in proportion of reads in 
DMRs across different cancers [colorectal adenocarcinoma (COAD), 
breast invasive carcinoma, lung adenocarcinoma, kidney renal clear 
cell carcinoma, and uterine corpus endometrial carcinoma]. There-
fore, we established that DMRs of various cancers, which are 
universally overrepresented in CpG-dense regions, can be effectively 
enriched with selection of high-GC DNA fragments.

Heatrich uses thermal denaturation to select for DNA fragments 
with high GC content (Fig. 1E). Fragmented DNA was first end-​
repaired and A-tailed. Following this, the sample was heated to dena-
ture the GC-poor fragments, and adapter ligation was immediately 
performed at low temperature (20°C) to allow any partially denatured 
fragment to reanneal. The process of adapter ligation allows selec-
tion of intact nondenatured GC-rich double-stranded fragments, as 
T4 DNA ligase has a high selectivity for dsDNA (8). The selected 
fragments were bisulfite-converted and subsequently sequenced. We 
found through empirical optimization experiments using sheared 
genomic DNA (gDNA) (Fig. 1F) that heating DNA to 88°C imme-
diately before adapter ligation yields the best enrichment of reads in 
CGI (28%) at high GC content (0.63 ± 0.006) compared to the aver-
age GC content of the unheated samples (0.42 ± 0.009) (fig. S1A). 
Additional experiments showed that heating time of 5 min improved 
upon enrichment of reads in CGIs, whereas longer heating time 
could denature even some fragments that are found in CGIs (table 
S1). We also observed that comparable heat enrichment of high GC 
content fragments can occur in different length DNA fragments 
commonly found in cfDNA (fig. S1B).

Heatrich enables effective CpG enrichment in fragmented 
gDNA and cfDNA
To evaluate the effectiveness of heat denaturation for enrichment 
of CpG-rich regions, we performed parallel comparisons with re-
duced representation bisulfite sequencing (RRBS), a conventional 

enzymatic approach for CpG enrichment. Analysis of the mapping 
of heat-treated sheared gDNA showed that Heatrich samples dis-
played a notable accumulation of reads around CGIs, similar to 
RRBS (SRR222486, Fig. 2A). Quantitatively, heat denaturation is 
even more effective than the enzymatic approach in enriching for 
DNA fragments in CGIs and shores (Fig. 2B). Most Heatrich reads 
are located in promoters, exons, and introns (Fig. 2C), suggesting 
that this nonenzymatic approach can be an attractive alternative to 
RRBS for detailed methylation profiling in important genomic 
regulatory elements. When comparing DNA methylation profiles 
obtained from Heatrich-BS on sheared K562 gDNA with gold stan-
dard WGBS assay (ENCODE), a high Pearson correlation of 0.93 is 
observed (fig. S1C). We note that unlike deterministic (e.g., RRBS) 
and targeted (e.g., hybridization capture) approaches, Heatrich may 
not measure the exact same sites in different samples because of 
random DNA fragmentation. Nevertheless, we observed that the 
majority (6143) of DMRs covered in replicate K562 Heatrich-BS 
libraries (average of 8850 DMRs in each sample) are overlapping 
(fig. S1D). The degree of overlap between samples would further 
improve with higher-​sequencing depths.

Heatrich is ideally suited for cfDNA methylation profiling be-
cause of the low abundance of total DNA and its fragmented nature, 
where current methods are limited in their CpG enrichment capa-
bility. We tested the performance of Heatrich-BS on cfDNA sam-
ples obtained from patients with CRC. As both cost and performance 
are important considerations for routine liquid biopsy, the per-
formance of Heatrich-BS is benchmarked against other sequencing 
methods at equivalent read counts to establish its cost benefit in 
the following analysis. We first visualized the reads obtained from 
Heatrich-BS and compared it with WGBS (no heat treatment) and 
previously reported single-cell RRBS (scRRBS) on cfDNA (1) (Fig. 2D). 
Mapped reads from scRRBS on cfDNA (GSM2090507) and WGBS 
(EGAS00001001219) were distributed almost uniformly across all 
genomic regions. On the other hand, Heatrich-BS reads were highly 
concentrated at CGIs and shores. The number of common DMRs pro-
filed between samples is notably higher using Heatrich-BS workflow 
compared to WGBS and RRBS protocols (table S2). Heatrich-BS 
samples displayed up to 15-fold enrichment of reads in CGIs com-
pared to WGBS (fig. S1E) and nearly 5-fold enrichment compared 
to scRRBS on cfDNA (Fig. 2E). This demonstrates that Heatrich-BS 
outperforms RRBS in terms of CGI enrichment when the input DNA 
is fragmented. Furthermore, Heatrich-BS had up to 10-fold more 
reads localizing to DMRs (Fig. 2F) and was able to detect up to 
10-fold more DMRs than WGBS using comparable number of 
sequencing reads (fig. S1F). This would provide higher sensitivity in 
detecting fragments of tumor origin for the same total sequenc-
ing reads.

Our results showed limited DMR coverage with WGBS and RRBS 
at low sequencing, but enrichment with Heatrich-BS can overcome 
this important challenge. Hence, Heatrich-BS can be particularly 
promising to enable sensitive detection of circulating tumor DNA 
at low cost. We note, however, that Heatrich-BS would not be a 
substitute for unbiased methods for applications that require 
comprehensive genome coverage (e.g., de novo DMR discovery). 
Unbiased approaches such as WGBS can achieve a much broader 
and uniform coverage across the genome, although at substantially 
increased cost. We envision that WGBS and Heatrich-BS would 
complement each other in DMR discovery and routine implemen-
tation of liquid biopsy.
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Fig. 1. CpG-rich DMRs are highly enriched in regions with high GC content. (A) Percentage of DMRs between CRC tissue and healthy plasma in different genomic 
regions. More than 40% of DMRs lie in CpG-rich CGIs. (B) Proportion of DMRs and Illumina 450K Methylation Array probes in CGI with respect to the genomic distribution. 
Forty-three percent of DMRs and 30% of Illumina 450K methylation array probes lie in 0.76% of the genome. (C) Relationship between GC content and number of CpGs 
in 0.5 million randomly generated 200-bp fragments from the human genome. Fragments with high GC content also contain more CpG within each fragment. (D) Number 
of DMRs of different cancers detected per 1000 fragments using different GC-content thresholds. COAD, colorectal adenocarcinoma; BRCA, breast invasive carcinoma; 
LUAD, lung adenocarcinoma; KIRC, kidney renal clear cell carcinoma; UCEC, uterine corpus endometrial carcinoma. Fragments above 0.6 GC content contain nearly 
eightfold more DMRs across different cancers. (E) Workflow of Heatrich-BS to select for GC-rich fragments. GC-poor fragments are denatured by heat, and intact GC-rich 
fragments are selected by Y-adapter ligation. (F) Trend of GC content and read enrichment at CGI over a range of temperatures. Optimal enrichment is achieved at 88°C.
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Estimating the tumor fraction
Recent studies have shown that the comethylation patterns within 
individual DNA fragments can be used to distinguish the origins of 
cfDNA fragments with higher sensitivity. This has led to the de-
velopment of methods such as those that make use of methylation 
haplotype load (1) or -values (9) for tumor fraction estimation in 
cfDNA. However, population-averaged measurements at the marker 
level are still invariably needed, either as a metric for read discor-
dance within a marker (1) or as a requisite for removing confound-
ing markers (9). The need for a minimum read-depth in marker 
regions, especially for low tumor fraction samples, imposes a bottle-
neck to further reducing sequencing cost. In this work, we developed 
a bioinformatics algorithm that estimates global tumor fraction 
by considering only the tumor probability of individual sequenced 
fragments without having to estimate population metrics from in-
dividual marker regions. The workflow of the algorithm is shown in 
Fig. 3A and detailed in Materials and Methods. Our developed algo-
rithm allows for accurate estimation of low cfDNA tumor fractions 
(0.5%) at very low coverage (1×) sequencing data.

In accordance with previous practices (1, 9–11), we identified DMRs 
for CRC using WGBS datasets (12) of cfDNA from 23 healthy sub-
jects and Illumina 450K methylation array datasets of 353 COAD 
samples from The Cancer Genome Atlas (TCGA). The full list of 
DMRs used in this study is provided in data S1. To validate our al-
gorithm with precisely controlled tumor fractions and sequencing 
depths, we simulated cfDNA of different tumor fractions by mixing 
WGBS reads from plasma of three other healthy individuals (12) 
(that are not included in reference generation) and tumors of pa-
tients with CRC (SRR1035745) (13) at different proportions. Tumor 
estimation from healthy cfDNA samples resulted in a nonzero base-
line value that was stable regardless of the sequencing depth (fig. S2A). 
Similar observations of nonzero baseline of healthy cfDNA have 
been reported when tissue samples rather than pure cell popula-
tions were used as references. This nonzero baseline is attributed to 
the contribution of non-neoplastic cells from tumor tissue refer-
ences (14–16) and commonly leads to overestimation of the tumor 
fraction in methylation-based analysis. To identify the contribution 
of these non-neoplastic cells to the CRC reference and eliminate 
its effect on our tumor fraction determination, we determined a tu-
mor purity correction factor by performing receiver operating char-
acteristic (ROC) analysis on healthy and simulated plasma cfDNA 
WGBS samples at 0.5% tumor fraction. The specific correction fac-
tor () that maximized sensitivity and specificity across multiple 
sequencing depths (table S3) was determined for the generated 
CRC reference.

Using the determined correction factor, we tested our algorithm 
on simulated plasma WGBS cfDNA samples from 0 to 5% tumor 
fraction at different sequencing depths (Fig. 3B). At sequencing depths 
of 5× and 1×, we obtained a high degree of linearity (Pearson cor-
relation >0.99) between the simulated and predicted tumor fraction 
values, while the estimated tumor fraction for the healthy individu-
als was correctly called as zero. Notably, at 1× depth, where each 
DMR is covered only once on average, our algorithm can accurately 
detect the presence of small tumor fractions. This is achieved by 
aggregation of reads from multiple loci, without requiring high 
depth at individual DMRs. Despite this improvement, excessively 
low coverage would lead to limited number of DMRs being interro-
gated, which would in turn affect the specificity and confidence of 
tumor calling, as evidenced by the larger variations in the predicted 

tumor fractions, including a higher likelihood of false positives in 
healthy cfDNA samples at 0.1× sequencing depth. Using the CpG 
enrichment offered by Heatrich-BS, the sequencing requirement 
can be kept low without sacrificing coverage of DMRs. To validate 
this, we approximated the Heatrich-BS assay by selecting only plas-
ma cfDNA fragments with >0.6 GC content (simulated Heatrich-BS 
samples). We observed that even using very modest number of total 
sequencing reads (2 million to 6 million reads), high specificity and 
tumor calling confidence could be achieved (Fig. 3C). Notably, the 
tumor fraction prediction from simulated Heatrich-BS samples had 
much higher specificity and lower variance compared to a similar 
read count WGBS samples (0.1×) at 3 million reads. ROC analysis of 
WGBS and Heatrich-BS for low tumor burden detection in cfDNA 
(0.5% tumor fraction) showed that the predictive accuracy of Heatrich-BS 
samples is much better than conventional WGBS samples [AUC 
(area under the curve) 0.988 versus 0.547] (fig. S2B). These results 
demonstrate that Heatrich-BS and the corresponding algorithm 
enable accurate tumor DNA detection in cfDNA with considerably 
lesser sequencing requirement compared to existing methods.

Application of Heatrich-BS on patient cfDNA
To validate the performance of Heatrich-BS on clinical samples, we 
first applied the Heatrich-BS assay on 5 healthy volunteers’ and 15 CRC 
patients’ cfDNA samples (2 million to 8 million sequencing reads 
each) and compared the tumor fraction obtained from either whole-​
genome sequencing or deep-targeted sequencing (Fig. 4A) (17). We 
obtained a Pearson correlation of 0.92 between the tumor fractions 
predicted by Heatrich-BS and genomic methods (estimates from 
variant allele frequencies or copy number variations; Materials and 
Methods), demonstrating that Heatrich-BS can accurately measure 
tumor fractions from genome-wide methylation profiles with mini-
mal sequencing efforts.

Current noninvasive surveillance methods for monitoring CRC 
therapy efficacy and detecting cancer recurrence have their limitations. 
Radiation exposure and cost limit the frequency at which computed 
tomography (CT) scans can be performed. Serum protein biomarker 
such as carcinoembryonic antigen (CEA) can be measured frequently, 
but it lack sensitivity and specificity (18). We performed a cost anal-
ysis of Heatrich-BS (at 3 million reads per sample) and estimated 
the assay cost to be less than $30 (table S4). Because of its simple 
workflow and low cost, Heatrich-BS has the potential to be a sensi-
tive assay for frequent monitoring of patients undergoing treatment 
and those in remission to detect possibility of relapse. To validate 
the applicability of Heatrich-BS in cancer progression monitoring, 
we further profiled a cohort of 79 samples from 14 patients with 
CRC across their course of treatment, with five to seven time points 
per patient (table S5). Concurrently, we obtained longitudinal CEA 
measurements and CT scans of these patients for benchmarking tu-
mor fraction predictions by Heatrich-BS (fig. S3). From the aggre-
gated measurements of our cohort, we observed that CEA values do 
not correlate well with the sum of longest diameter (SLD) of lesions 
in CT scan [Pearson correlation coefficient (r)  =  0.26; fig. S4A], 
highlighting the limitation of CEA as a quantitative measurement. 
On the other hand, Heatrich-BS tumor fraction correlate better and 
more linearly with SLD measurements (Pearson r = 0.62; fig. S4, 
B and C). Further analyzing the time points for each patient, the 
Heatrich-BS tumor fractions were compared with CEA status (Fig. 4B) 
and radiology measurements. To evaluate the potential of using 
Heatrich-BS for detecting cancer recurrence, we first focus on comparing 
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the detection sensitivity for residual tumor in patients using cfDNA 
(Heatrich-BS tumor fraction) and CEA (5.3 ng/ml represents cancer 
detection threshold). Figure 4C lists the tumor detection by radiol-
ogy (SLD), tumor fractions estimated from Heatrich-BS measure-
ment, and concurrent CEA measurement at the same (or very close) 
time points for each patient. We observed that Heatrich-BS was able 
to detect tumor recurrence earlier than CEA measurements in five 
patients (patients 1014, 357, 507, 839, and 386). Occasionally, CEA 

was high even when no tumor lesion was detected via radiology 
(patient 1409), but it was correctly resolved with Heatrich-BS. In 
contrast, CEA outperformed Heatrich-BS in detection of residual 
tumors in only two patients (patients 1066 and 1798). Overall, fewer 
measurements were discordant between detection of tumor via 
Heatrich-BS (14%) and CT scans as compared to CEA (26%). The 
detection sensitivity of Heatrich-BS was previously established in 
silico to be 0.5%, and it has also been showed to be highly specific in 

Fig. 3. Development and validation of the tumor fraction prediction algorithm. (A) Workflow of the tumor fraction prediction algorithm. DMRs were identified by 
comparing healthy volunteer plasma with The Cancer Genome Atlas (TCGA) CRC methylation array data. Class-specific probabilities were assigned to each sequencing 
fragment, and maximum likelihood estimation was used to infer global tumor fraction. Tumor purity correction was applied to account for normal cell infiltration in TCGA 
data. (B) True and algorithm-predicted values of simulated plasma WGBS cfDNA samples at different sequencing depths. Confident tumor fraction prediction is achieved 
beyond 150 million reads (5× sequencing depth). (C) True and algorithm-predicted value of simulated Heatrich-BS samples using different total sequencing reads. Con-
fident tumor fraction prediction is achieved with as few as 3 million reads.
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Fig. 4. Application of Heatrich-BS on patient cfDNA samples. (A) Tumor fractions predicted by genomic methods and Heatrich-BS for patient cfDNA samples. High degree of 
concordance (Pearson r = 0.92) was achieved between the tumor percentages obtained through the two methods. (B) Longitudinal monitoring of 14 patients with CRC with 
Heatrich-BS tumor fraction, SLD, and CEA measurements. CEA positive (>5.3 ng/ml) and negative (<5.3 ng/ml) is indicated by red and black lines, respectively. Circulating tumor DNA 
(ctDNA) positive (>0.5%) and negative (<0.5%) is indicated by filled red circles and open black circles, respectively. Tumor fraction (TF) is represented by the size of the red dots. 
(C) Heatrich-BS tumor fraction, CEA, and SLD values for patients 357 and 507, which show Heatrich-BS tumor fractions increasing before CEA values, enabling earlier cancer re-
currence detection. CEA, Heatrich-BS tumor fractions, and SLD values are represented by blue, red, and black circles, respectively. Open circles indicate values below threshold. 
(D) Comparison between SLD, Heatrich-BS tumor fraction, and CEA measurements at concurrent time points. “*” indicates that Heatrich-BS outperforms CEA, and “^” indicates that 
CEA outperforms Heatrich-BS. (E) The relative change in Heatrich-BS tumor fraction is significantly different between patients with PD and patients with SD and PR. (F) The relative change 
in CEA concentration is significantly different between patients with PD and PR but not between patients with PD and SD. (G) Waterfall plot indicating the relative Heatrich-BS tumor 
fraction change associated with patient response status (PR, SD, and PD) assessed by CT scans. Changes in tumor fraction exceeding 20% accurately predict patient response.
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a different cohort (Fig. 4A). Our results suggest that Heatrich-BS 
could be used for frequent monitoring of patients for the risk of re-
currence, where a positive cfDNA measurement would be followed 
up with CT scans for confirmation.

We next investigate whether serial cfDNA monitoring can be 
used to predict treatment response in patients. To do so, we evaluated 
whether relative change in tumor fraction detected via Heatrich-BS 
corresponds to radiographic response in patients and compared how 
this measure performed relative to CEA changes. We calculated the 
changes in CEA and Heatrich-BS tumor fraction between succes-
sive time points (Fig. 4C) and obtained the response evaluation ac-
cording to radiology measurement. Relative change in Heatrich-BS 
tumor fraction is positively correlated with relative change in tumor 
size (fig. S4D). We observed that patients achieving partial response 
(PR) or stable disease (SD) had a significantly greater decrease of 
Heatrich-BS tumor fraction (means, −8.3 and −0.8%, respectively) 
compared to patients achieving progressive disease (PD) (Fig. 4D; 
mean, +9.3%; P = 0.0075 for PR versus PD and P = 0.002 for PR 
versus SD), indicating that Heatrich-BS tumor fraction is predictive 
of treatment response. On the other hand, patients with PR had a 
significant reduction of CEA (mean, −125.4 ng/ml) compared to 
patients with PD (Fig. 4E; mean, +88.6%; P = 0.042 for PR versus 
PD), but CEA changes between SD and PD did not reach statistical 
significance, presumably because of their larger nontumor-specific 
variations. A waterfall plot of the change in Heatrich-BS tumor fraction 
across different treatment response showed that when the magnitude 
of change in tumor fraction exceeds 20%, it is completely predictive of 
tumor response. Therefore, serial cfDNA profiling with Heatrich-BS 
may provide a good predictor of treatment response to patients with 
cancer and may outperform standard tumor markers.

Characterization of tumor methylation subtypes in patient 
cfDNA using Heatrich-BS
Tumorigenesis can be driven by a myriad of genetic or epigenetic 
factors, resulting in distinct subtypes within a type of cancer. The dif-
ferent driving factors of these subtypes also influence treatment options, 
prognosis, and survival. One common methylation subtype, known 
as CpG island methylator phenotype (CIMP), is observed in multi-
ple cancers, such as CRC, breast cancer, gastric cancer, and glioma 
among others, and is characterized by epigenetic instability, where 
tumor suppressor genes are inactivated by methylation rather than 
mutation (19). Studies have shown that patients with CIMP-positive 
tumors have poorer prognosis and shorter overall survival (20), 
while CIMP-positive CRCs respond better to irinotecan-based reg-
imen rather than oxaliplatin-based regimen (21). To our knowledge, 
no existing targeted cfDNA methylation assay is capable of performing 
cancer methylation subtyping. The untargeted nature of Heatrich-BS 
provides an opportunity to obtain this additional insight.

Fittingly, most differentially methylated loci in CIMP are found 
in CGIs that are highly enriched in Heatrich-BS. We found that 
41.7% (1121 of 2686) of the loci used to classify and annotate CIMP 
status in TCGA CRC samples (22) are effectively represented in 
Heatrich-BS (covered in more than 50 samples). We identified a final 
set of 635 most informative CpGs that can collectively distinguish the 
different CIMP subtypes (Fig. 5A). On the other hand, methylation 
profiles of the DMRs used to predict tumor fraction remained in-
variant across the different CIMP subtypes (fig. S5). We noted that 
there is no overlap between CIMP markers and the DMRs used to pre-
dict tumor fraction, indicating that Heatrich-BS regions encompass 

orthogonal sets of markers that are useful for tumor load quantifi-
cation and methylation subtype prediction.

We next developed a scoring system that would allow easy clas-
sification of tumor methylation subtypes (Materials and Methods). 
Applying this scoring system to the 233 TCGA CRC samples (22), 
we observed that CIMP subtypes of CRC tissues are well defined 
by ranges of methylation scores, and a series of threshold values in 
methylation scores allow 89% accuracy in classifying CIMP sub-
types (Fig. 5B). Nevertheless, raw methylation scores from cfDNA 
are not expected to reflect the methylation subtype of the underly-
ing tumor because cfDNA is derived from mixture of normal and 
cancerous cells. To validate the approach used to determine methyla-
tion score of the underlying tumor in cfDNA, we simulated cfDNA 
containing different tumor methylation subtypes at varying tumor 
fractions by creating mixtures of sequencing reads drawn from 
TCGA tumor and healthy plasma methylation measurements (Fig. 5C). 
While the raw methylation score from cfDNA is confounded by its 
tumor fraction, incorporating tumor fraction estimation from 
Heatrich-BS assay enables the calculation of corrected methylation 
score that accurately reflected the underlying tumor methylation 
subtype (86% accuracy). Nevertheless, at present, tumor subtyping 
exhibits higher uncertainty at tumor fractions below 10% due to fewer 
tumor-derived cfDNA fragments (Fig. 5D). Finally, we applied this 
algorithm to infer tumor methylation subtype of our longitudinal 
tracking cohort (Fig. 5E). We calculated methylation score for 23 of 
79 samples that had tumor fractions >10%. Our results showed that 
the corrected methylation scores of longitudinal samples from the 
same patient are often tightly clustered and independent of tumor 
fraction (15 of 20 or 75% of measurements from same patients con-
form to consistent CIMP subtypes), while methylation scores be-
tween patients could differ greatly, suggesting that the methylation 
subtype of a patient tumor does not change substantially through 
disease progression. Our results predicted that there were no CIMP-
high patients in the profiled cohort, with most patients falling into 
CIMP-negative subtypes, cluster 3 or 4. It has been reported that CIMP-​
high tumors in CRC are strongly associated with microsatellite insta-
bility (23). Our tumor methylation subtype prediction from cfDNA 
is well in line with expectation as all the patient tumors in this lon-
gitudinal cohort were profiled to be microsatellite stable during standard 
clinical evaluation (table S5). Finally, to further validate the accuracy 
of subtype prediction from cfDNA, we were able to perform DNA 
methylation profiling (Infinium Methylation EPIC array) of matched 
tumors from six patients. These patient tumors showed variable 
methylation at the CpG sites used for CIMP subtyping (fig. S6), and 
the inferred CIMP subtypes for these patients are plotted in Fig. 5E. Our 
results showed that the CIMP subtypes from tumor samples largely 
matches the subtypes inferred from Heatrich-BS. Of the 11 subtype 
inferences made from Heatrich-BS when tumor subtypes are known, 
8 (73%) were attributed to the correct tumor subtypes.

DISCUSSION
In this study, we present the Heatrich-BS assay, which is the first 
assay that uses the concept of thermal denaturation to achieve CpG 
enrichment in fragmented DNA. Heatrich selects for DNA fragments 
with GC content exceeding 60%, and we have demonstrated that 
nearly 30% of Heatrich-BS reads are in CGIs, which comprise less than 
1% of the genome. We also developed a tumor fraction prediction 
algorithm to augment our assay and validated its application for 
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Fig. 5. Characterization of patient cfDNA using Heatrich-BS. (A) Methylation status of TCGA CRC samples and normal plasma at 635 CpG markers identified for CIMP 
subtype classification. (B) Methylation score of 233 CRC tissues with CIMP annotation in TCGA. Cutoff thresholds to distinguish different CIMP subtypes were determined 
by a decision tree classifier. (C) Raw and corrected methylation score of simulated cfDNA with different tumor fractions and methylation subtypes. Deconvolution re-
moves the effect of tumor fraction on raw methylation score calculated from cfDNA. (D) Corrected methylation scores of different CIMP subtypes and tumor fraction 
simulated samples with decision tree classifier thresholds for CIMP classification. Corrected methylation scores are concordant across tumor fractions more than 10% for 
different CIMP clusters. (E) Corrected methylation score for patient cfDNA samples with tumor fractions above 10%. CIMP scores from tumors of six patients are measured 
using DNA methylation array.
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tumor fractions as low as 0.5% from low-depth sequencing. Com-
pared to existing methods such as CancerDetector (9), which can 
detect 0.5% tumor from 2× WGBS (~60 million reads), our method 
and algorithm could detect similar tumor burden with 20-fold less 
sequencing (~3 million reads). With this two-pronged approach, 
we realized a universal low-cost ($30) cfDNA methylation assay 
for quantitative cancer detection.

We showed that Heatrich-BS provides accurate tumor fraction 
estimates that correspond to cfDNA mutation and copy number 
measurements. Because of its high sensitivity and low cost, as well as 
the ability to perform quantitative analysis of tumor from cfDNA, 
Heatrich-BS is particularly amenable to noninvasive monitoring of 
cancer progression or recurrence, in which frequent measurements 
are needed and current methods are inadequate. We showed that 
Heatrich-BS can provide superior sensitivity for detection of CRC 
at low tumor fractions compared to conventional CEA protein bio-
marker assay in longitudinal monitoring of patients with cancer. In 
addition, we demonstrated the elucidation of tumor methylation 
subtypes from cfDNA, further confirming the advantage of broad 
genomic coverage using Heatrich-BS assay.

Heatrich-BS offers many advantages compared to current as-
says: (i) The workflow of Heatrich-BS is short and easy to per-
form. The entire assay, from sample collection to sequencing, can 
be performed in less than 48 hours, resulting in a short turnaround 
time even for a sequencing assay. (ii) Heat denaturation is indepen-
dent of DNA sequence biases that can arise from the use of restriction 
enzymes in assays like RRBS. (iii) Heatrich is based on GC content, 
which is a physical property of DNA. This enables effective CpG 
enrichment even in fragmented DNA, such as cfDNA and FFPE 
samples, where the enrichment capability of current assays such as 
RRBS is limited (24). (iv) Heatrich-BS requires fewer sequencing 
reads compared to conventional untargeted assays, which makes it 
highly cost effective (>10-fold cost saving) to perform.

Finally, the extensive coverage of epigenetically informative regions 
using Heatrich-BS assay could enable exploration of other important 
applications. The vast majority (83%) of tissue-specific methylation 
haplotype blocks (1) identified in previous reports could be detected 
using Heatrich-BS, suggesting a potential for its use as a universal 
and affordable multicancer screening and discrimination assay. Be-
cause of its high coverage of epigenetic regulatory regions, Heatrich-BS 
could also be useful for validation of candidate DMRs from tissues 
of different cancers. There would be need to substantially increase 
the sequencing reads from the current nonsaturating sequencing 
throughput to achieve reproducible coverage between samples and 
to accurately determine the average methylation at each site. Never-
theless, we expect that the cost savings gained by deep methylation 
sequencing only at CpG-dense regions would be an attractive ad-
vantage for this endeavor. We envision that the Heatrich-BS platform 
would be an important innovation to enable practical and scalable 
implementation of cfDNA methylation profiling in liquid biopsy 
for clinical translation.

MATERIALS AND METHODS
Generating sheared DNA
K562 cells (American Type Culture Collection, CCL-243) were cul-
tured in high-glucose Dulbecco’s modified Eagle’s medium 
(Gibco) supplemented with 10% fetal bovine serum (Gibco) and 
1% penicillin-​streptomycin (Gibco). gDNA was extracted from 

cultured K562 cells using the DNeasy Blood and Tissue Kit (Qiagen). 
The extracted gDNA was fragmented using the LE220 Focused 
ultrasonicator (Covaris) at the following settings: 450-W peak inci-
dence power, 30% duty factor, and 200 cycles per burst for 420 s. 
The fragmented DNA was size-selected for 100- to 200-bp frag-
ments using a BluePippin 2% agarose cassette (Sage Sciences).

Tumor DNA methylation profiling
gDNA is extracted from fresh-frozen tumor samples. DNA (1.5 g) 
was bisulfite-converted following the recommended protocol of a 
Zymo EZ DNA Methylation-Gold kit (Zymo Research). Genome-​
wide DNA methylation profiling of the bisulfite-converted DNA 
was performed using the Infinium EPIC Beadchip array (Illumina). 
IDAT files were processed using the minfi package in R using the 
preprocessIllumina function to yield b values at each locus.

Patient recruitment and extraction of cfDNA from patient 
blood samples
Patients with CRC were recruited at the National Cancer Centre 
Singapore under studies 2018/2795 and 2019/2401 approved by the 
SingHealth Centralised Institutional Review Board. From these pa-
tients, blood specimens and tumor specimens were collected where 
possible and consented for. Blood samples from healthy individuals 
were collected under study 2012/733/B. Retrospective review of med-
ical records was performed to collect clinicopathological details, such 
as patient demographics, tumor staging, serum CEA, and mutational 
status from clinical testing where available (table S5). To assess the 
sensitivity of Heatrich-BS for tumor monitoring in comparison to 
CEA measurements, patients included were those whose CEA mea-
surements were informative or uninformative of disease progres-
sion. All plasma was separated from whole blood collected in EDTA 
tubes within 2 hours of venipuncture via centrifugation at 10 min × 
300g and 10 min × 9730g and subsequently frozen at −80°C. cfDNA was 
extracted using the QiaAmp Circulating Nucleic Acids Kit (Qiagen) 
as per the manufacturer’s protocol.

Heatrich-BS protocol
cfDNA (5 to 10 ng) was used as input for the Heatrich-BS protocol. 
Library preparation was done using the KAPA HyperPrep Kit (Kapa 
Biosystems). 1.4 l of End Repair and A-tailing buffer (Kapa Biosystems) 
and 0.6 l of End Repair and A-tailing enzyme mix (Kapa Biosystems) 
were added to 10 l of input DNA and incubated at 20°C for 30 min 
and 65°C for 30 min. Following this, the sample was heated at 88°C 
for 5 min and immediately placed on ice. The sample was then topped 
up with 6 l of ligation buffer (Kapa Biosystems), 2 l of DNA ligase 
(Kapa Biosystems), 1 l of nuclease-free water, and 1 l of 750 nM 
methylated TruSeq adapter (Illumina). For no-heat controls, 1 l of 
1.5 M methylated TruSeq adapter (Illumina) was used instead. Af-
ter adding these reagents, the sample was incubated at 25°C for 1 hour 
and then cleaned up by performing two rounds of 1.2× SPRISelect 
(Beckman Coulter). The sample was then subject to bisulfite con-
version following the recommended protocol of Zymo EZ DNA 
Methylation-Gold kit (Zymo Research). The bisulfite-converted DNA 
was amplified for 15 cycles using Pfu Polymerase (Agilent) that can 
overcome uracil stalling, cleaned up using 1.2× SPRISelect (Beckman 
Coulter), and reamplified using KAPA Hyper Hot-Start Polymerase 
(Kapa Biosystems) in a real-time polymerase chain reaction machine 
until plateau was reached. The amplified sample was cleaned up using 
1.2× SPRISelect (Beckman Coulter), size-selected for 190- to 400-bp 
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fragments using 2% agarose Bluepippin kits (Sage Sciences), quan-
tified using Kapa Library quantification kits (Kapa Biosystems), and 
sequenced using MiSeq or NovaSeq (Illumina). Pair-end sequencing 
of 75 bp each was performed.

Heatrich-BS analysis pipeline
Fastqc (25) was used to check the quality of the pair-end reads gen-
erated by MiSeq. After adapter trimming using Cutadapt (26), the 
reads were aligned to the hg38 human genome using Bismark (27). 
Aligned fragments with the same start and end positions were 
deduplicated using Picard tools (28), following which the Bismark 
methylation extractor was used to obtain per-base methylation status 
of each fragment.

GC content calculation
To calculate the GC content of each fragment, the forward and re-
verse reads were aligned separately and then combined to generate 
a single coordinate range encompassing the entire fragment. The 
coordinates of the fragment were then used to obtain its sequence 
from the reference genome. For each fragment, the GC content was 
defined as the number of Cs and Gs, divided by the total length of 
the fragment. Percentage of reads in CGI was defined as the propor-
tional of sequenced reads that coincided with hg38 CGI annotation 
from UCSC Genome Browser.

Tumor fraction determination algorithm
The tumor fraction determination algorithm has three major steps:
Step 1: Identifying the differentially methylated clusters
To identify differentially methylated clusters for tumor-specific 
cfDNA detection, normal plasma whole-genome methylation data 
(12) and COAD methylation array from TCGA were used. Twenty-​
three WGBS datasets for normal plasma (EGAS00001001219) and 
353 Illumina 450K methylation array datasets from TCGA were 
used for cluster generation. The TCGA methylation values were 
extrapolated to ±100 bp of each probe site. To ensure selection of 
only consistent sites, only methylation values with an SD less than 
0.4 between the various samples in that class were chosen to ensure 
confidence for the reference. DMRfinder (29) was used to identify 
differentially methylated clusters. Within these clusters, sites with a 
0.5 difference in methylation were selected.
Step 2: Calculating the class-specific probability of each site
Using the generated reference, a normal and tumor class-specific 
probability must be assigned to each assayed fragment. Because 
methylation values are binary, the average methylation value observed 
in the reference is a proportional combination of the unmethylated 
and methylated reads. For every site in the reference, the contribu-
tion from the unmethylated and methylated modes (0 and 1) was 
calculated. The relative contributions of each mode in the two classes 
were used to assign class-specific probabilities for the methylation 
values in the assayed fragment. In this way, a normal or tumor 
probability value was assigned to each site assayed.
Step 3: Using maximum likelihood estimation to predict 
the tumor fraction of the sample
After assigning class-specific probabilities to each fragment, the 
fraction of fragments that come from the tumor must be enumerated. 
The tumor-derived cfDNA in a sample, also known as tumor frac-
tion, can be denoted as , where 0 ≤  < 1. To estimate the tumor 
fraction , a maximum likelihood estimation approach and grid 
search, adapted from CancerDetector (9), was used to calculate the 

raw tumor fraction for each sample. The determined tumor purity 
correction factor () of 0.057 is then applied to the raw tumor frac-
tion to generate the final tumor fraction.

GC content analysis in DMRs
The human genome was split into 200-bp tiling windows, and the 
GC content of each window was calculated. Windows with GC con-
tent exceeding 60% were used as a theoretical representation of 
Heatrich output. To investigate the relationship between GC content 
and CpG density, we used a random sequence generator to create 
half a million 200-bp fragments. The number of G + C bases (GC 
content) and number of CG dinucleotides (CpG content) was cal-
culated as a fraction of the total length. To calculate the number of 
DMRs per 1000 fragments, we first generated DMRs for each cancer 
using the earlier mentioned approach (step 1 of tumor fraction 
determination). We then used random 1000 fragments generated 
from a plasma cfDNA dataset subject to different GC content thresh-
olds and counted the number of DMRs of each cancer that was 
detected. To generate the number of DMRs covered by different num-
ber of total sequencing reads, a similar approach was used where 
different datasets were subsamples to the required number of reads, 
and the number of fragments that contained DMRs was counted. 
For cell-free RRBS, all fragments with Msp I cut sites between 20 
and 160 bp were used as theoretical data.

Tumor burden estimation by whole-genome  
or targeted sequencing
DNA libraries were prepared using the Kapa Hyper Prep Kit (Kapa 
Biosystems) and sent for whole-genome sequencing or targeted se-
quencing. Hybridization capture was done for targeted sequencing 
using an IDT Xgen custom panel of 101 cancer genes and reagents 
as per the manufacturer’s instructions. Sequencing was performed 
on an Illumina HiSeq 4000 (2 × 150-bp paired-end reads). Tumor 
fraction estimation from whole-genome sequencing data was carried 
out using the ichorCNA algorithm (17). Variant calling from targeted 
sequencing data was performed using MuTect (30) with the tumor 
fraction estimation being the mean variant allele frequency of seven 
known CRC hotspots (KRAS, NRAS, BRAF, EGFR, APC, TP53, and 
PIK3CA) present in a particular sample.

Tumor measurements and disease status classification
For each profiled time point, the nearest available CT scan image 
was retrieved from the patient’s clinical records. Each lesion on the 
scan was measured in two dimensions (maximum width and maxi-
mum length). Indeterminate lesions were not measured. For each 
time point, the SLD was determined, providing a representation of 
the total tumor load present at the time point. To ensure consistency, 
all measurements were carried out by the same clinician. Disease 
classification for each time point was carried out according to the 
following criteria: CR, disappearance of all lesions; PR, ≥30% de-
crease in the SLD of the lesions compared with the SLD of the pre-
vious measured time point; PD, ≥20% increase of at least 5 mm in 
the SLD of the lesion compared with the SLD of the previous mea-
sured time point or the appearance of new lesions >10 mm in diam-
eter; and SD, neither PR, PD, nor CR.

Subtype classification
To identify marker sets for CIMP subtype classification, we used the 
data and annotations from TCGA Network’s publication (22). We 
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selected CpG sites with a minimum SD of 0.25 and showed distinct 
methylation patterns in the different CIMP subtypes. Because Heatrich-BS 
disproportionately enriches for CpG-rich regions, we further restricted 
the marker list to CpGs that were covered by at least 50 Heatrich-BS 
samples. To determine the threshold values to distinguish CIMP 
clusters, we used the decision tree classifier from KNIME (31). The 
TCGA dataset with CIMP classification was split 70 to 30 for train-
ing and testing.

To perform CIMP classification of cfDNA samples, a raw methyl-
ation score across the marker sites was calculated for each sample. 
The methylation score, defined as the average of methylation values 
of the 635 loci, was used to summarize the degree of methylation in 
CIMP loci. To estimate the methylation score of the underlying tumor 
in cfDNA, we note that McfDNA = Mtumor + (1 − )Mnormal-plasma. Sub-
stituting Mnormal-plasma (methylation scores from cfDNA of healthy 
plasma) and  (the tumor fraction calculated from Heatrich-BS), 
the methylation score of the underlying tumor (Mtumor) can be esti-
mated. To calculate Mnormal-plasma, samples with negative methyla-
tion scores or fewer than 100 reads falling into marker sites were 
excluded.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abn4030

View/request a protocol for this paper from Bio-protocol.
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