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Abstract

The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. 

However, in recent years, with the surge of clinical sequencing studies, many of these disorders 

have been determined to be monogenic and monoallelic in nature. Human brain development is 

tightly regulated, and it is sensitive to cellular alterations caused by endogenous or exogenous 

factors. Chromatin dysfunction was described as a molecular pathway highly dysregulated in 

NDDs, with many of these syndromes demonstrate phenotypic overlap with one another. Among 

these patients, intellectual disability appears to be a typical phenotype across disorders. Here we 

discuss mutations on the epigenetic machinery; writers, erasers, readers, remodelers, and even 

histones, that are predicted to affect gene regulation. First, we discuss disorders associated with 

mutations in histone acetylation enzymes. Second, we highlight syndromes involving histone 

methylation enzymes followed by chromatin remodeling enzymes. Lastly, we touch on recently 

discovered germline histone mutations and their pathogenic outcome on neurological function. 

Throughout this review, we discuss various animal and iPSC models of these disorders and 

their usefulness in determining pathomechanism and potential therapeutics. Ultimately, classifying 

these disorders based on their effects on the epigenome will not only aid in prognosis in patients 

but to elucidate the role of epigenetic machinery throughout neurodevelopment.

INTRODUCTION

Neurodevelopmental disorders (NDD) ranging from attention-deficit hyperactivity disorder 

(ADHD), Fragile X syndrome, autism spectrum disorder (ASD) and intellectual disability 

(ID) disorders, occur when the central nervous system (CNS) develops abnormally. ID, 

which involves defects in general cognition and adaptive behavior, has a prevalence of 3% 

world-wide, affecting 1 in 6 children in the US alone. NDD patients often exhibit ID as 

well as other comorbidities such as developmental delay (DD), epilepsy, autism spectrum 

disorder (ASD) and psychomotor impairments. The etiology of ID is heterogeneous as 

it has been linked to environmental factors during pregnancy, infections, chromosome 

deletions and recently de novo point mutations. Next-generation sequencing has propelled 

the study of these disorders through identification of 750 genes, all proposed to be causative 

of ID (Kochinke et al. 2016). Importantly, many of these are considered monogenic 

disorders, however, the pathological mechanism driving ID disorders are largely unknown. 

Interestingly, epigenetic determinants account for 8% of ID disorders and are starting to be 

recognized as major players in neurological disorders (Tjitske Kleefstra et al. 2014).
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Epigenetics refers to processes that influence gene expression patterns and cellular 

phenotypes, but do not involve changes in DNA sequence (Dupont, Armant, and 

Brenner 2009). At the molecular level, epigenetic mechanisms primarily involve 

covalent modifications on DNA and histone proteins, however, this review will not 

cover DNA modifications (Dupont, Armant, and Brenner 2009). Histone modifications 

facilitate the condensation of chromatin, ultimately regulating DNA accessibility by 

transcriptional machinery. Histone post-translational modifications (PTMs), including 

acetylation, methylation and phosphorylation occur on the flexible N-terminus tails. These 

PTMs are regulated by epigenetic machinery, often protein complexes, that are responsible 

for the deposition (writers), removal (erasers) and recognition (readers) of the histone 

code (Figure 1) (Strahl and Allis 2000). Generally, histone “writers” deposits PTMs at 

specific genomic loci which may result in the promotion or inhibition of transcription due to 

chromatin accessibility. More often than not, histone acetylation defines active transcription 

whereas histone methylation is more complex and will be discussed in the review (Figure 

2). “Eraser” proteins remove histone PTMs allowing for tight regulation of gene expression 

as PTM removal often results in the opposite chromatin state. “Reader” domains are often 

found on or in conjunction with writer proteins and chromatin remodelers, who move 

nucleosomes in an ATP-dependent manner. These proteins are highly regulated, resulting in 

a cell-type-specific steady state of histone PTMs which is malleable and allows for rapid 

response to cellular signals. Therefore, our understanding of the fine-tuned mechanisms 

that regulate the epigenetic machinery under normal conditions is critical to elucidate the 

mechanisms of pathogenic variants in disease.

Thanks to techniques such as tandem mass spectrometry (MS) and chromatin-

immunoprecipitation sequencing (ChIP-seq), histone PTM co-occurrences, their differential 

abundance in a variety of in vitro and in vivo models, and their genomic localization has 

gained appreciation in the last decade(Vermeulen et al. 2010). Particularly, the co-occurrence 

of H3K4me3 (activating mark) and H3K27me3 (repressive mark) at developmental genes 

has been shown to “poise” these loci for rapid transcriptional activation; this specific 

co-ocurrance has been defined as bivalency (Voigt, Tee, and Reinberg 2013). Collectively, 

extensive studies have displayed the importance of establishing and maintaining histone 

PTMs during development and disease progression. Bivalency has been demonstrated to be 

necessary for proper differentiation of both neuronal and neural crest stem cells (Burney 

et al. 2013). Interestingly, dynamic H3K27me3 changes on transcription factor promoters 

mediates neocortex development, again highlighting the importance of histone PTMs in the 

developing brain (Albert et al. 2017). Furthermore, profiling of histone marks in neural 

progenitor cells reinforces this notion as PTMs were shown to influence cellular identity 

(Mikkelsen et al. 2007). In mature neurons, histone acetylation and methylation has been 

shown to drive activity-dependent modulation of neuronal networks (Bonnaud, Suberbielle, 

and Malnou 2016). Mice with heterozygous mutations in histone modifying enzymes exhibit 

altered synaptic plasticity resulting in decreased learning, short and long-term memory, 

and behavioral anomalies (Levenson and Sweatt 2005). Moreover, chromatin factors are 

ubiquitously expressed in the brain in key regions for learning, memory and movement 

(Figure 3).
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Intriguingly, individuals carrying germline mutations in epigenetic machinery often 

demonstrate severe neurological dysfunction often manifesting as developmental and 

psychomotor delay. This suggests that the consequences of improper epigenetic regulation 

result in neuronal dyshomeostasis and ultimately severe impairment to the CNS. Although 

these germline mutations are ubiquitously expressed, it is interesting that the brain is 

the most affected organ in these individuals. Thus, there is sufficient evidence depicting 

the importance of epigenetic machinery in not only neurodevelopment but also neuronal 

function. However, it is imperative to illustrate how alterations to the epigenetic landscape 

and gene expression profiles result in observed phenotypes in these individual disorders. In 

this review, we focus on driver mutations of chromatin modifying enzymes in ID disorders 

(Table 1). Specifically, writers and erasers of histone acetylation and methylation, chromatin 

remodeling enzymes, and even mutations in histones themselves.

ACETYLATION

Lysine acetylation, a ubiquitous modification found on histone proteins, is a key modulator 

of chromatin structure and gene expression (Allfrey, Faulkner, and Mirsky 1964). All 

histones, including variants and linker histones, can undergo acetylation. The negative 

charge of the acetyl group neutralizes the positive charge of the lysine residue, reducing 

the interaction with negatively charged DNA. This impedes the generation of higher order 

chromatin structure, ultimately resulting in an open chromatin state. Histone acetylation, 

commonly found in active promoters and enhancers, plays a critical role in gene activation 

(Kuo et al. 1998; Imhof and Wolffe 1998; Lawrence, Daujat, and Schneider 2016; Z. 

Wang et al. 2008). Histone acetylation is regulated by histone acetyltransferases (HATs) 

and histone deacetylases (HDACs) (Michael Haberland, Montgomery, and Olson 2009; 

Gong and Miller 2013). Human HATs are classified into two groups based on their 

subcellular localization: type A and type B. Type A HATs reside in the nucleus and contain 

bromodomains that recognize acetylated lysines, and often interact with other chromatin 

remodeling complexes and transcription factors (Dhalluin et al. 1999; Marmorstein and 

Zhou 2014; Sanchez and Zhou 2009). Type A HATs are further subdivided into five 

homology superfamilies: (1) the Gcn5-related acetyltransferase (GNAT) family, (2) the 

p300/CBP family, (3) the MYST family, the basal transcription factors, and the nuclear 

receptor cofactors (Steunou, Rossetto, and Côté 2013). On the other hand, type B HATs, 

which often lack bromodomains, are located in the cytoplasm and regulate the acetylation 

of newly synthesized histones (Richman et al. 1988; Bannister and Kouzarides 2011). In 

this section, we will discuss Type A HATs, specifically within the p300/CBP and MYST 

family, that have been identified as causative mutations in NDD and discuss their roles in 

CNS development and function.

p300/CBP Family

The cyclin AMP response element-binding protein (CREB) binding protein, CBP (also 

known as CREBBP or KAT3A) and p300 (EP300 or KAT3B) are two members of the 

p300/CMB subfamily of HATs. CBP mutations are the major cause of 55–60% Rubinstein-

Taybi syndrome (RSTS) 1 (MIM: 180849) cases, while p300 mutations are causative 

in 8% of RSTS2 (MIM: 613684) cases (Roelfsema et al. 2005; Menke et al. 2016). 
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RSTS1 is a rare congenital disorder characterized by mild to severe intellectual disability, 

microencephaly, growth retardation and distinct facial features (RUBINSTEIN and TAYBI 

1963). RSTS2, although similar to RSTS1, results in less severe facial dysmorphism and 

overall better cognitive function compared to RSTS1; however, they tend to have more 

severe microencephaly and malformation of facial bone structures(Bartsch et al. 2010). In 

the vast majority of RSTS2 cases other comorbidities exist such as psychomotor deficits, 

language and gastrointestinal problems (Pérez-Grijalba et al. 2019). The CBP/p300 complex 

primarily regulates gene expression through their combined HAT activity in acetylating H2B 

at residue K85, H3 on residues K9, K14, K36, K56 and H4 on residues K12, K20 and K44 

(Bannister and Kouzarides 1996; Das et al. 2009; Carré et al. 2018). In addition to their 

collective HAT activity, they regulate gene expression through recruitment of transcription 

factors or basal transcription machinery. Considerably, CBP and p300 are implicated in cell 

differentiation, proliferation and apoptosis. CBP or p300-deficient embryos exhibit heart and 

neural tube defects, often resulting in gestational death (T.-P. Yao et al. 1998; Tanaka et al. 

2000). Therefore, CBP/p300 are required for proper brain development, and mutations in 

either of these HATs can result in a neurological disorders (T.-P. Yao et al. 1998; Tsui et al. 

2013; Viosca et al. 2009).

The pathogenic variants of both CBP and p300 in RSTS1/2 resulting from frameshift, 

nonsense, or splice-site mutations are predicted to have a loss-of-function mechanism 

resulting in haploinsufficiency (Alari et al. 2018). CBP haploinsufficiency leads to a 

decrease in the number of neurons generated and is seen to regulate neurogenesis and 

cortical precursor differentiation in mice (Jing Wang et al. 2010; Valor et al. 2011). Loss-of-

function CBP in mice resulted in the defects in hippocampal memory which was rescued 

by two different HDAC inhibitions (Korzus, Rosenfeld, and Mayford 2004). Moreover, 

an in vitro neuronal model of RSTS1 and RSTS2 was developed using patient-derived 

induced pluripotent stem cells (IPSCs). In this study, they observed morphological changes 

and decreased neuronal excitability (Alari et al. 2018). Furthermore, these patient-derived 

neurons had increased number of branches; however, the length of the branches was 

reduced (Alari et al. 2018). Interestingly, heterozygous mutations in exons 30–31 of CBP 

or p300 have recently been discovered to have a substantially distinct phenotype from 

RSTS. Patients harboring these mutations display developmental delay, autistic behavior, 

short stature, microcephaly and distinct facial anomalies (Menke et al. 2016; 2018; 

Siddharth Banka et al. 2019). Depending on the causative gene, it is known as Menke-

Hennekam syndrome (MKHK) 1 for CBP mutations and MKHK2 for p300 mutations. It is 

hypothesized that CBP mutations confer a gain of function mechanism and p300 mutations 

are specifically affecting the conformation of the zinc finger domains. It is important to 

note that despite similarity in causative genes and overall symptoms, RSTS and MKHK are 

very phenotypically distinct. Ultimately, mutations in either CBP or p300 lead to aberrant 

neurodevelopment through either dysregulation of its HAT activity or improper recruitment 

of transcription factors.

MYST Family

The MYST subfamily is comprised of five human HATs that all share a highly conserved 

MYST domain: Tip60, HBO1, KAT6A, KAT6B and KAT8. These HATs are involved 
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in many cellular processes such as proliferation and differentiation, therefore it is not 

surprising that dysfunction of these proteins have been linked to neurological diseases. 

KAT6A (also known as MYST3/MOZ) or its paralog KAT6B (or MYST4/MORF) form a 

stable complex with ING5, EAF6 and BRPF proteins (Ullah et al. 2009). In recent years, 

heterozygous KAT6A mutations were identified in Arboleda-Tham syndrome (ARTHS) 

(MIM: 616268), formerly known as autosomal dominant mental retardation 32 (Arboleda 

et al. 2015; Tham et al. 2015). ARTHS patients share common features such as impaired 

intellectual development, dysmorphic facial features, speech delay, congenital heart disease 

and microecephaly (Kennedy et al. 2018). KAT6A and KAT6B both acetylate H3K9 

and K18, while KAT6B also acetylates H3K23 (Lv et al. 2017; K. Yan et al. 2020). 

KAT6A-deficient mouse embryos lead to H3K9 hypoacetylation, which is linked to reduced 

transcription of Hox genes and abnormal craniofacial development (Kong et al. 2014; Voss 

et al. 2009). Functional studies in ARTHS patient-derived fibroblasts revealed substantial 

reduction in H3K9 acetylation with increased K18 acetylation as well as dysregulation in 

signaling pathways of p53, which is a non-histone KAT6A substrate (Arboleda et al. 2015).

Interestingly, KAT6B, the paralog of KAT6A, is known to be mutated in multiple 

neurodevelopmental disorders; however, it is the causative gene in Say-Barber-Biesecker-

Young-Simpson variant of Ohdo syndrome (SBBYSS) (MIM:603736) and Genitopatellar 

syndrome (GTPTS) (MIM: 606170) (Simpson et al. 2012; Clayton-Smith et al. 

2011). SBBYSS is clinically characterized by craniofacial abnormalities involving 

blepharophimosis (underdeveloped eyelids) and cleft palates, severe ID, hypotonia, and 

cardiac defects (Clayton-Smith et al. 2011). These de novo truncating KAT6B mutations 

mainly affect exons 16–18 of the gene and are predicted to cause haploinsufficiency 

(Clayton-Smith et al. 2011; Marangi et al. 2018). KAT6B is critical for mammalian 

CNS development as homozygous mutations of KAT6B in mice resulted in a smaller 

cerebral cortex and cortical plate when compared to wildtype animals (You, Yan, et al. 

2015). Furthermore, these mice exhibited craniofacial abnormalities similar to the SBBYSS 

patients (You, Yan, et al. 2015). Although the causative gene in GTPTS is KAT6B, these 

patients do not exhibit distinct craniofacial abnormalities (Simpson et al. 2012; Cormier-

Daire et al. 2000). However, they do exhibit severe ID, thin corpus callosum, psychomotor 

retardation, cardiac defects and genital anomalies. As with SBBYSS, GTPTS is delineated 

by truncation mutations that occur at the proximal end of exon 18; this creates KAT6B 

variants lacking methionine-rich domains which is known to bind to the transcription factors 

RUNX1 and RUNX2. The role of RUNX genes in mammalian CNS involves formation of 

neural circuits, specifically mediating somatosensory sensation, olfaction and motor control.

It is important to note that the border between SBBYSS and GTPTS syndromes is almost 

non-existent as they both have significant overlap with regards to exon 18. With this in 

mind, four distinct groups of KAT6B mutations have been recently suggested (Radvanszky 

et al. 2017; M et al. 2015). Group 1 mutations are proximal mutations, predominantly in 

the MYST domain and have been mainly associated with SBBYSS. Group 2 mutations, 

mainly seen in GTPTS, affect the acidic patch and transcription activation domain. However, 

the majority of these transcripts escape nonsense mediated decay. Group 3 mutations are 

associated with SBBYSS and GTPTS and they lack transcription activation domain with 

either a truncated or intact acidic patch. Lastly, group 4 mutations, exclusive to SBBYSS, 
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contain truncations in the transcription activator domain. The majority of mutations (groups 

2–4) reside after the MYST domain, suggesting that these truncated mutants retain HAT 

activity(M et al. 2015). However, without the remaining regulatory portions of the protein, 

these truncations may cause loss/gain-of-functions, altering cellular processes through 

dysregulation of histone acetylation or transcriptional activation.

MYST Family Co-Writer

BRPF1—Bromodomain and PHD finger containing protein 1 (BRPF1) serves as a scaffold 

mediating the interaction between KAT6A, KAT6B, ING5 and EAF6. BRPF1 is considered 

a “co-writer” as it is critical for HAT activity and transcriptional activation. It consists of 

multiple domains which are responsible for many of its protein-protein interactions, it also 

contains a PWWP domain which recognizes H3K36me3 (K. Yan et al. 2016, 1). In 2017, a 

cohort of 10 patients containing heterozygous BRPF1 mutations was identified, all exhibited 

mild to severe intellectual disability, dysmorphic facial features, ptosis, hypotonia, brain 

and behavioral anomalies (K. Yan et al. 2016). These mutations generated a truncated form 

of BRPF1, resulting in impaired H3K23 acetylation. Concurrently in 2017, another group 

identified 6 individuals who had what they referred to as an Intellectual Developmental 

Disorder with Dysmorphic Facies and Ptosis (IDDDFP) (Mattioli et al. 2017). Similar to the 

previous group, these patients all exhibited mild to moderate intellectual disability, growth 

retardation, ptosis and microencephaly (Mattioli et al. 2017). BRPF1, in this second cohort, 

retained the ability to bind KAT6A/B; however, these mutations prevented the formation 

of tetrameric complexes and had reduced HAT activity (Mattioli et al. 2017). Interestingly, 

aside from disrupting complex formation, a few of the pathogenic variants bearing mutations 

predominantly in the PWWP domain, maintain normal HAT activity. Therefore, a potential 

mechanism for this epigenetic dysregulation theoretically could be due to mislocalization of 

this HAT complex.

Functional studies of BRPF1 and its pathogenic variants elaborate on its role in brain 

development and function. BRPF1 is critical for forebrain development, as conditional 

knock-out in the forebrain results in small litter size with all mice exhibiting neurological 

and behavioral defects (You, Zou, et al. 2015, 1). Additionally, forebrain-specific 

inactivation of mouse Brpf1 lead to abnormal cerebral and hippocampal development 

(K. Yan et al. 2016). These anomalies were attributed to BRPF1 loss as it results in 

downregulation of neuronal migration, cell cycle progression and transcriptional control 

through the compromised status of neural stem and progenitor cells (You, Yan, et al. 

2015). Moreover, despite the lack of intrinsic HAT activity in BRPF1 there is sufficient 

evidence demonstrating its interaction with KAT6A and KAT6B is critical for regulating 

histone acetylation both in vitro and in vivo (K. Yan et al. 2016). Heterozygous Brpf1 mice 

displayed a decrease in H3K23 acetylation, similar to the reduction seen in patient-derived 

fibroblasts (K. Yan et al. 2016). These findings illustrate the importance of co-writers, and 

accessory proteins in HAT complexes.

KANSL1—KAT8 regulatory NSL complex subunit 1 (KANSL1) is a part of the non-

specific lethal (NSL) complex, which is a highly conserved protein complex that also 

includes KAT8/MOF, KANSL2 and WDR5. The NSL complex influences gene activation 
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through acetylation of H4K16 and the transcription factor, p53 (Mendjan et al. 2006; 

X. Li et al. 2009; Dou et al. 2005). The stability and activity of the NSL complex 

is dependent on KANSL1(Raja et al. 2010). In 2012, two unrelated patients exhibiting 

characteristic symptoms of chromosome 17q21.31 deletion syndrome were discovered to 

have the first de novo mutations in KANSL1 (Zollino et al. 2012). Concurrently, another 

group performed sanger sequencing on 16 unrelated patients, identifying 16 different 

de novo heterozygous truncating mutations in KANSL1 in two unrelated patients. All 

four of the aforementioned patients were all diagnosed with Koolen-de Vries syndrome 

(KdVS) (MIM: 610443) which is characterized by moderate to severe intellectual disability, 

hypotonia, and dysmorphic facial features (Zollino et al. 2012; Koolen et al. 2012; 2016). 

The KANSL1 haploinsufficiency seen in KdVs is sufficient to generate a full manifestation 

of the chromosome 17q21.31 deletion syndrome and there were no clinically important 

differences between the two syndromes (Zollino et al. 2012; Koolen et al. 2016).

Whole transcriptomic sequencing on EBV-transformed patient cells bearing either a 

KANSL1 point mutation or deletion showed that there was a high correlation between 

the differential expression of similar genes between both syndromes(Koolen et al. 2012). 

Moreover, gene ontology (GO) analysis revealed enrichment in genes associated with 

neuronal and synaptic processes (Koolen et al. 2012). These results were supported using 

chromatin immunoprecipitation as the KANSL1 Drosophila homolog, wah, was bound to 

the promoter of many genes enriched for the same GO terms (Raja et al. 2010). Global 

knockdown of wah lead to altered synapse morphology at the neuromuscular junction 

and endosomal maturation, which is crucial for synaptic trafficking (Lone et al. 2010). 

Additionally, conditional knockdown of wah in mushroom bodies, the learning and memory 

center of the Drosophila brain, resulted in a 25% reduction in learning ability (Koolen et al. 

2012). Functional analysis of the KANSL1 Drosophila homolog revealed the importance of 

this protein in complex brain functions such as learning and memory.

DEACETYLATION

HDACs are erasers of histone acetylation, in humans there are 18 identified HDACs. These 

enzymes are classified into two categories, “zinc-dependent” and “nicotinamide-adeneine-

dinucleotide (NAD)-dependent”, based on whether they require zinc or NAD for catalysis. 

There are four classes of HDACs within the zinc-dependent class: class I (HDACs 1, 2, 3, 

8), class IIa (HDACs 4, 5, 7, 9), class IIb (HDACs 6, 10) and class IV (HDAC 11). All of 

the zinc dependent HDACs are expressed in the brain; however, they have distinct cellular 

and subcellular localizations. Class I HDACs are primarily found in the nucleus, while class 

II HDACs shuttle between the cytoplasm and the nucleus. NAD-dependent deacetylases, 

also known as Sirtuins, are expressed throughout the brain and are highly regulated in a 

spatiotemporal pattern, which has been speculated to play a role in aging (Deardorff et al. 

2012). To date mutations in three HDACs (HDAC4, HDAC6 and HDAC8) (4,6,8) have been 

determined as causative in neurodevelopmental disorders.
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HDAC4

HDAC4, a class IIa HDAC, is highly expressed in the postnatal brain and regulates 

neuronal cell death; however, the substrates of HDAC4, and therefore the mechanism 

of action, remain elusive (Bolger and Yao 2005). Homozygous HDAC4 mice exhibit 

impaired learning, memory and long-term synaptic plasticity (M.-S. Kim et al. 2012). 

Haploinsufficiency due to mutations or deletions of HDAC4 were determined to cause 

brachydactyly mental retardation (BDMR) syndrome (MIM: 600430) characterized by 

developmental delay, intellectual disability, behavioral abnormalities and dysmorphic 

features (Williams et al., n.d.; Villavicencio-Lorini et al. 2013). Currently, there is some 

debate on whether or not HDAC4 is the driver for BDMR or if mutations in the TWIST2 

or FLJ43879 genes are driving the phenotype (Wheeler, Huang, and Dai 2014). HDAC4 has 

been shown to regulate myocyte enhancer factor-2 (MEF2) proteins during development, 

therefore altered HDAC4 activity potentially results in BDMR through dysregulation of 

MEF2 (Bolger and Yao 2005). However, it remains speculative.

HDAC6

HDAC6, a class IIb HDAC, is also highly expressed in the brain and it primarily resides 

in the cytoplasm; however, deacetylation of its target substrates often leads to nuclear 

translocation (LoPresti 2020; Nagase et al. 1998; d’Ydewalle, Bogaert, and Van Den 

Bosch 2012). HDAC6 is a key regulation of synaptic function during acute stress in 

the prefrontal cortex, a region responsible for higher-order cognition(J. B. Lee et al. 

2012). X-linked dominant Chondrodysplasia with platyspondyly, distinctive brachydactyly, 

hydrocephaly, and microphthalmia (CPDBHM) (MIM: 300863) is caused by heterozygous 

mutations in HDAC6 (Chassaing et al. 2005; Simon et al. 2010). CPDBHM is characterized 

by macrocephaly, growth retardation, skeletal and craniofacial abnormalities and mild 

intellectual disabilities, these phenotypes are more pronounced in males (Chassaing et al. 

2005; Simon et al. 2010). In pathological conditions, HDAC6 translocate to the nucleus, 

dysregulating synaptic function due to decreased expression of brain-derived neurotrophic 

factor (BDNF) (J. B. Lee et al. 2012). Furthermore, HDAC6 has been implicated in many 

neurological conditions such as Alzheimer’s’ disease, Charcot-Marie-Tooth disease and 

mood disorders. However, whether this regulation is mediated through deacetylation of its 

known substrates (β-catenin, α-tubulin) or another target of HDAC6 remains unclear.

HDAC8

HDAC8 is known to deacetylate H3 and H4 in vitro, and structural maintenance of 

chromosomes 3 (SMC3) in the cohesin complex (Deardorff et al. 2012; Hans Tomas 

Bjornsson 2015). Loss of HDAC8 activity results in increased SMC3 localization to 

chromatin, leading to amplified cohesin localization which results in altered transcriptional 

activity (Deardorff et al. 2012). Mutations in HDAC8 are responsible for Cornelia De Lange 

Syndrome (CdLS) 5 (MIM: 300882) (Boyle et al. 2014; Mordaunt and McLauchlan 2015; 

Kaiser et al. 2014). CdLS5 is defined by intellectual disability, facial dysmorphism, pre- and 

post-natal delay, microcephaly, heart defects, upper limb abnormalities, and genitourinary 

anomalies (Yuan et al. 2015). Notably, mutations in HDAC2 have been recently discovered 

in another form of CdLS; however, further studies are needed to compare the similarities 
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between these class I HDAC mutations (V. F. Wagner et al. 2019). A characteristic feature of 

CdLS5 is abnormal skull formation. Interestingly, HDAC8 represses homeobox transcription 

factors, Otx2 and Lhx1, in cranial neural crest cells; thus, HDAC8 mediates patterning of the 

skull and deletion in mice leads to perinatal lethality due to skull instability (M Haberland 

et al. 2009). To this date, no in vivo studies have elucidated the role of HDAC8 in cognition 

or behavior despite the accumulating number of mutations in HDAC8 related to intellectual 

disability syndromes.

METHYLATION

Histone methylation occurs on both arginine and lysine residues and plays a critical role 

in transcriptional regulation (Allfrey and Mirsky 1964; Allfrey, Faulkner, and Mirsky 

1964). Unlike acetylation, a binary system (acetylation or no acetylation), methylation is 

more complicated. Histone lysine methylation is a quaternary system as lysine residues 

can be mono-, di-, and trimethylated, while arginine residues can be mono- and di- 

methylated. Importantly, none of these modifications alter the lysine’s positive charge. 

Histone methylation is ambiguous as it is associated with both activation and repression of 

gene expression depending on the residue modified and the number of methyl groups added 

(Y. Zhang 2001; Black, Van Rechem, and Whetstine 2012). To this date, only methylation 

on histone H3 and H4 have been identified. Methylation on H3K4, H3K36, and H3K79 has 

been shown to mark active regions, whereas H3K9, H3K27, and H4K20 methylations are 

associated with repressed chromatin (Black, Van Rechem, and Whetstine 2012). There are 

two classes of lysine methyltransferases (KMT) in humans, and this classification depends 

on the presence or absence of the catalytic Su(var)3–9, E(z) (enhancer of zeste), and 

trithorax (SET) domain (Jenuwein 2006; Dillon et al. 2005; Nguyen and Zhang 2011). 

Despite having distinct catalytic domains, all KMTs utilize S-adenosyl-L-methionine (SAM) 

as the methyl group donor, and have high specificity to certain residues as well as the degree 

of methylation (Dillon et al. 2005; Nguyen and Zhang 2011). This section will discuss the 

role of KMTs in neurodevelopment and the implications of their dysregulation.

KMT2A

Lysine methyltransferase 2A (KMT2A), also known as mixed lineage leukemia 1 (MLL1), 

catalyzes the trimethylation of histone H3K4 (Dou et al. 2006; Schneider et al. 2005). 

KMT2A, like other SET domain-containing KMTs, is often found in a complex with four 

other subunits: ASH2L (absent, small, or homeotic-2 like), WDR5 (WD repeat domain 

5), DPY30, and RbBP5 (retinoblastoma binding protein 5). KMT2A also interacts with 

Menin and HCF1, forming COMPASS-like complex (Shilatifard 2012). Importantly, H3K4 

mono-, di- and trimethylation distinctly mark active genomic regions where K4me1 is 

enriched at enhancers, K4me2 at 5’ end of actively transcribed genes, and K4me3 at actively 

transcribed promoters (Heintzman et al. 2007; T. Kim and Buratowski 2009; Santos-Rosa 

et al. 2002). In 1989, three groups reported clinical findings from unrelated patients, all 

detailing hypertrichosis cubiti (abnormal amount of body hair), short stature, craniofacial 

abnormalities, and developmental delays(Hans-Rudolf Wiedemann et al. 1989; Flannery 

et al. 1989; MacDermot et al. 1989). From 1989 to 2010, seven other groups reported 

approximately 40 patients all exhibiting distinct facial features, developmental delays, 
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and short stature (Edwards et al. 1994; W. D. Jones et al. 2012; Steiner and Marques 

2000; Polizzi et al. 2005; Koç et al. 2007; Koenig et al. 2010). This disorder was named 

Weidemann-Steiner (WDSTS) (MIM 605130) and Jones et al. identified heterozygous de 
novo truncating mutations in the KMT2A gene in four of these WDSTS patients (W. D. 

Jones et al. 2012).

By employing whole-exome sequencing and confirmatory Sanger sequencing, a variety of 

mutations were observed: missense, nonsense, and frameshift truncating mutations. These 

mutations result in a loss-of-function or haploinsufficient KMT2A in patients presenting 

clinically similar phenotypes (Koenig et al. 2010; Y. Sun et al. 2017; Nardello et al. 2020; 

Stellacci et al. 2016; Jinxiu et al. 2020; N. Li et al. 2018; N. Miyake et al. 2016). Based on 

these findings, KMT2A was concluded to be the causative gene in WDSTS. Experimental 

studies revealed the critical role of KMT2A in neurogenesis in the mouse postnatal-brain, 

specifically with neuronal differentiation(Lim et al. 2009). In KMT2A-deficient brains, 

neuronal differentiation is severely impaired through reduced size and number of neurons, 

potentially due to the decrease in bivalent promoters in neural precursor cells (Lim et al. 

2009). It also has been demonstrated that KMT2A-mediated H3K4 trimethylation is critical 

in prefrontal neurons as it regulates a subset of genes involved in cognition and behavior 

(Jakovcevski et al. 2015). Lastly, mice deficient for KMT2A had reduced dendritic spines 

and increased aggression (Vallianatos et al. 2020). These studies taken together reveal the 

role of KMT2A in neurogenesis and CNS function, and it is suspected that these functions 

are impaired in WDSTS patients (W. D. Jones et al. 2012). The phenotype of this syndrome 

continues to expand; however, the molecular mechanism remains poorly understood. To 

further understand this disorder, more functional assessments in model organisms must be 

conducted to elucidate the role of KMT2A in cognition.

KMT2B

Lysine methyltransferase 2B (KMT2B), also known as MLL4, is a paralog of KMT2A and 

is responsible for the trimethylation of H3K4 (FitzGerald and Diaz 1999, 2). KMT2B has 

been linked with gene-specific activation and functions in preimplantation development as 

well as embryonic genome activation(Shao et al. 2014). In 2016, an autosomal dominant 

neurological disorder was discovered where patients exhibited microencephaly, mild 

intellectual disability, and developmental delay; this disorder was classified as childhood-

onset dystonia-28 (DYT28) (Zech et al. 2016). Several groups provided evidence that de 
novo mutations in the KMT2B gene result in haploinsufficiency, causing DYT28 (MIM 

617284) (Zech et al. 2016; 2017; Kawarai et al. 2018). Mutations have been observed in 

over 75 patients to date. They encompass frameshift, missense, nonsense, and splice-site 

mutations, and all affect KMT2B function (Zech, Lam, and Winkelmann 2019). KMT2B is 

highly expressed in human tissue and ubiquitously expressed in the brain, with the highest 

expression in the cerebellum (Meyer et al. 2017). This expression is reduced in DTY28 

patients; however, the levels on H3K4 methylation were not significantly altered, suggesting 

a potential role of KMT2B beyond K4 methylation (Meyer et al. 2017). In vitro, KMT2B 

knockdown results in decreased neuronal differentiation from embryonic stem cells (Lubitz 

et al. 2007). Moreover, KMT2B is critical in neuronal programming as ablation impairs 

transdifferentiation of fibroblasts to induced neuronal cells (iNs) conversion (Barbagiovanni 
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et al. 2018). The loss of KMT2B leads to redistribution of H3K4me3 rather than reduction, 

explaining why previous studies found similar levels of methylation between patients and 

controls (Meyer et al. 2017; Barbagiovanni et al. 2018). The mechanism driving the dystonia 

caused by KMT2B remains elusive. However, promising studies are working to elucidate the 

dysregulated pathways involved in DYT28.

KMT2C

Lysine methyltransferase 2C (KMT2C), also known as MLL3, mediates H3K4 mono- 

and dimethylation (Ruault et al. 2002; Sedkov et al. 2003; Herz et al. 2012). KMT2C 

is functionally active in the COMPASS complex and is often recruited to enhancers 

and active gene promoters (D. Hu et al. 2013). Additionally, KMT2C is a central 

component of the activating signal cointegrator-2 (ASC-2) complex, which acts as a 

co-activator for hormone receptors (S. Lee et al. 2009; Goo et al. 2003). Knockdown 

of the Drosophila KMT2C, thrithorax related (trr), in the brain impaired short-term 

memory highlighting its role in synaptic plasticity and cognition (Koemans et al. 2017). 

Kleefstra et al. performed whole-exome sequencing on five individuals with the same 

clinical phenotype, including psychomotor delay, severe intellectual disability, dysmorphic 

facial features, and behavioral problems (Tjitske Kleefstra et al. 2012). They discovered a 

heterozygous de novo nonsense mutation in the KMT2C gene in a female patient, resulting 

in truncation of KMT2C(Tjitske Kleefstra et al. 2012). This truncation is predicted to 

reduce methyltransferase activity as it lacks the enzymatic SET domain. Another group 

identified five unrelated patients with de novo mutations in the KMT2C gene, all which 

are predicted to cause loss-of-function variants(Koemans et al. 2017). These patients, 

previously diagnosed with an undefined developmental disorder, were classified as all 

suffering from Kleefstra Syndrome-2 (KLEFS2) (MIM: 617768)(Koemans et al. 2017). It is 

evident that dysregulation of KMT2C’s function potentially underlies the broad spectrum of 

neurodevelopmental abnormalities observed. To investigate the role of KMT2C in neurons, 

researchers made a knockdown of its Drosophila paralog, trr, in the mushroom body of 

the fly brain revealing impaired short-term memory(Koemans et al. 2017). Unfortunately, 

specific gene targets of KMT2C remain unknown, but future research will likely reveal 

molecular targets of KMT2C haploinsufficiency. Furthermore, it has been recently shown 

that when KMT2C is promoter-bound, this represses gene transcription through recruitment 

of specific factors(Cheng et al. 2014). Based on these studies, KMT2C can potentially 

both activate and repress genes. Understanding its role in chromatin regulation will clarify 

its effect in transcriptional regulation during brain development, ultimately aiding in the 

development of therapeutics.

KMT2D

Lysine methyltransferase 2D (KMT2D), also known as MLL2, is a paralog of KMT2C 

and, as such, mediates mono- and dimethylation of H3K4 in mammalian cells as well(D. 

Hu et al. 2013; J.-E. Lee et al. 2013). Exome sequence uncovered KMT2D variants as 

the causative gene in Kabuki syndrome (KS1) (MIM 147920) (Ng et al. 2010). KS1 is an 

autosomal-dominant disorder phenotypically similar to aforementioned neurodevelopmental 

disorders; it is characterized by infantile hypotonia, craniofacial abnormalities, mild-

moderate intellectual disability, and developmental delay (Ng et al. 2010, 2). There are 
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dozens of clinical reports detailing over 100 unique de novo mutations of KM2D identified 

in individuals with KS1 (Tsukahara et al. 1997; Kobayashi and Sakuragawa 1996; Ilyina et 

al. 1995; Lerone et al. 1997; Kawame et al. 1999; Ewart-Toland et al. 1998; McGaughran, 

Donnai, and Clayton-Smith 2000; S. Banka et al. 2013; Siddharth Banka et al. 2012; 

Hannibal et al. 2011; Micale et al. 2011; Paulussen et al. 2011). These mutations all result 

in loss-of-function variants by disrupting its reader domains (PHD fingers), loss of its 

catalytic SET domain, or disruption of the 3D structure (S. Banka et al. 2013, 2; Dhar 

et al. 2012; Bögershausen and Wollnik 2013). In vitro studies determined that KMT2D 

mediates neural differentiation by activating neuronal differentiation genes, HOXA1–3 
and NESTIN, via H3K4me3 deposition(Dhar et al. 2012). These studies suggest that the 

loss-of-function mutations affecting the tandem PHD domains or SET domain will likely 

lead to loss of H3K4me3, which is necessary for neuronal differentiation gene expression. 

Van Laarhoven et al. performed morpholino-mediated knockdown of KMT2D in zebrafish 

and observed significant craniofacial and cardiac defects (Van Laarhoven et al. 2015). 

Additionally, this knockdown resulted in the reduction of mature neurons and brain size 

despite the accumulation of neural precursor cells, suggesting the defects were due to 

cellular dysfunction rather than perturbed development. Further functional studies on this 

writer will prove beneficial for understanding its role in neuronal maturation and function.

KMT2E

Lysine methyltransferase 2E (KMT2E), also known as MLL5, diverges from the KMT2 

family of methyltransferases since it lacks histone methyltransferase activity(Sebastian 

et al. 2009). Nonetheless, it has been reported to play critical roles in cell cycle 

progression, genomic stability maintenance, and differentiation (Sebastian et al. 2009, 5). 

Despite the lack of KMT activity, the KMT2E homolog in Drosophila, UpSET, regulates 

promoter-associated histone acetylation and H3K4 di- and trimethylation when in complex 

with Rpd/Sin3-repressor proteins (Rincon-Arano et al. 2012). O’Donnell-Luria-Rodan 

syndrome (ODLURO) (MIM: 618512) is a neurodevelopmental disorder characterized by 

developmental delay, intellectual disabilities, and subtle craniofacial abnormalities with 

heterozygous mutations in KMT2E being the causative gene (O’Donnell-Luria et al. 2019). 

Individuals with ODLURO either have protein-truncating variants or missense mutations 

in the KMT2E gene, with the latter resulting in increased severity (O’Donnell-Luria et 

al. 2019). Moreover, the individuals with missense mutation often develop drug-resistant 

infantile epileptic encephalopathy(O’Donnell-Luria et al. 2019). To this date, no functional 

analyses have been conducted; however, it has been hypothesized that haploinsufficiency 

is potentially the pathogenic mechanism for the truncation and missense mutations. 

Collectively, these mutations are hypothesized to produce loss-of-function variants.

SETD1A

SET domain-containing protein 1A (SETD1A), also known as KMT2F, mediates the 

trimethylation of H3K4 at promoters of active genes (J.-H. Lee and Skalnik 2008, 1). 

SETD1 associates with the canonical COMPASS complex, in addition to CpG-binding 

protein (CXXC1) and WD repeat domain 82 (WDR82) (J.-H. Lee and Skalnik 2008, 82; 

2005; Deng et al. 2013). Loss-of-function variants in SETD1A have been implicated as 

causative in two neurodevelopmental disorders and schizophrenia(Swedish Schizophrenia 
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Study et al. 2016). In 2019, de novo heterozygous mutations in SETD1A were discovered in 

individuals with early-onset epilepsy with or without developmental delay (EPEDD) (MIM: 

618832) (X. Yu et al. 2019). Mutant SETD1A expression decreased the number of excitatory 

synapses on mouse cortical primary neurons (X. Yu et al. 2019). Significantly, these 

mutations did not affect general neuronal morphology which suggests a role of SETD1A 

in synapse formation (X. Yu et al. 2019). Kummeling et al. discovered de novo heterozygous 

mutations in the SETD1A gene in 15 unrelated patients with a neurodevelopmental disorder 

with speech impairment and dysmorphic facies (NEDSID) (MIM: 619056) (Kummeling 

et al. 2020). These were missense, nonsense, frameshift, and splice-site mutations, 

all expected to disrupt the catalytic SET domain. Patient-derived fibroblasts displayed 

increased activation of DNA damage response, and increased DNA degradation under stress 

(Kummeling et al. 2020). Additionally, when SETD1A was knocked down in Drosophila 

mushroom bodies to assess neural programming, results determined that SETD1A is 

required for proper neuronal function during the formation of memory. Given that both 

disorders are clinically distinct despite both deriving from pathogenic SETD1A, it will be 

essential to elucidate this protein’s role in neural development and neuronal function.

SETD1B

SET domain-containing protein 1B (SETD1B), also known as KMT2G, is a paralog 

of SETD1A and, as such, also mediates the trimethylation of H3K4(J.-H. Lee et al. 

2007). Despite their homology, SETD1A and SETD1B localize to a nonoverlapping set 

of target genes suggesting that these methyltransferases have nonredundant contributions 

to the epigenetic control of gene expression (J.-H. Lee et al. 2007). Recent studies 

provided evidence that intellectual developmental disorder with seizures and language 

delay (IDDSELD) (MIM: 619000) is caused by de novo heterozygous mutations in 

SETD1B (Roston et al. 2020). As its name suggests, IDDSELD is characterized by global 

developmental delay with speech and language impairment, and the onset of myoclonic 

seizures early in life (Roston et al. 2020; Hiraide et al. 2019; Den et al. 2019; Hiraide et al. 

2018; Palumbo et al. 2015). Additionally, individuals often exhibit behavioral abnormalities 

such as autism spectrum disorder and facial dysmorphism. Interestingly, the mutations 

discovered have been predicted to confer loss-of-function or gain-of-function effect on 

SETD1B. Additional functional studies on these pathogenic variants and patient cells are 

required to determine the pathological mechanism. Krzyzewska et al. identified a shift in the 

DNA methylation landscape in IDDSELD patient cells (Krzyzewska et al. 2019). Notably, 

SETD1B variants imposed a hypomethylated epigenetic signature which lead the authors to 

speculate SETD1B is enduring a loss-of-function effect (Krzyzewska et al. 2019).

EHMT1

Euchromatic histone methyltransferase (EHMT1), or G9a-like protein (GLP), catalyzes 

mono- and dimethylation of H3K9 and is known to recruit Polycomb Repressive 

Complex-2 (PRC2) (Mozzetta et al. 2014). EHMT1 predominantly deposits H3K9me2 in 

the genome, which promotes transcriptional repression (Peters et al. 2003; Rice et al. 2003). 

Heterozygous mutations on EHMT1 cause chromosome 9q34.3 deletion syndrome, better 

known as Kleefstra syndrome-1 (KLEFS1) (MIM: 610253) (Neas et al. 2005; Stewart 

et al. 2004; Harada et al. 2004; Tjitske Kleefstra et al. 2006; Iwakoshi et al. 2004, 
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34). Standard features in patients with KLEFS1 are severe intellectual disability, distinct 

facial gestalt, hypotonia, microencephaly, seizures, and cardiac defects (Tjitske Kleefstra 

et al. 2012; 2006). Individuals contain missense, nonsense, frameshift, and splice-site 

mutations (Tjitske Kleefstra et al. 2012; 2006; T Kleefstra et al. 2009). Biochemical 

characterization of missense mutations of EHMT1 reveals these mutations decrease its 

methyltransferase activity, potentially reducing H3K9me2 at specific loci, causing KLEFS1 

(A. Yamada, Shimura, and Shinkai 2018). Heterozygous EHMT1 (EHMT1+/−) mice have 

reduced dendritic branching and a reduced number of mature spines in hippocampal 

neurons resulting in learning and memory deficits, specifically during stress (M. C. M. 

Balemans et al. 2013). Additionally, EHMT+/− mice exhibited overexcitability due to 

deficits in inhibitory neuron maturation and excitatory impairments (Negwer et al. 2020). 

To ascertain whether these effects are observed in human cells, excitatory cortical neurons 

were generated from IPSCs derived from KLEFS1 patients (Frega et al. 2019). Frega 

et al. observed similar overexcitability in patient-derived neurons. They demonstrated 

that these changes were due to upregulation of the NMDA receptor (NMDA-R) subunit, 

which correlated with reduced H3K9me2 at its promoter (Frega et al. 2019). Davis et 

al. suggested that EHMT1 haploinsufficiency results in disrupted NMDA-R expression 

promoting abnormal forebrain development, ultimately resulting in information processing 

deficits (Davis et al. 2020). Understanding the cognitive deficits and the pathways 

involved would provide a basis for targeted therapeutics, since Frega et al. were able to 

rescue KLEFS1 patient-derived neuronal phenotypes through pharmacological inhibition of 

NMDA-Rs (Frega et al. 2019).

EZH2

Enhancer of zeste 2 (EZH2) in complex with suppressor of zest 12 (SUZ12) and embryonic 

ectoderm development (EED) acts as the catalytic subunit of Polycomb repressive 

complex-2 (PRC2), which functions to repress gene expression through trimethylation 

of H3K27 (H3K27me3) (Cao et al. 2002; O’Carroll et al. 2001). PRC2 is essential 

for development as reducing a single subunit results in embryonic lethality and severe 

developmental defects (O’Carroll et al. 2001, 2; Pasini et al. 2004). H3K27me3 deposition 

and removal are critical in epigenetic inheritance of repressed transcriptional landscapes 

and neurogenesis (Coleman and Struhl 2017; Burgold et al. 2008; Fragola et al. 2013; 

Park et al. 2014). Mainly, EZH2 knockdown results in abnormal migration of cortical 

neurons due to overexpression of Reelin, a glycoprotein that regulates neuronal migration 

(Zhao et al. 2015). Furthermore, chicken embryos lacking EZH2 exhibit impaired neural 

tube organization due to dysregulated neural progenitor cell renewal and impaired Rho 

signaling (Akizu and Martínez-Balbás 2016). Weaver syndrome (WVS) (MIM: 277590), an 

overgrowth syndrome characterized by intellectual disability, macrocephaly, developmental 

delay, and characteristic facial features, is caused by heterozygous mutation EZH2 (Weaver 

et al. 1974; Gibson et al. 2011). Cohen et al. determined that WVS-causing EZH2 

mutations reduce PRC2 activity in vitro, suggesting that WVS is caused by altered PRC2 

function (A. S. A. Cohen et al. 2016). Interestingly, despite the decreased activity, PRC2 

harboring WVS-causing EZH2 mutations displayed increased association with chromatin, 

suggesting dysregulated disengagement between the complex and chromatin (C.-H. Lee et 

al. 2018). Mice bearing EZH2 mutations result in perinatal lethality when homozygous, 
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and overgrowth when heterozygotes (Lui et al. 2018). Loss of PRC2 during differentiation 

severely compromised neural gene induction due to marked loss of bivalent enhancers 

(Cruz-Molina et al. 2017). Collectively, this evidence suggests EZH2 plays a critical role 

in neurodevelopment; however, understanding how these mutations impart their effects on 

human neurogenesis remains unclear.

ASH1L

ASH1-like histone lysine methyltransferase (ASH1L), also known as KMT2H, catalyzes 

mono- and dimethylation of H3K36, promoting gene expression by counteracting Polycomb 

silencing (Miyazaki et al. 2013). Moreover, ASH1L plays a critical role in development by 

activating homeobox (HOX) genes and is highly expressed in both embryonic and adult 

brains(Okamoto et al. 2017; Miller et al. 2014). Various groups reported ASH1L as the 

causative gene in Autosomal dominant mental retardation-52 (MRD52) (MIM: 617796) 

(Okamoto et al. 2017; de Ligt et al. 2013; T. Wang et al. 2016; Stessman et al. 2017; 

Krumm et al. 2015). Individuals with MRD52 have mild-severe intellectual disability, 

autism spectrum disorder, speech delay, facial dysmorphisms, and overall developmental 

delay (Okamoto et al. 2017; de Ligt et al. 2013; T. Wang et al. 2016; Stessman et al. 

2017). No functional analyses have been conducted on patient cells; however, knockdown 

of Zebrafish homolog, ash1a, resulted in a reduction in the number of neurons in the 

pineal gland (Cau and Wilson, Stephen W. 2003). Furthermore, mice expressing catalytically 

inactive ASH1L had a wide range of skeletal anomalies and impaired fertility (Miyazaki 

et al. 2013; Brinkmeier et al. 2015). Interestingly, ASH1L is enriched at the promoter 

of neurexin1α, a presynaptic adhesion molecule essential for synapse formation, upon 

neuronal stimulation (Zhu et al. 2016). It will be critical to determine how the ASH1L 

pathogenic variants affect the synaptic formation, synaptic plasticity, and ultimately learning 

and memory.

NSD1

Nuclear receptor SET domain-containing 1 (NSD1; also known as KMT3B) performs 

methylation of H3K36 as well as H4K20 (Rayasam et al. 2003). In vivo analysis 

demonstrated NSD1 catalyzed mono and dimethylation of H3K36 and trimethylation of 

H4K20 (Lucio-Eterovic et al. 2010; Qiao et al. 2011; Berdasco et al. 2009; G. G. Wang et al. 

2007). Haploinsufficiency of NSD1 is the primary cause of Sotos syndrome-1 (SOTOS1) 

(MIM: 117550), accounting for over 75% of reported cases (Türkmen et al. 2003, 1; 

Kurotaki et al. 2002; Sotos et al. 1964; Hook and Reynolds 1967; Bejar et al. 1970; Douglas 

et al. 2003; Fryssira et al. 2010; Baujat and Cormier-Daire 2007). SOTOS1 is characterized 

by overgrowth, distinctive facial features, mild-severe intellectual disability, macrocephaly, 

and seizures (Kurotaki et al. 2002; Sotos et al. 1964). Different de novo mutations have 

been reported in individuals with SOTOS1, including missense, nonsense, frameshift, or 

deletion mutations (Türkmen et al. 2003, 1; Kurotaki et al. 2002; Douglas et al. 2003; 

van Haelst et al. 2005; Visser et al. 2005; Kaminsky et al. 2011). These mutations were 

widely distributed across the NSD1 protein, affecting the PHD domain, SET domain, and 

cofactor binding regions; thus, there is no mutational hot spot (Niikawa 2004; Pasillas, Shah, 

and Kamps 2011). Interestingly, individuals with SOTOS1 fall into two categories those 

due to either NSD1 haploinsufficiency or dosage effect (Niikawa 2004). Loss of NSD1 
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results in reduced H3K36 methylation and gene expression in vitro (Lucio-Eterovic et al. 

2010). This methylation recruits DNMT3A, a DNA methyltransferase, at intergenic regions. 

Furthermore, blood samples from individuals with SOTOS1 exhibit hypomethylation of 

intergenic DNA(Weinberg et al. 2019). A mouse model for SOTOS1 with a heterozygous 

NSD1 mutation has been generated, which could be used in future work to elucidate the 

molecular mechanisms of these pathogenic variants(Oishi et al. 2020).

NSD2

Nuclear receptor SET domain-containing 2 (NSD2) is also known as Wolf-Hirschhorn 

syndrome candidate 1 (WHSC1) or multiple myeloma SET domain (MMSET). Similar 

to NSD1, NSD2 mono- and di-methylates H3K36(E. J. Wagner and Carpenter 2012). 

Interestingly, NSD1 and NSD2 loss of function results in distinctly different phenotypes 

despite deposition of the same histone modification. NSD1 knockdown mice have impaired 

gastrulation, whereas NSD2 knockout mice showed growth retardation and developmental 

defects (Rayasam et al. 2003; Nimura et al. 2009). Moreover, where mutations in NSD1 

result in Sotos syndrome, haploinsufficiency of NSD2 results in the majority of Wolf-

Hirschhorn syndrome (WHSC) (MIM: 194190) characterized by growth abnormalities, 

microcephaly, intellectual disability, seizures, and severe craniofacial abnormalities (Stec 

et al. 1998; Paradowska-Stolarz 2014). Mutations in NSD2 attributed with WHSC result 

in de novo loss-of-function variants (Derar et al. 2019; Jiang et al. 2019; Barrie et al. 

2019; Lozier et al. 2018). Studies reported reduced cellular proliferation and cell viability 

in WHSC patient-derived fibroblasts suggesting that the haploinsufficiency either reduces 

cellular proliferation or increases cell death (Nevado et al. 2020). Severe craniofacial 

abnormalities are characteristic phenotypes of WHSC. To explore this, NSD2 expression 

was reduced in Xenopus laevis which correlated with decreased expression of several 

NSD2 associated genes(Mills et al. 2019). This reduction significantly affected craniofacial 

patterning, specifically cartilage formation and neural crest motility (Mills et al. 2019). 

Additionally, NSD1 has been demonstrated to regulate gene expression through Runx2, and 

p300 (Y. F. Lee et al. 2014). Researchers observed that NSD1 regulates the expression of 

bone-related genes through modulation of H3K36 dimethylation (Y. F. Lee et al. 2014). 

Lastly, knockdown of zebrafish NSD2 homolog, DrWhsc1, affected endbrain enlargement, 

abnormal cartilage, bone reduction, and incomplete motor neuron formation (Yamada-Okabe 

et al. 2010). Despite all these functional studies, there are currently no therapeutics 

developed for WHSC, suggesting that the pathomechanism remains elusive. Currently, only 

symptomatic treatments are available.

SETD2

SET domain-containing protein 2 (SETD2) is the primary methyltransferase for 

trimethylation of H3K36 (H3K36me3) (M. Hu et al. 2010; X.-J. Sun et al. 2005). 

SETD2 mediates genomic imprinting and embryonic development, as SETD2−/− embryos 

result in embryonic lethality (Q. Xu et al. 2019). SETD2 ablation causes Luscan-Lumish 

syndrome (LLS) (MIM: 616831), previously known as Sotos-like syndrome. LLS, is 

categorized by macrocephaly, facial dysmorphism, intellectual disability, speech and 

language developmental delay, and behavioral problems, including autism spectrum disorder 

(Luscan et al. 2014; Lumish et al. 2015). Thus far, de novo SETD2 mutations are proposed 
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to be loss-of-function either due to truncation or missense mutations (Marzin et al. 2019). 

SETD2 conditional knockout mice mimicked phenotypes seen in patients such as defective 

social interaction, reduced motor learning, and spatial memory (L. Xu et al. 2021). Xu et 

al. concluded that SETD2 is required for cortical arealization, the process of subdividing 

neocortex, and for the formation of cortical circuits (L. Xu et al. 2021). Functional studies 

utilizing patient samples are needed to determine the pathogenicity of the SETD2 mutations 

in neurodevelopment.

SETD5

SET domain-containing protein 5 (SETD5) mediates trimethylation of H3K36 (Dillon 

et al. 2005; Xiao, Wilson, and Gamblin 2003; Sessa et al. 2019). SETD5 mutations 

have been associated with neurodevelopmental disorders, including Cornelia de Lange 

and autism spectrum disorder (Parenti et al. 2017; Fernandes et al. 2018; Pizzo et al. 

2019). Furthermore, heterozygous loss-of-function mutations in SETD5 cause autosomal 

dominant mental retardation-23 (MRD23) (MIM: 615761) characterized by psychomotor 

delay, speech impairments, dysmorphic facial features, intellectual disability, and behavioral 

abnormalities (Kuechler et al. 2015; Grozeva et al. 2014; Rauch et al. 2012; Green et al. 

2017; Fang et al. 2019; Stur, Soares, and Louro 2017; Crippa et al. 2020). Deliu et al. 

demonstrated that SETD5-haploinsufficient mice have impairments in cognitive tasks due 

to dysregulated transcription via interaction with HDAC3 and PAF1 (Deliu et al. 2018). 

Haploinsufficiency of SETD5 in both mice and zebrafish resulted in global alterations 

to H3K36me3, impaired proliferation of neural progenitor cells, and defective synapse 

formation, ultimately resulting in learning and behavioral abnormalities (Sessa et al. 2019). 

Finally, Nakagawa et al. showed that SETD5 mediates ribosomal DNA expression through 

recruitment of HDAC3, and this regulation is critical for neural cell proliferation (Nakagawa 

et al. 2020). Sufficient evidence proves that SETD5 haploinsufficiency drives abnormal 

neurodevelopment. Future studies are needed to continue elucidating the pathology of 

MRD23 and other SETD5-related syndromes.

DEMETHYLATION

Like acetylation, methylation is removed by a group of enzymes; these are known as 

lysine demethylases (KDMs) (Yujiang Shi et al. 2003). For decades, lysine methylation was 

presumed static and irreversible due to the slow turnover of methylated histones, and the 

fact that no demethylases were known. In 2004, the first bonafide lysine demethylase was 

discovered, revealing that methylation was a dynamic mark that can be altered to mediate 

gene expression (Yujiang Shi et al. 2004). To this date, there are two classes of KDMs those 

based on the catalytic domain, either flavin adenine nucleotide (FAD)-dependent oxidase 

domain or Jumonji C (JmjC) domain (Yujiang Shi et al. 2004; Yang Shi and Whetstine 

2007). Similar to KMTs, KDMs have a high degree of specificity for its target substrates. In 

this section, we will discuss clinical phenotypes that manifest when KDMs are mutated.

KDM1A

Lysine-specific demethylase 1A (KDM1A or LSD1), the first demethylase discovered, 

catalyzes FAD-dependent oxidative demethylation of mono and dimethylated H3K4, which 
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results in gene repression (Shao et al. 2014). Heterozygous mutations in KDM1A are 

causative for a syndrome of cleft palate, psychomotor retardation, and distinctive facial 

features (CPRF) (MIM: 616728) (Chong et al. 2016; Tunovic et al. 2014). Individuals with 

pathogenic KDM1A variants present global developmental delay, intellectual disabilities, 

and craniofacial abnormalities (Chong et al. 2016; Tunovic et al. 2014). One such 

pathogenic variant contains a replacement of an evolutionarily conserved tyrosine(Y385), 

potentially conferring a gain-of-function mutant giving rise to decreased H3K4 methylation 

(Tunovic et al. 2014). Notably, KDM1A is a crucial subunit of CoREST (corepressor to 

the REST (RE1 silencing transcription factor/neural restrictive silencing factor) complex), 

which mediates repression of neuronal genes (Ballas et al. 2001; Andrés et al. 1999). 

Knockdown of KDM1A in mouse cortical neurons led to decreased dendritic arborizations 

and neurite width, suggesting it plays a critical role in neurite morphogenesis (Zibetti et 

al. 2010). Taken together, KDM1A regulates neuronal function and programming; however, 

further studies are needed to determine the factors that recruit KDM1A in specific regulatory 

regions in neurons and the influence of these pathogenic mutations on its function.

KDM5B

Lysine-specific demethylase 5B (KDM5B other aliases include: JARID1B, SUV420H1) is 

a member of the KDM5 family of JmjC domain containing demethylases and demethylates 

di- and trimethylated H3K4 (Xiang et al. 2007). KDM5B-mediated demethylation regulates 

RNA polymerase II initiation and elongation as well as alternative splicing in embryonic 

stem cells(He and Kidder 2017). Notably, both homozygous and heterozygous germline 

mutations of KDM5B have been discovered as causative in mental retardation, autosomal 

recessive 65 (MRT65) (MIM: 618109) (Faundes et al. 2018; Martin et al. 2018). Individuals 

with MRT65 display moderate-severe developmental delay, inconsistent dysmorphic facial 

features, and behavioral abnormalities (Faundes et al. 2018; Martin et al. 2018). KDM5B−/− 

embryos exhibit several neural defects due to derepression of developmental regulators in 

early embryogenesis(Albert et al. 2013). Moreover, a loss-of-function model mimicking 

MRT65 exhibited similar phenotypes as seen in patients including increased behavioral 

abnormalities, decreased learning and skeletal abnormalities (Martin et al. 2018, 20). Zhou 

et al. demonstrated that KDM5B negatively regulates neurogenesis in adult subventricular 

zone through regulation of Reelin expression suggesting a role of KDM5B in neuronal 

migration and cortical circuit organization (Zhou et al. 2016). Extensive studies have 

found KDM5B as a major regulator of neuronal differentiation, however the specific genes 

involved in this disorder and how they affect neurogenesis remains elusive.

KDM5C

KDM5C (also known as JARID1C, SMCX) catalyzes the demethylation of di- and 

trimethylation H3K4, recognizes H3K9me3 and negatively regulates transcription through 

the RE-1-silencing transcription factor (REST) complex (Lan et al. 2007; Tahiliani et al. 

2007). KDM5B is highly expressed in brain and skeletal muscle, pathogenic KDM5C 

variants account for approximately 3% of Claes-Jensen type of X-linked syndromic mental 

retardation (MRXSCJ) (MIM: 300534) (Jensen et al. 2005; Peng et al. 2015). Individual 

present intellectual disability, microcephaly, epilepsy and abnormal facial features (Jensen 

et al. 2005). To date, at least 30 mutations have been identified encompassing nonsense, 
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missense and frameshift in individuals with MRXSCJ. Functional studies of these mutations 

reveal decrease in KDM5C activity, suggesting a loss-of-function pathological mechanism 

(Tahiliani et al. 2007; Iwase et al. 2007). Patient-derived fibroblasts revealed dysregulated 

KDM5C genomic localization, altered DNA methylation and loci specific alterations in 

histone methylation (Jensen et al. 2005; Brookes et al. 2015; Grafodatskaya et al. 2013; 

Schenkel et al. 2018). Additionally, KDM5C is critical for neuronal development and 

maturation (Iwase et al. 2007; Scandaglia et al. 2017). Iwase et. al recapitulated MRXSCJ 

abnormalities in a condition knockout of KDM5C in mouse brains, including behavioral 

anomalies and memory deficits (Iwase et al. 2016). Investigation of patient mutations in 

Neuro2a cells revealed dysregulation of genes involved in neuronal development due to 

methylation changes at their promoters; the differential expression resulted in morphological 

changes including abnormal neurite length (Wei et al. 2016). Another promising study 

demonstrated that reduced functionality of KDM5C causes a lack of repression in 

neurodevelopmental transcripts, and a decreased KDM5C dosage resulting in neuronal 

defects (Poeta et al. 2019). Moreover, they demonstrated that KDM5C is a Vorinostat-

sensitive gene, treatment with this HDAC inhibitor ameliorates previously compromised 

neuronal differentiation (Poeta et al. 2019). The role of KDM5C has been extensively 

studied and characterized in neuronal differentiation, its impact has been shown to be 

corrected in vitro and in vivo using Vorinostat, a promising therapeutic for MRXSCJ.

KDM6A

Lysine demethylase 6A (KDM6A or UTX) contains a catalytic JmjC domain and 

preferentially demethylates di- or trimethylated H3K27. Also, it is a member of the 

KMT2C/D COMPASS-like complex (Hong et al. 2007; Lan et al. 2007; C. Wang et al. 

2012; Cho et al. 2007; M. G. Lee et al. 2007). As a member of the COMPASS-like 

complex, KDM6A regulates enhancer activation, independent of its demethylase activity 

(S.-P. Wang et al. 2017). Individuals presented with KS1 characteristics, described earlier, 

were screened for mutations in KMT2D but instead carried de novo heterozygous mutations 

in KDM6A (Noriko Miyake et al. 2013; Lederer et al. 2012). Like KS1, Kabuki syndrome 2 

(KS2) clinically presents with developmental delay, intellectual disabilities, and craniofacial 

abnormalities (Lederer et al. 2012). Some features of KS1 were less common in KS2 

individuals; however, all KS2 patients exhibited postnatal growth retardation and short 

stature (Noriko Miyake et al. 2013). Conditional knockout of KDM6A in neural stem 

cells led to increased anxiety-like behavior and impaired learning and memory in mice 

(Tang et al. 2017). Moreover, hippocampal neurons in these mice displayed impaired 

synaptic formation and plasticity, revealing a role of KDM6A in regulating cognition (Tang 

et al. 2017). Another model demonstrated that KDM6A loss increases neural stem cell 

proliferation and decreases terminal mitosis, resulting in aberrant neuronal differentiation 

(Lei and Jiao 2018). Interestingly both KS1 and KS2 stem from altered KMT2C/D 

COMPASS-like complex functions. Although extensive studies have been conducted in the 

context of cancer, specific pathways involved in neurogenesis remains ambiguous.

PHF8

PHD finger protein 8 (PHF8 also known as KDM7B) is the first monomethyl H4K20 

demethylase established, interestingly it can also demethylate mono- and dimethylated 
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H3K9 (Qi et al. 2010). PHF8 binds H3K4me3, and through this interaction, positively 

regulates gene expression (Feng et al. 2010; Horton et al. 2010). Reduction of PHF8 

in zebrafish embryos caused cell death in the developing brain and neural tube and 

significant defects in craniofacial development (Qi et al. 2010). PHF8 directly controls 

the expression of homeodomain transcription factor MSX1/MSXB, mediating signaling 

and developmental pathways (Qi et al. 2010). Given its role in neurodevelopment, it’s not 

surprising that mutations in PHF8 results in a NDD, Siderius-type X-linked syndromic 

mental retardation (MRXSSD) (MIM: 300263) (Siderius et al. 1999; Laumonnier et 

al. 2005). MRXSSD primarily affects male individuals and they often have intellectual 

disability, mild dysmorphic features, and bilateral/unilateral cleft lip or palate(Koivisto et al. 

2007). In vitro analysis of MRXSSD patient mutation abolished demethylase activity and 

transcriptional activation (Feng et al. 2010). PHF8 potentially mediates serotonin signaling 

and downregulation of PHF8 results in stress-induced anxiety, depression and cognitive 

impairment (Walsh et al. 2017). Moreover, PHF8 knockout mice displayed reduction 

cognition and memory due to impaired long-term potentiation. Chen et al. demonstrated 

PHF8 plays a role homeostasis of mTOR signaling, and suppression of mTOR recovers 

the cognitive deficits observed in PHF8 knockout mice. These studies provide potential 

targetable pathways to treat MRXSSD.

READERS

BPTF

Bromodomain PHD finger transcription factor (BPTF) is the largest subunit of the 

NURF complex and mediates binding to H3K4me3 (M. H. Jones, Hamana, and Shimane 

2000). BPTF has been shown to promote expression of WNT8A which is crucial for 

neural posteriorization, through recruitment of NURF complex(Ma et al. 2015). Eight 

heterozygous mutations in the BPTF gene were discovered in unrelated individuals 

with neurodevelopmental disorder with dysmorphic facies and distal limb anomalies; 

NEDDFL (MIM: 617755) (Stankiewicz et al. 2017). NEDDFL is characterized by delayed 

psychomotor development, intellectual disability, speech impairments, microencephaly and 

dysmorphic features (Glinton et al. 2021). Although functional studies of patient cells have 

yet to be conducted, Stankiewicz et al. suggests that haploinsufficiency is the pathogenic 

mechanism of this disorder (Stankiewicz et al. 2017). CRISPR/Cas9-mediated knockdown 

of bptf gene in zebrafish resulted in increased cell death which recapitulated microencephaly 

and craniofacial abnormalities seen in patients (Stankiewicz et al. 2017). Due to the novelty 

of this disorder, there is currently no potential pathological mechanism for BPTF mutations 

in neurodevelopment.

EED

As mentioned above, EED is a major subunit of PRC2 complex as it recognizes previously 

methylated histones (Margueron et al. 2009). EED is required for maintaining neurogenesis 

and neurosphere formation through regulation of p21 (B. Sun et al. 2018). Heterozygous 

mutations in EED results in the overgrowth disorder Cohen-Gibson syndrome (COGIS) 

(MIM: 617561) (Cooney et al. 2017). Affected COGIS individuals have intellectual 

disability, dysmorphic facial features, advanced bone age and skeletal abnormalities (A. 
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S. A. Cohen et al. 2016; Cooney et al. 2017; A. S. Cohen and Gibson 2016; Imagawa 

et al. 2017). EED-deficient mice exhibited postnatal lethality and diminished neuronal 

differentiation in the hippocampal dentate gyrus potentially explaining the pathomechanism 

of COGIS (Liu et al. 2019). Additionally, EED establishes a chromatin landscape that 

selectively represses inhibitory WNT and bone morphogenetic protein (BMP) signaling 

which is required for oligodendrocyte differentiation and maturation (Jiajia Wang et al. 

2020). Taken together, EED plays a critical role in CNS development, through regulation 

of neuronal and oligodendrocytic differentiation, however, the field lacks biochemical 

characterization of COGIS mutations.

SUZ12

Similar to the other core PRC2 subunits, EZH2 and EED, mice with mutations in SUZ12 

are embryonic lethal due to severe developmental and proliferative defects(Pasini et al. 

2004). SUZ12 is essential for EZH2 activity as SUZ12 deficiency in vivo leads to loss 

of di- and trimethylated H3K27 (Pasini et al. 2004). Unfortunately, the SUZ12-related 

overgrowth syndrome, Imagawa-Matsumoto syndrome (IMMAS) (MIM: 618786) is the 

least characterized of the PRC2-related syndromes (Imagawa et al. 2017; 2018). Individuals 

with IMMASS exhibit pre- and postnatal overgrowth, dysmorphic features, intellectual 

disabilities, macrocephaly and developmental delay (Imagawa et al. 2017). SUZ12 is 

required for proper differentiation as SUZ12-deficient stem cells are de-repressed, increasing 

levels of differentiation specific genes (Pasini et al. 2004). Moreover, heterozygous SUZ12 

mice exhibit neural tube defects and severely impaired differentiation (Miró et al. 2009).

CHROMATIN REMODELERS

Precise temporal gene expression is critical for differentiation during development. Histone 

PTM patterns recruit different effector proteins, such as chromatin remodelers with 

the ability to alter chromatin structure. Chromatin remodelers influence the spacing 

of nucleosomes allowing transcriptional machinery access to DNA. Remodelers are 

multiprotein complexes, centered around a catalytic ATPase helicase subunit, that slide, 

unwrap or evict nucleosomes, as well as exchange histone variants within a nucleosome. 

Beyond the helicase, remodelers contain subunits that enhance activity and facilitate 

targeting of the complex. Many remodeler members contain reader domains such as 

chromodomains and bromodomains, allowing for targeting to specific PTMs. The major 

ATPase remodeler families are BRG1 associating factors (BAF) (also known as switch/

sucrose non-fermentable (SWI/SNF)), ISWI (imitation SWI), CHD (chromodomain helicase 

DNA-binding), and INO80 (SWI2/SNF2 related). Recently, mutations in members of 

ATPase remodelers have been identified in neurodevelopmental disorders giving light to 

the importance of these complexes in neurodevelopment.

BAF family

BAF (BRG1/BRM associating factors) complexes are the mammalian version of yeast 

Switch/Sucrose Non-Fermentable (SWI/SNF) remodeler (W. Wang et al. 1996; Breeden 

and Nasmyth 1987; Stern, Jensen, and Herskowitz 1984; Neigeborn and Carlson 1984). 

Canonical BAF is comprised of approximately 15 subunits, however, at least 29 isoforms of 
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the subunits exist. This allows for multiple formations of BAF complexes in a single cell. 

For example, there are two mutually exclusive helicases, BRG1 and BRM. Though they 

appear to have some redundant roles, mouse studies have demonstrated distinct roles for 

BRG1 and BRM in development. Homozygotic BRG1 knockout is lethal pre-implantation 

where BRM knockouts are viable (Bultman et al. 2000). The variety of these isoforms allow 

for multiple formations of BAF complexes in a single cell. Ubiquitously expressed sub-

complexes include Polybromo-1-BAF (P-BAF), which incorporated Polybromo-1, ARID2, 

BAF45a, and BRD7(W. Wang et al. 1996)and G-BAF that is comprised of GLTSCR1 and 

BRD9 (Alpsoy and Dykhuizen 2018). Cell-type-specific BAF compositions such as neuron 

progenitor and neuron-specific BAF (npBAF and nBAF) also exist (Lessard et al. 2007). 

BAF subunits exchange as neuron-progenitor cells differentiate into neurons and exit mitosis 

and this is critical for proper proliferation and differentiation of neural progenitor cells. 

Interestingly, BAF mutations have been identified in ID disorders with the majority of 

mutations associated with Coffin-Siris syndrome (CSS), Nicolaides-Baraiter, and Autism.

Coffin-Siris, first reported in 1970, is a rare genetic disorder with only about 140 

cases reported in literature (Coffin and Siris 1970; van der Sluijs et al. 2019). 

Although patient phenotypes highly overlap, OMIM classifies CSS into 11 different 

types depending on what protein is mutated. Mutations have been identified in ARID1b 

(BAF250b) (MIM:135900, CSS1), ARID2 (BAF200) (MIM:609539, CSS6), BRG1 

(MIM:614609,CSS4), BAF57(MIM:616938, CSS5), ARID1a (BAF250a) (MIM: 614607, 

CSS2), DPF2 (MIM:601671, CSS7), BAF47(MIM: 614608, CSS3), BAF60a (SMARCD1) 

(MIM: 618779, CSS11) (van der Sluijs et al. 2019; Kosho et al. 2014; Santen et al. 

2012). Patients diagnosed with CSS exhibit intellectual disorders (IQ score 50–89), delayed 

sitting and walking, short stature, microcephaly, muscular hypotonia, coarse facial features, 

hypoplasia or aplasia of the fifth finger, bushy eyebrows, and excessive hair growth (van 

der Sluijs et al. 2019). AT-rich interacting domain 1b (ARID1b), the most frequently 

mutated gene in CSS (68%), was identified in 2012. Mutations resulted in a heterozygous 

deletion, causing haploinsufficiency, speculated to be the driver of CSS. The ARID subunits 

(ARID1a, ARID1b, and ARID2) are predicted to bridge the ATPase to the complex and 

their incorporation determines which BAF subtype is formed (Mashtalir et al. 2018). 

Interestingly, ARID1b incorporation into BAF is mutually exclusive with ARID1a (which 

is 60% identical). Additionally, ARID1b, but not ARID1a, represses WNT/Beta-catenin 

signaling, involved in proliferation, differentiation, and pluripotency (Vasileiou et al. 2015). 

Activation of this pathway in haploinsufficient cells may be a driving mechanism of CSS. 

In mouse models recapitulating the ARID1b haploinsufficiency, mice exhibited growth 

retardation, hypotonia, and agenesis of the corpus callosum, as well as anxiety and abnormal 

social behaviors (Celen et al. 2017).

Other BAF subunits are less commonly mutated in CSS and unlike ARID1b, result in 

expression of mutated protein and are predicted to have either loss or gain-of-function 

mechanisms (van der Sluijs et al. 2019). BAF47 mutations occur in exon 8 and 9 with 

the only reoccurring mutations being pLys364 deletion. One study utilized an inversion 

NesCre system to decrease BAF47 expression by 30% in mice (Filatova et al. 2019). 

The mutant mice were significantly smaller than the controls and their brain weight was 

reduced by 41%. The majority (~80%) did not survive past postnatal week 9. Intriguingly, 
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these effects were not observed in BAF47 heterozygotic knockout mice. BRG1 mutations 

account for 11% of CSS cases and they cluster in the helicase/SANT-associated domains. 

Mutations of BRG1 as well as BAF155 lead to defects in neural tube closures and 

exencephaly, demonstrating the critical role of BAF complexes in neural development 

(Bultman et al. 2000; J. K. Kim et al. 2001). BRG1 is also involved in both neuronal 

and glial differentiation and BAF is recruited to cell-type-specific genes through different 

transcription factors. OLIG2, an oligodendrocyte-specific transcription factor, recruits BRG1 

to H3K27Ac rich enhancers for myelination-specific genes(Y. Yu et al. 2013). BAF57 

mutations are found in the high mobility group (HMG), a DNA binding domain, and 

ARID1a mutations are predicted to be truncated. ARID2 mutations have been reported in 

seven CSS patients (Bramswig et al. 2017; Shang et al. 2015; Van Paemel et al. 2017). 

DPF2 mutations that cluster in the two PHD fingers were found in eight patients (Vasileiou 

et al. 2018). These mutations altered DPF2 binding to H3 peptides and are predicted to 

have a dominant-negative mechanism. In 2019, Nixon et al., identified 5 individuals with 

BAF60a (SMARCD1) (MIM: 618779, CSS11) mutations(Nixon et al. 2019). Patients had 

some overlapping phenotypes with CSS, however, did not exhibit the same facial features 

such as thick eyebrows, broad noses and long eyelashes. BAF60a mutations did not disrupt 

incorporation into the BAF complex. Interestingly, BAF60a is important for recruiting BAF 

to OCT6 and KROX20 through SOX10 interaction in Schwann cells (Weider et al. 2012).

Mutations in BRM have been shown to be causative for Nicolaides-Baraitser syndrome 

(MIM:601358), a developmental disorder characterized by short stature, microcephaly, 

sparse hair, epilepsy, and intellectual disabilities (Van Houdt et al. 2012). Sousa et al. 

examined 59 patients with 48 missense mutations in BRM and found these mutations 

cluster in the highly conserved SNF2 ATPase domain and are predicted to cause gain or 

loss-of-function, rather than truncations (Sousa et al. 2014). Additional BAF subunits are 

mutated in neurodevelopmental disorders. Machol et al., found 15 patients with BAF170 

(SMARCC2) mutations, also exhibiting similar phenotypes to CSS patients, including the 

lack of the fifth finger nail (Machol et al. 2019). Three novel mutations have also been 

identified in Actl6a (Marom et al. 2017).

A recent study on how BAF assembles demonstrated a sequential addition subunit modules 

and that the incorporation of the ARID proteins is critical in determining which BAF 

subcomplex will be formed (Mashtalir et al. 2018). Loss of expression or mutant BAF 

subunits can alter proper formation or skew the composition of the complex as well as alter 

the function of the complex. It is likely that the introduction of BAF mutations, disrupt BAF 

composition as well as altering the switch between npBAF and nBAF. Due to the importance 

of BAF in neurogenesis and development, this list of mutations will likely grow as we 

expand sequencing studies of NDD patients.

CHD Family

The CHD family of ATPase helicase remodelers is comprised of nine proteins, CHD1–9, 

that contain tandem chromodomains, methyl-lysine readers, and SNF2-like ATPase catalytic 

domain (Marfella and Imbalzano 2007). These proteins are divided into three subgroups: 1) 

CHD1and CHD2 contain C-terminal DNA domains that bind AT-rich regions, 2) CHD3 and 
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CHD4 have paired N-terminal PHD zinc fingers, and 3) CHD5-CHD9 featuring Brahma and 

Kismet domains, CR-domains, SANT domains, and DNA binding domains25. In contrast to 

the other remodelers, many of the CHD proteins act without accessory proteins, however, 

CHD3, CHD4, and CHD5 can be incorporated in the NURD complex along with HDAC1/2, 

MBD2 or 3, MTA1,2 or 3, RBAP46, and RBAP48 (Hoffmann and Spengler 2019). The 

CHD proteins have important roles in development and differentiation. Knockdown CHD1 

causes defects in self-renewal and pluripotency in ESCs. During brain development, the 

CHD4-containing NURD complex is critical in synapse formation by repressing genes to 

drive synaptogenesis (T. Yamada et al. 2014). This involves deacetylation of histone H3 

at residues at K9, K14, and K27 as well as demethylation of H3K4me3. Neural crest cell 

migration is also mediated through CHD7 and PBAF by regulating gene expression of Sox9, 

Slug, and Twist (Bajpai et al. 2010; Schulz et al. 2014). Loss of CHD7 decreases the pool of 

neural stem cells and impairs neuron maturation (K. M. Jones et al. 2015). As sequencing of 

patients with intellectual disorders becomes standard, the CHD proteins have been identified 

as culprits in several disorders.

CHD1

CHD1, known to bind H3K4me3/H3K4me3 through its chromodomains, and is predicted 

to play important roles in pluripotency, transcriptional elongation, and deposition of histone 

variant H3.3 (Flanagan et al. 2005). CHD1, particularly the N-terminus, is critical in mouse 

long-term and spatial memory (Schoberleitner et al. 2019). In 2018, Pilarowski et al., 

identified six female patients with de novo heterozygous mutations, most of which were 

at highly conserved arginine residues. A larger cohort is needed to determine if there 

is a gender bias for Pilarowski-Bjornsson syndrome (MIM: 617682) patients (Pilarowski 

et al. 2018). Probands exhibited developmental delays, hypotonia, pointed chins, frontal 

forehead bossing, and arched eyebrows. Using patient-derived fibroblasts containing CHD1 

mutation, global increases in H3K27me3 compare to wild-type cells were observed. Mice 

with heterozygotic loss of Chd1 are phenotypically normal(Guzman-Ayala et al. 2015), 

suggesting a dominant-negative mechanism for CHD1 mutants, leading to the prevention of 

wild-type CHD1 properly binding to the targets and regulation gene expression (Pilarowski 

et al. 2018). Further work is needed to determine the role of these mutations.

CHD2

CHD2 mutations have been characterized in patients with neurodevelopmental delays 

and epilepsy (MIM: 615369). CHD2 was identified as a driver of epilepsy when several 

seizure patients were identified with chromosome 15 deletions ranging from 5Mb to 511kb 

(Dhamija et al. 2011; Veredice et al. 2009; M. M. Li et al. 2008; Capelli et al. 2012). The 

smallest deletion encompassed only two genes, CHD2 and RGMA (Capelli et al. 2012). 

After adding CHD2 as a potential target when re-sequenced 500 individuals with epileptic 

encephalopathy, Carvill et al., identified six patients with CHD2 mutations (Carvill et al. 

2013). As of 2021, 139 patients with neurodevelopmental disorders have been found, with 

~95% of these individuals being affected by epilepsy, the onset ranging from six months to 

12 years old (Carvill et al. 2013; Carvill and Mefford 1993; Suls et al. 2013; Heyne et al. 

2018; Ko et al. 2018; Chen et al. 2020; Truty et al. 2019; Fitzgerald et al. 2015). Majority 

of CHD2 mutations lead to loss of expression or truncations, the few missense mutations 
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do not appear to cluster in any particular region of the gene (Carvill and Mefford 1993). 

Mutations are mostly de novo, however, several were inherited from unaffected parents 

(Chen et al. 2020). CHD2 patients exhibited increased photosensitivity compared to other 

epileptic disorders and have varying degrees of intellectual delays. Though the mechanism 

of pathology is unknown, it is hypothesized that CHD2 is key in neuron differentiation by 

keeping bivalent genes active(Semba et al. 2017). Loss of CHD2 leads to increased H3.3 

containing nucleosomes as well as elevated levels of the repressive mark, H3K27me3(Semba 

et al. 2017). In 2018, Kim et al., created a haploinsufficient CHD2 mouse and though this 

model did not recapitulate seizures, it demonstrated the importance of CHD2 in proliferation 

of neural progenitors, synapse transmission, hippocampus memory, and cortical synchrony, 

which appeared to be regulated by changes in expression of genes involved in neurogenesis, 

chromatin regulation and synaptic transmission(Y. J. Kim et al. 2018).

CHD3

In 2018, Blok et al., published the first report of CHD3 mutations (Snijders Blok et al. 

2018). This first cohort of Snijders Blok-Campeau syndrome (MIM: 618205) consisted 

of 35 patients with 23 distinct mutations. These individuals suffered from ID, hypotonia, 

developmental delays, and severe speech and language disabilities. Many exhibited 

macrocephaly, with CT scans showing broad cerebrospinal fluid spaced; one patient 

presented with microcephaly. These probands have distinct facial features including broad 

foreheads, wide-spaced eyes sparse eyebrows, low set ears, and pointy chins. The majority 

of the CHD3 mutations clustered in the ATPase/helicase domain as well as amino acids that 

are evolutionarily conserved between species and other CHD proteins. Biochemical assays 

demonstrated several patient mutations caused loss of ATPase and remodeling activity 

of CHD3. The following year, Drivas et al., reported 24 additional patients with CHD3 

mutations (Drivas et al. 2020). Though the majority of these mutations were found in the 

ATPase domain, nine were found outside of the domain. No phenotypic difference was 

observed between patients with mutations in or outside of the ATPase domain. Eising et 

al., found another CHD3 mutation in the helicase domains while genetically screening 

individuals with childhood apraxia of speech (Eising et al. 2019). Though, loss of catalytic 

activity is predicted to be the pathogenic mechanism, it is unclear the mechanism for the 

mutations found outside the ATPase domain.

CHD4

In 2016, two separate studies identified CHD4 mutations in patients. Sifrim et al., found five 

probands through screening individuals with congenital heart defects (Sifrim et al. 2016). 

Three patients exhibited Tetralogy of Fallot (defect of ventricular septal, pulmonary valve 

narrowing, misplaced aorta, and thickening of the right ventricular). In addition to cardiac 

defects, all five patients exhibited neurodevelopmental disorders and genital abnormalities. 

Weiss et al., identified an additional five patients exhibiting developmental delay, intellectual 

disabilities, macrocephaly, facial abnormalities, hypogonadism, hearing loss, bone fusion as 

well as congenital issues (Weiss et al. 2016). The five mutations were found at highly 

conserved residues, with four located in the C-terminal helicase domain. A follow-up 

study of Sifrim-Hitz-Weiss syndrome (MIM: 617159) looked at 32 individuals, and found 

mutations causing loss of CHD4 had less severe phenotype compared to patients with point 
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mutations (Weiss et al. 2020). Biochemical investigation of mutations showed that some, but 

not all the mutations, were able to disrupt ATPase and nucleosome remodeling. Goodman et 

al., has seen that conditional knockout of CHD4 increases H3K27ac, as well as increasing 

promoter and enhancer accessibility in mouse brains(Goodman et al. 2020). Additionally, 

they observed increases in looping and cohesion binding, indicating reorganizing of the 

genome. It is yet to be determined if mutations of CHD4 will have similar effects as CHD4 

knockout (Goodman et al. 2020).

CHD7

CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of 

growth and development, and Ear abnormalities and deafness) syndrome (MIM:214800) is 

mainly associated with heterozygotic loss of CHD7, causing haploinsufficiency. CHARGE 

was first described in 1979 by two separate groups (Hittner et al. 1979; Hall 1979), 

however, the link with CHD7 was not discovered until 2004 by Vissers et al (Vissers et 

al. 2004). Since then, screening for CHD7 mutations has become standard in diagnosis (van 

Ravenswaaij-Arts et al. 1993). Patients exhibit an extensive list of symptoms that affect 

multiple organs. Coloboma is the improper formation of the eye, resulting in a keyhole in the 

iris, causing photosensitivity (van Ravenswaaij-Arts et al. 1993). Cranial nerve abnormalities 

lead to loss of hearing, balance issues, swallowing difficulties, asymmetric facial palsy, 

lack of smell and hypogonadism (van Ravenswaaij-Arts et al. 1993). They also present 

with heart abnormalities, esophageal atresia, hypotonia, craniofacial abnormalities, and 

characteristic “CHARGE ears” (short, wide and lacking earlobes) (van Ravenswaaij-Arts 

et al. 1993). Analysis of expression 10 human fetuses with CHARGE, demonstrated CHD7 

was localized to the spinal ganglia, cranial nerves, neural retina, pituitary (important for 

regulation growth and development), as well as nasal and auditory tissues (Sanlaville et al. 

2006). Knockout of CHD7 in mice reduced neurogenesis in the hippocampus, dentate gyrus, 

which is important for memory, the sub-ventricular zone, and in the inner ear. Examining 

its role in differentiation, CHD7 is not essential in ESC proliferation or differentiation into 

neuron progenitor cells and dispensable in many cell-types (H. Yao et al. 2020). However, 

CHD7 is critical in development of neurons. Specifically, loss of CHD7 leads to decrease 

in neuroblasts and causes a shift in increases the glial cell, and neurons that are created 

have fewer branches with reduced length, effecting the number and the quality of neurons 

(Micucci et al. 2014; H. Yao et al. 2020). CHD7 is important keeping chromatin open and 

activating neuron differentiation genes and associates with H3K27ac rich super enhanced 

and cell identify specific transcription factors as well as recruiting DNA Topoisomerase 

IIb to long neuron genes (Feng et al. 2017; Hnisz et al. 2013). CHARGE and CHD7 

has been studied more extensively than other NDDs and Trider et al. has created an 

extensive checklist of 49 symptoms of CHARGE patients and guidelines for treatment 

of the individuals as they age (Trider et al. 2017). Though this is an invaluable resource, 

the treatments focus on management of symptoms. Developing therapeutics to elevate the 

defects of neurogenesis caused by CHD7 haploinsufficiency are still needed.

Wilson et al. Page 26

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HISTONES

All of the disorders previously described originate from germline mutations in enzymes 

that either catalyze histone post-translational modifications or chromatin remodeling. Recent 

studies have discovered germline mutations in histone proteins, allowing us to define their 

roles not only in the context of gene regulation but also development.

HIST1H1E

In 2017, Tatton-Brown et. al. conducted a study with 710 individuals all suffering 

from overgrowth syndrome and intellectual disability to explore the underlying genetic 

predispositions (Tatton-Brown et al. 2017). Utilizing exome sequencing, they reported de 

novo heterozygous germline mutations in the HIST1H1E gene (5/710) which encodes 

linker histone, histone H1.4 (H1.4). Patients bearing H1.4 mutations suffer from distinct 

facial features, intellectual disability, and macrocephaly (Tatton-Brown et al. 2017). 

This syndrome was coined Rahman syndrome (MIM: 617537), with the causative gene 

being HIST1H1E. Following the 2017 study, 42 patients were discovered suffering from 

Rahman Syndrome all exhibiting distinct facial gestalt, ID, skeletal, and congenital cardiac 

abnormalities (Burkardt et al. 2019; Duffney et al. 2018; n.d.). Reported frameshift 

mutations are centralized to the C-termini of the protein and result in a truncated H1.4 

with a charge reduced from +44 to +7. Linker histones play a critical role in regulating 

higher-order chromatin structure through neutralization of negatively charged linker DNA 

via its positively charged tails. H1.4 is often sequestered in heterochromatic regions and the 

truncation of H1.4 ultimately impairs the linker histone’s ability to generate higher-order 

structures (Tatton-Brown et al. 2017; McGinty and Tan 2015; Ponte et al. 2017; Song et al. 

2014).

Conducting a robust functional assessment of the HIST1H1E mutations it was determined 

that these mutants had proper nuclear localization and increased stability compared to 

wild type (Flex et al. 2019). Normally, the C-terminal tail of H1 undergoes reversible 

phosphorylation which mitigates chromatin compaction, chromosome segregation, and 

chromatin decondensation, however, these residues are all lost in HIST1H1E mutants (Flex 

et al. 2019; Chadee et al. 1997; Ajiro, Borun, and Cohen 1981). Interestingly, patient-derived 

fibroblasts showed significantly more relaxed DNA as well as a decrease in H3K4me2, 

H3K9me3, H3K27me3, and HP1β (Flex et al. 2019). Ultimately, the frameshift mutations 

disrupt chromatin structure, alter nuclear lamina organization, generate a hypomethylated 

DNA signature, and drive replicative senescene (Flex et al. 2019). Another study determined 

that the aberrant DNA methylation profile resulted in altered gene regulation, which was 

exacerbated in post-mitotic cells as genes involved in neural signal transduction were 

significantly altered (Ciolfi et al. 2020). Overall, there is sufficient evidence to start 

elaborating on the pathomechanism of H1.4 mutations and the role of this linker histone 

in neuronal development.

HIST1H4C/J

Histone H4 (H4), which is encoded by 15 distinct genes, is currently the only histone with 

no functionally distinct variants (Holmes et al. 2005). It is ubiquitously expressed in all cells 
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and is a critical nucleosomal protein. In 2017, monoallelic missense heterozygous mutations 

of HIST1H4C were discovered via trio sequencing (Tessadori et al. 2017). These mutations 

result in substitutions that cause a charge switch (K->E), lose (K->Q) or retain charge 

(K->R) at residue 91 of H4 (Tessadori et al. 2017). These patients exhibit short stature, 

microencephaly, intellectual disability, craniofacial abnormalities, and foot ray anomalies. 

RNA sequencing utilizing patient-derived fibroblasts revealing 115 genes differentially 

expressed in K91 mutants. Intriguingly, 25 of these genes encoded for histone proteins. 

Enriched gene ontology (GO) terms for differentially regulated genes related to chromosome 

organization, DNA packaging, and cell cycle progress (Tessadori et al. 2017).

To assess the functional consequence of these mutations, zebrafish were injected with 

mRNA encoding mutations and K91R/Q injected embryos exhibited severe developmental 

defect (Tessadori et al. 2017). These embryos had underdeveloped brains and eyes, 

defective body axis growth, and dysmorphic tails which recapitulated the phenotype 

seen in patients (Tessadori et al. 2017). Thus, this in vivo model provided sufficient 

evidence that HIST1H4C mutations were causative in the observed syndrome. Zebrafish 

larvae expressing H4-K91R/Q exhibited increased accumulation DNA double-strand breaks 

(DDBs) specifically in the head and tail region and this was determined utilizing a well-

known readout for DDBs, γ-H2AX signal (Tessadori et al. 2017). Additionally, these 

embryos had increased apoptosis in the head and tail regions (Tessadori et al. 2017). 

K91 is a known PTM site for H4, as acetylation has been linked to chromatin assembly 

regulation and ubiquitination has been linked to DNA damage response (Ye et al. 2005; 

Q. Yan et al. 2009; Yang et al. 2011). Co-expression of DTX3L, the E3 ligase responsible 

for K91 ubiquitination, with K91 mutants alleviated the increase in double-strand breaks 

and morphological anomalies observed (Tessadori et al. 2017). This study was able to 

determine that the loss of K91 ubiquitination in the mutants was sufficient to alter cell cycle 

progression and apoptosis.

Recent work from the Gijs van Haaften lab reported a de novo germline missense mutations 

in HIST1H4J, another gene encoding histone H4 (Tessadori et al. 2019). This patient had 

a K91E mutation and exhibited intellectual disability, microcephaly, and had dysmorphic 

facial features, symptoms extremely similar to the previous report HIST1H4C mutations 

(Tessadori et al. 2017; 2019). Here they hypothesized that the glutamic acid (E) substitution 

may contribute to genomic instability due to its inability to be modified as well as the 

addition of a negative charge. This study was critical in showing the importance of K91 

residue in H4, as different substitutions at this position can result in distinct phenotypic 

outcomes.

H3F3A/H3F3B

The most recent discovery of histone germline missense mutations involves the two genes 

(H3F3A and H3F3B) encoding Histone H3 variant, Histone H3.3 (Bryant et al. 2020). 

Bryant et. al discovered 37 unique de novo mutations in 46 patients. These patients suffered 

from a common pattern of neurodevelopmental disorder encompassing microencephaly, 

craniofacial abnormalities, and intellectual disabilities (Bryant et al. 2020). Unlike Rahman 

Syndrome and the K91 mutants of H4, these H3.3 mutations are dispersed across the 
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entire protein affecting, post-translational modification residues, chaperone interaction, 

protein-protein interaction, and protein-DNA contacts. Bottom-up mass spectrometry of 

patient lymphoblasts revealed histone PTM changes which were reproducibly altered in 

patients compared to controls (Bryant et al. 2020). Additionally, RNA sequencing utilizing 

patient-derived fibroblasts identified 323 differently expressed genes associated with mitosis 

and cell cycle regulation upregulated (Bryant et al. 2020). Due to the locations of these 

mutations along H3F3A and H3F3B it is predicted different biological processes are altered 

but appear to converge on similar phenotypes. This suggests that the phenotype is due to 

dysregulation of H3.3 in general and not limited to a single mechanism.

Here we have discussed the recent findings regarding germline variants associated with 

histone proteins, histone H1, histone H3.3, and histone H4. All of these patients exhibit 

common dysregulation of neurodevelopment clinically characterized with craniofacial 

abnormalities, intellectual disabilities, and developmental delay. These histone-related 

disorders allow a unique perspective on the role of histones specifically in the control of 

central nervous system development and growth.

CONCLUSION

In this review, we have highlighted the importance of epigenetic factors in 

neurodevelopment and how disruption of chromatin regulation at multiple levels can drive 

NDDs. The expansion of next-generation sequencing techniques in the diagnosis of NDD 

has elucidated many genes mutated in these disorders. Of particular interest are proteins 

involved in the regulation of DNA organization and gene expression. We have discussed 

mutations of histones, forming nucleosomes, the smallest unit of chromatin, to the proteins 

that curate PTM patterns across the genome to megadalton complexes the enforce chromatin 

structure. Though varying in phenotypical differences and severity, most of these disorders 

have devastating effects on physical and mental development. Although syndromes, such 

as RSTS1 and CHARGE, have been defined since the 1970s, the genetic drivers have 

only begun to be identified in the last couple of decades with the advances in sequencing. 

Sequencing has not only allowed for better classification of current syndromes; it has 

expanded our list of known driving mutations. Patients present with chromosomal deletions, 

resulting in the loss of multiple genes, or frameshift and missense mutations that can cause 

loss of expression, truncation, or point mutations.

For the most part, these mutations are de novo, with no familial history of the disorder 

as well as monogenic, indicating these mutations are causative. These disorders’ common 

characteristics include intellectual disabilities, hypotonia, and facial abnormalities with 

comorbidities such as epilepsy and cardiac abnormalities. It is essential that most of 

these patients need extensive medical intervention to manage the symptoms and a lifetime 

of care and will never achieve independence. Therefore, it is imperative that more 

studies are done to determine the molecular pathways disrupted in these disorders. Thus 

far, clinical geneticists have determined the driving mechanism of NDD involves either 

haploinsufficiency, loss or gain-of-function, or dominant-negative. These all point to gene 

dosage effects, and future studies utilizing heterozygotes will be required to elucidate these 

pathological mechanisms fully.
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Regarding chromatin-modifying enzymes, their genes are heavily regulated as precise 

regulation is necessary for proper differentiation and cellular identity. Therefore, epigenetic 

factors are critical for accurate expression or repression and the establishment of distinct 

chromatin structures. As discussed previously, distinct PTMs indicate active promoters, 

gene bodies, enhancers, and repressed regions. Neuroepigenetic, a relatively new field, 

has propelled research into NDDs forward as it focuses on determining how alterations 

in the epigenome result in neurological disease or disorders. Furthermore, extensive work 

in understanding neurogenesis has demonstrated the importance of epigenetic machinery 

as loss of these enzymes results in alterations to precise coordination of proliferation and 

differentiation in neural stem cells. Deletion of chromatin proteins results in abnormal 

cortical neurogenesis and defective synaptic plasticity. Due to the post-mitotic nature of 

neurons, it raises the question of whether neurons exhibit increased sensitivity to point-

mutations or deletions of the epigenetic machinery. However, this remains to be fully 

explored. To date, mouse models of KS1, KLEFS1, RSTS1, SOTOS1, and WVS have been 

generated, and defects in hippocampal memory were observed in all models (Alarcón et al. 

2004; Korzus 2017; Hans T. Bjornsson et al. 2014; M. C. M. Balemans et al. 2013; Monique 

C. M. Balemans et al. 2014; Harrison et al. 2012; J. Zhang et al. 2014). This suggests a 

similar disruption to memory formation, retrieval, or overall hippocampal function in these 

various NDDs. Interestingly, both the RSTS1 and KS mouse model had their hippocampal 

defects rescued by postnatal treatment with HDAC inhibitors (Alarcón et al. 2004; Hans T. 

Bjornsson et al. 2014).

Interestingly one of those inhibitors, Vorinostat, is approved by the US Food and Drug 

Administration (FDA) as cancer therapeutic. Epigenetic therapies, including both HAT and 

HDAC inhibitors, are currently being studied for the treatment of neurological conditions 

such as spinal muscle atrophy, bipolar disorder, and Alzheimer’s disease (“Histone 

Acetyltransferase Inhibitors and Preclinical Studies: Expert Opinion on Therapeutic 

Patents: Vol 19, No 6” n.d.). As of 2021, four HDAC inhibitors are FDA-approved: 

Vorinostat, Panobinostat, Romidepsin, and Belinostat. These may be fruitful therapeutics 

in these disorders, especially those with decreased histone acetylation, which highlights 

the importance of classifying these disorders based on chromatin state and target gene 

expression. Studies of chromatin regulator proteins will offer keen insight into manipulating 

the epigenome in the context of disease to develop broad and potentially personalized 

therapeutics. Despite these promising therapeutics, one limitation remains the number 

of neural tissue available from patients and the overall rarity of individuals themselves. 

However, recent advances involving the generation of functional neurons and glia through 

patient-derived iPSCs or creating a patient-mimic through CRISPR/Cas9 technology 

allowed a new avenue to explore these etiologies NDDs (Sabitha, Shetty, and Upadhya 

2021). This, coupled to the 3D self-assembled structures known as brain organoids, 

provides a unique opportunity not only to determine the pathways dysregulated but to 

assess cellular organization, transcriptional and epigenetic landscape in neurodevelopment. 

Collectively, utilizing both neuroscience advancements, we can begin to understand human 

neurodevelopment and its dysregulation using patient cells fully.
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FIGURE 1: 
Chromatin-modifying enzymes and the complexes they belong. Proteins mutated in NDDs 

are shown in color.
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FIGURE 2: 
Histone post-translational modifications are classified as activating or repressing depending 

on the modification site and the degree of modifications. Histone acetylation is primarily 

activating whereas methylation can play both roles. The HATs and KMTs which are mutated 

in NDD, as well as their targets, are shown above.
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FIGURE 3: 
Spatial expression of epigenetic factors dysregulated in NDD. (left) Graphical representation 

of brain regions in which most genes are highly expressed and their respective functions. 

(right) Expression in these three regions according to Consensus normalized expression 

(NX) levels on Protein atlas. This dataset was created by combining two transcriptomic 

datasets (GTEx and FANTOM5).
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Table 1.

Driver mutations of chromatin modifying enzymes in intellectual disability disorders

Gene Gene OMIM Syndrome OMIM Gene Function

CBP 600140 Menke-Hennekam syndrome 1/Rubinstein-Taybi 
syndrome 1 618332/180849 Histone acetyltransferase

P300 602700 Menke-Hennekam syndrome 2/ Rubinstein-Taybi 
syndrome 2 618333/613684 Histone acetyltransferase

KAT6A 601408 Arboleda-Tham syndrome 616268 Histone acetyltransferase

KAT6B 602303 Say-Barber-Biesecker-Young-Simpson / 
Genitopatellar syndrome 603736 / 606170 Histone acetyltransferase

BRPF1 602410 Intellectual developmental disorder with 
dysmorphic facies and ptosis 617333 Histone acetyltransferase complex 

subunit

KANSU 612452 Koolen-De Vries syndrome 610443 Histone acetyltransferase complex 
subunit

HDAC2 605164 Cornelia de Lange syndrome n/a Histone deacetylase

HDAC4 605314 Brachydactyly mental retardation 600430 Histone deacetylase

HDAC6 300272 X-linked dominant Chondrodysplasia 300863 Histone deacetylase

HDAC8 300269 Cornelia de Lange syndrome 5 300882 Histone deacetylase

KMT2A 159555 Wiedemann-Steiner syndrome 605130 Histone lysine methytransferase

KMT2B 606834 Dystonia 28, childhood-onset 617284 Histone lysine methytransferase

KMT2C 606833 Kleefstra syndrome 2 617768 Histone lysine methytransferase

KMT2D 602113 Kabuki syndrome 1 147920 Histone lysine methytransferase

KMT2E 608444 O’Donnell-Luria-Rodan syndrome 618512 Histone lysine methytransferase

SETD1A 611052
Neurodevelopmental disorder with speech 
impairment and dysmorphic facies / Eariy-onset 
Epilepsy

619056 / 618832 Histone lysine methytransferase

SETD1B 611055 Intellectual developmental disorder with seizures 
and language delay 619000 Histone lysine methytransferase

EHMT1 607001 Kleefstra syndrome 1 610253 Histone lysine methytransferase

NSD1 606681 Sotos syndrome 1 117550 Histone lysine methytransferase

NSD2 602952 Wolf-Hirschhom syndrome 194190 Histone lysine methytransferase

SETD2 612778 Luscan-Lumish syndrome 616831 Histone lysine methytransferase

SETD5 615743 Mental retardation, autosomal dominant 23 615761 Histone lysine methytransferase

EZH2 601573 Weaver syndrome 277590 Histone lysine methytransferase

SUZ12 606245 Imagawa-Matsumoto syndrome 618786 PRC2 subunit

EED 605984 Cohen-Gibson syndrome 617561 PRC2 subunit

KDM1A 609132 Cleft palate, psychomotor retardation, and 
distinctive facial features 616728 Histone lysine demethylase

KDM5B 605393 Mental retardation, autosomal recessive 65 618109 Histone lysine demethylase

KDM5C 314690 Mental retardation, X-linked, syndromic, Claes-
Jensen type 300534 Histone lysine demethylase

KDM6A 300128 Kabuki syndrome 2 300867 Histone lysine demethylase

PHF8 300560 Mental retardation syndrome, X-linked, Siderius 
type 300263 Histone lysine demethylase
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Gene Gene OMIM Syndrome OMIM Gene Function

CHD1 602118 Pilarowski-Bjomsson syndrome 617682 ATP-dependent Chromatin 
remodeler

CHD2 602119 Childhood-onset Epileptic Encephalopathy 615369 ATP-dependent Chromatin 
remodeler

CHD3 602120 Snijders Blok-Campeau syndrome 618205 ATP-dependent Chromatin 
remodeler

CHD4 603277 Sifrim-Hitz-Weiss syndrome 617159 ATP-dependent Chromatin 
remodeler

CHD7 608892 CHARGE syndrome 214800 ATP-dependent Chromatin 
remodeler

ARIDIb 614556 Coffin-Siris syndrome 1 135900 ATP-dependent Chromatin 
remodeler

ARIDIa 603024 Coffin-Siris syndrome 2 614607 BAF subunit

BAF47 601607 Coffin-Siris syndrome 3 614608 BAF subunit

BRG1 603254 Coffin-Siris syndrome 4 614609 ATP-dependent Chromatin 
remodeler

BAF57 603111 Coffin-Siris syndrome 5 616938 BAF subunit

ARID2 609539 Coffin-Siris syndrome 6 617808 BAF subunit

DPF2 601671 Coffin-Siris syndrome 7 618027 BAF subunit

BAF60A 601735 Coffin-Siris syndrome 11 618779 BAF subunit

BRM 600014 Nicolaides-Baraitser syndrome 601358 BAF subunit

BAF53b 612458 IDD with severe speech and ambulation defects / 
Developmental and epileptic encephalopathy 76 618470 / 618468 BAF subunit

ACTL6A 604958 n/a n/a BAF subunit

BPTF 601819 Neurodevelopmental disorder with dysmorphic 
facies and distal limb anomalies 617755 Chromatin remodeller

HIST1H1E 142220 Rahman syndrome 817537 Linker Histone

HIST1H4C 602827 unclassified n/a Canonical histone

HIST1H4J 602826 unclassified n/a Canonical histone

H3F3A 601128 Unclassified n/a Histone variant

H3F3B 601058 Unclassified n/a Histone variant
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