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Abstract Purpose Transsphenoidal surgery (TSS) for pituitary adenomas can be complicated
by the occurrence of intraoperative cerebrospinal fluid (CSF) leakage (IOL). IOL
significantly affects the course of surgery predisposing to the development of
postoperative CSF leakage, a major source of morbidity and mortality in the postoper-
ative period. The authors trained and internally validated the Random Forest (RF)
prediction model to preoperatively identify patients at high risk for IOL. A locally
interpretable model-agnostic explanations (LIME) algorithm is employed to elucidate
the main drivers behind each machine learning (ML) model prediction.
Methods The data of 210 patients who underwent TSS were collected; first, risk factors
for IOL were identified via conventional statistical methods (multivariable logistic regres-
sion). Then, the authors trained, optimized, and audited a RF prediction model.
Results IOL reported in 45 patients (21.5%). The recursive feature selection algorithm
identified the following variables as themost significant determinants of IOL: Knosp’s grade,
sellar Hardy’s grade, suprasellar Hardy’s grade, tumor diameter (on X, Y, and Z axes),
intercarotid distance, and secreting status (nonfunctioning and growth hormone [GH]
secreting). Leveraging the predictive values of these variables, the RF prediction model
achieved an area under the curve (AUC) of 0.83 (95% confidence interval [CI]: 0.78; 0.86),
significantly outperforming the multivariable logistic regression model (AUC¼0.63).
Conclusion A RFmodel that reliably identifies patients at risk for IOL was successfully trained
and internally validated. ML-based prediction models can predict events that were previously
judged nearly unpredictable; their deployment in clinical practice may result in improved
patient care and reduced postoperative morbidity and healthcare costs.
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Introduction

The endoscopic endonasal transsphenoidal approach has
been established as the gold standard for surgery of sellar
lesions as a result of the high rates of gross total resection
(GTR), low postoperative morbidity, and mortality.1–4

The occurrence of intraoperative cerebrospinal fluid (CSF)
leak may complicate a variable percentage of transsphenoi-
dal surgery (TSS) procedures, with prevalence estimated at
17.4 to 37.5%.1,4–6 Intraoperative CSF leakages (IOL) signifi-
cantly alter the course of surgery in terms of closure strategy,
additional invasive maneuvers (e.g., inserting lumbar drain-
age and harvesting autologous abdominal fat), extended
operation time and time under general anesthesia, and the
consequent patient morbidity. Notably, IOLs can predispose
to the development of postoperative CSF leakages which
represent a major source of morbidity and mortality in the
postoperative setting.5,7,8

Predicting which patients would develop IOL optimizes
surgical planning, improves patient counseling and care,
reducing postoperative morbidity and the associated costs.
While several independent risk factors have been identified
for IOLs through univariate and multivariate analy-
sis,1,4,5,9–11 these express the relationship between a single
risk factor and the outcome; however, they fail to capture
how the outcome is affected by the interaction of multiple
risk factors, with limited integrability into predictionmodels
that may communicate the risk for IOL.

With the recent introduction of artificial intelligence and
machine learning (ML) in medicine and neurosurgery, new
prediction models have been designed for a range of out-
comes, oftenwith a greater area under the curve (AUC) being
achieved compared with logistic regression and clinical risk
scores.12–14 Different ML algorithms exist, among which the
Random Forest (RF) stands out for its ability to capture
nonlinear patterns in the data and the applicability to
differently sized datasets.

While its use in the neurosurgical field is still dawning,ML
can potentially assist physicians in the pre-, intra-, and
postsurgical settings. In the present study, the authors
investigate whether an RF prediction model can accurately
and reliably identify patients at high risk for IOL, testing the
hypothesis that such a model would outperform multivari-
able logistic regression analysis.

Furthermore, to improve understanding, trust, and verifi-
cation of the RF model predictions, a locally interpretable
model-agnostic explanations (LIME) algorithm is employed.15

Materials and Methods

Data and Study Population
We collected and examined the data of 255 consecutive
patients who underwent endoscopic transsphenoidal sur-
gery for pituitary adenoma between January 2017 and
February 2020 at the Department of Neurosurgery in Fon-
dazione Policlinico Agostino Gemelli. All procedures per-
formed in studies involving human participants were in
accordance with the ethical standards of the institutional

and/or national research committee and with the 1964
Helsinki declaration and its later amendments or compara-
ble ethical standards.

For the purpose of the present study is to predict the IOL
risk during transsphenoidal adenoma resection based on
preoperative clinical and radiological data, 45 otherwise
eligible patients were excluded because radiological images
were not available. A total of 210 patients met our inclusion
criteria and were included in our analysis.

The Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD) state-
ment guidelines were used to minimize the risk of bias
during the development phase and to correctly validate
the predictive ability of our ML models during the testing
phase.16

A traditional statistical model (multivariable logistic re-
gression) and a novel ML ensemble algorithm (the RF classi-
fier) were trained to predict IOL: the two predictive models
were then compared.

The design of the ML model herein presented is outlined
in theflowchart (►Fig. 1). A stepwise description is provided
hereinafter.

Data Extraction
Input features included demographic, clinical, radiological,
and surgical data from the database of 210 patients. The
following patient’s variables were retrieved: sex, age (years),
adenoma secreting status (nonsecreting, adrenocorticotro-
pic hormone [ACTH], growth hormone [GH], prolactin [PRL],
and thyroid-stimulating hormone [TSH]), previous surgery
(yes vs. no), preoperative pharmacological therapy (yes vs.
no), maximum tumor diameter in mm (X, Y, and Z axes for
laterolateral, craniocaudal, and anteroposterior, respective-
ly), intercarotid distance (measured on T1-weighted [W]
gadolinium-enhanced magnetic resonance imaging (MRI)
at the level of the horizontal C4 segment of the internal
carotid artery), Hardy’s grade (sellar and suprasellar),
Knosp’s grade, and osteodural invasiveness (evaluated on a
coronal T2-weighted image by a board-certified neuroradi-
ologist with >10 years of experience).

Features Selection and Training of The Random Forest
Classifier
Choosing the most appropriate ML model strongly depends
on the number of patients and the type of variables in the
dataset, as well as the type of outcome of interest (binary vs.
continuous).

Because of the nature of the variables included in our
dataset, the number of patients and the outcomes of interest,
aRF classifierwasdeemed themost appropriate.17–19Features
selection for the RF classifier was performed using Boruta
(v.0.3).20,21 Boruta’s initializing parameters are reported in
Supplementary Material S1 (available in the online version).

Issues deriving from the imbalanced nature of our dataset
were explored. As widely acknowledged, when training with
imbalanced data, ML algorithms tend to learn preferentially
from the majority outcome class than the minority outcome
class, these results in predictive models with limited
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generalizability. To solve this issue and in line with previous
experience,22 a new balanced dataset was created applying
the Synthetic Minority Over-sampling Technique for Nomi-
nal and Continuous features (SMOTE-NC) to the original
training dataset.23

The cohort of patients was randomly split into training
and hold-out test set by an 80:20 ratio. The two sets were
cross-checked for comparable class distribution. A grid
search with five-fold cross-validation was used on the train-
ing set for hyperparameters tuning of the RF model. The best
performing hyperparameters specific for the RF classifier
(e.g.: n of estimators, learning rate, max depth, and others)
are reported in Supplementary Material S1 (available in the
online version).

RF classifier was finally trainedwith the optimized hyper-
parameters setting on the balanced training set.

Internal Validation of the Random Forest Classifier
Once trained on the training set, the RF classifier was
subsequently evaluated on the hold-out test set which was
not employed in any form for hyperparameter optimization.

The RF model proceeds by identifying those patients
who, based on their preoperative characteristics, are more
prone to develop intraoperative CSF leakage during the
transsphenoidal resection of the pituitary adenoma. The
ML model output estimates the probability of intra-
operative CSF leakage occurrence ranging from 0 to 100%.
IOL was predicted in patients with an estimated IOL proba-
bility >50%.

Performance Metrics Evaluation and Comparison with
Conventional Statistics
To validate themethod, the RF classifier’s performanceswere
compared with the one achieved by a “classical” multivari-
able logistic regression model. The association between
patients’ variables and outcome of interest was explored;
for categorical variables, with the Chi-square test, using the
Fisher’s exact test when appropriate; for continuous varia-
bleswith theMann–WhitneyU-test. A p-value cut-off of 0.05
with Holm–Bonferroni correction was applied, thus shield-
ing against type-1 error in the setting of multiple compar-
isons (►Table 1). All covariates that were significantly

Fig. 1 Flow chart describing the workflow behind the random forest model development and evaluation.
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associated with IOL in the inferential analysis were included
in the predictive analysis of themultivariable logistic regres-
sion model (►Table 2).

A limit of this widely adopted statistical methodology is
that it considers only the univariate association and correla-
tion between the independent variables (e.g., diameter, sex,
age, Knosp’s grade, and others) and the outcome of interest
while missing the valuable predictive value provided by the
linear combination of patient’s variables.

The RF classifier and the multivariable logistic regression
model predictive capabilities were extensively evaluated and
compared taking into consideration the following performance
metrics:

• Area under the receiving operative characteristics (AUC-
ROC).

• Accuracy.
• Sensitivity or recall.
• Positive predictive value (PPV).
• Negative predictive value (NPV) or precision.
• False-positive rate (FPR).
• F-1 score.

Mean value and 95% bootstrap CI were computed for each
of the above-mentioned performancemetrics across training
and testing set by repeated cross-validation.24

Software
All the statistical analyses were performed in Jupyter Note-
book, using Python v.3.7.6 (https://www.python.org/). The
Python packages used for this study included: “Scikit-learn”
to develop and train the RF models and the multivariable
logistic regression model; “Numpy” for Excel dataset han-
dling; “imbalanced-learn” to solve class imbalances prob-
lem; “Sci-py” to perform univariable statistical association
test; “Statsmodels” to perform multivariate analysis; “Bor-
uta” to perform recursive features selection; “LIME” v.0.2.0.1
to interpret the ML model, “Bootstrap” v.4.5.3 to prototype
the web application user interface.

Results

A total of 210 consecutive patients operated between Janu-
ary 2017 and February 2020 were included. Their baseline
clinical characteristics are reported in ►Table 1.

Table 1 Baseline parameters of the 210 included patients

Parameter Overall
(n¼ 210)

No CSF leak
(n¼165)

CSF leak
(n¼45)

Uncorrected
p-value

Holm–Bonferroni
corrected p-value

Sex (female) 104 (49.5%) 83 (50.3%) 21 (46.7%) 0.665 >0.999

Age (y) 53.0 (15.1) 51.6 (15.3) 58.2 (13.4) 0.005 0.035a

Secreting status – – – 0.002 0.016a

ACTH 23 (11%) 21 (12.7%) 2 (4.4%) 0.137 0.274

GH 34 (16.2%) 33 (20%) 1 (2.2%) 0.009 0.040a

Nonfunctioning 125 (59.5%) 88 (53.3%) 37 (82.2%) 0.026 0.049a

PRL 24 (11.4%) 21 (12.7%) 3 (6.7%) 0.286 0.572

TSH 4 (1.9%) 2 (1.2%) 2 (4.4%) 0.164 0.328

Previous surgery
(yes vs. no)

33 (15.7%) 27 (16.4%) 6 (13.3%) 0.621 >0.999

Preoperative
pharmacotherapy
(yes vs. no)

26 (12.4%) 23 (13.9%) 3 (6.7%) 0.189 0.378

X 19.0 (8.9) 18.3 (9.3) 21.7 (6.2) 0.001 0.011a

Y 18.5 (10.3) 17.2 (10.2) 23.3 (9.3) <0.001 <0.001a

Z 16.5 (7.2) 15.8 (7.2) 19.0 (6.7) 0.001 0.011a

Intercarotid distance 20.2 (4.7) 20.6 (4.8) 18.8 (3.9) 0.009 <0.001a

Knosp’s grade 1.8 (1.2) 1.6 (1.2) 2.2 (0.9) 0.001 0.011a

Hardy’s (sellar) grade 1.9 (1.1) 1.7 (1.1) 2.5 (0.8) <0.001 <0.001a

Hardy’s (suprasellar) grade 1.3 (1.3) 1.1 (1.3) 2.0 (0.9) <0.001 0.001a

Osteodural invasiveness 67 (31.9%) 46 (27.9%) 21 (46.7%) 0.017 0.045a

Abbreviations: ACTH, adrenocorticotropic hormone; CSF, cerebrospinal fluid; GH, growth hormone; PRL, prolactin; TSH, thyroid-stimulating
hormone.
Note: Characteristics of patients who experienced intraoperative CSF leaks and those who did not were compared at univariate analysis. Categorical
and continuous variables are respectively reported as number of patients (%) and mean (�standard deviation).
aSignificant at p � 0.05 after Holm-Bonferroni correction;
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Intraoperative CSF leaks occurred in 45 patients (21.4%) of
which 34 were classified as Park’s grade 1 and 11 were
classified as Park’s grade 2.25 Four patients with IOL (8.9%,
three Park’s grade 1 and one Park’s grade 2), further devel-
oped a CSF leakage in the postoperative setting.

Out of 165 patients who did not develop IOL, 2 (1.2%)
developed a CSF leakage in the postoperative setting.

In patientswho did not develop IOL, sellar floor repair was
performed by placing a sheet of Spongostan (Ethicon Inc.,
Johnson & Johnson Medical NV, Belgium) and adding fibrin
glue and autologous bone/cartilage; depending on individual
anatomy, predicted extent of sellar opening and surgeon’s

preference, Hadad–Bassagasteguy flap was harvested in the
initial stages of surgery and used to seal the surgical site.26

Inpatientswhodeveloped IOL,additional stepsweretakento
ensurewatertight closure, dependingon thePark’sgradeandon
surgeon’s preference; these variably included Hadad–Bassagas-
teguy flap, abdominal fat grafting, and gasket seal reconstruc-
tion, combined with the standard reconstruction technique.27

Of the six total patients who developed a CSF leakage in
the postoperative setting, four were successfully treatedwith
lumbar drain insertion, while two patients required an
endoscopic procedure with autologous fat graft, autologous
fascia lata graft and Hadad–Bassagasteguy flap.

Table 3 Performance metrics on the training and testing set for both random forest classifier and multivariable logistic regression
are reported

Random Forest Classifier Multivariable logistic regression

Performance metrics Training Testing Training Testing Improvement (%)

AUC 0.91 (0.89–0.94) 0.83 (0.78–0.86) 0.83 (0.79–0,84) 0.63 (0.57–0.65) 32

Accuracy 91% (86%–94%) 83% (80%–85%) 84% (79%–86%) 64% (61%–66%) 30

Sensitivity 98% (94%–99%) 82% (79%–83%) 86% (83%–87%) 60% (55%–62%) 37

Specificity 84% (82%–89%) 84% (81%–86%) 80% (75%–82%) 66% (62%–69%) 27

PPV (precision) 86% (82%–89%) 64% (63%–68%) 82% (79%–84%) 35% (33%–38%) 83

NPV 97% (94%–99%) 93% (89%–95%) 86% (85%–88%) 84% (79%–86%) 11

False positive rate 14% (12%–17%) 16% (13%–18%) 20% (18%–25%) 34% (30%–36%) �53

F1 score 0.91 (0.88–0.93) 0.72 (0.70–0.75) 0.84 (0.81–0.86) 0.44 (0.40–0.49) 64

Abbreviations: AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.
Note: Metrics improvement on the testing set is listed; 95% bootstrap confidence interval is reported in brackets.

Table 2 Multivariate logistic regression analysis

Parameter Odds ratio 95% CI p-Value

Age 0.999 0.963–1.035 0.944

Secreting status – – –

ACTH 1 – –

GH 0.173 0.011–2.722 0.212

PRL 3.453 0.518–23.021 0.200

TSH 0.887 0.099–7.970 0.915

Nonfunctioning 11.268 0.617–205.798 0.102

X 1.011 0.910–1.122 0.843

Y 1.080 1.000–1.166 0.048

Z 0.924 0.815–1.046 0.212

Inter-carotid distance 0.725 0.632–0.830 <0.001

Knosp’s grade 1.308 0.731–2.340 0.365

Hardy’s (sellar) grade 1.175 0.609–2.267 0.631

Hardy’s (suprasellar) grade 1.590 1.000–2.528 0.050

Osteodural invasiveness 2.273 0.940–5.494 0.068

Abbreviations: ACTH, adrenocorticotropic hormone; CI, confidence interval; GH, growth hormone; PRL, prolactin; TSH: thyroid-stimulating
hormone.
Note: All parameters showing a statistically significant association (p � 0.05) at univariate analysis were included in the multivariate logistic
regression analysis.
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Random Forest Classifier Performances
Features selected for the RF classifier via Boruta were age,
Knosp’s grade, Hardy’s grade (both sellar and suprasellar),
tumor diameter (on X, Y, and Z axes), intercarotid distance,
and secreting status (nonfunctioning and GH secreting).

The results of the RF prediction model are reported
in ►Table 3. Comparing the performance achieved on the
training set with those of the testing set, the RF model
demonstrated internal validity and minimal overfitting.

This model accurately classified 83% of patients in the
hold-out test set and achieved an AUC of 0.83 (95% CI: 0.78;
0.86) demonstrating adequate discriminative ability

(►Fig. 2). Notably, the RF model achieved an NPV rate of
93%, indicating high reliability in correctly identifying
patients at minimal risk for IOL. Evaluation of the model
on the test set corresponds to internal validation, providing
reliable expectation on the model’s performance on new,
external data; if similar results were achieved by external
validation, it would allow the introduction of the model in
clinical practice.

Model Interpretation
Relative features importance plot for the RF model is
reported in ►Fig. 3. The parameters with the strongest

Fig. 2 Mean Receiver Operating Characteristic (ROC) curves on both training and testing sets using the Random Forest model (A) and
multivariable logistic regression (B) to predict intraoperative CSF leakage in patients with pituitary adenoma. AUC, area under the curve; LR,
logistic regression; RF, Random Forest; ROC, receiver operating characteristics.

Fig. 3 Permutation features importance plot providing a visual representation of the relative predictive contribution of each selected variable to
minimize the prediction error of the random forest model. The relationship between permutation feature importance and outcome of interest is
nonlinear and cannot be interpreted directionally with respect to their influence on outcomes, nor can they be used to generate specific cutoff or
threshold values. GH, growth hormone; ICD, Intercarotid distance; NF, nonfunctioning.

Journal of Neurological Surgery—Part B Vol. 83 No. B5/2022 © 2022. Thieme. All rights reserved.

ML-Based Prediction of Cerebrospinal Fluid Leakage Mattogno et al.490

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



predictive value were suprasellar Hardy’s grade, Inter-carot-
id distance (ICD), and tumor diameters (X, Y, and Z axes).

We further introduced LIME to quantify the features
contribution and polarity for each patient, thus providing
an interpretable relationship between patient’s character-
istics and RF model prediction. An example is illustrated
in ►Fig. 4.15 Understanding the reason behind both correct
and incorrect model predictions can increase clinicians trust
in model behavior and performance.

Logistic Regression Performance
Out of the 13 available features, 10 reported a p<0.05 at
univariate analysis and were included as input variables in
the logistic regression model (►Table 2). Of these, ICD and
tumor diameter (Y) resulted independently associated with
IOL, while suprasellar Hardy’s grade and osteodural invasive-
ness trended toward significance. On the hold-out test set,
the multivariable logistic regression model achieved, AUC of
0.63 (95% CI: 0.57; 0.65;►Fig. 2), indicating poor consistency
and scarce reliability (►Table 3).

Performance Metrics Evaluation
By leveraging the predictive value resulting from the combi-
nation of independent variables, RF classifier outperformed
multivariable logistic regression in successfully identifying
patients at high risk for intraoperative leaks (►Table 3).
Improvement was recorded across all evaluation metrics.
Notably, the positive predictive value increased byþ83%, the
NPV increased by þ11%, and the false-positive rate dropped
by �53%.

Discussion

Pituitary adenomas represent approximately 16% of all new-
ly diagnosed brain tumors and are among the most common
primary central nervous system tumors in the United
States.28 Moreover, they are the second most common
nonmalignant brain tumor with surgical resection as a
potentially curative treatment.

TSS is currently the gold standard for the treatment of
pathologies of the sellar region, with significant improve-
ment in long-term clinical outcomes and amarked reduction
in the duration of hospitalizations, compared with the

traditional microsurgical technique.29 Noticeably, among
the main TSS-related risks, CSF leaks represent one of the
most common complications that the pituitary surgeon has
to face.5

IOL represents a rather common situation during TSS,
occurring in up to 37.4% of TSS interventions, as reported by
Strickland et al5; it can be expected in case of lesions with
evident intracranial extension, or it can occur during surgery
due to the presence of tumor adhesions or local invasion or
involuntary laceration of the sellar diaphragm and the
arachnoid plane during the surgical manipulation. Several
studies have evaluated the risk factors responsible for an
increased incidence of IOL, without reaching univocal con-
clusions; some of the reported associated variables include
larger tumor size, nonsecreting status, previous surgery,
suprasellar extension, and higher body mass index
(BMI).5,11,30,31

Interestingly, in our study the variables selected by Boruta
overlapped with the statistically significant variables
(p<0.05, as identified by multivariable logistic regression)
except for osteodural invasiveness. This finding, coupled
with the relative importance attributed to each variable
(►Fig. 2), highlights that statistical significance alone is of
limited value, only by considering the interactions between
the several variables amodel can achieve a high AUC and rate
the contribution of each variable to the prediction. For
instance, age seems to be tightly linked to the development
of IOL (p¼0.009); its contribution, however, is defined as
marginal in our RF-based prediction model. This finding
contrasts with what found by Staartjes et al whose neural
network-based prediction model defines age as one of the
most significant variables together with suprasellar Hardy’s
grade and previous surgery.14 As literature on this associa-
tion is scarce, further studies are required to define whether
a link exists between age and IOL development.

In our study, the suprasellar Hardy grade contributes the
most to the development of IOL, similarly towhat previously
described.14,30 Similarly, tumor height was found to be more
predictive of intraoperative CSF leak than anteroposterior
and laterolateral dimensions, emphasizing the importance of
considering tumor dimensions independently. Tumors with
greater craniocaudal extension develop incompetence of the
sellar diaphragm secondary to sellar expansion, leading to

Fig. 4 Results of local interpretable model–agnostic explanation (LIME) with Random Forest classifiers applied to one correctly predicted
patient with intraoperative cerebrospinal fluid (CSF) leakage (IOL). The figure reveals the role of various features in shaping the risk of IOL in each
patient. (A) Patient’s characteristics. (B) Features contributions on predicted probabilities (red¼ risk factor; blue protective factor). (C)
Predicted probability of IOL. GH, growth hormone; ICD, Intercarotid distance.
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exposed arachnoid that is at risk for thinning or developing
defects, thereby increasing the risk of CSF leak.8,32

A larger ICD was found to act as a protective factor in the
multivariable logistic regression (►Table 2), and it was
selected by Boruta as the second most relevant feature in
determining IOL development.While this association has not
been previously reported, a greater ICDmay lower the risk of
diaphragm violation during surgery by virtue of the associ-
ated greater diaphragm diameter and surface.

The association between IOL and the nonsecreting status
of the adenomas can be explained by considering the natural
history of these tumors which tend to be larger at surgery
because they are diagnosed after the onset of mass effect
symptoms.33 Tumor dimensions have been previously
reported as reliable predictors of IOL.5,11,30 While cavernous
sinus invasion, as defined by the Knosp grade, plays a
significant role in our prediction model, it has been previ-
ously described as amarginal determinant of IOL by Staartjes
et al and as completely unrelated to IOL by Patel et al.14,30 No
association between prior surgery and the outcome was
identified bymeans of either standard statistics or ML-based
analysis; the literature in this regard is discordant, as Przy-
bylowski et al reported no difference in IOL rates between
primary and revisionprocedures, while the predictionmodel
by Staartjes et al selected it as the thirdmost relevant feature,
probably as a result of fibrotic scars, and difficult
recognition/dissection of the sellar structures.4,14

Among radiomic features that may predispose to IOL
development, tumor texture stands out; the signal intensity
of T2-W imaging and apparent diffusion coefficient images
can have prediction value for texture of pituitary adenomas.
Soft tumors are easily removed by suctioning, fibrous tumors
are more difficult to excise and often require a second-stage
operation, stereotactic radiosurgery, or transcranial
approaches; it is only reasonable that harder consistency
tumors would favor the development of IOL. Nevertheless,
the accuracy of tumor texture prediction based onMRI signal
is 70%,34,35 for which reason we refrained from using this
variable in our algorithm. Should a greater accuracy of
radiomic features, tumor texture prediction included, be
achieved in future, these could be implemented in existing
prediction models.

MLhasalreadybeenused in the literature topredict the risk
of IOL and of the likelihood of GTR during and after trans-
sphenoidal surgery.13,14 However, while those articles
deployed artificial neural networks (ANNs) which are compu-
tational models based on the functioning of biological neural
networks that can be used to model nonlinear statistical data
and to reveal patterns,36,37 we used an RF algorithm.

Since no single algorithm works best across all possible
scenarios, the performance of ML algorithms varies widely
depending on the application and the dimensionality of the
dataset. Accordingly, theweakness of an approach can lead to
avoid a specific algorithm in a specific context. In these cases,
choosing an algorithm before starting the project is
warranted.

Both ANNs and RFs have the ability tomodel linear, aswell
as complex nonlinear relationships. ANNs can lead to signif-

icant advantages in the analysis of complex data, such as
image classification, speech recognition, and others; howev-
er, there’s evidence, both in neurosurgery and in other
specialties, that RFs could outperform other predictive algo-
rithms, ANNs included, in the analysis of tabular data.38–40

RFs include several advantages in the analysis of tabular
data, they can be trained with a relatively small amount of
data,while ANNs requiremore data to reach the same level of
accuracy and they require less input preparation, as no
feature normalization is required.41 Finally, differently
from ANNs, RFs can accurately predict the outcome even
when part of the input values are missing41; this occurrence
is extremely common in the analysis of tabular data, often
leading to the exclusion of patients from analysis if standard
statistical methods (e.g., multivariable logistic regression) or
other ML algorithms like ANNs are used. RFs-based analysis
can possibly overcome this limit and be the basis for future
prediction models starting from tabular data.

Despite widespread adoption, ML models are often
viewed as black boxes; in the absence of a transparent
interpretation of the learning process or the outputs, the
doctor is blind to the relationship between the clinical
features and the predicted outcomes. Understanding the
reason behind each prediction is crucial to build clinicians’
trust in ML models, and to provide expert knowledge-based
validation for the interpretation of ML model outputs.

The interpretability of an ML algorithm is generally de-
fined as the ability of a human to understand the link
between the features extracted by an artificial intelligence
program and its predictions.42

LIME algorithmwas introduced to provide an explanation
on a case-by-case basis for the RF classifier prediction
(►Fig. 4). LIME is an algorithm that can explain the predic-
tions of any classier or regressor in a faithful way by
approximating it locally with an interpretable model.15 An
in-depth knowledge of what drives ML model prediction is
necessary for an effective human—ML systems interaction.

Our study is the first to deploy an RF-based algorithm to
predict IOL, and, with 210 recruited patients, it is one of the
largest studies in the field of ML algorithms applied to
pituitary surgery. Our ML-based prediction model outper-
formed multivariable logistic regression: by achieving an
AUC of 0.83 (95% CI: 0.78; 0.86), it demonstrates a high
discriminative ability and generalizability.

Aweb application user interface has been designed for the
clinical deployment of our random forestmodel (►Fig. 5). For
safety reasons, a publicly accessible version will be released
only on successful fulfilment of the currently ongoing multi-
centric and prospective data collection and validation of the
current model. External validation of our model is necessary
to adjust for variability in surgical technique, as interindi-
vidual differences in surgical technique surely can impact the
outcomes due to the long learning curve of transnasal
endoscopy; all patients in our study were operated on by
the same surgical team lead byone senior surgeonwithmore
than 15 years of experience in endonasal endoscopic sur-
gery; hence, we can reliably state that the same surgical
technique was deployed in all cases.
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If extended to everyday clinical practice, this ML-based
decision support tool may guide the surgeon in decision-
making and surgical planning by identifying patients at risk
for IOL, leading to reduced surgical time and lower costs;
most importantly, it could achieve lower morbidity and risks
for the patients in terms of surgery and anesthesia-associat-
ed complications and postoperative infections. While our
model could provide an objective risk quantification, the role
and intuition of the surgeon remain crucial to provide
adequate patient care.

Limitations

The major drawback of the study resides in the retrospective
acquisition of data from a single tertiary care center; such
feature potentially challenges the generalizability of the
current version of our model in external patient populations.
Though we used a hold-out validation technique to demon-
strate the generalizability of the ensembles to data never
used in training, demonstration of generalizability to a
separate database, or to prospectively collected data, it
would serve as a stronger validation. The variables included
in our prediction model can be easily retrieved for each
patient inmost neurosurgical centers, such as demographics,
diameters on the three axes, ICD, Knosp and Hardy grades as
measured on T1-W gadolinium-enhanced or T2-W sequen-
ces, where appropriate; however, poor interrater reliability
(as in the case of Knosp’s and Hardy’s grades) may lead to
poorer prediction performance. Furthermore, there are fac-
tors that may concur in the development of IOL that can’t be
included in a prediction model, such as individual surgical
techniques, which may differ across different neurosurgical
centers or even different neurosurgical teams based in the
same center. For these reasons, external validation of the
model is required to confirm its predictive capacity, possibly

heralding the implementation of a free web-based version of
the model in clinical practice. As ML models evolve continu-
ously with the use and accrual of new data, it can be
predicted that the diffusion of this model in several neuro-
surgical centers may allow, in the future, the creation of
multiple center-specific versions which adjust the results for
individual surgical style and personal Knosp’s and Hardy’s
grading.

Conclusion

An RF-based prediction model was trained and internally
validated to identify patients at risk for intraoperative
CSF leakage; the AUC was 0.83 (95% CI: 0.79; 0.84) and
the NPV value was 93%. The prediction model achieved
superior results in comparison with conventional statis-
tical methods whose AUC was 0.63 (95% CI: 0.57; 0.65);
this finding supports the role of ML algorithms as auxil-
iary tool to aid physicians in clinical practice, hopefully
resulting in reduced health care costs and improved
patient care. While the results of our study seem encour-
aging, our prediction model needs to successfully fulfil
the currently ongoing multicentric and prospective ex-
ternal validation before being safely introduced in every-
day clinical practice.

Abbreviations

AUC-ROC area under the curve receiver operating
characteristics

CSF cerebrospinal fluid
FPR false positive rate
RF random forest
IOL intraoperative CSF leakage
ML machine learning

Fig. 5 Webapp prototype of the graphic user interface for the clinical deployment of the random forest prediction model. According to the
estimated probability, each patient could be classified as being at low, intermediate or high risk of developing intraoperative CSF leaks following
three risk ranges: 0–33, 34–66, and 67–100%. The risk prediction of three patients, randomly sampled from the current database, is
represented. CSF, cerebrospinal fluid; GH, growth hormone; PRL, prolactin.
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LIME locally interpretable model-agnostic
explanations

NPV negative predictive value
PPV positive predictive value
SMOTe-NC synthetic minority over-sampling technique

for nominal and continuous
TPR true positive rate
TRIPOD transparent reporting of a multivariable pre-

diction model for individual prognosis or
diagnosis

TSS transsphenoidal surgery
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