Skip to main content
. Author manuscript; available in PMC: 2023 Sep 1.
Published in final edited form as: Small. 2022 Mar 23;18(36):e2107305. doi: 10.1002/smll.202107305

Table 1.

Comparison of microfluidic methods for measuring cell mechanics.

Method Types of
cell
Readout Strain
rate, ε
(kHz)
Stres
s, σ
(kPa)
Force
sensitivity
Throughput
Atomic force microscopy Adherent cells Elastic and viscoelastic response of a local region or whole cell 10−5 – 10−2 pN - μN 1-10 cells / hour
Micropipette Aspiration Non-adherent or adherent cells Elastic and viscoelastic response of a local region or whole cell 10−5 – 10−3 pN - nN 1-10 cells / hour
Particle-Tracking Rheology Adherent cells Elastic and viscoelastic response of a local region pN 10-100 cells / hour
Magnetic-Twisting Rheology Adherent cells Membrane /surface elasticity 10−3 – 10−1 pN - nN 1000 cells / hour
Optical Tweezers / Traps Adherent or non-adherent cells Elastic and viscoelastic response of a local region, or whole cell deformability 10−3 – 103 fN - pN 1-10 cells / hour
Suspended Microchannel Resonator Suspended cells The inverse of Passage time; Cell buoyant mass; Apparent elastic moduli ~the order of 10−2; The order of 1 N.A. 1 cells / s
Real-Time Deformability Cytometry Suspended cells 1-Circularity; Young’s moduli; Viscosity ~the order of 0.1 The order of 1 N.A. 100 cells / s
Deformability cytometry Suspended cells Aspect ratio the order of 10; can <2 ~6 N.A. 1000 cells / s
2D traction force microscopy Adherent cells Matrix deformation N.A. N.A. nN 10-1000 cells / hour
3D traction force microscopy Embedded cells within 3D matrix Matrix deformation N.A. N.A. nN 1-100 cells / hour