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Detecting motor symptom fluctuations in Parkinson’s disease
with generative adversarial networks

Vishwajith Ramesh ('™ and Erhan Bilal®

Parkinson'’s disease is a neurodegenerative disorder characterized by several motor symptoms that develop gradually: tremor,
bradykinesia, limb rigidity, and gait and balance problems. While there is no cure, levodopa therapy has been shown to mitigate
symptoms. A patient on levodopa experiences cycles in the severity of their symptoms, characterized by an ON state—when the
drug is active—and an OFF state—when symptoms worsen as the drug wears off. The longitudinal progression of the disease is
monitored using episodic assessments performed by trained physicians in the clinic, such as the Unified Parkinson’s Disease Rating
Scale (UPDRS). Lately, there has been an effort in the field to develop continuous, objective measures of motor symptoms based on
wearable sensors and other remote monitoring devices. In this work, we present an effort towards such a solution that uses a single
wearable inertial sensor to automatically assess the postural instability and gait disorder (PIGD) of a Parkinson’s disease patient.
Sensor data was collected from two independent studies of subjects performing the UPDRS test and then used to train and validate
a convolutional neural network model. Given the typical limited size of such studies we also employed the use of generative
adversarial networks to improve the performance of deep-learning models that usually require larger amounts of data for training.
We show that for a 2-min walk test, our method’s predicted PIGD scores can be used to identify a patient’s ON/OFF states better
than a physician evaluated on the same criteria. This result paves the way for more reliable, continuous tracking of Parkinson’s

disease symptoms.
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INTRODUCTION

The standard for assessing motor symptoms associated with
Parkinson’s disease (PD)—tremor, postural instability, gait diffi-
culty, and bradykinesia—is the motor examination section of the
Unified Parkinson’s Disease Rating Scale, or UPDRS Part IIl. This test
is conducted in-person by clinicians and has good inter-rater
reliability’. However, PD is characterized by sporadic symptoms
that are often not observed during clinic visits. For example,
freezing of gait (FoG), which causes postural imbalance and
frequent falling, has been shown to be difficult to elicit during
medical exams. More broadly, it is well-established that the range
and severity of symptoms experienced by a patient in their home
environment do not always agree with measurements taken in
clinic>™. Discontinuous monitoring through clinical visits and in-
person assessments do not capture PD symptoms and their
progression completely. In fact, patients’ self-assessments of their
improvement over time in response to treatment do not agree
with their UPDRS scores from in-person appointments®.

ON/OFF cycles are another defining characteristic of Parkinson’s
disease. A patient treated with a dopamine precursor drug like
levodopa experiences the ON state when the drug is active and
motor symptoms are less severe. As the drug wears off and motor
symptoms worsen, the patient transitions to the OFF state®. When
a patient visits a neurologist at a clinic, they are either ON, OFF, or
transitioning into one of the states. The neurologist can identify
the patient’s state during a visit using the symptom severity
measured with the UPDRS exam. But without continuous
monitoring, it is not possible to capture the relevant dynamics—
time in each state, the severity of the OFF state, frequency—of
these ON/OFF cycles. Cycles are dependent on the progression of
PD and are often unique to individual patients. Understanding the

dynamics of these cycles is important because they inform
clinicians of the effectiveness of their treatment regimen and the
degree of rehabilitation of the patient in a personalized way’~°.

The standard for tracking ON/OFF cycles more continuously
than in-person clinical visits is the Hauser diary, a major endpoint
in PD clinical trials®'*'". Patients monitor the severity of their
symptoms and report their ON/OFF state in a home diary every
30 min over the span of several days. PD patients can determine
their own ON/OFF state well, by correctly perceiving their non-
motor and especially their motor function'2. Despite this, Hauser
diaries are often inaccurate and unreliable®'>%, Poor patient
compliance, recall bias, and diary fatigue are common, well-
established problems with both paper and electronic diaries®1315,
Due to poor adherence by patients and the fact that diaries only
measure the duration of time spent in a state and not the severity
of impairment, Hauser diaries are a limited source of information
about patients’ physical functions at home.

Moreover, individual UPDRS tasks can benefit from a more
objective quantification of symptoms. Gait itself is scored on a
scale of 0 to 4 from “Normal” to “Severe”. Examiners are asked to
consider stride amplitude, stride speed, height of foot lift, heel
strike during walking, turning, and arm swing'®. Assessing all
these independently and then combining them into a single score
is a very subjective process and involves a good deal of intuition
derived from the experience of the examiner.

Wearable sensors address all the above concerns'®. They have
been shown to have high biomechanical resolution for quantita-
tively assessing gait impairment in PD, so they have a high degree
of clinical applicability®. They especially benefit from being able to
be taken out of clinic and worn continuously at home or “in-the-
wild”. In other words, as Parkinson’s disease patients are simply
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going about their day, their gait metrics, and motor symptoms can
be continuously tracked and ON/OFF cycles automatically
monitored. It is important to be able to measure PD outcomes
objectively without bias, reliably, and in an unobtrusive way. In-
the-wild tracking of the progression of PD in patients via
wearables increases the relevance of any clinical visits and
improves overall patient management by clinicians®'3.

There have been several successful attempts at tracking PD
symptoms using wearable sensors and machine learning. Sama
et al. were able to detect and score bradykinesia, the slowness of
movement, using a waist-worn accelerometer and a support
vector regression model'”. By using machine learning to
characterize the walks and strides of patients, they were able to
detect and score bradykinesia in 12 subjects with high accuracy
and correlation. However, the work used a small subject pool of
only 12. And while they were able to achieve high accuracies, the
authors used a leave-one-subject-out methodology in which each
subject was used to not only train the model but also test it
once'”. The model, therefore, was trained and tested on signals
from the same set. Without out-of-sample testing where the entire
data from a subject is set aside, models that use few subjects are
prone to overfitting.

Another similar study by Rodriguez-Martin et al. used support
vector machines (SVMs) to detect FoG events from a single waist-
worn sensor at home, to address the lack of FoG events that occur
during clinical visits>™. The study’s subject pool was larger at 21.
Their model also used a leave-one-subject-out approach but did
not perform as well as current standards for detecting FoG. And
while their alternative, patient-specific model outperformed the
standard, it was personalized in such a way that it involved
training on 50% of a patient’s data and testing on the other 50%.
While more nuanced, this personalized model was simply a
modified leave-one-subject-out approach that used data from
20 subjects and half of the sensor data from 1 test subject to train
the algorithm, with the remaining half used to test the model®.
The model was therefore trained and tested on the same (test)
subject’s data.

More recent work also used similar approaches. Studies by
Rastegeri et al.,, Rovini et al, and Chomiak et al. tested several
common machine learning algorithms for sensor-based gait
analysis and diagnosis of PD, including SVMs, random forest,
and naive Bayes'®2°, All three studies used a cross-validation
strategy to train their models (fivefold, tenfold, and Monte Carlo
cross-validation, respectively) and reported high performance
(accuracy >95%). As in the studies by Sama et al. and Rodriguez-
Martin et al., this training paradigm enabled the authors to make
the most use of the small sample data that they had collected—10
healthy controls and 10 PD subjects in ref. ', 30 healthy and 30
PD in ref. 2%, and 9 controls and 21 PD in refs. #7772 Note,
however, that while models trained via cross-validation have lower
bias, they also tend to have high variance, giving unreliable
estimates particularly for classification involving multiple
classes?'?2, Furthermore, notably with leave-one-out, removing
one or more examples corresponding to the minority label as part
of training will encourage the model to predict the majority
class?2. This is of high concern with healthcare datasets as they
tend to be imbalanced; either there are more healthy than sick
subjects or subject recruitment in clinics favors sick subjects since
healthy individuals do not often go to a hospital. The accuracy
values reported in these studies are therefore merely upper
bounds on real-world performance. These inconsistencies moti-
vate the use of a more rigorous training paradigm—one that uses
a training set, an optional development set or a validation set for
tuning hyperparameters, and a separate, independently collected
test set that the classifier has never seen. This more rigorous
paradigm is a better indicator of the generalizability of a trained
model. However, the small size of healthcare datasets and their
class imbalance remain problematic—there is not enough data to
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split into multiple sets for training, validating, and testing of
models.

Despite their shortcomings, the studies demonstrated the ease
with which signals can be acquired using wearable sensors. And
while not ideal, the leave-one subject-out methodology did seem
to demonstrate a connection between the time-series acceler-
ometer signals captured during scripted events like walking and
PD symptoms like bradykinesia or FoG.

The benefit of using SVMs—the machine learning technique
used in the studies in refs. * and '"—is that they have relatively
few parameters to train*'”. Complex deep neural networks have
numerous weight and bias parameters to update and hyperpara-
meters (number of layers, neurons per layer, filters, etc.) to tune.
The challenge with using deep nets for small datasets like the
ones in the previously mentioned studies is that it is easy for
models to overfit?>25, Such models perform well on the data used
to train them but not on unseen out-of-sample test data; they
have poor generalizability. Overfitting is exacerbated by the high
sampling rate of wearable sensors, which greatly increases the
dimensionality = of features—the  so-called “curse  of
dimensionality”?”-8,

Even datasets that are considered “small” for deep-learning
standards like the MNIST handwritten digit database and the
CIFAR image dataset have at least several tens of thousands of
examples each for training and testing®>3°. By comparison, the
Sama et al. study had 12 subjects and Rodriguez-Martin et al.
2147, Unfortunately, in healthcare, it is challenging to acquire
large samples of subjects on the order of thousands of patients or
greater. This is due to difficulties associated with patient
recruitment and with logistics of data acquisition, which can be
involved for both clinicians and patients'~34,

Despite small sample sizes, deep-learning applications in PD
have shown promise. Camps et al. used an 8-layer one-
dimensional (1D) convolutional neural network (CNN) trained on
inertial signals from 21 PD patients to detect FoG events?. They
were able to obtain 90% geometric mean between specificity and
sensitivity, outperforming other state-of-the-art wearable-based
methods that used SVMs by 7-18%23>3¢. To avoid the problem of
oveffitting, Camps et al. used a data augmentation strategy to
stochastically quadruple their training dataset size?. Their strategy
involved shifting and rotating the windowed time-series inertial
signals for a subset of the samples in their dataset; they then
added the transformed subset to the training dataset. Because of
the stochastic nature of this strategy, the modified instances were
different for each training epoch, adding noise to the training
process and preventing their CNN model from overfitting.

In line with the concept of data augmentation, we propose to
use generative adversarial networks (GANs) to create realistically
generated artificial or “fake” samples that can be used with real
samples during training. GANs involve the use of two neural
networks—a generator and a discriminator—that play an
adversarial minimax game. Fundamentally, a discriminator net-
work is trained to output whether a sample is real or fake to
minimize its loss function (like traditional CNNs). Concurrently, a
generator is trained to create fake samples that “fool” the
discriminator and maximize the discriminator's loss®’38, We
incorporate PD symptom assessment (a regression model) into
this adversarial game to use deep learning on a dataset with a
relatively small subject pool while reducing overfitting.

Other studies have shown this to be the case. Odena, A.
experimented with a similar type of GAN as the one we propose to
use here®°. A semi-supervised GAN or “SGAN” was designed to
learn not only a generative model but also a classifier
simultaneously. On MNIST data, Odena, A. was able to show that
the classifier component of the SGAN had better classification
accuracy on restricted datasets than a regular CNN. In fact, even
with as little as 25 training examples, the SGAN outperformed the
CNN*°, The poor performance of the CNN can be attributed to
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greater overfitting on the small training sets compared to the
GAN. Therefore, we believe that GANs will enable us to obtain
better performance on smaller datasets with deep neural
networks. GAN-based data augmentation strategies have also
shown promise in healthcare-focused classification tasks. Syn-
thetic or “fake” examples used in conjunction with real examples
from both small and large training datasets have resulted in
increased test performance, as shown by Frid-Adar et al. for
computed tomography scans of 182 liver lesions, Ratner et al. for a
dataset of 1506 mammograms, and Golany et al. for 109,492
electrocardiograms®°=42,

In this work, inspired by the prior reasoning, we employ
adversarial training to develop a neural network-based regression
model that can predict the postural instability and gait disorder
score (PIGD) of a Parkinson’s disease subject wearing a lumbar
inertial sensor. The proposed models are evaluated on their ability
to predict PIGD score as well as to accurately classify ON/OFF
states from inferred PIGD scores (i.e., predicted PIGD scores should
be greater for the OFF state than for the ON state). We use a
modified loss function that considers ON/OFF states of subjects to
encourage the network to learn meaningful features that are
relevant to Parkinson’s disease state, instead of simply learning
the difference between various subjects. The models were tested
rigorously with a dataset collected independently and at a
different clinic from the one used for training. We show that
adversarial training of a GAN leads to better performance
compared to typical training of a CNN, and that our GAN model
outperforms clinicians when determining ON/OFF state from PIGD
scores.

RESULTS
Description of datasets

We use data collected from PD patients at two different sites: Tufts
University and Spaulding Rehabilitation Hospital. In both sites,
subjects were recorded while they performed the different tasks
required for the UPDRS test under the supervision of a trained
clinician. Each task was scored on a scale from 0 to 4, and then
added to create the total UPDRS score. The PIGD sub-score was
calculated by adding only the scores relevant to posture and gait:
arising from chair, gait, freezing of gait, postural stability, and
posture.

Subjects were outfitted with APDM Opal inertial sensors
strapped around the limbs and torso with stretchable bands®.
The APDM sensors recorded accelerometer, gyroscope, and
magnetometer data at 128 Hz over time, as subjects underwent
the UPDRS test.

We briefly describe the two studies—Study 1 and Study 2—
below. For more details about data acquisition, consult Erb
et al.’344,

1. Study 1—The subjects in this study were recruited at Tufts
University. In all, 35 subjects were recorded over 2 visits, one
visit when they were in the ON state and one when they
were in the OFF state. In each state/visit, they performed the
full battery of UPDRS Part Il tests, and their sensor data and
UPDRS scores were recorded. As per protocol, the UPDRS
Part Ill was timed to take place either immediately prior to a
subject’'s next dose of levodopa or immediately after the
next dose, with self-reported confirmation that the subject
was feeling OFF or ON, respectively. When reporting a state,
subjects assessed the severity of their non-motor and motor
functions to determine whether they felt the re-emergence
of symptoms associated with the wearing off of levodopa.

Motivated by studies that showed the feasibility of remotely

assessing PD symptoms with video conferencing software,
we recruited two clinicians to score the symptoms of Study
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1 subjects from video®. We compared the PIGD scores from
each of these video raters to those of the live rater (the
clinician who conducted the UPDRS Part lll exam in-person)

to calculate two coefficients of determination or R%

2. Study 2—The subjects in this study were recruited at
Spaulding Rehabilitation Hospital. A total of 26 subjects
were recorded, but 3 were omitted due to missing UPDRS
clinician scores. Each of the 23 subjects remaining was
recorded up to five times over 6 h, the approximate duration
of a full ON/OFF cycle. Consequently, subjects could have
been ON, OFF, or somewhere in between—"TRANSITIONING
TO ON” or “TRANSITIONING TO OFF"—in each recording/
visit. Furthermore, not all subjects completed a full cycle. For
example, there were subjects who were recorded only when
they were ON or transitioning into the ON state. Other
subjects had at least one visit out of (up to) five when they
were ON and at least one recording when they were OFF. In
each recording, the subjects underwent the UPDRS Part I
test and their sensor data and UPDRS scores were collected.
The sensor setup used was the same as in Study 1.

There were 70 visits (35 subjects, 2 visits each) for Study 1, each
with a self-reported “ON” or “OFF” state. For Study 2, there were 89
recordings with an “ON,” “OFF”, “TRANSITIONING TO ON”", or
“TRANSITIONING TO OFF” self-reported state, corresponding to
23 subjects with up to 5 visits each. Figure 1 shows the
distribution of PIGD scores for each study, along with a table of
statistics, including mean and skew.

40

Study 1 | Study 2
s | [Total N 70 89
N Mean x 5.37 3.53
30 Median 4 3
Standard Deviation s 3.83 3.17
25 N N —E\3
Skew WZ, (*=2)| o 223

20

: mﬂ[hﬂmcn

0.2 2.4 4.6 6.8 [8.10] [10,12] [12,14] [14,16] [16,18]  [18,20]
PIGD Score

(a)

Count

Fig. 1 Collecting sensor data from Parkinson’s disease patients.
a Distributions of PIGD scores for study visits. Both distributions
favored lower PIGD scores; distribution for Study 1 is skewed less
than for Study 2. b Position of an APDM Opal inertial sensor
attached to the lumbar region using a stretchable belt. The sensor
was placed on the lower back of the subject. Accelerometer,
gyroscope, and magnetometer data were collected as subjects
walked back and forth for 2 min (as part of the UPDRS Part Ill test)
while wearing this sensor.
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We used as features the log spectra of the 3 X, Y, Z acceleration
signals from the lumbar APDM sensor that subjects wore as they
walked back and forth; we considered only straight walks and not
turns. At the end of feature processing (detailed in “Methods”), we
obtained 9583 examples total, 4178 examples from the Study 1
dataset and 5405 examples from the Study 2 dataset. Each subject
had multiple walks or examples per visit. Each example consisted
of 3 spectra (acceleration along the X, Y, Z directions) and was 384
data points long (3's at 128 Hz, the frequency of data capture of
the APDM sensor). The dimensions of the data were therefore
4178 x 3 x 384 for training and 5405 x 3 x 384 for testing. Each
example had an associated PIGD sub-score, which was unique to a
subject as well as a visit.

We used the larger Study 1 dataset to train our pipelines. Each
subject in this dataset had examples from two visits, one visit
when they were in the ON state and one when they were in the
OFF state. We trained the CNN and GAN with data from 25 out of
35 subjects recorded at Tufts University; 10 subjects were
randomly selected for a development set, and their walks left
out to be used as a check for convergence. We tested the
pipelines using the Study 2 dataset.

Data collection for Study 1 was carried out at the Clinical and
Translational Research Center at Tufts Medical Center and all study
procedures were approved by the Tufts Health Sciences Campus
Institutional Review Board. Study 2 was carried out at Spaulding
Rehabilitation Hospital and all procedures were approved by the
local Institutional Review Board. Written informed consent was
obtained from all participants and all relevant ethical regulations
were complied with.

Training considerations for deep-learning models

We used the larger subject pool recorded at Tufts University to
train our deep-learning pipelines, and the Study 2 dataset to test
them. While both dataset distributions were concentrated around
lower PIGD scores rather than higher scores, Study 1 dataset had
more evenly distributed scores. Study 2 dataset had few subject
recordings with PIGD scores in the middle; a disproportionate
majority of visits had low score labels (below 4) with only a few
visits with higher scores (greater than 10). Moreover, skewness
was smaller for Study 1 than for Study 2, indicating that the
distribution of Study 1 was less asymmetric (Fig. 1). This in
particular was important for generalization. A pipeline trained with
the more skewed distribution of Study 2 scores would not have
performed well when tested with examples not well represented
by that dataset, namely walks for subjects with high scores
(Supplementary Table 2 confirms the poorer overall performance
of models trained on the skewed Study 2 dataset and tested on
Study 1).

The networks were trained to take 3-s walks as input and to
output a PIGD score. Parameters were updated using the Adam
optimization algorithm, an extension to stochastic gradient
descent; Adam is a standard for minimizing a parametrized

(nonconvex) objective function or “loss” in a computationally
effective way*®. The technique was also used by Salimans et al. in
“Improved Techniques for Training GANs”*’. In this paper,
Salimans et al. outlined several methods to encourage loss
convergence in the minimax game played by the GAN, an
otherwise challenging model to train®’. One such technique was
the historical averaging learning rule, which involved keeping a
running average of the parameters of the last few models during
training. Any updates that yielded parameters significantly
different from this historical average were discouraged (with an
L2 cost added to the objective function) to improve convergence.
Our implementation of this learning rule was the same as the one
in ref. 47 While not required, we used historical averaging during
the training of the CNN primarily because we used it when
training the GAN discriminator. This was done to compare the
performance of the two techniques more directly and to better
understand the effects of adversarial training. Our deep-learning
pipelines were developed using Lasagne and Theano, Python
libraries to build and train neural networks and to work with
mathematical expressions involving large multi-dimensional
arrays*84°,

CNN model and training

CNN performance was the baseline against which we compared
the GAN’s performance. To minimize overfitting, the CNN
architecture was not deep—two 1D convolutional layers followed
by two fully connected layers, with the last fully connected layer
also serving as the output of the pipeline. Hyperparameters like
batch size and learning rate were empirically determined based
on what values yielded the fastest convergence of training losses
and the best-performance metrics.

We trained with mini-batches containing 400 examples from
two visits in Study 1. In the 1D convolutional layers, 32 filters of
size 3 operated along the last dimension of the input with stride 1
and padding 1. The 400 x 3 x 384 output of the second convolu-
tional layer was passed to a fully connected layer with 512 units. In
order to minimize overfitting, we applied dropout regularization
with the probability of 0.5 for all three hidden layers®°. The last
fully connected layer had 2 units for output. Figure 2 summarizes
the CNN architecture.

The convolutional layer weights were initialized as an orthogo-
nal matrix*®, For the two fully connected layers, we used a He
initializer with weights sampled from the uniform distribution®'.
All layers except the last output layer used the rectified linear unit
(ReLU) activation function. We applied weight normalization to the
hidden layers (instead of batch normalization in order to avoid
adding noise to an already noise-sensitive regression model)>2.
Biases were initialized as 0’s and the norms of the parametrized
weights, g, as 1's.

We used the Study 1 dataset to train the pipeline. Each subject
in this dataset had examples from two visits, one visit when they
were in the ON state and one when they were in the OFF state.

Input Output of Output of Output of Fully- Final
Data 1st Convolution 2nd Convolution  Connected Layer Output
S
& i
o+
(<
'b@/
[ — —_— — 400
Sa:r?;?les ‘% » 400Xx3X384 DNGM 400 X 3 X384 512 L [ ]
/&,e RN ‘ ‘
(U ( ) ey PIGD ReallFake
90, Score
384 K g
(128 Hz x 3 Seconds) s .y(”b 400
e

7

Fig.2 CNN and GAN discriminator architecture. When training the CNN, we disregarded the “Real/Fake” output. Dropout with a probability
0.5 was applied to the output of 2 convolutional and 1 fully connected layer.
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We trained the CNN (and GAN) with data from 25 out of
35 subjects recorded at Tufts University; 10 subjects were
randomly selected for a development set and their walks left
out to be used as a check for convergence.

In each training step, we randomly selected 200 examples out
of 4178. A walk from one of the 25 subjects corresponded to one
of the two visits for that subject. If the example came from the first
visit, we randomly selected a walk from the second visit for the
same subject, and vice versa. Subjects may have appeared
multiple times in a mini-batch, but every example from one visit
was paired with an example from the opposite visit. We, therefore,
obtained mini-batches of size 2 x 200 = 400 = N.

The goal was to learn to differentiate between not only
subjects but also the two visits of a subject. Note that the
difference in score between subjects was often larger than the
difference in scores between the two visits of the same subject.
We, therefore, included the mean squared error (MSE) of the
difference between two visits in the standard mean squared loss
objective function:

=

1

loss_train = a * —
N<

N
O =57 + B2 D (0 =) = Gr =55 (1)
1 i=1

loss_train = a « MSE(y;, yi) + B * MSE(yi, — Yi,,¥i, — ¥ir) (2)

where y; is the predicted PIGD score of a subject’s walk, provided
by one of the two units in the output layer, and y is the ground
truth PIGD score of the example. The first summation term is the
MSE between predicted values and ground truth values, weighted
by hyperparameter a.

In the second summation term, we first calculated the
difference between the predicted PIGD score for a walk
corresponding to a subject’s first visit y;,, and the predicted PIGD
score for a walk from the subject’s second visit y;,. We then
calculated this same difference but between the ground truth
PIGD values, y;, — y,,. Lastly, we calculated the mean squared error
between these two terms, weighted by hyperparameter . We
calculated the second MSE in this way because we wanted to
encourage the CNN (and GAN) to learn to make predictions such
that the regressed PIGD score of one visit had the same inequality
relationship with respect to that of the other visit. That is, if a
subject was OFF during their first visit and ON during their second,
their PIGD score for the first visit should be higher than that of
their second. The predictions made for this example should
therefore reflect the same inequality relationship.

In addition to a and 3, other hyperparameters relevant for CNN
training included the learning rate and the number of epochs over
which we trained. We set a and 8 to 1.0 to prioritize differentiating
subjects and differentiating visits for a given subject equally
during training. The learning rate was fixed at 0.01.

The ten development set subjects recorded at Tufts University
that were not used to train the pipeline were used to compute an
error at the end of every epoch. We picked these 10 subjects out
of the 35 randomly once before training; the 10 subjects remained
fixed during training so that we could calculate a loss per epoch
and compare it between different epochs. At the end of each
epoch, we computed a MSE loss between the predicted and
ground truth labels of these ten subjects. We used this
development MSE loss as a way of determining the number of
epochs over which to train. We trained until this loss converged to
a steady-state value (that remained the same for at least 20
epochs). Randomly selecting a different set of ten subjects at the
end of every epoch would have made it difficult to reliably
compare loss between epochs; it would have been challenging to
gauge whether the model was being properly trained if changes
in loss could have been due to the subjects randomly chosen for a
given epoch.
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Supplementary Fig. 1A shows loss_train (with a=f=1.0)
plotted over 100 training epochs. We similarly plotted the MSE
loss curve computed using 10 Study 1 subjects at the end of every
epoch. The fact that both curves converged to some steady-state

minimum value confirmed that 100 epochs was enough to
complete training,

GAN model and training

The architecture of the GAN consisted of two neural networks: the
generator and the discriminator. The discriminator had the same
architecture as the CNN described earlier. This allowed us to
directly compare the performance of the CNN and GAN
discriminator and to isolate and understand the effects of training
with and without data augmentation via a generator network.
Henceforth, “GAN discriminator” refers to a shallow neural
network trained with an adversarial generator to predict PIGD
score and identify real walks from fake ones. “CNN” is the same
shallow neural network but trained without a generator that
predicts PIGD score alone.

The generator neural network accepted input noise with
dimensions 400 x 100, sampled from the uniform distribution
between 0 and 1 as in the study in ref. ¥. The generator
architecture consisted of 3 fully connected layers. The first 2 layers
had 512 units, used the RelLU activation function and weight
normalization®2. The last layer served as the output layer and
consisted of 1152 units with no nonlinearity and L2 regularization.
Weights were initialized using the He initializer with the uniform
distribution, biases were initialized as 0’s, and the weight norms
(g) as 1’s®". Figure 3 summarizes the GAN generator architecture.

In the case of the previous CNN model (trained without an
adversarial network) we used only one of two output units in the
network; this unit provided the predicted PIGD score. However,
when training the GAN, we made use of the second output unit to
distinguish real walk examples from fake ones created by the
generator. The generator itself was trained to “fool” the
discriminator. The training paradigm is detailed below and
summarized in Fig. 4.

The discriminator was trained to minimize the following loss,
designed to accommodate both PIGD score regression and real/
fake example identification:
loss_di ' s 2
oss_disc = y  loss_train + & * NZ (D) =1)* + 1,

.IN
i=1 =

(D(G(Zi)))2>
3)

The function loss_train was previously defined for training the
CNN, except now weighted by the hyperparameter y. D(-) is the
sigmoid output of the discriminator, and identifies whether a sample
is real, 1, or fake, 0. Thus, D(G(z)) is the discriminator output when a

1

Generated or “Fake”

Input Noise
P Examples
100 — 512 — 512 — 1152 — — 400 X 3 X 384
Reshape
o
400 _ _
Samples [ [}
400 400

400
Fig. 3 GAN generator architecture. Input noise sampled from the
uniform distribution was fed into 3 fully connected layers, and the
output of the last was reshaped to the dimensions of the input
accepted by the discriminator.
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Fig. 4 GAN training paradigm. The discriminator predicted a PIGD score as well as a real/fake label for every walk example input. The
generator provided fake walk examples. These outputs were used to compute loss terms for training the discriminator and generator.

(loss_train was also used to train the CNN). See Egs. (2-4).

fake walk example G(z) is passed in as input. Fake examples were
created from noise z by the generator G(-). D(x;) is the output
when a real walk example, x; is passed in as input. (i ranges from 0
to the batch size). The discriminator was essentially trained to push
the value of D(x;) to 1 and D(G(z)) to 0.

The generator was trained to minimize the following loss,
designed to “fool” the discriminator by pushing D(G(z)) to 1:

N

loss_gen = %Z (D(G(z)) —1)* 4

i=1

The interplay between training the discriminator and generator
is outlined in Fig. 4. The training protocol was the same as that of
the CNN, with a learning rate fixed at 0.01 and data from ten
subjects used as a test for convergence.

Parameters y and 6 allowed us to control the game between the
discriminator and generator. For example, a GAN discriminator
trained with y > 6 would behave similarly to the original CNN; the
loss term weighted by y and using unlabeled, fake examples from
the generator would not be weighted as highly as loss_train,
which used real examples. In the opposite scenario, with § >y, the
generator would have a greater than equal influence on the
training of the discriminator. In our testing, we used the following
combinations of (y,§): (1.0, 1.0), (0.1, 0.5), (1.0, 0.5), (0.5, 1.0), and
(0.1, 1.0).

Supplementary Fig. 1B plots loss_disc, loss_gen, and the MSE
loss curve from ten Study 1 development set subjects over epochs
(with a = 8=y = 6 = 1.0). All curves converged to some steady-
state minimum value in 100 epochs. Convergence occurred for all
combinations of y and & as well.

Testing models and analyzing their output
We evaluated the CNN and GAN discriminator on their ability to
determine ON or OFF state from predicted scores—“ON/OFF
accuracy.” For a given subject, the OFF state should have a higher
PIGD score than the ON state. The same should hold true for the
scores provided by clinicians. After training, we tested the models
using the Study 1 development set as well as the Study 2 dataset.
Supplementary Table 1 shows ON/OFF accuracy, R% and the
values of the mean squared terms in loss_train for the CNN and
GAN discriminator for different hyperparameter combinations (we
also tested the robustness of the trained models by conducting a
parameter sensitivity analysis involving the random perturbation
of weights. See Supplementary Fig. 2 and Supplementary Table 3).
Note that each subject had multiple 3-s walks during a
recording/visit extracted from the UPDRS gait test. We averaged
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the predicted PIGD scores of all walk examples for a given visit. We
therefore obtained two predicted scores per Study 1 subject, one
for each of their visits. For Study 2, we obtained up to 5 predicted
scores per subject.

Study 2 subjects could have been ON, OFF, transitioning into
the ON state, or transitioning into the OFF state in each of their
visits. These labels were self-reported, and it was not a
requirement that each subject had visits satisfying all four criteria.
Therefore, to simplify our approach, we considered only when
subjects were either ON or OFF. We averaged predicted PIGD
scores for visits when the subject was ON, poy. We similarly
averaged the predicted scores for visits when the subject was OFF,
Horr- Out of 23 subjects, 9 had at least 1 visit when they were ON
and at least 1 visit when they were OFF. Of these 9, we counted
the number of times por >pon- That is, to calculate ON/OFF
accuracy, we counted the number of correct ON/OFF determina-
tions made by the CNN or GAN discriminator and divided by total
number of examples. We also considered the clinician PIGD scores
0, and assessed whether [ige > [igy. Lastly, as for the Study 1
development set, we computed R? with 18 predicted (9 oy and
9 Uorr) and 18 ground truth (9 fipy and 9 [igy) PIGD scores.

Study 1 subjects reported themselves as either ON or OFF in
each visit. For the ten development set subjects, we compared the
predicted PIGD score for the OFF state with the predicted PIGD
score for the ON state; we counted the number of times out of ten
that the former was greater than the latter. We repeated this
analysis with scores provided by the clinician rater. We gauged
clinician performance via both the PIGD sub-score and the overall
UPDRS score. In addition to ON/OFF accuracy, we report the
coefficient of determination R? calculated using 20 predicted
PIGD scores from the CNN or GAN discriminator and 20 ground
truth PIGD scores from the in-person clinician rater.

We trained the CNN model in Fig. 2 for 100 epochs on
25 subjects from the Study 1 dataset. We used the ten remaining
subjects from Study 1 and nine subjects from Study 2 to test
whether predicted PIGD scores could be used to correctly
determine ON/OFF states given that scores should be greater
for the OFF state than the ON state.

The best performing CNN (with hyperparameters a = 1.0 and
B=0) correctly regressed a PIGD score that was greater for the
OFF state than for the ON state in ten occurrences out of ten,
yielding an ON/OFF accuracy of 100%, as reported in Table 1. For
comparison, the in-person clinician rater had 100% ON/OFF
accuracy for the Study 1 development set (Table 1). The CNN’s ON/
OFF accuracy for Study 2 subjects was 78%, matching the in-
person clinician rater’s accuracy of 78%.
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Table 1. Performance of CNN, GAN discriminator, and human raters.

Model or human rater Subjects N ON/OFF accuracy R?
Best CNN Study 1 Dev Set 10 100% 0.56
Best CNN Study 2 Test Set 9 78% 0.61
Best GAN Study 1 Dev Set 10 100% 0.61
Best GAN Study 2 Test Set 9 100% 0.55
In-Person Clinician Rater (Ground Truth) Study 1 Dev Set 10 100% N/A
In-Person Clinician Rater (Ground Truth) Study 2 Test Set 9 78% N/A
In-Person Clinician Rater (Ground Truth) Partial Study 1 25 64% N/A
Video Rater 1 Partial Study 1 25 68% 0.45
Video Rater 2 Partial Study 1 25 48% 0.37
Video Rater Average Partial Study 1 25 58% 0.41

oOVideo Rater 1

8% ] .
55,8 5% oVideo Rater 2
tsSs o mAverage Video Rater
.%o u Clinician Rater
oBest GAN
~ G DBest CNN
>0
E z
-
w8 : —
>
EE 100%
ﬁ 8 100

I 100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
ON/OFF Accuracy

Fig. 5 ON/OFF accuracy of deep-learning models and human
raters. Only the ON/OFF accuracies for the hyperparameter
combinations that yielded the best CNN and GAN discriminator
performance are plotted. Models were tested with ten Study 1
development set subjects and nine Study 2 subjects. The ON/OFF
accuracies of the in-person clinician rater are also plotted, alongside
the performance of two human raters who assessed 25 Study 1
patients over video.

We trained a GAN discriminator with the same architecture as
the CNN (Fig. 2) alongside the GAN generator in Fig. 3 for 100
epochs on the Study 1 dataset. (A generated sample is shown in
Supplementary Fig. 3). Table 1 shows that at best, the GAN
discriminator had 100% ON/OFF accuracy on both the Study 1
development set (with a = =56 = 1.0,y = 0.5) and the Study 2
dataset (with a =8 =056 =y = 1.0). The GAN discriminator out-
performed the in-person clinician rater for the Study 2 dataset.

In addition to ON/OFF accuracy, we compared predicted scores
from the CNN and GAN discriminator to the scores from the in-
person rater to calculate the coefficient of determination R2. The
R? values for the CNN and GAN discriminator were similar. For
Study 2, for example, CNN R? was 0.61, and GAN discriminator R?
was 0.55 (Table 1).

Furthermore, we obtained PIGD scores from two video raters for
part of the Study 1 dataset, 25 out of 35 subjects. (These
25 subjects were different from the 25 subjects used to train the
models.) We calculated the R? values by comparing PIGD scores
from each video rater to those of the live clinician and then
inferred the accuracy scores as previously described. The
performance of the video raters, when considering the PIGD
portion of UPDRS, was lower than CNN and GAN models, both in
terms of R? and ON/OFF accuracy (Table 1 and Fig. 5).

DISCUSSION

In this paper, we set out to show that we could teach neural
networks to predict the PIGD score of a subject with Parkinson’s
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disease from a single lumbar accelerometer. We used two
independent datasets of subjects performing a simple walk test
to train, test and validate our approach. Both CNN and GAN
models showed performance on par with the in-person clinician
rater and outperformed two video raters.

We tested the ability of adversarial training to improve out-of-
sample performance of a shallow neural network on the premise
that generating synthetic samples from noise can successfully
augment real clinical datasets. Our models were evaluated along
two dimensions by comparing them to the clinician’s PIGD score
and self-reported ON/OFF states. The premise behind inferring
ON/OFF accuracy was that PIGD scores that were output from
both CNN and GAN models should have been larger for visits
when the subject was in the OFF state than visits when the subject
was in the ON state. Self-reported ON/OFF labels were used as
ground truth because: (1) it has been shown that patients’
perception of their motor functions successfully model PD severity
on par with the clinically objective UPDRS exam and (2) self-
reported states are often used as a clinical endpoint in PD clinical
trials'?.

GAN discriminator’s ability to predict ON/OFF state was slightly
greater than that of the CNN model, at best performing 22%
better on the Study 2 subjects. Both models were trained on the
same data and the CNN and GAN discriminator had almost
identical architectures (Fig. 2). Hence the results suggest that the
performance difference was due to the influence of the adversarial
generator during discriminator training. Furthermore, the GAN
discriminator performed better on out-of-sample Study 2 subjects
when the generator had greater than equal influence on
discriminator training, i.e, when the second term in loss_disc
computed using generated examples was weighted more than
the first term (when & >y, see Supplementary Table 1). We thus
hypothesize that generative adversarial training helps counter the
curse of dimensionality problem when applying deep-learning
techniques on small datasets prevalent in healthcare applications.

When tested on the Study 2 dataset, the best GAN discriminator
outperformed a clinician rater when considering their PIGD scores,
making no mistakes (Fig. 5). We note though that the clinician
rater was ultimately still better when considering the full UPDRS
score—88% ON/OFF accuracy instead of the 78% calculated from
the PIGD sub-score. However, the clinician had the advantage of
assessing symptoms that were not captured by the walk test, such
as limb rigidity. We chose to focus on just the walk test because
we were interested in developing models that could potentially be
taken outside the clinic to automatically monitor patients in-the-
wild. Clinical visits are an episodic and discontinuous way to
monitor the longitudinal progression of Parkinson’s disease while
patient self-report is subjective and adds an additional burden on
the patient. We hypothesize that continuous monitoring could be
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achieved in the future by focusing on UPDRS tasks that are more
naturally performed by people in their daily lives, and walking is a
prime example of that.

Although ON/OFF accuracies are high, it is interesting to note
that the coefficients of determination hover in the 0.50-0.60
range. In other words, the models perform better when
comparing them to patient self-reports than when comparing
them to the clinician rater. This observation is relatively consistent
over multiple hyperparameter choices (eg., 6, y, a, B, see
Supplementary Table 1) so it is unlikely to be a training artifact.
A more likely explanation is that there is low inter-rater reliability
between clinicians that score UPDRS Part lll tasks>>. The two video
raters in this study also show considerable variation in perfor-
mance when compared to the in-person rater and to each other
(Table 1 and Fig. 5).

A drawback of this study is that the models described here were
trained on walk sensor data collected in a clinic under a data
collection protocol (subjects walked back and forth for 2 min).
Walks that occur at home are shorter in both duration and
distance, and in-the-wild walks are likely diverse and erratic. The
current models may not generalize as well to walks collected
outside of a clinic. Further studies should be conducted to collect
at-home sensor data. In addition, mode collapse, a growing
concern with GANs, was unaddressed in this work but needs to be
quantified before deployment®*. Note, however, that the empirical
improvements provided by adversarial training would not have
been as large if the generator were producing only a limited range
of diverse samples.

We conclude that the training method presented in this work is
a promising technique to approach sensor data collected from a
relatively small subject pool and the resulting model has the
potential to assess postural instability and gait disorder in a way
that enables ON/OFF prediction. Going forward, the challenge is to
be able to translate this work from the clinic to the home
environment. We envision a system that can be used to reliably
assess symptoms and track ON/OFF cycles continuously. Doing so
will better inform clinicians on the state of the patients and aid in
their rehabilitation, ultimately improving their quality-of-life.

METHODS
Feature processing

As part of the UPDRS Part Ill, subjects walked for 2 min along a straight line,
turned around, returned to the examiner, and repeated this process (Fig.
1). They were outfitted with several sensors, including a lumbar inertial
measurement unit (IMU) worn about the torso (Fig. 1). In this work, we
considered only this sensor because:

1. It is close to the center of mass of the human body. The trunk is
therefore the best sensor location for assessing standing balance,
walking stability, and posture identification®>~>°.

2. Wearing a lumbar sensor around the torso towards the front (above
the anterior superior iliac spine) has been shown to be more
comfortable for subjects®.

The lumbar IMU included an accelerometer to measure acceleration in
the X, Y, Z directions and a gyroscope to measure rotation speed around
the X, Y, Z axes. We therefore obtained six time series as the subjects
walked and turned. By using the gyroscope values, we detected and cut
out turn events; turns were defined as time periods when the rotation
about the X axis was larger than 120°. We were therefore left with only
snippets of straight walking events. Since subjects walked back and forth,
each walk was an example and each subject had several walks or examples
per clinic visit. To simplify our approach, we considered only the three
acceleration signals.

Some subjects walked faster than others, so we truncated the three IMU
acceleration signals at 3 s. Doing so ensured that we maintained the same
data dimensions across all subjects. We found that a greater cutoff reduced
the number of examples overall, since subjects generally completed a
single straight walk in around 3s. On the other hand, a smaller cutoff
resulted in shorter examples with less information, ultimately giving poorer
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model performance. A 3s cutoff gave us a good number of examples
without encouraging overfitting or sacrificing performance.

The time-series IMU signals were filtered using a high-pass Butterworth
filter (0.25 cutoff) to remove drift and gravity effects. Lastly, we converted
the time series to log spectra using a Fourier transform. It was natural to
look at the Fourier decomposition of the time-series signals because
walking is a periodic activity; this periodicity was reflected in the log
spectra®'%? (examples of the log spectra obtained at the end of this feature
processing step are shown in Supplementary Fig. 3).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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