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Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population 
globally. Obesity and diabetes are the main causes of the disease characterized by excessive accumulation of lipids in the liver. 
There is currently no direct pharmacological treatments for NAFLD. Dietary intervention and lifestyle modification are the 
key strategies in the prevention and treatment of the disease. Soy consumption is associated with many health benefits such 
as decreased incidence of coronary heart disease, type-2 diabetes, atherosclerosis and obesity. The hypolipidemic functions 
of soy components have been shown in both animal studies and human clinical trials. Dietary soy proteins and associated 
isoflavones suppressed the formation and accumulation of lipid droplets in the liver and improved NAFLD-associated meta-
bolic syndrome. The molecular mechanism(s) underlying the effects of soy components are mainly through modulation of 
transcription factors, sterol regulatory element-binding protein-1 and peroxisome proliferator-activated receptor-γ2, and 
expressions of their target genes involved in lipogenesis and lipolysis as well as lipid droplet-promoting protein, fat-specific 
protein-27. Inclusion of appropriate amounts of soy protein and isoflavones in the diets might be a useful approach to decrease 
the prevalence of NAFLD and mitigate disease burden.
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Abbreviations
ALT	� Alanine aminotransferase
AST	� Aspartate aminotransferase
ATF4	� Activating transcription factor 4
BMI	� Body mass index
ER	� Estrogen receptor
ERBB3	� Erb-B2 receptor tyrosine kinase 3
FAS	� Fatty acid synthase
FGF21	� Fibroblast growth factor 21
FSP27	� Fat-specific protein 27
hs-CRP	� High-sensitivity C-reactive protein
IAA	� Indispensable amino acid
LDL	� Low density lipoprotein

MDA	� malondialdehyde
MKNK1	� MAPK interacting serine/threonine kinase 1
NAFLD	� Non-alcoholic fatty liver disease
NASH	� Non-alcoholic steatohepatitis
NRG1	� Neuregulin 1
PPARγ2	� Peroxisome proliferator-activated receptor γ2
SD	� Sprague-Dawley
SPI	� Soy protein isolate
SREBP-1	� Sterol regulatory element-binding protein-1

Introduction

Soy foods have been consumed for centuries in Asian coun-
tries. Soy protein is one of the major sources of plant-based 
protein for human consumption. In addition to its nutritional 
roles as a rich source of indispensable amino acids, soy pro-
tein and its associated isoflavones have been extensively 
studied for their functional properties in various aspects.

Epidemiological investigations have shown that consump-
tion of soy foods is associated with various health benefits 
such as lower incidences of coronary heart disease and associ-
ated mortality [1], obesity, type-2 diabetes, and atherosclerosis 
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[2–4]. Soy protein and isoflavones have been shown to play 
major roles in modulation of lipid and glucose metabolism in 
human clinical trials [5, 6], animal studies [7, 8] and cultured 
cells [9]. Inclusion of soy protein or soy isoflavones in the 
diet improved hepatic and blood lipid profiles by reducing 
triglycerides, total and low density lipoprotein (LDL) choles-
terol levels and increasing the ratio of high density lipopro-
tein (HDL)/LDL cholesterol in both human [6,10] and animal 
studies [2,11,12]. As a result of these benefits, health claims 
associated with hypocholesterolemic effects of soy protein 
have been approved in a dozen countries [13].

Increasing evidence has shown that soy intake had benefi-
cial effects in patients with non-alcoholic fatty liver disease 
(NAFLD) [14–18], and reduced the formation and accumu-
lation of hepatic lipid droplets and ameliorated liver steatosis 
in animal models of NAFLD [19–22]. Dietary soy improved 
glucose and lipid metabolism via modulation of insulin 
secretion and sensitivity in diabetic animal models with 
NAFLD [7, 8, 23]. NAFLD prevalence is rapidly increas-
ing worldwide, especially in developed countries. Direct 
pharmacological treatments for NAFLD are not available. 
Dietary intervention and lifestyle changes are the major 
strategies for prevention and treatment of NAFLD. This 
review focuses on the effects of soy proteins and associated 
isoflavones on the metabolic syndrome of NAFLD in both 
human and animal studies and current understanding of the 
molecular event(s) involved in the hypolipidemic actions and 
NAFLD prevention of soy components.

NAFLD

NAFLD is the most common chronic liver disease [24]. 
The typical features of NAFLD are accumulation of high 
levels of lipids in hepatocytes, usually greater than 5% of 
liver weight [25], and formation of excessive hepatic lipid 
droplets [26]. With the progression of NAFLD, histological 

changes in the liver can range from hepatic steatosis to stea-
tohepatitis, fibrosis, cirrhosis and even hepatocellular car-
cinoma. Obesity and diabetes are the main causes of the 
diseases. NAFLD is associated with metabolic syndrome 
and changes in biomarkers such as increased insulin resist-
ance, hypertension, hyperlipidemia, elevated oxidative stress 
and increased plasma fibrinogen, alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) levels [16].

The global prevalence of NAFLD is approximately 25% 
[24,27], and affecting about one-third of the population in 
Western countries [28]. Around 80% of the obese population 
and 50% of individuals with diabetes have fatty livers [29]. 
It is predicted that the incidences of NAFLD, non-alcoholic 
steatohepatitis (NASH), decompensated cirrhosis, hepato-
cellular carcinoma and liver deaths in different countries 
or regions will rise by up to 48, 96, 273, 199 and 295%, 
respectively, by 2030 (Table 1) [30–35]. Thus, strategies 
to slow the increase in NAFLD prevalence and therapeutic 
options are urgently needed to mitigate disease burden [30]. 
Increasing evidence suggests that dietary intervention and 
lifestyle changes might play a role in preventing and manag-
ing NAFLD [36, 37].

Major Nutrient Composition of Soybean

Soybean (Glycine max) is one of major dietary sources of 
plant-based protein and soy protein contains all essential 
amino acids required by human body, which makes soy 
products almost equivalent to the foods of animal sources 
in protein quality [38]. For example, the protein digestibility-
corrected amino acid scores, a measurement of protein qual-
ity, for soy, beef, cow’s milk, and egg are 1, 0.92, 1, and 1, 
respectively [39–41].

Dry soybean contains 40% protein, 22% fat, 33% carbo-
hydrate including 10.2% dietary fiber, 5% minerals and vita-
mins [42]. Soy protein is mainly comprised of two storage 

Table 1   Projected burden of 
non-alcoholic fatty liver disease 
(NAFLD) and non-alcoholic 
steatohepatictis (NASH) by 
the year of 2030 in different 
countries and regions based on 
modelling studies

*D. cirrhosis, Decompensated cirrhosis; HCC, hepatocellualr carcinoma

NAFLD Percentage increase by the year of 2030 (%)

Country or region Year Overall 
rate (%)

NAFLD NASH D. cirrhosis* HCC* Liver death References

Australia 2019 22 25 40 85 75 90 [32]
Canada 2019 21 20 35 97 80 107 [33]
Hong Kong 2019 22 11 20 66 67 74 [34]
Saudi Arabia 2017 26 48 96 273 199 295 [31]
Singapore 2019 26 20 36 108 78 113 [34]
South Korea 2019 21 6 21 87 79 92 [34]
Switzerland 2018 24 18 35 52 46 41 [35]
Taiwan 2019 22 8 24 108 84 106 [34]
United Arab Emirates 2017 25 46 87 241 178 27 [31]
United States 2015 34 21 63 168 137 178 [30]
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globulins, 7S β-conglycinin and 11S glycinin [43] (Table 2). 
β-conglycinin has α’, α, and β subunits, and accounting for 
~25% of the total protein, while glycinin has acidic (A) and 
basic (B) polypeptides to form 5 subunits, A1aB2, A2B1a, 
A3B4, A1bB1b and A5A4B3, and accounting for ~40% of 
the total protein. The other minor proteins include 2S, 9S, 
and 15S storage proteins, lectin, Kunitz and Bowman-Birk 
protease inhibitors, β-amylases, lipoxygenases, and urease 
[43]. Depending on processing, the protein content in soy 
foods/products can reach over 90% as in the soy protein iso-
late (SPI) that is usually used in soy-based infant formulas.

Isoflavones are one of the most studied bioactive com-
pounds in soybeans, and are closely associated with proteins. 
Soy foods and soy-based infant formulas are rich sources 
of isoflavones, and contain about 3–5.1 mg/g protein [44]. 
Isoflavones are the major soy phytoestrogens, including gen-
istin, daidzin and glycitein. Both genistin and daidzin are 
conjugated to sugars and present as glycosides in soybeans 
and most of the soy foods in Western diets. Glycoside isofla-
vones cannot be absorbed in the body unless hydrolyzed and 
converted to aglycones, genistein and daidzein by intestinal 
microflora or in vitro fermentation [45]. In addition, Daidzin 
or daidzein can be metabolized to equol by certain strains of 
intestinal microflora in the gastrointestinal tract. However, 
only 30–50% of the adult population can produce and excrete 
equol in the urine after daily ingestion of soy foods [46].

Effects of Soy Intake on NAFLD

The hypolipidemic properties of soy components have been 
shown in human and animal studies as well as in cultured 
cells [3, 19, 47, 48], and are critical in reducing the risk 
for certain chronic diseases. The potential impact of soy 
intake on metabolic syndrome and biomarkers of NAFLD 

have been investigated in both human and different animal 
models of NAFLD. The results suggest that soy protein and 
associated isoflavones might be promising dietary supple-
ments for prevention or treatment of NAFLD.

Human Clinical Trials

Inclusion of soy protein in diets may improve metabolic syn-
drome and risk factors associated with NAFLD. Consump-
tion of 30 g soy nuts that contain 11.3 g protein and 102 mg 
total isoflavones in replacement of the same amount of red 
meat for eight weeks significantly lowered blood markers for 
NAFLD including ALT and AST, malondialdehyde (MDA) 
and fibrinogen levels compared to other non-soy groups 
in patients with NAFLD (n = 45) [18]. Moreover, the fast-
ing blood sugar, serum insulin, high-sensitivity C-reactive 
protein (hs-CRP) levels, and systolic and diastolic blood 
pressure in the soy group were lower than in the non-soy 
groups [17]. The study was conducted in the patients with 
NAFLD and no other specific disorders, which should have 
good external validity. All patients completed the study and 
detailed data of their dietary intake was collected. The weak-
nesses of this parallel clinical trial include that the adherence 
of the patients to the designed diets could only be assessed 
through patients’ self-reported food records instead of meas-
uring plasma or urine isoflavone levels [18]. In another par-
allel randomized clinical trial, daily drinking of 240 mL soy 
milk as a part of low-calorie diet for eight weeks signifi-
cantly reduced serum ALT, hs-CRP [14], and insulin, and 
improved insulin resistance, and systolic and diastolic blood 
pressure in the NAFLD patients (n = 70) [16]. However, no 
changes were observed in fatty liver grade and other liver 
enzymes including AST, alkaline phosphatase, γ-glutamyl 
transferase, as well as lipid profile and anthropometric 

Table 2   Nutrient content of dry 
soybean seeds (per 100 g dry 
weight)

References [42–44]

Nutrients Content

Protein (g) 40
  β-conglycinin (7S) (α’, α, β subunits)
  Glycinin (11S) [Acidic (A), Basic (B) polypeptides]
  Other minor proteins
   2S, 9S, 15S storage proteins
   Lectin, β-amylases, lipoxygenases, urease
   Kunitz and Bowman-Birk protease inhibitors

Fat (g) 22
Carbohydrate (g) 33

   Dietary fiber 10.2
   Sugars 8

Minerals and vitamins (g) 5
Isoflavones (mg/g protein) 3–5.1

  Genistin:Daidzin:Glycitein ≈ 1:1:0.1
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indices. The limitations of this study include that the types 
of dietary interventions were not blinding, and that the inter-
pretations of ultrasound imaging for evaluation of liver stea-
tosis were subjective, and that serum or urine isoflavones 
could not be determined as markers for the adherence to 
the intervention, and the study duration was relatively short 
[14].

The patients with NASH (n = 22, 9 women and 13 men) 
taking meal replacements containing 44% soy protein and 
9% milk protein for 24 weeks had significant reduction in 
body weight, body mass index (BMI), body and liver fat 
content, serum ALT and AST, and improved glycemic con-
trol and lipid profile. The decrease in ALT was strongly 
correlated with the reduction in abdominal fat, subcutane-
ous fat, internal fat and AST. One of the weaknesses of the 
study was the use of 1H-magnetic resonance imaging analy-
sis method in the quantification of hepatic steatosis that was 
not able to assess inflammation or fibrosis. Additionally, the 
specific effect of soy on the composition of liver fat could 
not be differentiated from the impact of caloric restriction. 
Small sample size limited further analysis of the participant 
subgroups (i.e., sex and age groups) [15]. In a randomized 
double-blind controlled trial, patients with NAFLD received 
either a daily supplement of 250 mg genistein (n = 41) or 
placebo (n = 41) for 8 weeks. The genistein group had sig-
nificantly lower levels of serum insulin, MDA, TNF-α, IL-6, 
and improved insulin resistance, as well as reduced waist to 
hip ratio, body fat percentage and triglyceride compared to 
the placebo. However, BMI, fasting blood glucose, ALT and 
AST were not different between the two groups [49].

Akahane et al. [50] recently reported that progression of 
NAFLD and NASH was strongly associated with the pro-
duction of equol. A clinical study conducted in 38 NAFLD 
patients (13 men and 25 women) showed that the degree of 
hepatic fibrosis and ballooning was markedly higher in the 
equol non-producers than in the producers in women. The 
percentage of non-producers (n = 8) with NAFLD activity 
score (NAS, including four histological features: steatosis, 
lobular inflammation, hepatocellular ballooning, and fibro-
sis) ≥5 was significantly higher than that of the producers 
(n = 17) in women. However, these associations were not 
observed in men. Limitations of the study include small 
sample size, a single-center study, unknown exact amounts 
of soy products consumed, liver fibrosis assessed by less 
ideal method, and inconclusive causal relationship [50]. 
The sex-dependent effect of equol may be attributed to the 
difference in the endogenous estrogen levels, abundance of 
hepatic estrogen receptor (ER) [51] and responsiveness to 
equol between males and females. Like the other soy iso-
flavones, equol is estrogenic and can bind both ERα and 
ERβ [52]. It was shown that the female liver has higher ER 
concentration than the male liver [51], and that female liver 
is more responsive to estrogen exposure than the male liver 

due to the more efficient nuclear uptake of cytosolic receptor 
ligand complexes in females than in males [53].

Animal Studies

The hypolipidemic functions and preventive effects of soy 
on NAFLD have also been shown in genetically obese or 
high-fat/high-sugar induced obese rodent models. Feeding 
soy protein-containing diet attenuated hepatic lipid depots 
of triacylglycerols and cholesterol, decreased plasma lipid 
peroxides and body fat accumulation in Sprague-Dawley 
(SD) rats with high-fat induced NASH [20]. Dietary SPI 
reduced high-fat induced steatosis in the liver of SD rats 
[19], and decreased hepatic steatosis and diacylglycerols, 
changed microbiota populations, bile acid signaling and 
cholesterol homeostasis in Otsuka Long-Evans Tokushima 
fatty rats [54]. Feeding a diet containing soy protein con-
centrate enriched with isoflavones reduced fatty liver, and 
decreased plasma ALT, AST and triacylglycerol levels [21, 
22], and increased activities of mitochondrial and peroxiso-
mal β-oxidation, acetyl-CoA carboxylase, fatty acid synthase 
(FAS) and glycerol-3-phosphate acyltransferase in the liver 
of the obese Zucker rats [21]. Partial or full replacements of 
dietary casein by alcohol-washed SPI (devoid of isoflavones) 
or supplementation with soy isoflavones in the casein-based 
diet could effectively prevent the accumulation of lipid drop-
lets in the liver of non-obese SD rats (Fig. 1) [55].

Functional Components in the Soy

The bioactive components in soy that play major roles in 
mediating the hypolipidemic actions and improvement of 
NAFLD are not fully understood, and inconsistency exist in 
the literature. For example, soy protein markedly lowered 
serum triglycerides and cholesterol levels, and regulated 
gene expression involved in the synthesis of fatty acids in 
the liver of rats compared to casein protein. Supplementation 
of soy isoflavones had little effect on liver lipogenesis [56]. 
Simmen et al. [57] showed that suppression of fat droplet 
formation and accumulation in the liver of non-obese rats 
fed soy diets was independent of genistein [57]. Our study in 
SD rats also showed that intake of 20% alcohol-washed SPI 
with or without added isoflavones markedly lowered plasma 
triglycerides levels compared to a casein diet, however the 
added isoflavones had no additional effects [58].

β-conglycinin, one of the major storage proteins in soy-
bean, was shown to reduce serum triglycerides, glucose and 
insulin levels [12], and prevented high-fat induced fatty liver 
in mice [59], and increased blood adiponectin level and insulin 
sensitivity in Wistar rats [23]. Our studies, using soy proteins 
with depletion of different subunits, further demonstrated that 
α’ subunit of β-conglycinin and all acidic polypeptides (A1 
to A5) in glycinin were not required for the lipid-lowering 
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effects and fatty liver reduction of soy proteins [60, 61]. This 
indicates that the other subunits of β-conglycinin and glycinin 
may play major roles in this regard.

Nevertheless, soy isoflavone extract markedly alleviated 
the high-fat induced hepatic steatosis and altered related 
gene expressions in an ovariectomized Wistar rat model for 
postmenopausal women [62]. Genistein and daidzein regu-
lated hepatic lipogenesis, insulin resistance or adiposity and 
adipocytokines involved in hepatic steatosis [8, 63]. Admin-
istration of genistein reduced lipid accumulation in the livers 
and ameliorated fatty liver, improved insulin sensitivity, lipid 
profiles, liver injury, histological abnormalities and activated 
the antioxidant profiles, decreased the pre-inflammatory 
cytokines, IL-6 and TNF-α, and prevented oxidative damage 
in the high-fructose induced insulin-resistant rats [7]. Soy 
genistein and daidzein could inhibit oleic acid-induced intra-
cellular lipid accumulation in human HepG2 liver cell lines 
[64]. In general, both soy protein and isoflavones appear to 
be effective in lowering liver and blood lipids, improving 

glucose tolerance and insulin sensitivity and reducing liver 
steatosis although some inconsistencies exist in the effects 
of isoflavones.

Potential Molecular Mechanism(S) Involved

Although soy intake suppresses the formation and accumula-
tion of liver lipid droplets and reduces triglyceride content 
in both obese [21, 22] and non-obese animal models [57], 
the mechanism(s) involved in the hypolipidemic actions 
and NAFLD prevention of soy are different in the two mod-
els. In non-obese rats (Fig. 2), dietary soy proteins down-
regulated expression of hepatic genes for lipogenesis such 
as sterol regulatory element-binding protein-1 (SREBP-1), 
malic enzyme and FAS, while up-regulated expression of the 
genes for lipolysis such as SREBP-2, 3-hydroxy-3-methyl-
glutaryl-CoA (HMGC) reductase, HMGC synthase and LDL 
receptor [65].

Fig. 1   Liver histology of 
the female Sprague Dawley 
rats fed diets containing 20% 
casein in the absence (D1) or 
presence (D2) of supplemen-
tal isoflavones (ISF, 50 mg/
kg diet) or increasing amounts 
of alcohol-washed soy protein 
isolate (SPI), 5% (D3), 10% 
(D4) or 20% (D5) in replace-
ment of the same amounts of 
casein for 90 days. For the 
assessment of hepatic lipid 
droplet (HLD) formation and 
accumulation, the sections were 
stained with hematoxylin and 
eosin. The circumference of 100 
randomly selected fat droplets 
in five fields of each section 
at 20× was measured under 
microscope using the software 
Northern eclipse version 7.0. 
The scale bars represent 10 μm, 
and the total areas of HLD were 
presented (E), and the means in 
(E) with different letters (a, b) 
differ. (Adapted and reformatted 
from Xiao et al. [55])
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This is consistent with our results from proteomic analy-
sis of liver proteins in the non-obese SD rats fed SPI or 
casein diets. Soy protein attenuated the abundance of the 
proteins involved in the lipogenesis and enhanced the pro-
teins or enzymes in the lipolysis. In addition, both soy 
protein and supplemental isoflavones markedly reduced 
peroxisome proliferator-activated receptor-γ2 (PPARγ2) 
and its target gene, fat-specific protein 27 (FSP27), in the 
liver, which was associated with decreased accumulation 
of hepatic lipid droplets [55]. FSP27 is a lipid droplet-
associated protein, and promotes the formation of hepatic 
lipid droplets by enhancing triglyceride accumulation within 
lipid droplets and regulating fat storage [66]. Overexpres-
sion of FSP27 in the liver of the leptin-deficient (ob/ob) 
mice increased hepatic triglyceride content [67]. Our results 
suggested that prevention of hepatic lipid droplet accumula-
tion by supplemented isoflavones was mainly mediated by 
suppression of hepatic FSP27 and that soy proteins reduced 
the abundance of FSP27 and hepatic triglyceride content, 
thereby preventing fatty liver [55]. This is in line with the 

effects of β-conglycinin that attenuated PPARγ2 protein and 
FSP27 mRNA expression in mice [59].

However, in the obese rats, soy proteins enhanced hepatic 
lipogenesis and increased activities of hepatic FAS and 
plasma triacylglycerol levels [21], which might be due to 
increased blood insulin levels [68]. SPI could restore the 
suppressed β-catenin signaling pathway in the Zucker obese 
rats compared to their lean mates, and thereby attenuating 
hepatic fat accumulation, liver damage and hepatocellular 
vacuolation [69].

β-conglycinin is one of the most bioactive globulins 
in soy and modulated genes and proteins associated with 
hypolipidemic functions and preventive effects on NAFLD. 
β-conglycinin effectively prevented high-sucrose induced 
fatty liver through suppression of SREBP-1c and carbohy-
drate response element-binding protein mRNA [59], and 
lowered hepatic triglycerides, serum insulin and leptin con-
centrations and prevented high-fat induced fatty liver via 
suppression of liver PPARγ2 and/or SREBP-1c protein in 
mice [59, 70]. β-conglycinin and β-conglycinin-derived 

Fig. 2   Potential molecular 
mechanism(s) involved in 
the soy effects on NAFLD in 
the non-obese models. Soy 
protein and isoflavones speed 
up hepatic lipolysis through 
activation of SREBP-2 and up-
regulation of the downstream 
gene (HMGC-R and LDLR) 
expression, while soy protein 
suppresses hepatic lipogenesis 
by down-regulation of SREBP-1 
and its target genes (such as ME 
and FAS). Moreover, both soy 
protein and isoflavones inhibit 
formation and accumulation 
of lipid droplets in liver via 
suppression of PPAR-γ2 and 
FSP-27 expression. FAS, fatty 
acid synthase; FSP-27, fat-
specific protein 27; HMGC-R, 
3-hydroxyl-3-methyl-glutaryl-
CoA reductase; LD, lipid 
droplets; LDLR, low-density 
lipoprotein receptor; ME, malic 
enzyme; PPAR-γ2, peroxisome 
proliferation-activated receptor 
γ2; SREBP-1, sterol regulatory 
element-binding protein-1; TG, 
triglycerides
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LDLR
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peptides reduced liver weight and lipid content, and inhib-
ited lipogenic gene expression and enzymatic activity and 
increased lipolytic enzyme activity in the rat models of 
NAFLD [71, 72]. It was proposed that the hypolipidemic 
effects of β-conglycinin might be due to increased insulin 
sensitivity of the liver, down-regulation of hepatic SREBP-1 
[23] and PPARγ2 gene expressions [59], as well as accelera-
tion of β-oxidation of fatty acids and suppression of FAS 
and/or increased triglycerides fecal excretion.

Hashidume et  al. (2016)  [73] showed that some of 
β-conglycinin effects were mediated through induction of 
hepatic fibroblast growth factor 21 (FGF21) expression 
and circulating FGF21 levels in a mouse model, which was 
regulated by activating transcription factor 4 (ATF4). It 
was further revealed that β-conglycinin ingestion resulted 
in methionine imbalance in portal blood as methionine 
content in β-conglycinin is only 1% compared to 2.2% in 
glycinin [74] and 3% in casein [73], which played a criti-
cal role in activation of the ATF4-FGF21 signaling axis 
and stimulation of the metabolic responses in hepatocytes 
[73]. The score of the sulfur-containing amino acids (the 
sum of methionine and cysteine) in β-conglycinin calcu-
lated against the requirement of rodents is 0.39, compared 
to 1.04 in casein (Table 3). Methionine is the first limiting 
amino acid in β-conglycinin for rodents. However, when the 
β-conglycinin diet was supplemented with enough methio-
nine, the β-conglycinin effect on ATF4-FGF21 signaling 
was almost completely eliminated [73]. It was verified that 
all the other studies on β-conglycinin in rodents cited in 
this paper were supplemented with enough methionine or 
cysteine. Thus, methionine imbalance-induced mechanism 
might be not involved in the functions of β-conglycinin 
observed in those studies.

The other promising genes and proteins that may play 
important roles in mediating the reduction of liver steato-
sis by soy protein include hepatic Neuregulin 1 (NRG1), 
Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3) and mitogen-
activated protein kinase interacting serine/threonine kinase 
1 (MKNK1). NRG1 and ERBB3 are membrane-bound pro-
teins. ERBB3 could be modulated through phosphorylation 
by NRG1 to alleviate liver steatosis [75]. MKNK1 gene 
knocked-out mice were protected against a high-fat diet-
induced obesity and detrimental effects such as impaired 
glucose tolerance, increased body weight gain and inflam-
matory biomarkers [76, 77]. A shotgun proteomics analysis 
showed that NRG1 and ERBB3 were the top activated pro-
teins and MKNK1 was the top inhibited protein in the liver 
of the obese Zucker rats fed SPI [78]. This suggests that 
modulation of these molecules might be important cellular 
events by which soy protein exerts its hypolipidemic actions 
and alleviation of liver steatosis. However, this needs further 
investigation.

Conclusions

Both soy protein and associated isoflavones have been shown 
to be hypolipidemic and play a role in reduction of liver 
steatosis and improving NAFLD-related syndrome in both 
human and animal studies. The molecular mechanism(s) 
involved are mainly through inhibiting lipogenesis by 
down-regulation of the transcription factors, SREBP-1c and 
PPARγ2, and their target genes, and enhancing lipolysis via 
up-regulation of SREBP-2 and its downstream genes in the 
non-obese models, while improving insulin resistance and 
restoring the suppressed β-catenin signaling pathway in the 

Table 3   Comparison of 
indispensable amino acid (IAA) 
content and ratios in casein and 
β-conglycinin

a Based on AIN-93G indispensable amino acid requirements for growing rodents
b IAA content were from Hashidume  et al. [73]
c,d Met, methionine; Cys, cysteine; Phe, phenylalanine; Tyr, tyrosine

Caseinb β-conglycininb β-conglycinin+Metb,c

Indispensable 
Amino Acid 
(IAA)

IAAa 
Req. 
(mg/g)

IAA (mg/g) IAA ratio IAA (mg/g) IAA ratio IAA (mg/g) IAA ratio

Arginine 36 36 0.99 91 2.53 88.8 2.48
Histidine 26 30 1.16 21 0.82 20.6 0.80
Isoleucine 48 53 1.10 50 1.05 49.1 1.03
Leucine 86 92 1.06 80 0.93 78.5 0.91
Lysine 73 98 1.34 72 0.99 70.7 0.97
Met + Cysd 46 49 1.04 18 0.39 36.3 0.78
Phed + Tyrd 101 106 1.04 101 0.99 98.6 0.97
Threonine 38 40 1.07 25 0.67 24.5 0.65
Tryptophan 12 13 1.06 6 0.51 5.9 0.50
Valine 56 67 1.19 42 0.74 40.7 0.73
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genetically obese models. The other benefits of soy compo-
nents include protection of liver against oxidative damage 
and inflammation. Some effects of soy isoflavones and equol 
are sex-dependent, and the mechanism(s) involved remain 
unclear. Since most of the mechanism studies on soy actions 
were conducted in either cultured cells or rodent models that 
are known to differ in protein and indispensable amino acid 
requirements, whether the same mechanisms are shared in 
human remains to be determined. Overall, consumption of 
soy foods or supplements might be a useful strategy to miti-
gate the disease burden and prevalence of NAFLD, which 
is consistent with the new Canada’s Food Guide that recom-
mends consumption of more plant-based protein foods [79].
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