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In vivo tumor immune microenvironment
phenotypes correlate with inflammation and
vasculature to predict immunotherapy
response

A full list of authors and their affiliations appears at the end of the paper

Response to immunotherapies can be variable and unpredictable. Pathology-
based phenotyping of tumors into ‘hot’ and ‘cold’ is static, relying solely on
T-cell infiltration in single-time single-site biopsies, resulting in suboptimal
treatment response prediction. Dynamic vascular events (tumor angiogenesis,
leukocyte trafficking) within tumor immune microenvironment (TiME) also
influence anti-tumor immunity and treatment response. Here, we report
dynamic cellular-level TiME phenotyping in vivo that combines inflammation
profiles with vascular features through non-invasive reflectance confocal
microscopic imaging. In skin cancer patients, wedemonstrate threemainTiME
phenotypes that correlate with gene and protein expression, and response to
toll-like receptor agonist immune-therapy. Notably, phenotypes with high
inflammation associate with immunostimulatory signatures and those with
high vasculature with angiogenic and endothelial anergy signatures. More-
over, phenotypes with high inflammation and low vasculature demonstrate
the best treatment response. This non-invasive in vivo phenotyping approach
integrating dynamic vasculature with inflammation serves as a reliable pre-
dictor of response to topical immune-therapy in patients.

Immunotherapy, especially immune checkpoint blockade therapy, has
revolutionized cancer management by providing durable responses in
several cancers1–3. However, only a subset of patients derives long-term
benefit, highlighting a clinical need todevelopeffective biomarkers for
patient stratification4–6. Phenotyping of tumors into ‘hot’, ‘cold’ or
‘altered’ based on infiltration of CD3+ and CD8+ T-cells at tumor center
and margin (Immunoscore)7, PD-1/PD-L1 expression, and tumor
mutation burden are important determinants of response to immu-
notherapy in solid cancers8,9. Although hot versus cold tumor pheno-
types have shown association with treatment response and overall
cancer outcomes, specific immune cell subsets modify this associa-
tion, including regulatory T cells (Tregs), myeloid-derived suppressor
cells (MDSCs), and tumor-associated macrophages (TAMs)10. Impor-
tantly, not all hot phenotypes respond to treatment, suggesting that

immune cell infiltration is important, but not always sufficient, for
inducing potent anti-tumor immunity to eradicate tumors11,12. Evi-
dently, tumors utilize additional mechanisms for evading immune
response while establishing an immune-suppressive microenviron-
ment, complicating patient stratification strategies because of
dynamic tumor host/immune crosstalk and tumor-intrinsic
biology8,13,14.

The tumor vasculature is a key component of the microenviron-
ment that can influence tumor behavior and treatment response.
Tumor vasculature plays a central role in T-cell trafficking via regula-
tion of endothelial adhesion molecule expression and creation of
immunosuppressive microenvironments15. Angiogenesis promotes
immune evasion through induction of a highly immunosuppressive
TiME by inhibiting dendritic cell (DC) maturation, T-cell development
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and function, and most importantly, limiting access of effector
immune cells to tumors by modulating leukocyte trafficking16. In
addition, tumor vasculature can display decreased expression of
adhesion molecules, and demonstrate non-responsiveness to inflam-
matory cytokines through development of vascular endothelial
anergy. By downregulating trafficking of effector cells and upregulat-
ing trafficking of regulatory immune cells, endothelial anergy con-
tributes to ineffective anti-tumor immune responses and immune
evasion17–19.

To address the complex and highly interdependent vascular-
inflammation axis within the TiME, in vivo phenotyping that integrates
dynamic vascular features with inflammation may be more advanta-
geous as compared to ex vivo pathological phenotyping based mainly
on infiltrating T-cells. High-resolution non-invasive in vivo imaging is
fundamental to this integrative phenotyping, since static ex vivo ana-
lyses on patient tissue are limited in recapitulating dynamic vascular
events and the continuous, evolving cellular-level crosstalk between
the immune system and tumor6,20. Reflectance confocal microscopy
(RCM) is a high-speed (pixel times ~0.10 µs, frame rates 10–30
per second) cellular-level label-free imaging approach based on
backscattered light and endogenous tissue contrast, capable of cap-
turing dynamic phenomena inside patients in real-time21,22. Further,
large image mosaics (64mm2 in 50 s) imaged to a depth of ~0.25mm
can facilitate spatial resolution of features. RCM is routinely used for
real-time skin cancer diagnosis and management at the bedside23,24.
Although a few studies have reported RCM imaging of vessels and
leukocyte trafficking in humans25–27, analysis of individual RCM TiME

features, the vascular-inflammation axis and its role in treatment
response prediction have not been studied.

In this work, we report TiME phenotypes detected in vivo in basal
cell carcinoma (BCC) andmelanoma.We define TiME phenotypes with
key inflammation and vasculature features such as vessel diameter,
vessel density, leukocyte trafficking, intratumoral inflammation, peri-
tumoral inflammation andperivascular inflammation.Wedemonstrate
feasibility of automated quantification of immune and vascular fea-
tures. Further, we also perform in-depth histopathological validation
andmolecular correlation of TiME features and phenotypes with gene
and protein expression. Finally, we investigate the utility of immune
and vascular features andTiMEphenotypes in predicting response to a
toll-like receptor agonist (TLRA) topical immune-therapy in a pro-
spective pilot study (Fig. 1).

Results
Immune and vascular features on RCM correlate with histo-
pathology and demonstrate unique TiME phenotypes
TiME phenotyping was investigated by integrating inflammation and
vasculature features. First, agreement between RCM and histopatho-
logical TiME features was explored. Manual evaluation of RCM TiME
features (Fig. S1a–c, Supplementary Movies 1–3) by two independent
readers resulted in substantial to almost perfect agreement
(k =0.62–1.0) for most RCM features. No TiME features were observed
in the normal perilesional area (Fig. S1d); thus analysis was restricted to
tumor lesion. RCM manual evaluation correlated well with corre-
sponding histopathological features evaluated by a board-certified

Fig. 1 | TiME phenotypes were derived from RCM imaging and correlated with
underlying biology and treatment response to topical toll-like receptor ago-
nist (TLRA) imiquimod. In vivo RCM imaging was performed on patients with
clinically suspected skin cancers or rashes visiting the Dermatology Service at
MSKCC. Imaging on the lesion was performed to span large field-of-view (FOV) for
exhaustive sampling in tumor, peritumoral and adjacent normal areas. Tumor,
inflammation, vasculature and traffickingwere imagedwithin each lesion. Data was
used for machine learning and automated quantification of inflammation density,
vessel diameter and density, and frequency of leukocyte trafficking. RCM-TiME
phenotypes were investigated using unsupervised analysis for basal cell carcinoma
(BCC), and melanoma cohorts. The RCM phenotypes were correlated with

pathology and dual immunohistochemistry (IHC) for CD3+ (T-cell) and CD20+ (B-
cell) labeling of tertiary lymphoid structures. BCC phenotyping was additionally
validated using multiplexed immunofluorescence (CD8+, FOXP3, CD68+, PD-1+, PD-
L1+) and bulk RNA sequencing. A subset of patients with confirmed BCC diagnoses
on RCM undergoing treatment with a TLRA agonist were enrolled. The patients
were imaged 6months after end of treatment to confirm tumor clearance andwere
classified as responders (complete tumor regression) or non-responders (incom-
plete or no tumor regression). Treatment response was correlated with TiME fea-
tures and phenotypes. Created with www.Biorender.com RCM: reflectance
confocal microscopy; BCC: basal cell carcinoma; IHC: immunohistochemistry;
TLRA: toll-like receptor agonist.
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dermatopathologist (Table 1), demonstrating good to very good
agreement (AC1: 0.74–1.0). Unsupervised multivariate clustering of
TiME features in BCC patients revealed three main phenotypes with
variable prevalence of inflammation (Inflam) and vascular (Vasc) fea-
tures (Fig. 2a). This feature heterogeneity was clearly apparent in the
varying degrees of inflammation, trafficking and vessels in corre-
sponding RCM and H&E images of these phenotypes. No correlation of
TiMEphenotypeswith clinical factors such asBCCsubtype, gender, age,
sunexposure andulcerationwereobserved (Fig. 2a). Phenotypic classes
were assigned based on individual TiMEmeasurement contributions to
the first two principal components, which together comprise 77% of the
total variability (Fig. 2b). Number of vessels, trafficking and dilated
vesselsweremajor contributors to the variability capturedby the PC1 or
dimension 1 (Fig. 2c) whereas perivascular, peritumor and intratumor
inflammation were major contributors to variation captured by PC2 or
dimension 2 (Fig. 2d). TiME feature contributions to PC1 and PC2
therefore explain the distribution of BCC patient samples according to
variability in inflammation and vasculature, where samples along PC1
cluster based on vasculature (Fig. 2e, f, low=purple, high=pink and
black) and samples distributed along PC2 cluster based on inflamma-
tion (Fig. 2e, f low=black, high=pink and purple) thereby allowing for
discrete phenotypes to emerge: InflamLOWVascHIGH (black), InflamHIGH-

VascLOW (purple) and InflamHIGHVascHIGH (pink).

Molecular landscape associates with InflamHIGH and VascHIGH

signatures
To determine transcriptional variation underlying observed pheno-
typic differences in inflammation and vasculature, we measured tran-
script abundance by bulk RNA sequencing from 14 BCC samples
representing the two groups InflamHIGHVascHIGH and InflamLOWVascHIGH

(Fig. S2a–d). To identify genes specific to functional gene regulatory
networks relevant to BCC tumor and TiME, we performedmodular co-
expression analyses using CEMiTool (Fig. S2e–h)28. Of the resulting 8
modules comprised of co-regulated genes, 2 modules (M2 and M5)
showed statistically significant enrichment of gene activity in RCM
TiME phenotypes, both M2 and M5 displayed higher activity in the
InflamHIGH group (Fig. S3a–d and Fig. 3a–b). To understand differential
control of biological processes and cell types, M2 and M5 were anno-
tated using gene ontology (GO) enrichment analysis. We discovered
distinct biological processes, pathways, and cell types for M2 com-
pared to M5; M2 module genes exhibited significant enrichment in
pathways such as pro-inflammatory signatures, allograft rejection,
interferons, and myeloid cells while genes comprised in M5 displayed

signatures related to leukocyte adhesion and migration along with
cytokine receptor activity. M2 shows signatures enriched in cells
comprisingbloodwhereasgenes expressed inM5wereassociatedwith
blood vessels (Fig. 3c and Fig. S3e). Given the shared concentration of
genes participating in immune cell function, we generated a gene
interaction network using gene connections defined in T-lymphocytes
(curated gene pairs downloaded from TissueNexus29, see methods).
We discovered module hub genes participate in T-lymphocyte gene
regulatory networks (GRNs) to a high degree and together with net-
work hub genes are connected to genes enriched in GO terms involved
in regulation of distinct inflammatory pathways forM2 andM5. ForM2
T-lymphocyte network, these pathways include T-cell activation and
differentiation, myeloid cell differentiation and leukocyte adhesion. In
contrast, M5 T-lymphocyte networks were enriched in blood vessel
proliferation and cell adhesion (Fig. 3d and Fig. S3f). We next assessed
gene networks in tissues and cell types related to BCC and TiME albeit
beyond T-lymphocytes. Interestingly, we find module hub genes per-
sist in connectivity with gene networks in skin,macrophage and blood.
Notably, network hub genes are largely shared across cell types, indi-
cating M2 and M5 genes participate in shared pathways across func-
tionally distinct tissues and contribute to observed differences in
inflammatory phenotypes. Indeed, module hub genes (SLA, DOCK2,
CD34, ABCA6/9) and shared network hub genes including ICAM1,
VCAM1, TGFBR3, CXCL12 and PDGFD are known to be involved in
immune and vascular signaling and function, immune cell migration
and all of these are overexpressed in the InflamHIGH as compared to the
InflamLOW phenotype (Fig. S3g and Fig. 3e).

Since a role for differential regulation of immune cell function
among RCM phenotypes emerged from assessment of bulk RNA-seq,
we hypothesized variations in populations of immune cells could
contribute to differences in RCM phenotypes. To assign transcripts to
immune cell types and estimate cell proportions, we deconvoluted
bulk RNA-seq using CIBERSORTx30 (Fig. 3f). Unsupervised k-means
clustering on CIBERSORTx output distinguished InflamHIGH and
InflamLOW phenotypes, which was not achieved using all variable tran-
scripts from bulk RNA-seq or when assessing variability in genes
comprisingM2andM5 (Fig. 3g, Figs. S2i–k, S3h).Relative differences in
composition of major immune cell types were inferred and significant
differences in cell proportion across phenotype groups were dis-
covered for CD4+ T memory cells (resting) and M1 macro-
phages (Fig. 3h).

InflamHIGH phenotypes correlate with abundant CD8+ and CD8+

PD1+ cells
The gene expression results identified immune cell composition and
function, especially T-cells and macrophages were important in dis-
tinguishing RCM phenotypes. Subsequently, differences in T-cells and
macrophages along with PD-1/PDL-1 checkpoint expression were
investigated acrossphenotypes in BCCpatients. Assessing peritumoral
areas of inflammation,median% (mean %, 95%CI) proportions of CD8+

cells were 6.35% (12.01%, 1.53–22.49%) in InflamLOWVascHIGH, 21.97%
(21.24%, 15.68–26.79%) in InflamHIGHVascLOW and 11.74% (11.2%,
8.1–14.29%) in InflamHIGHVascHIGH groups. Furthermore, out of these
CD8+ cells, 25.22% (27.33%, 13.11–41.55%), 46.86% (40.7%,
23.99–57.41%), 31.01% (31.04%, 20.01–42.06%) were PD1 positive in
InflamLOWVascHIGH, InflamHIGHVascLOW and InflamHIGHVascHIGH, respec-
tively (Fig. 4a). Similar trends were seen in FOXP3+ T-regulatory cells
and CD68+ macrophages in peritumoral infiltrates (Fig S4a). High
intratumoral infiltration by CD68+ macrophages was observed in
InflamHIGHVascLOW (2.9%, 0.69–5.12%) as compared to InflamLOWVascHIGH

(1.26%, −0.39–2.9%) and InflamHIGHVascHIGH (0.47%, 0.03–0.91%) groups
(Fig. 4a). Additionally, flow-based immunophenotyping on 3 BCC
tumors indicated higher activated CD8+GzmB+ and CD8+ Ki67+ cells in
InflamHIGHVascHIGH as compared InflamLOWVascHIGH, also suggesting the
prevalence of inflamed state in the InflamHIGH phenotype (Fig. S4b–d).

Table 1 | High agreement suggests the reproducibility and
presence of TiME features on histopathology

TiME feature RCM 2-reader agreement
(Cohen's kappa)

Histology vs. average
2- reader (Binary)

Number of vessels 0.62 0.84

Dilated vessel
presence

0.72 0.89

Trafficking 0.76 0.72

Intratumor
inflammation

1.00 1.00

Peritumor
inflammation

NA 0.97

Mucin 0.93 0.74

Perivascular
inflammation

NA 1.00

Substantial to almost perfect agreement (k = 0.62-1.0) was observed for RCM features in n = 27
BCC lesions between 2-readers, k for peritumor inflammation and perivascular inflammation
agreement couldnotbecomputeddue to 100%prevalence.Good to verygood agreement (AC1:
0.74–1.0) was found in the binary analysis between average RCM evaluation and dermato-
pathologist grading of features.
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Lymphocytes show strong association while tertiary lymphoid
structures (TLS) show minimal association with TiME
phenotypes
Tertiary lymphoid structures (TLS) are lymphoid formations that form
in nonlymphoid tissues at sites of chronic inflammation and are
associated with improved patient outcomes and response to
immunotherapies31,32. We investigated TLS as markers for immune

states. As seen in multiplexed immunofluorescence, large variation
was observed in the T-cell and B-cell immune infiltrates and tertiary
lymphoid structures (TLS) across patients. Total CD3+ and CD20+

lymphocytes proportions were 9.2% (12%, 7.7–16%) in InflamLOW-

VascHIGH, 25% (25%, 15–36%) in InflamHIGHVascLOW and 14% (14%, 8.4-20%)
in InflamHIGHVascHIGH groups. TLS area positivity did not differ sig-
nificantly across the phenotypes (Fig. 4b).

Fig. 2 | Unsupervised clustering identifies three main RCM TiME phenotypes
and assigns groups based on inflammation and vasculature. a Unsupervised
statistical clusteringonmajor RCM features (inflammation, vasculature, trafficking)
on n = 27 distinct BCCs yields 3 main phenotypes. No phenotypic association with
any clinical features was observed. Representative RCM features within each phe-
notype and correspondingH&E are shown (cyan arrow-immune cells, yellow arrow-
trafficking, red arrow-blood vessels, H&E scale bar- 500μm). b Scree plot showing
percentage contribution to variance for each PC. Top 2 PCs encompassing ~77%
variance were used for elucidating phenotype nomenclature. c Vascular features-
trafficking, dilatedvessel andnumber of vessels- showpredominant contribution in
dimension 1 (PC1).d Inflammation features- perivascular, peritumorand intratumor

inflammation mainly contribute to dimension 2 (PC2). e Contribution of variables
to the PCs. f Scatter plot using contribution from PC1 and PC2 highlights 3 clusters
in the principal component analysis (PCA). The phenotypes were assigned as
InflamLOWVascHIGH (black), InflamHIGHVascLOW (purple) and InflamHIGHVascHIGH (pink)
since PC1 classifies phenotypes based on vascular features while PC2 classified
phenotypes on the basis of inflammation. RCM images were selected after
reviewing images in the entire dataset. The selected images are the most repre-
sentative based on PC contribution within each group. Source data are provided as
a SourceDatafile. RCMreflectance confocalmicroscopy, PCAprincipal component
analysis, PC principal components, BCC basal cell carcinoma.
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Fig. 3 | Molecular signatures reveal inflammatory signatures predominantly
correspond to InflamHIGH phenotype. a Significant enrichment of genemodules in
RCMphenotypes from n = 14 BCC lesions (M2 NES = 3.5, adj. p value = 0.00061; M5
NES= 2.9, adj.pvalue=0.00061).b Profile plots of genes inmodules 2 and 5.Colored
lines showexpression levels for individual genes and theblack line representsmean
expression (log2cpm) of all genes in the module. Individual samples are displayed
on x axis and colored by RCM phenotype (high-inflammatory= pink, low-
inflammatory = black). c Gene ontology (GO) enrichment of biological processes
(BP) along with genes associated with cell type specificity (GTEx Tissue Expression
and Human Gene Atlas) and cellular pathways (MsigDB Hallmark) are shown for
modules 2 and 5 (adj.pvalue < 0.05 withmultiple testing correction using BH; top 5
terms for ontology and top 3 for cell type and pathways when applicable). d Gene
networks of M2 and M5 in T-lymphocytes. Top 10 most connected genes (Hub) in
network are labeled (interaction = red).Module hub genes identified in network are
indicated in blue (co-expression). Nodes indicate genes (size is proportional to
degree) and edges represent connections to genes in network. e Box plots for

expression of network hub genes (top) andmodule hub genes (bottom). Individual
points represent patient samples (pink = InflamHIGH, n = 8 biologically independent
samples; black = InflamLOW, n = 6 biologically independent samples; differential
expression was not significant at FDR <0.05). Upper and lower whiskers extend
from hinge to largest and smallest value no further than 1.5 * IQR. The lower and
upper hinges correspond to 25th and 75th percentiles. Horizontal line represents
median expression. f Relative proportions of the 22 immune cell types identified
from CIBERSORTx in individual patients. g k-means clustering of transcript abun-
dance in patient samples for genes assigned with immune cells deconvoluted from
bulk RNA-seq with CIBERSORTx (n = 547 genes). h Relative proportions of indivi-
dual immune cells in the InflamHIGH (pink) and InflamLOW (black) groups (individual
patient samples indicated by black lines in bar chart) feature CD4+ memory T-cells
(p-value = 0.001) andM1 macrophages (p-value=0.012) as significant determinants
of differences across the 2 groups using unpaired two-tailed Mann-Whitney test.
Source data are provided as a Source Data file.
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Melanoma TiME phenotypes correlate with histopathology and
T-cell infiltrates
Statistical clustering for 2 groups on the melanoma TiME features
showed the presence of two main clusters: InflamLOWVascHIGH and
InflamHIGHVascHIGH. The phenotypic classes were assigned based on
PCA, similar to BCC samples (Fig. 5a, Fig. S5a–e). No correlation of
TiME phenotypes with tumor stage, age, gender or sun exposure was
observed, although most of the invasive melanomas (superficial
spreading subtype) belonged to the InflamHIGHVascHIGH phenotype. The
CD3+ T-cell proportion was found to be 7.2% (7.2%, 5.2–9.2%) in
InflamHIGHVascHIGH while 2.1% (2.2%, 0.49–3.9%) in the InflamLOWVascHIGH

groups. As seen in BCC, TLS did not show a significant association with
TiME phenotypes (Fig. 5b).

Automated quantification of TiME features is feasible
Next, we investigated automated quantification of RCM TiME features
— immune cells, leukocyte trafficking and vasculature, using machine
learning and image processing algorithms. Quantification of immune
cell density was explored using a U-Net segmentation model, which
resulted in aDice coefficient33 (a commonmeasureof accuracy) of 0.72
(Table 2). Representative images and segmentations are shown in
Fig. S6a. Image-processing algorithms were used for quantification of
vascular features (vessel area, diameter and number). Using manual
vessel segmentation as ground truth, the Dice coefficient ranged
between 0.29–0.78 (Table 2). Leukocyte trafficking was quantified
using a custom pipeline involving image registration, background
subtraction and particle tracking (detailed in Methods). High

Fig. 4 | Immunophenotyping through multiplexed staining correlates with
RCM phenotypes. a Representative images from multiplexed IF analysis (CD8+,
FOXP3, CD68+, PD-1+ and PD-L1+) on n = 24 BCC specimens show presence of CD8+

T-cells, T-regs and macrophages in peritumoral infiltrates, along with PD-1 and PD-
L1 expression in all three phenotypes: InflamLOWVascHIGH (black), InflamHIGHVascLOW

(purple) and InflamHIGHVascHIGH (pink). Most abundant numbers of CD8+ cells
(p-value=0.031), PD1+ cells (p-value =0.036), and highest fraction ofCD8+ PD1+ cells
(p-value= 0.030) was found in the InflamHIGHVascLOW phenotype, indicating an
inflamed but exhausted phenotype. Distribution of CD68+ macrophages in intra-
tumoral infiltrates was also highest in InflamHIGHVascLOW (p-value= 0.055). Data are
presented as column scatter plots and median analyzed with Kruskal-Wallis test
adjusted for multiple comparisons using Dunn’s method. In peritumor analysis,
n = 8, n = 7, n = 9 biologically independent specimens were analyzed from

InflamLOWVascHIGH, InflamHIGHVascLOW and InflamHIGHVascHIGH groups, respectively. In
Intratumoral analysis, n = 6, n = 7, n = 8 biologically independent specimens were
analyzed from InflamLOWVascHIGH, InflamHIGHVascLOW and InflamHIGHVascHIGH groups,
respectively.bDual IHC staining for tertiary lymphoid structures using CD3+ T-cells
(brown) and CD20+ B-cells (pink) in n = 27 BCC specimens demonstrate abundance
in the InflamHIGHVascLOW and lowest values in the InflamLOWVascHIGH groups
(p-value = 0.039). No clear phenotypic association with TLS coverage was found
(p-value = 0.988). Data are presented as column scatter plots and median and
median analyzed with Kruskal–Wallis test adjusted for multiple comparisons using
Dunn’smethod. In this analysis, n = 11,n = 7, n = 9 biologically independent samples
were analyzed from InflamLOWVascHIGH, InflamHIGHVascLOW and InflamHIGHVascHIGH

groups, respectively. Source data are provided as a Source Data file. IF: immuno-
fluorescence; IHC: immunohistochemistry.
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agreement was observed between manual and automated counts at
the optimization and final validation stages (Table 2). Parameters and
representative examples for vessel and trafficking counts are shown in
supplementary data (Fig. S6b–e). Subsequently, correlation of RCM
TiME features with corresponding gene expression for inflammation,
angiogenesis and trafficking suggested high correlation between total
area % inflammation with myeloid cells, dendritic cells and T-cell
markers (CSF1R, CD1E and CD3E), and total leukocytes-like area % with
cytotoxic T-cell markers (CD8B and GZMA). Vascular features such as
vessel diameter and trafficking were also correlated with angiogenesis
and endothelial markers (VEGFD, VEGFA and PDGFD), and trafficking
markers (CCL-18, CAV-1 and CCL28), respectively (Fig. 6a). These TiME

features were additionally used as traits in module-trait analysis to
determine relationshipswith gene co-expressionmodules shown to be
enriched in the InflamHIGH groups (Fig. 3a). A significant correlation
between M5 and total myeloid (dendritic cell, macrophages) inflam-
mation area was discovered (Figs. 6b, S6f).

Treatment response to imiquimod can be predicted by com-
bined immune and vascular features and TiME phenotyping
Treatment response to the TLRA immune-therapy in BCC patients was
correlated with TiME features and phenotypes. Unsupervised statis-
tical clustering yielded 2 groups: one group for responders (5 of the 7
responders) and the other for non-responders (4 of the 6 non-

Fig. 5 | Identical RCM TiME phenotypes in melanoma correlate with immune
signatures. aUnsupervised clustering of RCM features (inflammation, vasculature,
trafficking) identifies two main phenotypes in melanoma lesions (n = 13) that are
annotated as InflamHIGHVascHIGH and InflamLOWVascHIGH as shown in representative
RCM and corresponding H&E images. (red arrows- vessels, cyan arrows- inflam-
mation, yellow arrow-trafficking). b Dual IHC staining for tertiary lymphoid struc-
tures using CD3+ T-cells (brown) and CD20+ B-cells (pink) in melanoma specimens
(n = 11) demonstrate higher abundance of CD3+ T-cells (p-value=0.004) and TLS

(p-value =0.060) in the InflamHIGHVascHIGH group. Data are presented as column
scatter plots and median analyzed with two-tailed unpaired Mann-Whitney test. In
this analysis, n = 5 and n = 6 biologically independent samples were analyzed from
InflamLOWVascHIGH and InflamHIGHVascHIGH groups, respectively. RCM images were
selected after reviewing images in the entire dataset. The selected images are the
most representative based on PC contribution within each group. Source data are
provided as a Source Data file. RCM: reflectance confocal microscopy; IHC:
immunohistochemistry.
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responders). The responder group was characterized mainly by high
inflammation, while the non-responder group showed both high
inflammation and vasculature (Fig. 7a). Phenotype-prediction of
responders and non-responders was performed by overlaying on the
original BCC phenotyping scatter plot (Fig. 2f). Most responders
(5 of 7) belonged to the InflamHIGHVascLOW phenotype (Fig. 7b). Further,
evaluation of differences in TiME features between responders and
non-responders demonstrate increased number of vessels and stromal
macrophages/dendritic cells in non-responders. Higher leukocyte
trafficking, vessels, and stromal macrophages were present in 50%,
100%, and 86% of the non-responders, respectively. Although intra-
tumoral inflammation and tumor infiltrating lymphocyte (TILs)-like
features were similar, vessel density was found to be significantly dif-
ferent between responders and non-responders (Fig. 7c). Linear
separability plots confirmed addition of vessels to inflammation
enhanced separation between responders and non-responders
(Fig. S7a). Linear regression models for response prediction
(Fig. S7b) demonstrate low predictive power of inflammation as a
variable, either as “TIL-like cells” or “intratumoral inflammation” with
accuracy of 46% and 61%, respectively. Addition of stromal vessels to
intratumoral inflammation or TIL-like cells as features in the linear
regression model resulted in best model performance (71% sensitivity,
83% specificity and 76% accuracy) (Table 3).

Discussion
Phenotyping the tumor microenvironment beyond simply T-cell infil-
tration is crucial to develop robust predictive platforms for patient
stratification during immunotherapies. Since not all T-cell inflamed or
hot phenotypes respond to treatment, tumors seemingly utilize
additionalmechanisms for evading immune response and establishing
an immune-suppressive microenvironment. The tumor vasculature
plays an important role in mediating this immune suppression and
immune exclusion. To comprehensively evaluate the inflammation-
vascular axis, we integrated features from inflammation and vascu-
lature to investigate the presence of distinct in vivo TiME phenotypes
in skin cancers that are predictive of patient response to therapy. The
TiME features imaged non-invasively on RCM show high agreement
with the gold standard histopathology, confirming the feasibility of
detecting these features in vivo in patients (Table 1). Using a combi-
nation of vessel and immune features, we derived phenotypes using
unsupervised clustering to minimize subjective bias. Within the BCC
dataset, phenotyping using unsupervised clustering yielded three
main phenotypes (Fig. 2a). In the smaller melanoma dataset, the
clustering was programmed for two unsupervised clusters (Fig. 5a).
While the InflamLOWVascLOW phenotype is a clinical possibility, skin
cancers are typically highly immunogenic and vascular tumors,
therefore we did not expect to encounter this phenotype in this
smaller dataset34–36. Assessment of large cohorts would be needed to
identify, and study the effect of this phenotype on treatment response
in skin and other cancers. The TiMEphenotypes in BCC andmelanoma

strongly correlated with inflammatory molecular signatures, along
with T-cell and macrophage abundance (Figs. 3, 4a, b, 5b). Further-
more, the phenotypes and combined vascular/immune features better
correlated with treatment response than inflammation as a singular
feature and best treatment responsewas observed in InflamHIGHVascLOW

phenotype (Fig. 7a–c, Table 3), highlighting the importance and
potential clinical utility of this approach in integrating both inflam-
mation and vasculature to characterize and phenotype TiME.

Specifically, analysis of gene co-expression modules generated
from all variable genes expressed across 14 BCC samples successfully
identified eight modules of co-regulated genes, of which 2 modules
were significantly enriched in RCM phenotypes (Fig. 3a, b). The mod-
ules show distinct regulation of immune cell and vascular function
whereM2 was enriched for genes associated with T-cell activation and
differentiation, myeloid cell differentiation and leukocyte adhesion, in
contrast to M5 enrichment of genes involved in blood vessel pro-
liferation and cell adhesion (Fig. 3c). Given the shared concentration of
genes participating in immune cell and vascular functions for bothM2
and M5, albeit potentially from distinct cell origins, we generated a
gene interaction network using gene connections in T-lymphocytes,
macrophages, blood and skin. Together, M2 and M5 T-lymphocyte
networks appear to engage in cell type specific pathways in agreement
with module enrichment in biological processes similarly describing
contents of blood, i.e. immune cells, for M2 whereas cell types com-
prising the blood vessel were enriched for M5.

Investigations into specific genes andpathwayswithin themodule
and network hub genes demonstrate higher prevalence of genes cru-
cial for immune cell migration (including leukocyte trafficking) and
vascular function such as ICAM1, VCAM1, CXCR4, CXCL12, NCKAPL1,
DOCK2, PDGFD and TGFBR3 in InflamHIGHVascHIGH phenotype (Fig. 3d,
e). This suggests this phenotype likely had comparatively ‘normal’
vasculature37. Conversely, InflamLOWVascHIGH show downregulation of
major adhesion molecules (ICAM1, VCAM1) along with significantly
lower immune cell signatures (Fig. 3d, e), suggesting features of
endothelial anergy and anergy-induced immune excluded state16,37.
This immune-exclusion and endothelial anergy state may have been
potentiated by immunosuppressive tumor-intrinsic factors (CTNNB1,
PTEN, COX11)38,39 in the InflamLOWVascHIGH phenotype, which needs to
be studied in context of tumor genetic signatures, mutational burden
and immune exclusion40–42.

Furthermore, themajority of module hub genes (80% of the top 5
genes in M2 and M5) were found to have known immune functions
(Fig. 3d-e). Notably, network hub genes are largely shared across cell
types, regardless of tissue origin of gene network. This exemplifies the
robustness of the M2 and M5 network hub genes, through
participation in shared pathways across functionally distinct tissues
and contributing to observed differences in RCM phenotypes. Most of
the network hub genes common across gene networks are also
involved in inflammatory or vascular pathways. Few module and net-
work hub genes (SCN9A, PLCB4, RASSF2) have minimal or no direct
immunological function, although they show connectivity within gene
networks enriched in skin, macrophage, blood and T-lymphocyte
pathways. While SCN9A encodes the voltage-gated ion channel Nav 1.7
and is primarily associated with pain disorders, it can also influence
chemokine-induced migration of the CD1a+ dendritic cells43. Similarly,
PLCB4 or phospholipase C beta-4 enzyme has established neurological
roles, and was recently shown to play a role in selective promotion of
CD8-T cell-dependent adaptive immunity44,45. Further, RASSF2, a
known tumor suppressor gene that promotes apoptosis and cell-cycle
arrest is also implicated in suppression of immune responses, angio-
genesis, and metastasis46. Enrichment of these genes in the Inflam-
HIGHVascHIGH phenotype draws parallels to these studies and strongly
suggests previously unknown roles of these relatively non-immune
genes in regulating inflammation and/or vasculature within the tumor
microenvironment. Although the DEG analysis on bulk RNA-seq data

Table 2 | Automated quantification of RCMfeatures is feasible

TiME feature Test/validation data Validation result

Inflammation (U-Net model) 9.7% Dice coefficient: 0.72

Vessel segmentation 5.2% Dice coefficient: 0.29–0.78

Trafficking – optimization 10.9% Spearman r: 0.79–0.82

Trafficking – final validation 2.5% Spearman r: 0.74–0.89

Summary of results for validation for each automated quantification approach using data from
n = 92 distinct lesions. Quantification of immune cells (leukocyte-like, dendritic cells and mac-
rophages) using a3-classUNetmodel resulted inDice coefficientof 0.72. Segmentationofblood
vessels for quantifying area and diameter of vessels showed a wide range of accuracy. Auto-
mated leukocyte trafficking counts were correlated with manual counts as ground truth during
optimization and validation, demonstrate Spearman r between 0.74–0.89 depending on track
length.
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did not identify other major immunological or vascular genes, attrib-
uted to the low sample size and high variability within patient data, our
analysis into co-expression of variable genes enabled detection of
known and previously unknown genes important in resolving
phenotypes.

Significantly, clustering on the CIBERSORTx data which enriches
for immune cells genes from 22 cell types explained assignment of
samples to RCM phenotypes (Fig. 3g). CIBERSORTx also identified
major differences in T-cells and macrophages across the two groups,

which were subsequently validated using immunostaining (Figs. 3f, h
and 4). While heterogeneity in immune cell populations through
CIBERSORTx does resolve RCM phenotypes, it only captures one
component i.e. inflammation,within thephenotype.Weanticipate that
similar heterogeneity in cell populations comprising the stroma such
as fibroblasts and endothelial cells will also capture distinguishing
features between these phenotypes, these were not addressed in this
study. Since genes involved in immune response regulation and
function yet possibly originating from non-immune cells featured

Fig. 6 | Quantified RCM TiME features correlate with gene expression.
aAutomated features correlatedwith corresponding gene expression in n = 14 BCC
lesions shows moderate to high correlation between total inflammation area with
CSF1R (r = 0.73, CI: 0.32 to 0.91, p-value = 0.002), CD1E (r = 0.64, CI: 0.15 to 0.87,
p-value=0.008) and CD3E (r = 0.51, CI:−0.04 to 0.82, p-value = 0.032) and between
total leukocyte-like cells area with CD3E (r = 0.6, CI: −0.13 to 0.79, p-value = 0.013),
CD8B (r = 0.6, CI: 0.1 to 0.86, p-value = 0.012) and GZMA (r = 0.53, CI: −0.01 to 0.83,
p-value = 0.026). Similarly, vessel diameter and leukocyte trafficking were corre-
latedwithVEGFD (r = 0.459, CI: −0.1 to 0.80, p-value = 0.050),VEGFA (r = −0.477, CI:
−0.81 to 0.09, p-value = 0.044),PDGFD (r = 0.538,CI: 0 to0.84,p-value= 0.025), and
traffickingwithCCL18 (r = 0.561, CI: 0.019 to0.84, p-value=0.042),CAV-1 (r = 0.468,

CI: −0.10 to 0.80, p-value= 0.046) and CCL28 (r = −0.42, CI: −.016 to 0.78,
p-value=0.137), respectively. Non-parametric two-tailed Spearman correlation was
computed across each dataset. b Automated features correlated with gene co-
expression modules show total myeloid cells on RCM (dendritic cells+macro-
phages) were significantly correlated with eigengene values for M5 mod-
ule(Spearman method, p-values estimated using t-distributions). Confidence
interval at 95% indicated in gray along with linear regression line and correlation
coefficient (p-value = 0.032). Source data are provided as a Source Data file. CSF1R:
colony stimulating factor 1-receptor; CD: cluster of differentiation; GZMA: gran-
zyme A; VEGF: vascular endothelial growth factor; PDGFD: platelet derived growth
factor D; CCL: CC-chemokine ligand; CAV: caveolin.
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prominently in the module and network hub genes, future studies
should also address cellular heterogeneity in these stromal cell
populations using unbiased approaches such as single-cell RNA-
sequencing that may comprehensively address the source of gene
expression differences across RCM phenotypes.

Using immunophenotyping through dual IHC andmultiplexed IF,
the RCM phenotypes correlated with peritumoral abundance of CD3+,
CD20+, CD8+ and CD8+ PD-1+ T-cells in BCC, and CD3+ T-cells in mela-
noma (Fig. 4a, b and 5b). Similar trends for abundance of myeloid cells

(macrophages) and regulatory T-cells were found in the InflamHIGH as
compared to the InflamLOW.While the strongest difference inCD8+ cells
was found between InflamHIGHVascHIGH and InflamHIGHVascLOW groups,
the overall CD8+ cells in the InflamLOWVascHIGH group were lowest. One
outlier within this group had intense immune infiltrates in the deeper
dermis, explaining very high lymphocytic density on IHC which was
not found in RCM. Furthermore, tentatively excluding this outlier
patient from InflamLOWVascHIGH led to a significant difference in CD8+

T-cells between InflamHIGH and InflamLOW groups. No association was

Table 3 | Modeling of vascular features with immune cells improves response prediction accuracy

Features Sensitivity Specificity Accuracy

Intratumoral inflammation 0.51 0.33 0.46

Tumor-infiltrating lymphocytes-like 0.71 0.5 0.61

Intratumoral inflammation + number of vessels 0.71 0.83 0.76

Tumor-infiltrating lymphocytes-like + number of vessels 0.71 0.83 0.76

Linear regressionmodeling ofRCM features for response prediction usingAkaike information criteriondemonstrate improvedclassification accuracybycombining immune andvascular features, as
opposed to inflammation alone.

Fig. 7 | InflamHIGHVascLOW phenotype corresponds to highest response in TLRA
treated patients. a Unsupervised statistical clustering on n = 13 BCC lesions
receiving TLRA treatment yields two major clusters of mainly non-responders
(orange) and responders (green), attributed to the presence of differential TiME
features shown in representative RCM images (red arrows- vessels, cyan arrows-
inflammation, yellow arrow-trafficking). b TiME phenotyping of TLRA patients
predicted by overlaying on the original BCC phenotype PCA plot (Fig. 2b) suggest
thatmost responders (R) belonged to the InflamHIGHVascLOW group. cComparison of
major TiME features across responders (n = 7)and non-responders (n = 6)

demonstrate inflammation features (intratumoral inflammation, TILs-like cells) are
insufficient to stratify patients based on response. However, stromal vessels can
differentiate between responders and non-responders (p-value=0.035). Data are
presented as column scatter plots and median analyzed using two-tailed Mann-
Whitney test. RCM images were selected after reviewing images in the entire
dataset. Selection was based on the features most prominently observed within
each class. Source data are provided as a Source Data file. TLRA: toll-like receptor
agonist, BCC: basal cell carcinoma, PCA: principal component analysis; TiME:
tumor-immune microenvironment; RCM: reflectance confocal microscopy.
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observed with the area of tertiary lymphoid structures, (TLS) a hall-
mark of an inflamed micro-environment, and positive cancer
outcomes32, in both melanoma and BCC. We suspect this discrepancy
to be due tomost of the TLS arisingmuchdeeper in the tissue, outside
the field-of-view of RCM (depth-limited to 0.25mm). In conclusion, a
comprehensive immunohistochemical assessment using multiplexed
IHC supports the described distinct phenotypes as identified through
RCM. These results were also corroborated on the flow-based immu-
nophenotyping on 3 patients that showed higher activated CD8+ cells
in the InflamHIGHVascHIGH phenotype (Fig. S4b–d).

Although immune-based therapies have shown unprecedented
and durable responses, the response rates have been variable. Topical
TLRA imiquimod immune-therapy has shown response rates between
60-84% in superficial melanoma and basal cell carcinoma47,48, high-
lighting the need to identify the responders and non-responders early
to minimize treatment side-effects and patient morbidity, and
streamline management. Ulceration, LINC and PD-L1 expression, and
perifollicular infiltration of melanocytes have shown some association
with response to imiquimod in BCC and superficial melanoma49–51, but
are not often used for informing treatment decisions. There is a need
for more comprehensive and quantitative analysis of major determi-
nants of anti-tumor immunity within TiME that enable patient strati-
fication at the bedside. Because of the dynamic nature of the
interactions within TiME, in vivo imaging is crucial for studying
dynamic processes, including active vascular processes such as leu-
kocyte trafficking which is optimally studied as live dynamic events, as
opposed to ex vivo tissue studies on vasculature which can show
inconsistent vessel measurements20. As skin cancers are accessible for
such non-invasive imaging, we evaluated thirteen patients undergoing
prospective treatment with topical TLRA. Seven patients responded to
treatment (complete tumor clearance) while 6 did not respond (partial
or no tumor clearance). On this small cohort, the InflamHIGHVascLOW

phenotype correlated with maximal response, and inclusion of vas-
cular features in predictive models led to improved response predic-
tion accuracy (Fig. 7c, Table 3). On RCM, this phenotype demonstrated
lower immunosuppressive angiogenic features with higher intratu-
moral inflammation. This phenotype also presented as the inflamed
exhausted phenotype on multiplexed IF with highest abundance of
CD8+ and CD8+ PD-1+ T-cells (Fig. 4a). Notably, only InflamHIGHVascLOW

showed highest response to the TLRA immune-therapy (Fig. 7b).
Therefore, we speculate that the VascHIGH phenotypes could benefit
from adjunct vascular-targeted therapies in combination with
immune-modulating therapies. However, specific mechanisms of
treatment resistance attributed to “vasculature” will first need to be
resolved for the two groupswithin VascHIGH by studying TLRA response
on a large patient cohort. For example, vessel normalization through
pharmacological targeting of the Wnt/β-catenin pathway and anti-
angiogenic topical treatments (COX-2, basic fibroblast growth factor
or bFGF inhibitors) can overcome endothelial cell anergy and, rein-
duce/enhance adhesion molecule expression for increased leukocyte
infiltration of effector T cells into tumors15, especially benefiting
InflamLOWVascHIGH 52,53. The predictive accuracy of 76% achieved by
incorporating both inflammation and vascular features in our models
(Table 3) can potentially be improved by incorporating adjunct stro-
mal features like collagen and mucin in future studies, since these can
also influence immune infiltration into tumors. Thus, this study con-
firms the feasibility of a predictive platform that will ultimately intro-
duce a more individualized or personalized immune-therapy
treatment approach, similar to the IMPACTTM Panel54.

Using RCMand skin cancer as amodel, we demonstrate the proof-
of-concept for unperturbed characterization andphenotyping of TiME
inside patients and the feasibility to predict response/no-response
before treatment. However, manual evaluation of TiME features would
require an effort that is unrealistic in clinical practice. Manual
approaches would also inevitably involve extensive training of readers

in feature recognition. The current era of machine learning and artifi-
cial intelligence allows extraction of quantitative biomarkers from
images to inform on disease characterization, monitoring and assess-
ment of response to treatment, also a mission of the quantitative
imaging network for radiological imaging55,56. Quantitation alsohas the
potential to minimize intra- and inter-observer variability of feature
evaluation and provide objective decision-support tools in patient
management. Thus, towards real-world clinical implementation, we
produced preliminary algorithmic pipelines for automated quantifi-
cation of immune cell density, leukocyte trafficking frequency, and
vessel thickness and density. The preliminary machine learning model
trained on 2 subclasses of immune cells (leukocyte-like, and myeloid
cells that included macrophages and dendritic cells) showed a 72%
classification accuracy for estimating areas covered by immune cells
(Table 2). Subsequent efforts will be directed towards instance seg-
mentation (e.g., object detection) to estimate the occurrence statistics
of cells, and the training will be extended to individual morphologies
as shown in Fig. S1a. ThroughRCM imagingof bloodvessels in humans,
we uncovered important limitations that affect the accuracy, including
difficulty in acquiring good quality data at specific anatomical loca-
tions and axial motion during data acquisition by the hand-held
probe due to lack of stability. These limitations resulted in a more
variable Dice coefficient range (Table 2). We have focused our efforts
on overcoming these limitations by employing tissue coupling during
video acquisition and using advanced frame stabilization tools to fur-
ther improve the processing of vascular features. The quantified TiME
features also demonstrate strong quantitative correlations with the
amount of gene expression, suggesting the quantifications truly
represented underlying immune or vascular features (Fig. 6a). M5
module geneswhichwere enriched in the InflamHIGHVascHIGH group also
correlated with density of myeloid cells (macrophages, dendritic cells)
(Fig. 6b), similar patterns were also seen in the multiplexed IF results
(Fig. 4a). In this study, the quantified trafficking included all major
trafficking events (rolling, adhesion, and crawling) (Supplementary
Movies 2, 3) that correlated with CCL18 and CCL28 expression (Fig. 6a).
Since specific genes orchestrate discrete steps within the trafficking
cascade57, better gene correlation with individual trafficking steps (e.g.
ICAM1/VCAM1 with rolling cells) can be expected. Thus, subsequent
efforts will be focused on quantifying individual trafficking events.

Critically, through automated analysis, it is also possible to
quantify longitudinal changes to monitor treatment-induced altera-
tions e.g. normalized vasculature after vascular normalizing therapies
could be analyzed in real-time to help assess response and uncover
mechanisms of treatment resistance. This real-time longitudinal eva-
luation and quantification will contribute to treatment optimization
and personalization of immune-therapy regimens. Similar to our
recent efforts in automating image acquisition and diagnosis58,59, in
future, the quantification pipelines would be implemented on clinical
devices to enable real-time quantification and TiME phenotyping for
response prediction using validated quantitative predictive platforms.
Thus, this may enable more precise and real-time clinical decision-
making for patient stratification at the bedside.

Our study demonstrates a combination of high-resolution spa-
tially resolved and dynamic imaging to advance current limitation in
static detection of TiME features. Outstanding limitations of the
approach include grayscale-limited specificity tissue contrast and
imaging depth to 0.2–0.25mm. The label-free approach enables
visualization of all TiME features, but is limited in specificity for func-
tional phenotyping. One major advantage is the feasibility of long-
itudinally monitoring spatio-temporal changes in immune cells and
vasculature during treatment, akin to on-treatment biopsies. With the
present state of RCM devices and technology, this approach is cur-
rently restricted to accessible diseases and cancers on the skin and
mucosa. Complementary multimodal approaches60 such as dynamic
optical coherence tomography or optical frequency domain imaging
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for imaging vasculature, lymphatics and tissue viability61,62, multi-
photon microscopy for better contrast and collagen delineation63–65,
photoacoustic microscopy for functional vascular imaging66 and
fluorescence lifetime imaging for probing immune cell specificity and
activation states67 will further enhance in vivo TiME visualization and
enhance current TiME phenotyping in the future.

In subsequent studies, extensive validation with targeted mole-
cular analyses on precision biopsies68 will enable better correlations.
Since only the most prominent signals can be detected in bulk-
sequencing, other minor or rarer cellular differences in immune and
stromal cells, especially in non-infiltrated samples may be detected
using single cell or spatial transcriptomic analysis, to further our
understanding of RCM phenotyping69,70. Through robust prospective
studies on large cohorts, fundamental basis of phenotyping and their
correlation with variable treatment responses in cancer immunother-
apy systems can be explored for better patient stratification. This
research could impact several oncological settings, including but not
limited to cutaneous and mucosal, primary and metastatic keratino-
cyte and melanocyte cancers (melanoma, squamous cell carcinoma,
basal cell carcinoma), and cutaneous lymphomas. The advances in
TiME phenotyping presented here can enable hypothesis-driven
research for developing new druggable targets and response pre-
dictive platforms, and gainingmechanistic insights on host anti-tumor
immune response in cancers.

Methods
Study design
The studywas approved by the Institutional ReviewBoard atMemorial
Sloan Kettering Cancer Center (MSKCC-IRB). Written informed con-
sent was obtained from all participants recruited under active IRB
protocols IRB#99-099 and IRB#21-019 included under the clinical trial
NCT00588315. All research was performed strictly in accordance with
the Declaration of Helsinki and relevant guidelines and regulations.
The main research objectives for this study were as follows: (i) inves-
tigate TiMEphenotyping in skin cancerpatients, (ii) investigate biology
and immunological states underlying TiME phenotyping, (iii) correlate
specific TiME features and phenotypes with response to a toll-like
receptor agonist (TLRA) therapy. This observational cross-sectional
study involved RCM imaging on human patients presenting with skin
lesions referred for dermatology consultation in the Dermatology
Service at Memorial Sloan Kettering Cancer Center (MSKCC), New
York. Patients (aged 18 or older) with either a previously biopsied or
clinically suspected skin cancer or drug rash amenable for imaging
were prospectively enrolled between November 2018 and November
2021. On a subset of patients, patients undergoing topical TLRA
treatment (5x/week for 6 weeks) as standard of care were imaged at
baseline before treatment (T0), and endof treatment to confirm tumor
clearance. Validation of phenotyping was investigated on tissues
obtained as part of standard of care or research by histopathology,
bulk RNA-sequencing, multiplexed IF and dual IHC to correlate with
underlying immune and vascular features. Automated quantification
of TiME features, and modeling of treatment response on TiME fea-
tures and phenotypes was performed for near-future clinical applica-
tions in predicting treatment responses (Fig. 1).

In vivo imaging
In vivo RCM imagingwas performed prospectively on 118 lesions using
RCM (VivaScope 1500 or handheld VivaScope 3000, (Caliber Imaging
and Diagnostics, Rochester, NY, USA) and/or an integrated handheld
RCM-OCT prototype. VivaScan v10.0 (Caliber Imaging and Diag-
nostics, Rochester, NY, USA) was used to acquire images and images
were interpreted in real-time at the bedside to select representative
areas with tumor, immune cells and blood vessels across the lesion by
2 investigators (MC and AS) having more than 5 years of RCM reading
experience. Surrounding normal skin was also imaged as control, but

excluded from analysis since it lacked tumor and TiME features.
Mosaics (large area sampling), stacks (depth sampling), scanning and
single field-of-view (FOV) videos were acquired from multiple regions
within the lesion and saved in an online database (Vivanet, Caliber ID,
Rochester, NY) or on a local drive. Patients visiting Dermatology ser-
vice were recruited in this study. Twenty-eight BCC lesions from 20
patients (9 females, 11 males; age range 43–88 years) were used for the
BCC phenotyping analysis. Thirteen melanoma lesions from 12
patients (4 females, 8 males; age range 46–87 years) were used for
melanoma phenotyping. Thirteen lesions on 8 patients (4 females, 4
males; age range 54–70 years) undergoing TLRA agonist (imiquimod)
treatment were included in this study. Imaging was performed before
treatment or standard of care biopsy for all patients. Imaging was
performed once for a given lesion and not repeated due to clinical
constraints. In the imiquimod dataset, patients were imaged after
treatment to investigate tumor clearance.

Patient tissue
Biopsies (targeted or non-targeted) taken as standard of care or for
research use were used for histopathological, immunohistochemical,
RNA-sequencing and flow cytometry correlations. Formalin-fixed par-
affin embedded (FFPE) specimens from 39 lesions (27- basal cell car-
cinoma, 11- melanoma, 1-lichen-planus like keratosis) were used for
histopathological and immunohistochemical (IHC) correlations. RNA-
extraction was performed on 25 FFPE specimens with adequate tissue.
However, RNA-seq was performed only on 14 out of 25 specimens
representing the two groups InflamHIGHVascHIGH and InflamLOWVascHIGH

due to limited RNA quantity. Multiplexed IF was performed on 27 FFPE
BCC specimens, 3 specimenswere excluded from the analysis since the
tissue quality was heavily deteriorated during multiplexed staining.
Imaging-guided small (2–3mm) targeted biopsies71 was performed on
5 lesions for frozen section histopathology and IHC (n = 2), and flow
cytometry (n = 3). Althoughflowcytometry providesmore quantitative
estimates of cellular populations, acquiring adequate research speci-
mens (≥ 3mm) can potentially compromise patient care in a diagnostic
setting and is not routinely practiced. Since we anticipated challenges
in acquiring additional fresh tissue for flow cytometry beyond the first
few samples, we concentrated our efforts on multiplexed IF and dual
IHC on archived pathology specimens to validate the phenotypes.

Manual RCM and histopathology evaluation
RCM features were manually evaluated (Fig. S1c, Table 1) by either of
the 4 readers with at least 5 years’ experience (AS) or >20 year
experience in interpreting RCM images (MC, SG, CMAF). The major
features evaluated on manual reading included number of vessels,
dilated vessels, trafficking, intratumoral inflammation, peritumor
inflammation and perivascular inflammation. These features were
graded on a scale of 0–3 after exhaustive review of data from each
patient. Data from 1 patient was excluded due to motion blur during
image acquisition. For melanoma, specific features such as lichenoid
inflammation, total lymphocyte-like cells were also evaluated along
with spatial distribution of inflammation, immune cells and vascu-
lature. For imiquimod response study, spatial distribution of vessels
and type of three immune morphologies (dendritic cells, lymphocyte-
like cells and macrophages), tumor-infiltrating lymphocyte-like cells,
mucin and tumor regressing areas were also noted for more compre-
hensive assessment and correlation with treatment response. Same
TiME features evaluated on RCM were graded on digitized histo-
pathological slides by board-certified dermatopathologists (MG, MP).
Manually evaluated features were used for statistical clustering for
phenotyping and response prediction.

Statistical clustering for TiME phenotyping
Unsupervised statistical clustering on manually evaluated TiME fea-
tures was performed to explore classification trends or phenotypes
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using HCPC and PCA in R using FactoMineR72, FactoExtra73 and
ggplot274 packages. HCPC was performed using the HCPC function
while PCA was performed using the prcomp function in R. The den-
drograms were plotted using the fviz_dend functions. For PCA, the
percentage contribution scree plot, the variable contribution and the
biplot were obtained using fviz_contrib, fviz_pca_var and the fviz_p-
ca_biplot functions, respectively.

RNA extraction
FFPE sections from n = 25 specimens were deparaffinized using the
mineral oil method. Briefly, 800 µL mineral oil was mixed with the
sections and the samplewas incubated at 65 °C for 10min. Phaseswere
separated by centrifugation in 360 µL Buffer PKD and Proteinase Kwas
added for digestion. After a three-step incubation (65 °C for 45’, 80 °C
for 15’, 65 °C for 30’) and additional centrifugation, the aqueous phase
containing RNA was removed and DNase treated. The RNA was then
extracted using the RNeasy FFPE Kit (QIAGEN catalog # 73504) on the
QIAcube Connect (Qiagen) according to the manufacturer’s protocol
with 285 µL input. Samples were eluted in 13 µL RNase-free water.

Transcriptome sequencing
After RiboGreen quantification and quality control by Agilent BioA-
nalyzer, 356–500ng of total RNA with DV200% varying from 88-93
underwent ribosomal depletion and library preparation using the
TruSeq Stranded Total RNA LT Kit (Illumina catalog # RS-122-1202)
according to instructions provided by the manufacturer with 8 cycles
of PCR. Samples were barcoded and run on a HiSeq 4000 in a PE100
run, using the HiSeq 3000/4000 SBS Kit (Illumina). On average, 78
million paired reads were generated per sample and 20% of the data
mapped to mRNA. While RNA extraction was performed on 25 FFPE
specimens, due to limited RNA quantity, RNA-seq could be performed
only on 14 specimens representing the two phenotypes InflamHIGH-

VascHIGH and InflamLOWVascHIGH.

Differential analysis of gene expression
Differentially expressed transcripts between RCM InflamHIGH and
InflamLOW groups were determined using pairwise comparisons in
edgeR75–77 performing exact test (FDR <0.05) on TMM-normalized
read counts with filtering to remove lowly expressed transcripts (using
filterByExpr argument in edgeR). R version 3.6.3 was used in analyses.

To determine sets of genes associated with RCM phenotypes, Co-
Expression Modules identification Tool (CEMiTool)28 was imple-
mented in R to identify and analyze gene co-expression modules.
Default parameters were used after assessing normal distribution of
TMM normalized and log2 transformed transcripts across samples
(correlation method = Pearson, R2 > 0.8, filtering pvalue = 0.1). Using
CEMiTool28, resulting gene modules were assessed for enrichment in
RCM phenotype classes and inspected for expression patterns of
individual genes within modules. Gene modules with significant
enrichment in RCM phenotype were annotated for biological rele-
vance using R interface with Enrichr78–80 database (https://cran.r-
project.org/web/packages/enrichR/vignettes/enrichR.html) for fol-
lowing curated gene sets: GeneOntology (GO), pathway enrichment in
curated MsigDB Hallmark gene set81,82, cell/tissue-specific gene
expression profiles using GTEx Tissue and Human Gene Atlas83. To
discover module enrichment for disease processes, enrichment in
GTExAging andOMIMrepositorieswereperformed aswell. Gene-gene
interactions to discover module gene connections with functional
gene regulatory networks defined for T-lymphocytes, macrophage,
skin, and blood were generated using gene pairs defined from
TissueNexus29 (https://www.diseaselinks.com/TissueNexus/index.
php). Interaction data was used in CEMiTool28 to identify overlap
with module genes, discover network hub genes, and visualize net-
work interactions. Network hub genes were used as input in Tissue-
Nexus database, selecting for appropriate tissue/cell type, to query

top-connected neighbors followed by GO enrichment analysis using
GOTermFinder. Resulting top 5 enriched GO terms (adj pvalue< 0.05)
were reported for M2 and M5. Eigen gene values summarizing
expression of all genes within modules M2 and M5 were correlated
(method = Spearman) with TiME phenotypes to interpret disease
relevance and visualized using a correlation matrix along with
scatterplot reporting significant R-value using Hmisc84 package
in R (https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf). To
inspect major sources of variation in gene expression contributing to
RCM phenotypes, principal component analysis (PCA) was performed
using prcomp function and confidence ellipses in PCA were generated
using factoextra73 package in R (https://rpkgs.datanovia.com/
factoextra/index.html).

CIBERSORTx analysis
CIBERSORTx was used for the immune cell analysis to delineate
immune subsets using 547 genes for 22 immune cell types85. Transcript
permillion values were used as input. CIBERSORTx chooses the record
with the highest mean expression across the mixtures during analysis.
The gene expression file with 14 cases was uploaded to CIBERSORTx as
a mixture file, and CIBERSORTx was run with the following options:
relative and absolute modes together, LM22 signature gene file, 100
permutations, and quantile normalization disabled. Sample distance
matrix resulting from immune cell distribution and k-means clustering
were used to interpret CIBERSORTx output.

Immunohistochemistry
IHC for CD1a, CD68, CD3 andCD20was performed on BondRx system
(Leica Biosystems, US). The protocol for the Bond Rx platform inclu-
ded heat retrieval followed by primary antibody incubation (Santa
Cruz Biotech, US). Polymer detection was through DAB Kit (Leica
Biosystems, catalog #DS9800). For the dual CD3/CD20 IHC sequential
staining, we performed heat retrieval, incubation with primary anti-
bodies (anti-CD3, anti-CD20) followedbypolymer detection kits (Leica
Biosystems, US, catalog #DS9800, DS9390). The list of antibodies and
their dilutions have been reported in Supplementary Methods as
Table S1. The IHC slides were digitized on a slide scanner (Aperio
Imagescope, Leica Biosystems, US).

Multiplexed immunofluorescence and analysis
The Opal ‘7-color manual IHC kit’ (Akoya Biosciences, Marlborough,
MA) was used to conduct IF staining on the autostainer LabSat
Research autostainer (Lunaphore Technologies, Tolochenaz, Swit-
zerland). The stains were visualized using a Vectra Polaris Auto-
mated Quantitative Pathology Imaging System (Akoya Biosciences,
Marlborough, MA). The quantitative multiplexed IF results were
derived using the image analysis platform HALO version 2.3 (Indica
Labs, Albuquerque, NM, USA). Depending on the size of the tissue,
1–12 (mean = 5.25) representative intra-tumoral and peritumoral
region-of-interests (ROIs) were chosen, focusing on areas of
immune infiltrates. Cell counts were summed up by compartment
for every patient and values were normalized by DAPI + cells.
Twenty-four specimens were available for evaluation (tissue quality
was heavily deteriorated precluding analysis in 3 samples). Nuclear
segmentation parameters were set using DAPI as the reference
channel, then an analysis mask was overlayed on the image allowing
the software to locate and segment each cell. Using a combination
of the analysis mask and the scanned slide image, minimum inten-
sity thresholds are set for each channel. Once the thresholds are set
the analysis outputs a percentage of positive cells based on the
number of cells positive for a specific phenotype and the number of
DAPI + cells. All antibodies were diluted in Antibody diluent/block
(ARD1001EA, Akoya Biosciences, Marlborough, MA, US). The list of
antibodies and their dilution have been included in Supplementary
File as Table S1.
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IHC evaluation quantification
Each immune marker was quantified using Positive Pixel counting
algorithm (Aperio, Leica Biosystems, IL, US)86. Thresholding was per-
formed on brown, pink, and total brown and pink areas, and total area
was determined by hematoxylin-stained area. Integrated positive pixel
area was used to compute the relative proportion of cells. Parameters
for threshold, hue, and saturationwere kept constant across all patient
specimens.

Immunophenotyping
Freshly excised 3mm punch biopsies from 3 BCC lesions were col-
lected in DMEMmedia. Tissue were transported to cell culture lab on
ice and stored in DMEM media for 24–48 h at 4 °C. Cell suspensions
were generated according to the following protocol87. Cells were
processed for surface labeling with anti-CD3, anti-CD45, anti-CD4, and
anti-CD8 antibodies. Live cells are distinguished from dead cells by
using the fixable dye eFluor506 (eBioscience, ThermoFisher Scientific,
MA, USA). Theywere further permeabilized using a FOXP3 fixation and
permeabilization kit (eBioscience, Thermo Fisher Scientific, MA, USA)
and stained for Ki-67, FOXP3, and granzymeB. Data were acquired
using the Aurora Five Laser flow cytometer (Cytek Biosciences, CA,
US). Data were analyzed with FlowJo software version 10.5.3. (Tree
Star Inc. OR, USA)88.

RCM feature quantification
RCM data. Individual images (0.75 × 0.75mm) from stacks and single
FOV frames from videos were used for automated quantification of
immune cells, and vasculature, respectively. Machine learning-based
immune cell quantification was explored on 1026 frames from 93
lesions (skin cancers and rashes) in 74 patients (34-females, 40-males;
age range 30–88 years). Each case contributed 5-27 independent
images. For vascular feature quantification, 438 single FOV videos (39,
813 frames). Each lesion contributed 1-31 videos.

Machine learning for immunecells. A pixel-wise segmentationmodel
was trained for 4 important morphological patterns (dendritic cells,
macrophages, leukocytic round-ellipsoid cells and miscellaneous
immune cells).We binned them into 2 classes as Class 1: Dendritic cells
and macrophages, Class 2: round-ellipsoid leukocyte-like cells. We
labelled a third class called background comprising of areas that did
not contain any of the immune cell patterns. A total of 1026 RCM
images from 92 lesions were labelled pixelwise for these 3 classes in a
non-exhaustive manner, where we only labelled examples of these
patterns (Fig. S6a). A total of 9% of the pixels were labelled (6% Class 1,
3% Class 2), 91% was used as Class 3. We trained a 3 class
UNet89segmentation model using the MONAI framework90. We used
926 images for training and 100 independent images for testing the
model. Based on our former studies59,91, we downsampled the RCM
images to 256 by 256 pixels (corresponding to 2 µm resolution) for the
sake of computational efficiency.We used a learning rate of 5e-2, batch
size of 64, and SGD optimizer with Nesterovmomentum.We also used
image augmentation such as random rotation, flipping, elastic-affine
deformation, intensity scaling, to increase the training dataset size.
Themodel is trained for 90 epoch using DICE loss. After 90 epochs we
did not see any improvement in the loss. We found a Dice similarity
coefficient of 0.72 for these 3 classes (Table 2).

Vascular features. For vascular feature quantification, we used
438 single FOV videos (39, 813 frames) from 48 cases. For all video
frames, we used a two-step image stabilization procedure to remove
the significant motion found in each movie segment. Firstly, a linear
pre-alignment is performed to minimize large-scale motion in FIJI92

using the SIFT feature plugin Plugins->Registration-> Linear Stack
Alignment with SIFT and default parameters. Stabilized images are
then automatically cropped in MATLAB (mathworks.com) to remove

black background and include only areas within the FOV during the
entirety of the movie segment. The crop rectangle is computed auto-
matically by iteratively removing the row or column of pixels which
contains the most blank pixels in a temporal min image until all outer
edge rows and columns that contain more than three-quarters blank
pixels are removed. We then performed a second custom nonlinear
stabilization in MATLAB to remove large-scale tissue deformations
over time. Frame t + 1 first has its histogramequalized tomatch frame t
and then is aligned to frame t using the imregdemon procedure with
four pyramid levels and steeply decreasing iterations of alignment at
successively finer scales (iterations, [100,50,10,1]). Frame t + 2 is then
aligned with the transformed frame t + 1 and so on. Cropping of all
regions not in view throughout themovie was performed again via the
same procedure.

Blood vessel segmentation. We performed manual segmentation of
blood vessels using an open-source segmentation platform called 3D
Splicer (https://www.slicer.org/)93 on 25 randomly selected videos.
Two videoswerediscarded fromanalysis due to extremeZ-motion.We
processed the remaining 23 videos to display only every 10th frame to
mimic the automated segmentation approach; each frame in the
resulting file was manually segmented for blood vessels. We exported
the entire video segmentation as a Nifti (.nii) file format and imported
into MATLAB as a 3D image array, where consecutive images in the
array correspond to consecutive frames in the RCM video. Ensuring
that the consecutive frames are registered, our assumption for
detecting the vessels was that the areas of high variation between
consecutive frames correspond to vessels. In order to suppress the
variation due to speckle noise in the RCM images, we first applied a
gaussian smoothing filter (sigma= 1px). Then we applied a finite
impulse response high pass filter (F = [0.5,−1,0.5]) and smooth out the
extracted pixel-wise variation in time using a 7-by-7 median filter.
We then subtracted the mean variation of each frame to eliminate the
slowly varying areas, and obtain a variationmap for thewhole video by
accumulating the variation over the entire video sequence. We finally
applied otsu thresholding on the final variationmap to locate the areas
with vessels. To smooth the border of the vessels and clean out the
noise in the segmentation, we applied morphological closing opera-
tion on the binary segmentation map and clean segmented areas
smaller than 0.1% and larger 10% of the entire frame. Finally, we cal-
culated Dice similarity coefficients by comparing manual and auto-
mated vessel segmentation (Fig. S6b, Table 2).

Trafficking
Background subtraction. We estimated a background image for each
frame as the median per pixel over a temporal window of 6 s centered
on the current frame. Where movie temporal resolution differed, we
adjusted the window in frames accordingly. This background estimate
is subtracted out of the current frame, largely isolatingmoving cells on
a dark background. We also tested alternative common methods for
background subtraction, including sparse linear factorizationmethods
as well as mean and min background estimates and dividing through
by, rather than subtracting, background estimates, which desirably
enhanced dim cells. None of these methods were found to provide
satisfactory results on our data sets.

Tracking. We exported background subtracted images fromMATLAB
as 32-bit OME tiffs and imported into FIJI. Tracking is then performed
in Trackmate94 using DoG spot detection (subpixel = true; radius =
7.5pixels (7.5/1.33 = 5.63 µm); threshold = 1.6) and the LAP tracker with
no splitting, merging or gap closing, and a max match distance of 20
pixels (20/1.33 = 15.03 µm). The tracklets found are then filtered in
MATLAB to remove spurious tracklets corresponding to imperfectly
removed background elements (this occurs particularly during chan-
ges in z during imaging) or tracks strung together from different fast
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moving circulating blood cells while preserving the desired target
population. Features used to measure tracklet desirability are detailed
below. We set the thresholds quantitatively and automatically to
maximize correspondence between automated results and manual
counts on an initial training set of 40 movies (approx. 10% of overall
data). We investigated three different temporal windows ranging from
3-5 frames (0.6 s, 0.8 s and 1 s) for total quantification of rolling,
crawling and adherent cells. We adopted constrained optimization
within a restricted range, although we also investigated fully inde-
pendent threshold optimization (Fig. S6c). We found moderate-high
correlation (0.79–0.82) during first optimization ((Table 2) following
which trafficking was quantified on remaining videos. Final validation
using manual counts on a subset of videos (~2.5% of total data) by two
readers, we found high inter-reader concordance and high correlation
(0.74–0.0.89) for different temporal windows (Fig. S6d, e). We selec-
ted temporal window 3 (0.6 s) for subsequent analysis to ensure
inclusion of especially faster trafficking processes (rolling cells) in
shorter blood vessels. The correlation was worse for videos with
remnant motion after two-step motion minimization strategy, sug-
gesting need for minimizing axial and lateral motion during data
acquisition, and use of more efficient motion removal algorithms in
future. The existing code can be found on Github and zenodo95.

The Tracklet Parameters used are as follows:
Displacement = [15.41,16.92,16.92] µm or [20.5,22.5,22.5] pixels
Consistency = [58,58,58] degrees
Quality = [1.6,1.65,1.75] arbitrary units
Length = [0.6 s, 0.8 s or 1 s]
where,
Displacement – total displacement between tracklet start and end

point, in pixels (tracklets with lower displacement are discarded)
Motion Consistency – average angle between the motion vector

of the track at successive timepoints in degrees (tracklets with higher
angular difference are discarded)

Quality – average quality of detections making up the tracklet as
measuredbyTrackmate (lower averagequality tracklets arediscarded)

Length – duration in s of tracklet, in all cases this was set to the
thresholds used in manual counts (shorter tracklets are discarded).

Response to Immunotherapy analysis
We analyzed correlation of TiME features and phenotypes with
response to topical TLRA imiquimod on 13 lesions on 8 patients (4
females, 4 males; age range 54–70 years). The patients were imaged at
baseline (T0) and end of treatment. We performed HCPC clustering in
R to identify clustering patterns based on response. To assign phe-
notypes, we projected these patients on the original BCC PCA model.
Towards developing quantitative models for response prediction, we
first performed linear regression modeling to quantitatively identify
the predictor variables for response to imiquimod, and compared
against the known “standard” which is tumor-infiltrating lymphocyte-
like cells and intratumoral inflammation. In order to measure the
predictive power of each feature, we trained predictive models in a
leave-one-out cross-validation fashion and measured the model per-
formance by inferring on the left-out test sample (out-of-bag esti-
mates). This procedure was followed in an iterative manner, where we
selected a single feature that gives the highest performance and added
a new feature that provided the highest performance in each iteration.
Model performance was measured by calculating specificity (the
higher, the better) on the out-of-bag estimates and Akaike Information
Criterion (the lower, the better) value of the model. In this way, the
features were prioritized according to their predictive power. The best
performance among the AIC prioritizing models was 85% sensitivity,
66% specificity and AIC= −15.06 with 8 variables while the best per-
formance among the specificity prioritizing model was 71% sensitivity,
83% specificity and AIC= −15.06 with 13 variables. Moreover, we also
examined the linear separability of (i) individual features by looking at

the histogram of feature values for each sample, and (ii) each pairwise
feature combination by examining kernel density estimation plots.

Statistical analysis
Data was collected using prospective patient imaging, no statistical
methodwasused to predetermine sample size. Data from 1 patientwas
excluded due to motion blur during image acquisition during TiME
phenotyping and all subsequent analyses. Being an observational, non-
intervention study, the samples were not randomized. Further, the
investigators were not blinded to allocation during experiments and
outcome assessment. To elucidate agreements between two readers’
manual evaluations for RCM features, Cohen’s kappa coefficients were
computed. The agreement regarding the extent of each feature pre-
sence between RCM and histology was quantified using linearly
weighted Gwet’s AC1. Unsupervised statistical clustering for pheno-
typing was performed using hierarchical clustering on principal
components (HCPC) and principal component analysis (PCA) using
PCs with largest eigenvalues that explained at least 95% of total var-
iance. Mean, median and confidence intervals were computed for the
multiplexed IHC/IF data analyzed and significance was estimated
using either two-tailed unpaired Mann–Whitney test or Kruskal-
Wallis test corrected for multiple group comparisons by Dunn’s
method. Differentially expressed transcripts between RCM InflamHIGH

and InflamLOW groups were determined using pairwise comparisons
in edgeR performing quasi-likelihood F-test (FDR < 0.05) on TMM-
normalized read counts with filtering to remove lowly expressed
transcripts (using filterByExpr argument in edgeR). Co-Expression
Modules identification Tool (CEMiTool) was used to identify and
analyze gene co-expression modules using default parameters after
assessing normal distribution of TMM normalized and log2 trans-
formed transcripts across samples (correlation method = Pearson,
R2 > 0.8, filtering pvalue = 0.1). Two-tailed Mann–Whitney tests were
used to evaluate p-value for CIBERSORTx immune cell proportions,
and prevalence of TiME features across responders and non-
responders. Spearman correlation was used to estimate correlation
between quantified RCM features and immune-related, trafficking-
related and vascular-related genes. Linear regression modeling and
leave-one-out estimates were used for developing predictionmodels
of treatment response. Model performance was evaluated by speci-
ficity and Akaike information criterion.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-expression datasets generated during this study have been
made publicly available on Gene Expression Omnibus (GEO ID:
GSE181037). Publicly available datasets used in this study include
MsigDB [https://www.gsea-msigdb.org/gsea/msigdb/], gene ontology
[http://geneontology.org/], GTex [https://gtexportal.org/home/] and
OMIM repository [https://www.ncbi.nlm.nih.gov/omim]. De-identified
raw images will be freely available upon request. Requests will be
considered for 10 years after the publication of this article. As per
MSKCC guidelines, a data sharing agreement and ethical permissions
will have to be necessarily set up with requesting colleagues and their
institutions. Source data are provided with this paper.

Code availability
Custom image anddata analysis scripts for FIJI andMATLABdeveloped
for quantification of imaging data are available on GitHub [https://
github.com/mskccmccf/TiME-analysis] or Zenodo [https://doi.org/10.
5281/zenodo.6712717] and the RNA-seq analysis pipeline is available
on GitHub [https://github.com/mskccmccf/TiME-analysis/tree/main/
RNA_Seq_Analysis]. Other publicly available R packages used for the
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gene expression and statistical analysis have been cited throughout
the manuscript.
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