
McAfee et al. 
Journal of Neurodevelopmental Disorders           (2022) 14:50  
https://doi.org/10.1186/s11689-022-09461-x

REVIEW
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Abstract 

A growing number of variants associated with risk for neurodevelopmental disorders have been identified by 
genome-wide association and whole genome sequencing studies. As common risk variants often fall within large 
haplotype blocks covering long stretches of the noncoding genome, the causal variants within an associated locus 
are often unknown. Similarly, the effect of rare noncoding risk variants identified by whole genome sequencing on 
molecular traits is seldom known without functional assays. A massively parallel reporter assay (MPRA) is an assay that 
can functionally validate thousands of regulatory elements simultaneously using high-throughput sequencing and 
barcode technology. MPRA has been adapted to various experimental designs that measure gene regulatory effects 
of genetic variants within cis- and trans-regulatory elements as well as posttranscriptional processes. This review dis-
cusses different MPRA designs that have been or could be used in the future to experimentally validate genetic vari-
ants associated with neurodevelopmental disorders. Though MPRA has limitations such as it does not model genomic 
context, this assay can help narrow down the underlying genetic causes of neurodevelopmental disorders by screen-
ing thousands of sequences in one experiment. We conclude by describing future directions of this technique such as 
applications of MPRA for gene-by-environment interactions and pharmacogenetics.
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Introduction
Genome-wide association studies (GWAS) of neurode-
velopmental and psychiatric disorders have demon-
strated that the majority of common variation associated 
with these disorders is found in noncoding regions of the 
genome [1–8]. Similarly, whole-genome sequencing stud-
ies (WGS) are poised to discover rare noncoding genetic 
variation associated with neurodevelopmental disorders 
[9–11]. Whereas the functional impact of genetic vari-
ation in protein coding regions can be inferred through 
knowledge of the codon code, the impact of genetic vari-
ation in the noncoding genome is much more difficult 

to understand as no such regulatory code is known. The 
noncoding genome contains cis-regulatory regulatory 
elements (CREs) such as enhancers, promoters, silenc-
ers, and insulators, which influence gene expression by 
serving as docking sites for DNA-binding proteins like 
transcription factors (TFs) [12, 13]. Variants within a reg-
ulatory element can alter TF binding and subsequently 
alter gene expression and cellular function [14, 15].

In addition to the lack of regulatory code, GWAS 
alone cannot pinpoint variants that are causing a dis-
ease because of linkage disequilibrium (LD), the non-
random inheritance of nearby alleles on the genome. 
A genome-wide significant (GWS) locus typically 
contains tens to hundreds of single-nucleotide poly-
morphisms (SNPs) that are associated with a trait or 
disease. Only a subset of these SNPs are thought to be 
causal. While it is commonly thought that the index 
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SNP, the SNP most significantly associated with the 
trait at a locus, is causal, growing evidence portrays a 
more complex picture [16]. The lead SNP is not always 
the causal allele when functionally validated, and a 
given locus can contain multiple causal variants [16]. 
Identifying the causal variant(s) at a locus can greatly 
facilitate our understanding of disease mechanisms by 
narrowing down the genetic underpinnings of a disease 
(Fig. 1). Moreover, causal variant identification provides 
the intriguing possibility of developing therapeutics by 
reversing pathological transcriptional mechanisms or 
genetically modifying causal variants [17, 18].

Several experimental and computational designs have 
been used to predict the causal variant at a given locus. 
Fine-mapping tools computationally predict potential 
causal variants based on association statistics and LD 
patterns [20–23], but different algorithms can yield 
conflicting results, and prioritized variants still require 
experimental validation [24]. Allele-specific chromatin 
accessibility (ASCA) can be used to determine if inher-
ent genetic variation in a population of individuals 
affects chromatin accessibility, a proxy for gene regu-
latory activity, in relevant cell types [25, 26]. Genetic 
variants within a noncoding regulatory element that 
affects the function of that element are highly likely 
to be causal gene regulatory variants. Allele-specific 
chromatin accessibility when colocalized with GWAS 
suggests that the genetic variants are also causally asso-
ciated with the trait or disease. However, ASCA experi-
ments require large sample sizes of genetically diverse 
donors with both genotype and chromatin accessibility 
data, and they cannot independently test the effect of 

multiple variants in high LD within a regulatory ele-
ment [27, 28].

Functional validation assays fill the existing gap by 
experimentally demonstrating how genetic differences 
lead to phenotypic effects [29]. Gene regulatory activity 
of noncoding elements has historically been functionally 
validated via luciferase assays (Fig. 2A). A luciferase assay 
places a regulatory sequence of interest (sometimes con-
taining a SNP) upstream of a luciferase reporter gene and 
quantifies the regulatory effect on expression via lumi-
nescence of luciferase [27]. However, luciferase assays 
lack the throughput to validate thousands of regulatory 
sequences at once because each regulatory element must 
be measured independently.

Massively parallel reporter assays (MPRA) have 
advanced the throughput of luciferase assays by ena-
bling the simultaneous functional validation of regula-
tory activity of thousands of variants on a massive scale 
(Fig. 2B), often vastly narrowing down thousands of vari-
ants found by GWAS or quantitative trait loci (QTLs) in 
a single assay (Fig. 1). Rather than quantifying the lumi-
nescence of luciferase, MPRA measures the barcoded 
reporter gene expression via next-generation sequenc-
ing. Once the MPRA construct is introduced into cells 
of interest, the synthesized regulatory element drives 
the expression of its unique barcode, a random oligo 
sequence that uniquely tags the matching regulatory ele-
ment. The initial input of the construct is quantified by 
the DNA counts of the barcodes, which is compared 
to the RNA counts to evaluate effects on expression 
(Fig. 2B).

MPRA has incredible potential for study-
ing the noncoding genetic variants associated with 

Fig. 1  Use of MPRA to identify causal variants at a GWAS locus containing many SNPs in high LD. A The schematic cartoon plots show GWAS 
and MPRA SNPs and their corresponding significance at a single locus. LD structure confounds identification of the causal variant in the GWAS, 
but the MPRA tests regulatory effects of each SNP independently so it can identify a specific causal variant. B. Top, SNP association statistics at a 
genome-wide significant locus from an ASD GWAS [19]. The index SNP, rs60527016, reached genome-wide significance. SNPs are colored by binned 
LD (r2) relative to the MPRA-validated variant (rs7001340). The existence of SNPs that are in high LD with rs7001340 highlights the difficulties in 
defining which SNPs are functional or causal based on GWAS alone. Bottom, MPRA identified a causal variant within this locus (rs7001340) that 
shows strong allelic regulatory activity. Image adapted from [19]
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neurodevelopmental disorders. Whereas the majority of 
efforts have been made to characterize common variants 
identified by GWAS, wide application of WGS would fur-
ther expand the utility of MPRA in characterizing various 
classes of variants located in the noncoding genome.

In this review, we will discuss the broad application of 
MPRA to functionally validate variants within the vari-
ous regulatory contexts that encompass transcriptional 
and posttranscriptional regulation. We will then add 
important considerations for conducting MPRA, includ-
ing limitations of MPRA experiments. We conclude by 
providing future directions of MPRA.

MPRA for studying cis‑regulatory elements
Canonical MPRA
The canonical MPRA design includes a CRE, a generic 
promoter, a reporter gene, and a unique barcode assigned 
to each regulatory element (Fig.  2B). Generally, CRE 
libraries of interest are made with mass oligonucleotide 
synthesis. To interrogate variant effects on gene regula-
tion, the CRE can be modified to harbor a variant within 
its sequence. Additionally, every possible single-nucle-
otide mutation can be added to the CRE, called satura-
tion mutagenesis. The impact of the variant on regulatory 
activity is measured through barcodes matched to each 

unique variant. Because the barcode itself can have an 
influence on levels of expression, many barcodes are usu-
ally tested for each variant. Transcriptional activity is 
quantified as barcode transcription (via RNA-seq of the 
barcodes) normalized to initial input of barcodes (via 
DNA-seq of the barcodes). This allows systematic inves-
tigation of variant function within a noncoding region by 
comparing the gene regulatory activity between protec-
tive and risk alleles of a given variant. A growing body 
of research employs this strategy to identify functional 
regulatory variants within GWAS loci [30–34]. Key con-
sideration in designing MPRA involves the use of proper 
controls [35]. For example, scrambled sequences of DNA 
in the relevant cell type can be used as negative controls 
to experimentally validate enhancers [35]. Likewise, a 
strong promoter or a known highly expressed sequence 
in the relevant cell type can be used as positive controls 
[35]. The canonical MPRA design has been adapted to fit 
the needs of differing types of CREs being tested [36–39].

Promoter
Mutations and variants in promoter regions can have a 
profound impact on gene expression. MPRA has been 
used to test the impact of variants in promoters on a 
massive scale. In comparison with the canonical MPRA 

Fig. 2  Luciferase assay vs cis-regulatory MPRA. A Luciferase assay measures light emitted by a reporter gene, luciferase, driven by a regulatory 
element. B In a canonical cis-regulatory MPRA, the regulatory element drives the RNA expression of the unique barcodes. Transcriptional activity is 
quantified as barcode transcription (via RNA-seq of the barcodes) normalized to initial input of barcodes (via DNA-seq of the barcodes). Thousands 
of cis-regulatory elements (CREs) can be tested in the same experiment
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design, promoter MPRA lacks a CRE and alters the DNA 
sequence of the promoter region. Patwardhan et al. uti-
lized promoter MPRA with saturation mutagenesis to 
screen the activity of mutated promoter sequences with 
attached barcodes (Fig. 3A) [40]. Barcode counts quanti-
fied via short-read sequencing provided a scalable read-
out of promoter activity, which led to the identification of 
critical regions of a promoter that govern transcriptional 
efficiency [40].

In addition to introducing variation in the promoter 
sequences, a similar approach can be used to character-
ize promoter activity of any given sequence. Boer et  al. 
developed a gigantic parallel reporter assay (GPRA) 
that measured the promoter activity of over 100 million 
randomly synthesized sequences [46]. The complex-
ity of synthetic promoters surpasses the complexity of 
the human genome, allowing them to build a predictive 
model of how genetic sequence affects transcriptional 
regulation.

While many neurodevelopmental disorder-associated 
variants have been shown to be enriched in promoter 
regions [24, 47, 48], MPRA has yet to be adopted to sys-
tematically examine the regulatory function of these 
promoter variants. We expect MPRA will provide a use-
ful avenue to elucidate the function of promoter variants 
associated with neurodevelopmental disorders.

Enhancers
Enhancers are CREs that TFs bind to and activate gene 
expression [49]. Disease-associated risk variants are 
enriched in enhancers [50]. Despite their important roles 
in gene regulation and disease associations, the sequence 
logic of enhancers is not well understood. Therefore, 
MPRA has been widely adapted to experimentally test 

the function of enhancers and variants within enhanc-
ers [19, 51]. While MPRA can take on many forms to 
examine enhancer functions [52], generally, a putative 
enhancer element is coupled with a weak promoter (e.g., 
minimal promoter) that is followed by a reporter gene 
and a unique barcode (Fig. 3B).

Myint et al. used enhancer MPRA to screen 1049 schiz-
ophrenia- and 30 Alzheimer’s disease-associated variants 
for differences in driving reporter gene expression [34]. 
They used two cell lines and identified 192 SNPs with 
significant differences in driving reporter gene expres-
sion [34]. Among the 192 variants, 148 showed allelic 
differences in K562 cells, 53 in SK-SY5Y cells, and only 
9 showed allelic differences in both cell lines, demon-
strating that genetic variants often exert their regula-
tory effects only within specific cell types [34]. As an 
additional example, Matoba et  al. used MPRA to fine-
map one novel ASD GWAS locus in HEK293T cells 
(Fig.  1) [19]. Of 98 variants tested, two were found to 
have significant differential allelic activity, with one vari-
ant (rs7001340) exhibiting strong effects. By integrat-
ing MPRA results with expression quantitative trait loci 
(eQTLs), they showed that an ASD-associated risk allele 
decreased the expression of DDHD2 [19]. These exam-
ples highlight MPRA’s ability to map disease-associated 
variants within putative enhancer regions.

Transcription factors (TF) recognize and bind to spe-
cific sequences within an enhancer, called TF bind-
ing motifs, to regulate gene expression. Variants within 
motifs can disrupt TF binding or create new motifs, 
altering regulatory activity. Though enhancer MPRA 
can identify if a variant affects enhancer activity, it does 
not experimentally validate which TF contributes to 
the altered regulation. TF-DNA interactions can be 

(See figure on next page.)
Fig. 3  MPRA designs for studying gene regulation. MPRA modifies the design of canonical cis-regulatory MPRA (described in Fig. 2B) that contains 
a cis-regulatory element (CRE), a promoter, a reporter gene, and a unique barcode (BC). Elements of this construct can be replaced or rearranged 
to test different types of CREs. The red vertical line indicates where a variant can be located. A Promoter MPRA contains a promoter harboring 
a variant, a reporter gene (e.g., GFP), and a unique BC. Image adapted from [40]. B Enhancer MPRA contains a regulatory element harboring a 
variant, a (minimal) promoter, a reporter gene, and a unique BC. C Transcription factor binding MPRA (TransMPRA) can be broken down into 
two components: (1) a promoter with a guide RNA (gRNA) that targets a transcription factor (TF) of interest and (2) a promoter, a test enhancer 
sequence harboring a variant, and a unique BC. The gRNA brings catalytically dead Cas9 protein with an attached Krüppel-associated box 
(dCas9-KRAB) which silences the expression of the TF gene. If the silenced TF interacts with the test enhancer, the downstream barcode expression 
is decreased. Image adapted from preprint [41]. D Silencer MPRA (in a STARR-seq style) contains a (strong) promoter and a test silencer harboring 
a variant. The silencer sequence can prevent self-transcription by silencing the promoter. Image adapted from [42]. E Splicing MPRA has minigene 
constructs that are inserted between a split-GFP reporter (GFP-N terminus and GFP-C terminus) and a peptide 2A (P2A) upstream of an mCherry 
reporter. Variants can be located in the variable intron sections on either side of the exon or within the exon. Inclusion of the middle exon disrupts 
GFP fluorescence, and cells can be FACS sorted into bins based on GFP:mCherry ratios. The GFP with or without the exon are quantified for exon 
inclusion or skipping via DNA-seq of the plasmid in each sorted bin. Image adapted from [43]. F RNA modification MPRA contains a promoter, an 
arbitrary coding sequence (CDS), a putative pseudouridine (Ψ) sequence as 3′ untranslated region (UTR), and a unique barcode. Once the library 
is introduced, cells are treated with N-cyclohexyl-N′-β-(4-methylmorpholinium) ethylcarbodiimide (CMC) which binds to Ψ and prevents reverse 
transcription (RT). High-throughput sequencing of cDNA allows prediction of the exact base pair location of the Ψ RNA modification. Variants can 
be inserted anywhere in the CDS. Image adapted from [44]. G 3′ UTR MPRA consists of a promoter, a reporter gene, a 3′ UTR harboring a variant, 
and a BC. BC RNA counts reflect transcriptional stability modulated by 3′ UTRs. H RNA localization MPRA consists of a promoter, a mutated Sox2 
gene that localizes in the cytoplasm (fsSox2), a lncRNA harboring a variant, and a unique barcode. Barcode expression from subcellular fractions is 
used to interrogate subcellular localization of lncRNA. Image adapted from [45]
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measured using methods such as chromatin immunopre-
cipitation sequencing (ChIP-seq), or they can be inferred 
using CRISPR knockout screens that model the impact 
of TFs on gene regulatory programs [53–55]. A recently 
introduced technique (in preprint) called TransMPRA 
also addresses this question by combining MPRA with 
CRISPR interference and single-cell sequencing to meas-
ure the interaction between transacting factors and 
putative enhancers (Fig. 3C) [41]. In this system, a guide 
RNA (gRNA) for a known TF is packaged together with 
enhancer MPRA that are potentially directly targeted 
by the TF [41]. When introduced into cells expressing 

dCas9-KRAB proteins, TF expression is inhibited, and 
enhancer activity is reduced only if the element is a 
downstream target of the TF [41]. Accordingly, TransM-
PRA provides an incredibly important tool to delineate 
potential transcriptional regulators for noncoding vari-
ants associated with neurodevelopmental disorders.

Silencers
MPRA has been adapted to test silencer elements, which 
are noncoding functional elements that lead to decreased 
expression of their target gene (Fig.  3D) [42]. Silencer 
MPRA differs from enhancer MPRA in two aspects. 

Fig. 3  (See legend on previous page.)



Page 6 of 14McAfee et al. Journal of Neurodevelopmental Disorders           (2022) 14:50 

First, enhancer MPRA uses a weak promoter (e.g., mini-
mal promoter) to measure increases in gene expression 
elicited by the putative enhancer, while silencer MPRA 
uses a strong promoter (e.g., super core promoter, SCP1) 
that transcribes a high baseline level of the construct, 
so decreases in transcription can be detected. Second, 
silencer MPRA leverages the design of self-transcribing 
active regulatory region sequencing (STARR-seq), a sub-
branch of MPRA (for more information about STARR-
seq, please see the review [56]). STARR-seq places an 
uncharacterized CRE downstream of a strong core pro-
moter followed by a polyA tail. This MPRA design does 
not require barcodes because the sequence of the tran-
scribed putative silencer acts as the barcode [42]. While 
MPRA in the STARR-seq style has been widely adopted, 
it is important to consider that mRNA sequences could 
be affected by posttranscriptional effects such as mRNA 
degradation which would be indistinguishable from tran-
scriptional effects [57].

Silencer MPRA has been applied to detect thousands 
of CREs acting as silencers, which were enriched for 
disease-associated SNPs [42], highlighting the need to 
decipher regulatory logic of transcriptional silencing in 
understanding disease etiology [42].

MPRA for studying posttranscriptional regulation
Splicing
MPRA can be combined with methods that sequence 
populations of cells binned by fluorophore expression, 
called Sort-seq [58], to study posttranscriptional pro-
cesses like alternative splicing. In splicing MPRA, a 
red fluorophore (mCherry) is constitutively expressed, 
and a three-exon, two-intron minigene construct is 
cloned into a plasmid in such a way that when the mid-
dle (tested) exon is skipped, a green fluorophore (GFP) 
is also expressed (Fig.  3E) [43]. Variants can be located 
in the variable intron sections on either side of the test 
exon or within the exon. Cells are sorted into bins using 
GFP:mCherry ratios by fluorescence-activated cell sort-
ing (FACS), where a higher ratio indicates greater intron 
excision. Plasmid DNA is then sequenced within each bin 
to determine which variants affect splicing. In an experi-
ment utilizing this assay, many of the variants that lead to 
differences in splicing were located outside of canonical 
splice sites in both exons and introns, demonstrating that 
novel types of genetic variation affect splicing [43].

Though splicing MPRA have not yet been used to 
validate neurodevelopmental disorder-associated vari-
ant function, alternative splicing is a critical process for 
neuronal fate specification during neurogenesis [59, 
60], and differences in alternative splicing have been 
identified in postmortem brains from individuals with 
autism, schizophrenia, and bipolar disorder [61]. Rare 

neurodevelopmental disorders can also be caused by 
alterations in alternative splicing. For example, famil-
ial dysautonomia, a degenerative sensory and auto-
nomic nervous system disorder, is caused by a 5′ splice 
site mutation in an intron of IKBKAP [62]. The muta-
tion results in variable exclusion of exon 20 and reduced 
IKAP protein levels in neuronal tissue [63]. Identifying 
the mutation has allowed understanding of the disease 
mechanism [64] and testing of therapeutic treatments 
[65, 66]. Therefore, splicing MPRA have great potential 
to identify variants that contribute to abnormal splicing 
in neurodevelopmental and neuropsychiatric disorders.

RNA editing
RNA sequences can be modified posttranscriptionally 
in a process known as RNA editing, which can alter the 
function of a gene [67, 68]. Dysregulation of RNA edit-
ing has been shown in many nervous system disorders 
such as brain cancer, addiction, depression, Alzheimer’s 
disease, amyotrophic lateral sclerosis (ALS), ASD, and 
intellectual disabilities (ID) [68, 69]. MPRA have been 
adapted to quantify RNA editing events such as uridine 
to pseudouridine (Ψ) which changes RNA regulation 
and stability [44, 70]. RNA editing MPRA consists of a 
promoter, coding sequence (CDS), putative Ψ sequence 
containing variants within the 3′ untranslated region 
(UTR), and a unique barcode (Fig.  3F) [44]. Once the 
MPRA library is introduced into cells, it is treated with 
a molecule that binds to the Ψ and prevents reverse tran-
scription at the binding site [44]. Consequently, the exact 
base pair location of the Ψ alteration can be determined 
via high-throughput sequencing. This type of assay can 
show which underlying DNA sequences and variants 
lead to uridine to Ψ RNA editing, decoding much of the 
unknown regulatory code for RNA editing.

RNA stability and translation
In addition to transcriptional regulation, mRNA stabil-
ity and translational control are another critical step that 
determines protein abundance. 5′ and 3′ UTRs are regu-
latory regions of the DNA that influence mRNA stability, 
localization, and translation [71, 72]. MPRA can be used 
to study the function of both 5′ and 3′ UTR sequences.

5′ UTRs affect translational efficiency by altering ribo-
some loading [73]. In an example of 5′ UTR MPRA, Sam-
ple et  al. measured the impact of 5′ UTR sequences on 
ribosome loading by having putative 5′ UTR sequences 
inserted upstream to a GFP and a 3′ UTR [73]. After 
introducing the constructs to the cells, 5′ UTR sequences 
that are actively being translated in ribosomes are directly 
sequenced via polysome profiling [73]. This method iden-
tified 45 variants associated with disease that signifi-
cantly affected ribosome loading [73]. 5′ UTR MPRA is 
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an effective method to identify disease-associated vari-
ants that alter translational efficiency.

MPRA are also used to understand how variants within 
3′ UTR sequences affect stability of mRNA (Fig.  3G) 
[74, 75]. In the 3′ UTR design, a promoter drives GFP 
expression which has a 3′ UTR containing a variant, 
and a unique barcode matched to that variant. Barcoded 
expression of GFP and 3′ UTR can be used to assess dif-
ferences in RNA abundance (and hence stability). Lagu-
nas et al. used this approach to assess the activity of > 500 
de novo noncoding variants identified by WGS of ASD 
families, yielding 41 variants with differential stability 
effects in the brain [74]. This is in line with the previous 
findings that modifications in the 3′ UTR are broadly 
linked to brain function and neurodevelopmental disor-
ders [76–78].

RNA localization
Location of RNA within the cell often closely aligns with 
its function. Massively parallel RNA assay (MPRNA) can 
test subcellular localization (e.g., nuclear vs. cytosolic) 
of long noncoding RNAs (lncRNAs) at scale [45]. The 
MPRNA construct consists of a cytosolic-localized Sox2 
variant (fsSox2), a DNA sequence that encodes a lncRNA, 
and a unique barcode (Fig. 3H) [45]. The fsSox2 makes the 
baseline localization cytosolic; therefore, if the lncRNA 
creates a nuclear localization sequence, it will translo-
cate to the nucleus. Once cells are transfected with the 
MPRNA construct, the cytoplasm and nucleus are iso-
lated via subcellular fractionation [45]. The resulting bar-
code counts from RNA-seq inform lncRNA sequences 
that influence nuclear localization, which in turn affects 
the regulatory activity of the lncRNA [45]. Subcellular 
localization provides valuable insight into the function of 
lncRNAs, which is unknown compared to protein coding 
genes despite evidence found for their role in brain devel-
opment and neurodevelopmental disorders such as ASD, 
Rett’s syndrome, attention-deficit hyperactivity disorder 
(ADHD), and schizophrenia [79–92] and other neurolog-
ical disorders such as Alzheimer’s, Parkinson’s, and Hun-
tington’s disease [82, 93].

Limitations of MPRA
MPRA cannot identify target genes
Though MPRA is an incredibly useful tool to experi-
mentally verify variant function, this assay is not without 
limitations. Enhancer, promoter, and silencer MPRA can 
effectively identify variants and elements with regulatory 
activity, but these assays cannot inform which gene(s) 
that the variants act on. Therefore, MPRA results need 
to be combined with other functional genomic data such 
as eQTLs and chromatin interaction profiles (Hi-C) to 
identify target genes [94]. While functional genomic 

approaches can be a good starting point to discern vari-
ant function, acquiring functional genomic datasets that 
match the appropriate biological context can be challeng-
ing when a rare cell type or environmental perturbation 
is used.

A complementary approach to address this gap is Per-
turb-seq, which employs a pooled library of gRNAs asso-
ciated with a unique barcode that modulates expression 
of the gRNAs’ target genes. A Perturb-seq gRNA library 
could be designed for the MPRA-validated regulatory 
elements and introduced into a cell line expressing Cas9 
protein. Introduced gRNAs can perturb the region of 
interest, and transcriptomic alterations can be profiled 
via scRNA-seq. The resulting data can explain the regu-
latory impact of perturbed elements within a given cell 
[95]. Moreover, because Cas9 perturbs host genomic 
DNA, it can further verify element function within the 
biologically relevant (epi)genetic context. Therefore, Per-
turb-seq can complement MPRA by shedding light on 
which genes and pathways MPRA-validated elements act 
on.

Genomic context
Another disadvantage of MPRA is that it uses exogenous 
DNA constructs that do not model the endogenous regu-
latory environment at the variant location. Exogenous 
DNA constructs are either episomal or inserted into the 
DNA at random locations. An episomal construct is not 
subject to cis-regulatory effects such as chromatin acces-
sibility and conformation. Instead, its activity is only 
modulated by trans-regulatory effects, like transcription 
factors. In contrast to episomal MPRA, MPRA delivered 
through a lentiviral vector (LentiMPRA) randomly inte-
grates into the host genome, hence enabling functional 
characterization of regulatory elements and variants 
within the context of the host genome [96]. However, 
LentiMPRA constructs are randomly integrated into the 
genome, so the (epi)genomic context of the integrated 
site most likely differs from that of the host genome and 
may differ from one insert to another.

The effect of genomic context has been evaluated with 
a new technique called PatchMPRA [97]. This tech-
nique leverages a cell line that has multiple known land-
ing pads, each labeled with a unique genomic barcode. 
Because chromatin architecture of each landing pad 
has been well characterized, (epi)genomic context can 
be accounted for when interpreting the MPRA results. 
Maricque et  al. used PatchMPRA to test over 30,000 
combinations of CREs and local chromatin architecture 
in K562 cells [97]. They found that the location of land-
ing pads in the genome had significant effects on bar-
code expression [97]. In particular, the DNA sequence of 
CREs determines the intrinsic regulatory activity, which 
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is then fine-tuned by the chromatin environment [97]. 
While PatchMPRA enables systemic interrogation of 
interaction between regulatory elements and genomic 
contexts, it requires landing pads to be inserted into the 
host genome, which may not always be possible in some 
model systems.

Future directions
Choosing cell type and developmental time period
Regulatory elements are often only functional within a 
given tissue or cell type [25, 98–101]. As regulatory ele-
ments display extensive tissue and cell type specificity 
[25, 98–101], it is important to choose the cell and/or tis-
sue type carefully for an MPRA experiment. MPRA may 
give different results as to which CREs and variants have 
regulatory effects based on which cell type the MPRA is 
tested in (Fig. 4) [102]. This can be due to TFs being dif-
ferentially expressed in different cell types [103] leading 
to cell type-specific regulatory element activity [25].

MPRA is most commonly performed, out of conveni-
ence, on cell types easily cultured and transfected in a 
lab (such as HEK293 cells [19]). Because TFs may only 
be expressed within specific cell types, MPRA results 
may change in other cell types (Fig. 4), so using a relevant 
brain cell type for neurodevelopmental disorders is a pre-
ferred experimental design. Genetic variation associated 
with multiple neurodevelopmental disorders is enriched 
in regulatory elements present in dorsal telencephalic 
neural progenitors and excitatory cortical neurons, mak-
ing them optimal cell types to conduct MPRA experi-
ments [25, 60, 98, 104–106] (Fig. 4).

The cell type specificity of MPRA has been previously 
demonstrated with an MPRA on random CREs tested in 
two cell lines: U87 glioblastoma cells and induced pluri-
potent stem cell (iPSC)-derived human neural progenitor 
cells (hNPCs) [102]. This study found a significant inverse 
correlation (R = −0.326) between regulatory activity of 
CRE barcode expression in these two cell types [102]. 
The difference in regulatory activity was attributed to the 

Fig. 4  An example of how cell types influence variant function. A In cell type A, TF is expressed and binds to the A allele in both the host genome 
and the MPRA construct. In the host genome with allele A, the gene is expressed. In the MPRA construct with allele A, the barcoded (BC) reporter 
gene is expressed. TF does not bind to the C allele, so the gene and BC associated with that allele are not expressed. B In cell type B, TF is not 
expressed, so the allele is not associated with BC expression
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difference in TFs expressed in those cells and the pres-
ence of their binding motifs within the MPRA library. 
An enrichment in binding sites for TFs involved in brain 
development, such as SOX2, DBX1, and FOXP2, was 
found in hNPCs compared to U87 cells, as these TFs 
are more highly expressed in hNPCs [102]. These results 
underline the importance of choosing a relevant model 
system for studying brain-specific variant function.

To delineate variant effects on gene regulation in a cell 
type-specific manner in  vivo, Cre recombinase-depend-
ent MPRA packaged within an adeno-associated virus 
(AAV) has been developed [74]. In a preprint describ-
ing this method, mouse lines expressing Cre recombi-
nase from an endogenous cell type-specific promoter is 
used to restrict the expression of an MPRA construct to 
a given cell type and location. This design has been used 
to test MPRA within excitatory neurons by injecting the 
Cre-dependent AAV MPRA into the cortex of Vglut1-
IRES2-Cre-D mice [44]. Controlling for cell type speci-
ficity within an in vivo system is especially important as 
brain tissue is composed of heterogeneous cell types, and 
MPRA results from bulk tissue may mask the effects of 
variants functional in relatively less abundant cell types.

Just as cell and tissue types are important to MPRA, 
the development stage is a critical factor to consider 
when performing MPRA. This is especially important 
in studying genetic etiology of neurodevelopmental and 
psychiatric disorders which, by definition, have neurode-
velopmental origin [60, 105, 107]. As such, investigat-
ing variant function during prenatal time periods when 
processes such as neurogenesis, gliogenesis, synaptogen-
esis, and pruning are occurring increases the likelihood 
of gaining neurodevelopmental relevant information via 
MPRA [108].

Response MPRA: gene‑environment interactions explored
One critical, unanswered question in the field is the 
extent to which variant function is influenced by gene-
environment interactions. External stimuli can alter 
a cellular pathway that has downstream effects on TF 
abundance and binding properties. Applying MPRA 
in this context can uncover a new class of variants that 
gain (or lose) regulatory effects upon exposure to exter-
nal stimuli. Here, we propose a term “response MPRA” 
to describe MPRA performed in response to an exter-
nal stimulus, such as exposure to hormones, drugs, or 
other biomolecules, as well as measuring gene regulatory 
effects in the context of a particular cell state (Fig. 5).

In an example of a response MPRA, Mulvey et al. [32] 
interrogated allelic regulatory activity of major depres-
sive disorder (MDD) risk variants in response to all-
trans retinoic acid (ATRA). ATRA, an acid derivative of 
retinol, activates the retinoic pathway, which has been 

implicated with the risk for MDD [32]. ATRA adminis-
tration to N2A neuroblastoma cells not only increased 
the magnitude of allelic regulatory activity of a subset of 
variants with retinoic receptor motifs but also unmasked 
allele-specific activity not otherwise detected in the tra-
ditional MPRA [32]. As retinoic acid is a potent driver of 
neuronal differentiation, further investigation is required 
to distinguish ATRA-dependent regulatory effects from 
cell type-specific regulatory effects. Still, the evidence 
suggests that a subset of variants may function only upon 
activation of the retinoic pathway, providing a biological 
context for MDD genetic risk factors.

An additional application of the response MPRA fol-
lows the paradigm of measuring gene regulatory activity 
in the context of a particular biological process. In neu-
rons, a classic example of this involves measuring CRE 
response upon stimulation with known modulators of 
neuronal activity. In an early adaptation of this approach, 
Nguyen et al. compared promoter and enhancer activities 
in neurons treated with potassium chloride with their 
unstimulated controls [109]. While similar sequences 
were found to be associated with increased neuronal 
activity between promoters and enhancers, the authors 
identified specific TF binding sites enriched in promoters 
that led to greater overall activity in response to neuronal 
activity. Another important cellular process relevant to 
neurodevelopment is the proliferation of neural progeni-
tor cells. Dysregulation of the cell cycle and increased 
proliferation have been associated with brain overgrowth 
phenotypes present in individuals with ASD [110, 111]. 
By isolating proliferating cells, marked by incorporation 
of thymidine analogous such as BrdU, one can iden-
tify elements specifically active during phases of the cell 
cycle. These examples demonstrate how MPRA can be 
used to assess the importance of cell state in mediating 
gene regulatory activity.

Given the limited therapeutic options available for 
neurodevelopmental and psychiatric disorders, response 
MPRA can provide a high-throughput framework to 
investigate the impact of a drug candidate on variant 
function, potentially leading to high-throughput test-
ing for pharmacogenomics and personalized therapies 
based on genetic background. An example of such an 
approach could be testing ADHD-associated variants 
with methylphenidate (a common ADHD medication 
[112]) to determine which variants have altered func-
tionality upon drug exposure. Identifying the alleles that 
are responsive to methylphenidate exposure may even-
tually lead to more informed clinical decisions based on 
patient genotype during ADHD treatment. Choosing 
an appropriate model system with disease relevance is 
critical to accurately assess drug response. In this regard, 
patient-derived iPSCs are ideal tools for drug discovery 
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efforts as iPSCs can differentiate into many cell types and 
can be scaled to meet coverage requirements for MPRA 
screening.

Finally, response MPRA can provide a useful tool to 
study gene-environment interactions by interrogating 
the variant function upon exposure to environmental 
factors associated with disease risk. Maternal exposure 
during pregnancy to valproic acid (VPA), a commonly 
prescribed antiepileptic medication, has been associated 
with risk for ASD [113], as well as several other neurode-
velopmental disorders [114–116]. Studies have shown 
that VPA exposure can alter the proliferation and neu-
rogenic capacities of neural progenitor cells during brain 
development [117], which can result in downstream defi-
cits in brain structure [118] and cytoarchitecture [119]. 
Performing VPA-response MPRA within a progenitor 
cell type using ASD-associated variants could shed light 

on which alleles have altered function upon VPA expo-
sure. However, VPA is only one of many environmental 
factors that have been associated with ASD risk [120]. 
Overall, various classes of external stimuli, the number of 
variants whose function is altered upon stimulation, and 
the magnitude of these effects on gene regulation have 
yet to be explored and can provide novel insights into 
disease mechanisms.

Conclusions
Many variants in noncoding regions have, and will con-
tinue to be, identified by large-scale studies such as 
GWAS, WGS, and QTL. Understanding the function of 
those variants, and which variants within a haplotype 
block are causal, is the next key step in moving from 
association to biological understanding. In this review, 
we outlined how MPRA can validate variant function 

Fig. 5  A cartoon example of a response MPRA. A In traditional MPRA, MPRA constructs introduced to the cells are not expressed because TF2 that 
acts on the element of interest is not translocated to the nucleus. Barcode expression of these alleles is displayed in a box plot. B In response MPRA, 
cells are treated with a drug X that activates downstream pathways to translocate response-dependent TF2 to the nucleus. Allele C disrupts the 
TF2 binding motif, and its unique barcode is not expressed, while allele A matches the TF2 motif leading to expression of its unique barcode. The 
barcode expression of each allele is displayed in an accompanied box plot. Therefore, this variant displays allelic regulatory activity only in response 
to drug X treatment
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in a wide range of regulatory elements such as enhanc-
ers, promoters, silencers, and TF binding sites. We also 
described how MPRA can be used to garner mechanis-
tic understanding of posttranscriptional regulation such 
as splicing, RNA modification, RNA stability, translation, 
and RNA localization. MPRA results can change based 
on cell type, stimulus state, and developmental time 
period, so these parameters must be carefully considered 
when designing an MPRA experiment. MPRA has limita-
tions in associating regulatory effects to a target gene and 
lacks epigenetic context. Complementary approaches 
that range from other functional genomic resources (e.g., 
eQTLs, ASCA, and Hi-C) to other screening platforms 
(e.g., Perturb-seq) will extend knowledge gained from 
MPRA to provide a greater understanding of the mech-
anisms by which genetic variants affect brain structure, 
function, and development.
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