
Uncovering Post-Translational Modification-Associated Protein-
Protein Interactions

Shu Wang1,

Arianna O. Osgood1,

Abhishek Chatterjee*

Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA

Abstract

In living systems, the chemical space and functional repertoire of proteins are dramatically 

expanded through the post-translational modification (PTM) of various amino acid residues. These 

modifications frequently trigger unique protein-protein interactions (PPIs) – for example with 

reader proteins that directly bind the modified amino acid residue – which leads to downstream 

functional outcomes. The modification of a protein can also perturb its PPI network indirectly, 

for example, through altering its conformation or subcellular localization. Uncovering the network 

of unique PTM-triggered PPIs is essential to fully understand the roles of an ever-expanding list 

of PTMs in our biology. In this review, we discuss established strategies and current challenges 

associated with this endeavor.
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Introduction

Although proteins are generally composed of only twenty canonical amino acids, the 

chemical space available to them is dramatically expanded in living systems by post-

translational modifications (PTMs) of various amino acid side residues.[1] Such PTMs 

provide a powerful way to augment and regulate protein function.[1–4] The modified 

amino acid residue is often recognized by specific “reader” and “eraser” proteins (Figure 

1), and these unique protein-protein interactions (PPIs) govern the complex regulation 

of the functional outcome associated with the PTM.[2,5] In addition, PTMs may also 

trigger unique PPIs indirectly; for example, through inducing dynamic structural changes 

or altered subcellular localization. Consequently, orchestrating new functionally important 

protein-protein interactions is a central mechanism underpinning the regulatory role played 

by many PTMs in our biology.
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Over the last two decades, rapid advances in proteomics have dramatically expanded the 

catalog of known PTMs and the sites in the proteome that are subjected to them,[6,7] 

highlighting a significantly larger role for these modifications in our biology. To fully 

understand their function, it is essential to systematically identify the unique set of PPIs 

that are triggered in response to a particular PTM. Doing so would depend on two key 

abilities: 1) to model the presence/absence of the PTM on a target protein, and 2) to 

reliably characterize the PPIs associated with each state. However, these were historically 

challenging to achieve for multiple reasons.[8] The biochemical origins of many PTMs 

are poorly understood. Even when the mechanism is known, reconstituting them cleanly to 

generate homogeneously PTM-labeled proteins is frequently not possible. This challenge 

makes it difficult to investigate the consequences of the PTM, including the identification of 

PTM-associated interaction partners. Furthermore, the strengths of different PTM-dependent 

PPIs span a wide range,[9] and many are insufficiently strong to allow the isolation of 

non-covalently bound interaction partners from the complex cellular milieu via pull-down 

or immunoprecipitation.[10,11] Here we discuss contemporary strategies that are being 

developed to overcome these limitations. We first focus on approaches to reliably model the 

presence or absence of a PTM on proteins, followed by strategies to identify PTM-specific 

interaction partners.

Strategies to model the presence or absence of PTMs on proteins

Some proteins are post-translationally modified at significant levels in cells under known 

conditions, such as upon the activation of a signal transduction pathway. In such cases, the 

naturally modified protein can be used as a probe to identify both general and PTM-specific 

interaction partners. To uniquely identify the latter group, a control protein-probe without 

a PTM can be used, which can be generated either by mutating the site of modification, 

or by knocking out/down the ‘writer’ protein that installs the PTM. This strategy was used 

to reveal that BARD1 binds p50 when the latter is phosphorylated at Ser337,[12] and to 

show that cereblon binds and degrades glutamine synthetase when the latter is acetylated at 

lysine 11 and 14.[13] However, this strategy is limited to modifications that occur naturally 

at significant levels.

The use of short peptides harboring the PTM in its native context is one of the most 

popular approaches for investigating PTM-triggered PPIs. Such modified peptides with 

defined sequences can be readily accessed through chemical synthesis. Proteins that bind 

post-translationally modified residues often retain significant affinity and selectivity for 

such minimal recognition motifs. Such peptides probes have been used to systematically 

screen for binding by suspected protein domains in many studies, such as for identifying 

YEATS and double PHD finger domains as readers of crotonyllysine,[14,15] and GAS41 as 

a reader for succinyllysine.[16] Conversely, modified peptide probes have also been useful 

for identifying the target sequence for a particular PTM-binding domain.[17,18] Peptide 

probes have also been valuable for evaluating crosstalk between two different PTMs within 

the same motif.[19,20] Moreover, modified peptide-probes have also been employed in a 

high-throughput manner using, for example, peptide microarrays,[21–23] or in combination 

with quantitative mass-spectrometry following a pull-down.[24] There are countless other 

examples where peptide probes have been useful to characterize PTM-dependent PPIs.[25] 
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Although peptide based probes are popular due to their ease of access, these do not capture 

the context of the full protein, which may partially or completely compromise their ability 

to bind native interaction partners.[26,27] Furthermore, peptide probes are not suitable 

to investigate PTM-triggered PPIs that do not directly bind the modified residue. These 

limitations have inspired efforts at generating full-length proteins homogeneously labeled 

with PTMs at chosen sites.[8]

Using a natural amino acid that ‘mimics’ the chemical properties of the modified residue is 

another popular strategy to model PTMs. For example, negatively charged aspartic acid and 

glutamic acid residues are often used to mimic the effect of phosphorylation, charge-neutral 

glutamine has been used to model lysine acetylation, and positively charged arginine is 

used to mimic an unacylated lysine residue.[12,28–32] However, such substitutions may 

not always accurately reproduce the consequences triggered by the actual PTM because of 

significant structural differences. Furthermore, this approach cannot be used for the vast 

majority of PTMs that are not structurally similar to one of the canonical amino acids.

A PTM can also be introduced onto proteins using the natural ‘writer’ enzyme(s) responsible 

for its installation, provided the pathway is established and can be reconstituted.[33,34] 

Engineered variants of such ‘writer’ proteins, many of which modify numerous substrate 

proteins, can be developed to target specific proteins. For example, it was possible to achieve 

protein-selective O-GlcNAcylation by fusing O-GlcNAc transferase (OGT) to a nanobody 

that selectively binds a target protein.[35] However, biochemical origin of many PTMs are 

either unknown or hard to reconstitute to modify only the desired site(s), compromising the 

general utility of this strategy.

Protein semisynthesis using expressed protein ligation (EPL) enables the assembly of 

full-length proteins from synthetic peptides and recombinantly expressed protein fragments.

[36,37] Using this approach, it has been possible to access proteins site-specifically labeled 

with many different PTMs. For example, this strategy has been used to generate site-

specifically succinylated,[38] glutarylated,[39] and ubiquitilated[40] histones to evaluate 

how these PTMs affect their interaction with other chromatin components. In another 

example, protein semisynthesis was used to generate Ubc9, an E2-ligase, that is site-

specifically modified with SUMO, and further equipped with a photo-affinity probe and 

a biotin group. This trifunctional protein probe was used to covalently capture the E3 ligase 

RanBP2 that associates with this complex.[41] Although protein semisynthesis has been 

widely used to study PTM biology, there are several challenges limiting its scope. This 

strategy is often restricted to proteins that are smaller in size, and those that can survive the 

demanding workflow. For example, EPL is typically performed under denaturing conditions, 

and proteins that are not easily refolded may not be amenable to this technology.[37] Finally, 

application of this technology is restricted largely to in vitro experiments, precluding the 

investigation of delicate PPIs that require the context of a living cell.

Genetic code expansion (GCE) technology has emerged as a powerful strategy for 

generating full-length proteins homogeneously incorporating PTMs at predefined sites.

[42,43] This technology uses engineered nonsense-suppressing aminoacyl-tRNA synthetase 

(aaRS)/tRNA pairs to enable co-translational site-specific incorporation of non-canonical 
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amino acids (ncAAs) into proteins in living cells. Engineered aaRS/tRNA pairs have been 

developed to genetically encode numerous PTMs of interest, including several lysine PTMs,

[44–46] as well as PTMs of tyrosine,[47–51] serine,[52,53] threonine,[54] and arginine.[55] 

It has been also possible to genetically encode ncAAs that structurally mimic the PTM, 

but are resistant to removal by endogenous machinery.[49,53,56] A significant advantage 

of the GCE technology is the ability produce homogeneously modified proteins directly 

in living cells, which may enable capturing delicate PPIs that require the cellular context. 

However, only a subset of known PTMs can be currently incorporated using this technology. 

PTMs with large and complex structures remains particularly challenging to encode, as it 

has been difficult to engineer existing aaRSs to recognize such ncAAs. The unpredictable 

ncAA incorporation efficiency is another challenge commonly encountered with the GCE 

approach.

GCE and other site-specific protein modification approaches have also been used 

to introduce unique functionalities into proteins that can be subsequently leveraged 

to chemically/enzymatically install a PTM mimic. For example, taking advantage 

of its unique reactivity and relatively low abundance, engineered cysteine residues 

have been chemoselectively functionalized to incorporate mimics of lysine acetylation 

and methylation.[57,58] Chemoselective modification of dehydroalanine, which can 

be generated from cysteine or selenium-containing ncAAs, has also been used to 

introduce mimics of various PTMs onto proteins.[59] Moreover, similar post-translational 

selective functionalization approaches have facilitated the introduction of more complex 

modifications such as glycosylation, [60,61], SUMOylation, [62] and uniquitination.[63]

Approaches to identify PTM-associated PPIs

Potential interactors for a particular PTM can sometimes be predicted based on existing 

biochemical, structural or genetic information, or through homology analysis with 

established PPIs targeting structurally similar PTMs. In such cases, the suspected proteins 

can be screened to confirm binding using peptide or protein probes (Figure 2A). For 

example, reader domains for novel lysine PTMs crotonylation and succinylation were 

confirmed by screening predicted protein domains for binding PTM-labeled peptide probes 

in vitro.[14–16] The limitation of this approach is the requirement of preexisting insight.

Performing binding screens at a much higher throughput can enable identification of binding 

partners in the absence of a preexisting insight. Using synthetic peptide microarrays, higher 

throughput screening can be performed in vitro.[21,23] The ability to genetically encode 

various PTMs has opened the door to adapting established high-throughput cell-based PPI 

assays [64] for identifying PTM-dependent PPIs. For example, it has been possible to 

express a library of thousands of predicted phosphoserine-containing peptides from the 

human proteome in E. coli, using co-translational incorporation of phosphoserine, and 

screen these for binding potential interactors using a high-throughput fluorescence-based 

two-hybrid screen.[65] Other examples include the identification of Nop56p and Nop58p as 

arginine-methylation-dependent interaction partner of Nop1p through two-hybrid assay,[19] 

and of a PPI between RhPIP2 and RhPTM that is regulated by phosphorylation through a 

split-ubiquitin membrane yeast two-hybrid (MYTH) assay.[66]
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Using the modified peptide or protein as a bait to pull-down or immunoprecipitate non-

covalently bound interaction partners from the complex cellular milieu, followed by their 

identification using immunostaining or mass-spectrometry, is a popular strategy to identify 

unknown PPIs (Figure 2B). From such experiments, PTM-specific interactors can be 

identified by their differential enrichment upon using protein/peptide probes either with or 

without the PTM. For example, this strategy was used to identify readers of trimethyl-lysine,

[24] to confirm that phosphorylation of PKM2 by ERK2 at Ser 37 recruits PIN1,[67] that 

phosphorylation of OPTN by TBK1 enhances its binding to ubiquitin chains,[32] that Wnt5a 

activation of ROR1 induces binding to 14-3-3ζ,[68] and that lysine-acetylated glutamine 

synthetase is a substrate for cereblon.[13] A key limitation of this approach is that many 

PTM-specific PPIs are not strong enough to survive the isolation step.

An attractive way to overcome this limitation is the use of photo-affinity probes, which can 

enable the capture of proximal non-covalent interactors through the formation of a stable 

covalent linkage (Figure 2C). Established photo-affinity probes such as aromatic azides, 

benzophenone, and diazirines (Figure 2D) can be readily incorporated into chemically 

synthesized peptides. Peptide probes harboring the photo-crosslinking functionality, in the 

presence or absence of the PTM, have been used in conjunction with quantitative MS-

proteomics to identify PTM-specific interaction partners.[69–75] Fundamental limitations of 

peptide probes, as described earlier, restricts the scope of this approach.

The GCE technology has enabled site-specific incorporation of ncAAs harboring photo-

affinity probes into full-length proteins (Figure 2D), which has been adapted for 

interrogating PTM-associated PPIs. For example, a lysine analog containing the small 

diazirine photo-crosslinker group on the sidechain was incorporated across the proteome 

(Figure 2E).[76] Two variants of the same lysine-analog were also incorporated site-

specifically, carrying either a photocage or the crotonyl modification on Nε (Figure 2E).[77] 

The small built-in diazirine group in both cases enabled capture of lysine-PTM-specific 

PPIs. Application of this approach is currently restricted to lysine PTMs. and it is 

conceivable that the built-in diazirine group may perturb the native binding interactions 

at the proximal Nε in some cases. Incorporation of two distinct ncAAs – one encoding 

the PTM of interest and the other harboring the photo-crosslinking probe – has been 

recently reported.[78] This strategy allows flexible placement of the photo-crosslinker 

relative to the PTM in a full-length protein to systematically optimize capture efficiency, 

and it can be extended to other genetically encoded PTMs. Furthermore, this technology 

is uniquely suited to capture PPIs indirectly triggered by PTMs. However, application 

of this technology can be somewhat limited by the low efficiency of incorporating two 

distinct ncAAs. For protein-based PTMs such as SUMO, the photo-crosslinker ncAA 

has been directly incorporated into it to identify interacting proteins.[79] Conversely, 

genetically encoded photo-crosslinkers have also been incorporated into the binding site 

of known PTM-reader proteins to capture previously unknown targets.[80,81] It should be 

noted that photo-crosslinking groups typically have a short capture radius, making their 

crosslinking efficiency highly sensitive to the site of incorporation. Screening multiple sites 

are sometimes necessary to achieve efficient capture of unknown targets.[78] Finally, in 

addition to photoaffinity probes, genetically encoded chemical crosslinkers have also been 

used to capture interaction partners. For example, an electrophilic tyrosine derivative was 
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used to covalently capture phosphatases that erase phosphorylation of distinct tyrosine 

residues of the HER2 receptor.[82]

Conclusion

Even though significant progress has been made in the last few decades to define 

the dynamic PPI networks that are regulated by PTMs, it is evident that our current 

understanding is limited. This is especially true for the rapidly expanding catalog of newly 

discovered PTMs. It is challenging to develop a single approach to address this issue 

that would be suitable for all PTMs, given the remarkable diversity of their structure 

and properties. As this review highlights, many different creative approaches have been 

developed to explore PPIs associated with different PTMs. In addition, computational 

approaches are also being explored to predict PTM-associated PPIs.[83–85] Expanding the 

current scope of these diverse approaches would be critical to broaden our understanding 

of the vast network of PTM-associated PPIs that underlie all aspects of our biology. In 

particular, it will be important to install previously inaccessible PTMs, or their structural 

analogs, into full-length substrate proteins, both in vitro and in living cells. A combination 

of engineered PTM-writers, the ability to enhance the endogenous PTM levels, an expanded 

toolbox of GCE platforms, and cellular delivery of modified proteins synthesized in vitro 
would be beneficial to this end. It will be also important to expand our capability to capture 

PPIs associated with the modified form of the protein through improved covalent capture 

methods, as well as advanced proteomic technologies for characterizing proteome-wide 

protein-protein interactions.
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Figure 1. 
PTMs can lead to novel PPIs either directly or indirectly
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Figure 2. 
A-C show different approaches to identify novel PTM-associated PPIs. D) Structures of 

ncAAs with photo-crosslinkers frequently used to capture PPIs. E) Novel lysine-derived 

ncAAs, harboring a diazirine group, which can be incorporated into proteins and used to 

capture interactors that bind this residue
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Table 1.

Strategies to model the presence and absence of PTMs on proteins

Strategy Advantages Limitations Representative 
references

Proteins naturally 
modified in cells 
under known 
conditions

• Straightforward to access with few 
manipulations
• The absence of PTM can be readily modeled 
by mutating the target site or knocking out/
down the ‘writer’ protein

• Conditions leading to many PTMs are not 
known
• Degree of endogenous modification is often 
heterogeneous
• Site-specific modification may be difficult 
to achieve

[12,13]

Use of small 
synthetic peptides 
harboring the PTM 
in its native context

• Readily generated through chemical synthesis
• Wide variety of modifications can be accessed
• Possible to model multiple PTMs within the 
same peptide
• Can be equipped with photo-crosslinkers
• Can be used in higher throughput format such 
as peptide microarray

• Does not capture the context of the full-
length folded protein, which may partially or 
completely abolish interaction with partners
• Cannot be used to capture PTM-triggered 
PPIs that do not directly involve the modified 
residue

[14–25]

Use of natural 
amino acids that 
mimic a PTM

• Easy to implement through straightforward 
mutagenesis
• Introduces modification at specific site(s)

• Significant structural differences often 
result in imperfect mimicry
• Most PTMs cannot be modeled using a 
natural amino acid

[12,28–32]

Using the 
endogenous ‘writer’ 
protein(s) to install a 
PTM

• Can be relatively simple to generate using 
recombinant writers
• Engineered writers can be generated to target 
specific substrate proteins

• Biochemical origin of many PTMs are 
unknown or hard to reconstitute
• Can be difficult to homogeneously modify 
specific site(s)
• Some PTMs are not enzymatically installed

[33–35]

Protein semi-
synthesis through 
expressed protein 
ligation (EPL)

• Homogeneously modified full-length proteins 
can be generated
• A wide variety of natural/synthetic 
modifications can be installed
• Multiple, different modifications can be 
installed

• Technically demanding
• EPL is performed under denaturing 
conditions; refolding the resulting protein 
may be challenging
• Typically precludes experiments in living 
cells
• Internal modifications on larger proteins are 
challenging to access

[36–41]

Genetic code 
expansion (GCE)

Homogeneously modified full-length proteins 
can be generated 
Close structural mimics of PTMs can be 
incorporated that are resistant to removal
Modified proteins can be expressed in living 
cells
The modified residue can be theoretically 
incorporated into any site of any protein that 
can be recombinantly expressed

A limited number of PTMs have been 
genetically encoded
Efficiency of incorporation is site-dependent
Incorporation of multiple modifications into 
one proteins can be challenging

[42,43,45–50,52–
56]
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Table 2.

Approaches to identify PTM-associated PPIs

Strategy Advantages Limitations Representative 
references

Screening potential interaction 
partners for binding modified 
peptide/protein probe

• Straightforward workflow
• Can be employed at a higher throughput using 
strategies like peptide microarray, or two-hybrid 
analyses

• Requires existing insight into 
possible potential interactors

[14–16,21–23,64]

Immunoprecipitation or pull-
down of non-covalently bound 
interactors using modified 
peptide or protein probe

• Established workflow; widely used
• Can be used in complex milieu, such as cell-
free extract, to isolate native complexes
• Can be coupled with quantitative MS 
experiments to characterize binding partners 
with high confidence
• Enables the identification of unanticipated 
interactors

• Interactions that are weak 
or transient are challenging to 
detect, as these do not survive 
the isolation step

[13,24,32,67,68]

Small peptide probes harboring 
the PTM and a photo-crosslinker 
group

Almost any short sequence, with a wide variety 
of modifications, can be readily generated 
through synthesisEnables the identification of 
weaker binding interactionsCan be used in 
complex milieu such as cell-free extract to 
isolate interaction partnersCan be coupled with 
quantitative MS experiments to characterize 
binding partners with high confidence• Enables 
the identification of unknown interactors

• The photo-affinity probe may 
perturb the binding interaction
• Photo-affinity probes have a 
short capture radius, making 
the cross-linking efficiency site-
dependent.
• Limitations intrinsic to small 
peptide probes still apply

[69–75]

Full-length proteins harboring 
genetically encoded photo-
affinity probes: The same ncAA 
encodes both the PTM and 
photo-crosslinker

• Homogeneously modified full-length proteins 
can be generated in living cells
• The proximity of the photo-crosslinker group 
to proteins directly binding the PTM is favorable 
for crosslink formation
• Incorporation of a single ncAA introduces both 
the PTM and the photo-affinity probe

• Currently restricted to lysine 
PTMs
• The photo-crosslinker group 
may perturb interaction with 
binding partners
• Cannot be used to capture 
PTM-triggered PPIs that do not 
directly involve the modified 
residue

[76,77]

Full-length proteins harboring 
genetically encoded photo-
affinity probes: Two different 
ncAAs encode the PTM and 
the photo-crosslinker group, 
respectively

• Homogeneously modified full-length proteins 
can be generated in living cells
• Flexibility to optimally position the photo-
crosslinker relative to the PTM for high capture 
efficiency
• Enables the capture of PPIs indirectly triggered 
by the PTM

• Efficiency of incorporating 
two distinct ncAAs into one 
protein can be low
• Can only be used for 
PTMs that have been already 
genetically encoded

[78]
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