
Neuroscience Cloud Analysis As a Service: An Open Source
Platform for Scalable, Reproducible Data Analysis

Taiga Abea,b,d, Ian Kinsellaa,b,e, Shreya Saxenaa,b,c,e,h, E. Kelly Buchanana,b,d, Joao Coutog,
John Briggsa, Sian Lee Kittf, Ryan Glassmanf, John Zhouf, Liam Paninskia,b,c,d,e, John P.
Cunninghama,b,c,e,1,*

aMortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia
University, New York, NY 10027, USA

bCenter for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA

cGrossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA

dDepartment of Neuroscience, Columbia University Medical Center, Columbia University, New
York, NY 10027, USA

eDepartment of Statistics, Columbia University, New York, NY 10027, USA

fDepartment of Computer Science, Columbia University, New York, NY 10027, USA

gDepartment of Neurobiology, David Geffen School of Medicine, University of California, Los
Angeles, CA 90095, USA

hDepartment of Electrical and Computer Engineering, University of Florida, Gainesville, FL
32607, USA

Abstract

A key aspect of neuroscience research is the development of powerful, general-purpose data

analyses that process large datasets. Unfortunately, modern data analyses have a hidden

dependence upon complex computing infrastructure (e.g. software and hardware), which acts

as an unaddressed deterrent to analysis users. While existing analyses are increasingly shared

as open source software, the infrastructure and knowledge needed to deploy these analyses

efficiently still pose significant barriers to use. In this work we develop Neuroscience Cloud

Analysis As a Service (NEUROCAAS): a fully automated open-source analysis platform offering

*Corresponding Author: jpc2181@columbia.edu (John P. Cunningham).
1Lead Contact
5.Author Contributions
T.A. and J.P.C. conceptualized the project. T.A. designed the infrastructure platform with input from all authors. S.S., I.K., S.L.K, R.G.
J.Z and T.A. developed analyses to work on the platform as well as general purpose developer tools (with supervision from L.P. and
J.P.C.), and S.S., I.K., and T.A. collected the data shown in Figure 4. J.C., S.S., I.K. developed code for WFCI analysis and GUI,
E.K.B. and T.A. developed code for ensembled markerless tracking with supervision from L.P., and J.B. developed and maintained the
website. T.A., L.P. and J.P.C. wrote the paper with input from all authors.
6.Declaration of Interests
The authors declare no competing interests.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuron. Author manuscript; available in PMC 2023 September 07.

Published in final edited form as:
Neuron. 2022 September 07; 110(17): 2771–2789.e7. doi:10.1016/j.neuron.2022.06.018.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

automatic infrastructure reproducibility for any data analysis. We show how NEUROCAAS supports

the design of simpler, more powerful data analyses, and that many popular data analysis

tools offered through NEUROCAAS outperform counterparts on typical infrastructure. Pairing

rigorous infrastructure management with cloud resources, NEUROCAAS dramatically accelerates

the dissemination and use of new data analyses for neuroscientific discovery.

eTOC Blurb:

Computing infrastructure is a fundamental part of neural data analysis. Abe et al. present an open

source, cloud based platform called NeuroCAAS to automatically build reproducible computing

infrastructure for neural data analysis. They show that NeuroCAAS supports novel analysis design

and can improve the efficiency of popular existing methods.

1. Introduction

Driven by the constant evolution of new recording technologies and the vast quantities

of data that they generate, neural data analysis — which aims to build the path from

these datasets to scientific understanding — has grown into a centrally important part

of modern neuroscience, enabling significant new insights into the relationships between

neural activity, behavior, and the external environment (Paninski and Cunningham, 2018).

Accompanying this growth however, neural data analyses have become much more complex.

Historically, the software implementation of a data analysis (what we call the core

analysis- Figure 1A) was typically a small, isolated code script with few dependencies.

In stark contrast, modern core analyses routinely incorporate video processing algorithms

(Pnevmatikakis et al., 2016, Pachitariu et al., 2017, Mathis et al., 2018, Zhou et al., 2018,

Giovannucci et al., 2019), deep neural networks (Batty et al., 2016, Gao et al., 2016,

Lee et al., 2017, Parthasarathy et al., 2017, Mathis et al., 2018, Pandarinath et al., 2018,

Giovannucci et al., 2019), sophisticated graphical models (Yu et al., 2009, Wiltschko et al.,

2015, Gao et al., 2016; Wu et al., 2020), and other cutting-edge machine learning methods

(Pachitariu et al., 2016, Lee et al., 2017) to create general purpose tools applicable to many

datasets.

To support this increasing complexity, core analysis software is increasingly coupled to

underlying analysis infrastructure (Figure 1A): software dependencies like the deep learning

libraries PyTorch and TensorFlow (Abadi et al., 2016, Paszke et al., 2019), system level

dependencies to manage jobs and computing resources (Merkel, 2014), and hardware

dependencies such as a precisely configured CPU (central processing unit), access to

a GPU (graphics processing unit), or a required amount of device memory. Figure 1A

shows how these individual components form a full infrastructure stack: the necessary, but

largely ignored foundation of resources enabling all data analyses (Demchenko et al., 2013,

Jararweh et al., 2016, Zhou et al., 2016).

Neglected infrastructure has immediate implications already familiar to the neuroscience

community: for every novel analysis, analysis users must spend labor and financial

resources on hardware setup, software troubleshooting, unexpected interruptions during

long analysis runs, processing constraints due to limited “on-premises” computational

Abe et al. Page 2

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

resources, and more (Figure 1B). However, far from simply being a nuisance, neglected

infrastructure has wide reaching and urgent scientific consequences. Most prominently,

infrastructure impacts analysis reproducibility. As data analyses become more dependent

on complex infrastructure stacks, it becomes extremely difficult for analysis developers

to work reproducibly (Monajemi et al., 2019, Nowogrodzki, 2019). The current treatment

of analysis infrastructure is a major contributor to the endemic lack of reproducibility

suffered by modern data analysis (Crook et al., 2013, Hinsen, 2015, Stodden et al., 2018,

Krafczyk et al., 2019, Raff, 2019), and infrastructure-based barriers have been noted to

impede the proliferation of new neuroscientific tools (Magland et al., 2020). Specific cases

where seemingly small infrastructure issues directly affect the representation of data-derived

quantities have been documented across the biological sciences (Ghosh et al., 2017, Miller,

2006, Glatard et al., 2015). Analogously, in machine learning, infrastructure components

can dictate model performance (Sculley et al., 2015, Radiuk, 2017) and a recent survey

of this literature observed that although local compute clusters claim to address the issue

of hardware availability, none of the studies that required use of a compute cluster were

reproducible (Raff, 2019).

Major efforts have been made by journals (Donoho, 2010, Hanson et al., 2011,) and

funding agencies (Carver et al., 2018) to encourage the sharing of core analysis software.

Additionally, new tools have been developed to address related neuroscientific challenges

like the formatting (Teeters et al., 2015, Rübel et al., 2019, Rübel et al., 2021) and storage

of data (Dandi Team, 2019), or workflow management on existing infrastructure (Yatsenko

et al., 2015, Gorgolewski et al., 2011) (see §3 for a detailed overview). However, these

important efforts still neglect key issues in the configuration of infrastructure stacks. Despite

calls to improve standards of practice in the field (Vogelstein et al., 2016), and work in

fields such as astronomy, genomics, and high energy physics (Hoffa et al., 2008, Riley, 2010,

Goecks et al., 2010, Zhou et al., 2016, Chen et al., 2019, Monajemi et al., 2019), there has

been little concrete progress in our field towards a scientifically acceptable infrastructure

solution for many popular core analyses. Some tools – compute clusters, versioning tools

like Github (https://github.com), and containerization services like Docker (Merkel, 2014) –

provide various infrastructure components (Figure 1C), but it is nontrivial to combine these

components into a complete infrastructure stack. The ultimate effect of these partially used

toolsets is a hodgepodge of often slipshod infrastructure practices (Figure 1D; supporting

data in Tables S1, S2).

Critically, management of these issues most often falls upon trainees who are neither

scientifically rewarded (Landhuis, 2017, Chan Zuckerberg Initiative, 2014), nor specifically

instructed (Merali, 2010) on how to set up increasingly complex core analyses with

infrastructure stacks, reliant on whatever resources are available on hand. We term this

conventional model Infrastructure-as-Graduate-Student, or IaGS – infrastructure stacks

treated as a scientific afterthought, delegated entirely to underresourced trainees and

operating as a silent source of errors and inefficiency. The IaGS status quo fails any

reasonable standard of scientific rigor, reduces the accessibility of valuable analytical tools,

and impedes scientific training and progress.

Abe et al. Page 3

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/

Of course, infrastructure challenges are not specific to neuroscience, or even science

generally. Entities that deploy software at industrial scale have recently adopted the

Infrastructure-as-Code (IaC) paradigm, automating the creation and management of

infrastructure stacks (Morris, 2016, Aguiar et al., 2018). In contrast to IaGS approaches,

the IaC paradigm begins with a code document that completely specifies the infrastructure

stack supporting any given core software. From this code document, the corresponding

infrastructure stack can be assembled automatically (most often on a cloud platform), in

a process called deployment. After deployment, anyone with access to the platform can

use the core software in question without knowledge of its underlying infrastructure stack,

while still having the assurance that core software is functioning exactly as indicated in the

corresponding code document. Altogether, IaC enables reproducible usage at scale, skirting

all of the issues shown in Figure 1B. Despite these benefits, there has been no previous effort

to extend IaC to general-purpose neuroscience data analyses and associated infrastructure

stacks.

In response, we developed Neuroscience Cloud Analysis as a Service (NEUROCAAS), an

IaC platform that pairs core analyses for neuroscience data with bespoke infrastructure

stacks through deployable code documents. NEUROCAAS assigns each core analysis a

corresponding infrastructure stack, using a set of modular components concisely specified

in code (see §2.1 for details). NEUROCAAS stores the specification of this core analysis

and infrastructure stack in a code document called a blueprint, which any analysis user

can then deploy to analyze their data. To maximize the scale and accessibility benefits of

our platform, we provide an open source web interface to NEUROCAAS (§2.2), available

to the neuroscience community at large. The result is scalable, reproducible, drag-and-drop

usage of neural data analysis: neuroscientists can log on to the NEUROCAAS website, set

some parameters for an analysis, and simply submit their data. A new infrastructure stack is

then deployed on the cloud according to a specified blueprint and autonomously produces

analysis results, which are returned to the user. This aspect of NEUROCAAS warrants

emphasis, as it diverges starkly from traditional scientific practice: NEUROCAAS is not only
a platform design, or suggestion that the reader can attempt to recreate on their own; instead,

NEUROCAAS is offered as an open source infrastructure platform available for immediate

use, via a website (www.neurocaas.org).

We first describe IaC analysis infrastructure on NEUROCAAS (§2.1), and how it addresses

common engineering challenges related to analysis reproducibility, accessibility and scale

(§2.2). In (§2.3) we compare NEUROCAAS ‘s solution to these engineering challenges with

features of existing data analysis platforms. Next, in §2.4,2.5, we show how NEUROCAAS

can enable novel analyses designed to take advantage of the platform’s infrastructure

benefits. Finally, in §2.6, we quantify the performance of popular data analyses on

NEUROCAAS, and find that analyses encoded in blueprints are cheaper and faster than

analogues run on local infrastructure (e.g. a compute cluster).

2. Results

NEUROCAAS ‘s primary technical contribution is a method to precisely specify the entire

infrastructure stack underlying any core analysis, and reproduce it on demand. Treating core

Abe et al. Page 4

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neurocaas.org/

analysis and infrastructure as a unified whole within NEUROCAAS makes analyses more

reproducible and accessible at scale than existing alternatives.

In the simplest use case, users simply log in to the platform and drag and drop their

dataset(s) into a web browser (Figure 2, top left), sending it to cloud based user storage.

After specifying a set of developer-defined parameters to apply to the selected dataset(s),

they can submit a NEUROCAAS “job.” No further user input is needed: given the relevant

datasets(s) and parameters, NEUROCAAS sets up core analysis for each dataset on an

entirely new infrastructure stack from the corresponding blueprint (Figure 2, black arrows).

NEUROCAAS then pulls data and parameters independently into each infrastructure stack

(Figure 2, blue arrows), providing scalable and reproducible computational processing as

needed (Figure 2, bottom right). Analysis outputs (including live status logs and a complete

record of the job’s inputs and infrastructure) are then delivered back to timestamped

folders in user storage for inspection by analysis users (Figure 2, bottom left), and finally

infrastructure stacks are dissolved when data processing is complete (Figure 2, bottom

right). As an example, Supplementary Video 1 shows how users can train three separate

DeepGraphPose models (Wu et al., 2020) on three separate datasets simultaneously using

the NEUROCAAS web interface.

2.1. NEUROCAAS Builds Complete Infrastructure Stacks

The structure of NEUROCAAS naturally solves the issues of reproducibility, accessibility,

and scale that burden existing infrastructure tools and platforms. NEUROCAAS partitions

a complete infrastructure stack into three decoupled parts that together are sufficient to

support virtually any given core analysis. First, to address all software level infrastructure,

NEUROCAAS offers all analyses in immutable analysis environments (§2.1.1). Second,

to address system configuration, each NEUROCAAS analysis has a built-in job manager

(§2.1.2) that automates all of the logistical tasks associated with analyzing data: configuring

hardware, logging outputs, parallelizing jobs and more. Third, to provide reproducible

computing hardware on demand, NEUROCAAS manages a resource bank (§2.1.3) built on the

public cloud, making the service globally accessible at unmatched scale. For a given core

analysis, the configuration of these three infrastructure components is concisely summarized

in a NEUROCAAS blueprint, from which it can be automatically rebuilt (§2.1.4). We describe

component implementation in further depth in §9.2.

2.1.1. Immutable Analysis Environments for Software Infrastructure—On

NEUROCAAS, all core analyses run inside immutable analysis environments (IAEs). An

IAE is an isolated computing environment containing the installed core analysis code and all

necessary software dependencies, similar to a Docker container (Merkel, 2014). Importantly,

an IAE also contains a single script that parses input and parameters in a prescribed way,

and runs the steps of core analysis workflow (Figure 2, right; Figure S6, top left). The

fact that analysis workflow is entirely governed by this script (i.e. non-interactive) makes

our analysis environments immutable. IAEs eliminate the possibility of bugs resulting from

incompatible dependencies, mid-analysis misconfiguration (Figure S1A, installation and

troubleshooting), or other so-called “user degrees of freedom” and ensure that analyses

are run within developer-defined workflows. Immutability has a long history as a principle

Abe et al. Page 5

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of effective programming and resource management in computer science (Bloch, 2008,

Morris, 2016), and in this context is closely related to the view that data analysis should be

automated as much as possible (Tukey, 1962, Waltz and Buchanan, 2009). These views are

justified by observed benefits to analysis at scale, which we leverage in (§2.4.,2.5).

Each IAE has a unique ID, and analysis updates can be recorded in IAEs linked through

blueprint versions (see §2.1.4 for details). We have currently implemented 22 analyses in a

series of immutable analysis environments (Table S3) and are actively developing more (see

www.neurocaas.org for current options).

2.1.2. Job Managers for System Infrastructure—Given a dataset and analysis

parameters, how does NEUROCAAS set up the right IAE and computing hardware to process

these inputs? This configuration is the responsibility of the NEUROCAAS job manager, which

monitors analysis progress and returns timestamped job outputs to user storage from the IAE

(including live job logs). Although similar in these regards to a cluster workload manager

like slurm (Yoo et al., 2003) (Figure 2, blue arrows) the NEUROCAAS job manager does not

assign jobs to running infrastructure, but rather set up all other infrastructure components

“on the fly,” removing the need for manual infrastructure maintenance (Figure 2; black

arrows). The job manager for each analysis functions according to a code “protocol” that

describes what steps should be taken when a new NEUROCAAS job is requested. Importantly,

protocols can be customized for each analysis, allowing developers to implement simple

features like input parsing, or complex multi-stack workflows as shown in §2.4.,2.5.

2.1.3. Resource Banks for Hardware Infrastructure—To automatically reproduce

infrastructure on demand, we crucially need a way to create identical hardware

configurations across multiple users of the same analysis, who may be analyzing data

simultaneously at many different locations around the world. This key requirement is

handled by the NEUROCAAS resource bank. The NEUROCAAS resource bank can make

hardware available through pre-specified instances: bundled collections of virtual CPUs,

memory, and GPUs that can emulate any number of familiar hardware configurations

(e.g. personal laptop, workstation, on premise cluster). However unlike these persistent

computing resources, the NEUROCAAS resource bank is built upon globally available,

virtualized compute hardware offered through the public cloud (currently Amazon Web

Services). At any time, the resource bank can provide a large number of effectively identical

hardware instances to execute a particular task (Figure 2, bottom right). The reproducible

nature of hardware instances in the resource bank complements the immutability of

workflows imposed by IAEs. By default, we fix a single instance type per analysis in order

to facilitate reproducibility (see 9.2 for details).

2.1.4. Blueprints for Instant Reproducibility—For any given analysis, each of

NEUROCAAS ‘s infrastructure components (§2.1.1–2.1.3) has a specification in code (IAEs

and resource bank instances have IDs, job managers have protocol scripts). The collection of

all infrastructure identifying code associated with a given NEUROCAAS analysis is stored

in the blueprint of that analysis (Figure 2, top right- for an example see Figure S2),

from which new instances of the infrastructure stack can be deployed at will, providing

reproducibility by design. Despite sustained efforts to promote reproducible research,

Abe et al. Page 6

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neurocaas.org/

(Buckheit and Donoho, 1995), in many typical cases data analysis remains frustratingly non-

reproducible (Crook et al., 2013, Gorgolewski et al., 2017, Stodden et al., 2018, Raff, 2019).

NEUROCAAS sidesteps all of the typical barriers to reproducible research by tightly coupling

the creation and function of infrastructure stacks to their documentation. For transparency,

NEUROCAAS stores all currently available and developing analysis blueprints in a public

code repository (see §9.2). Updates made to any component of an infrastructure stack on

NeuroCAAS (IAEs, job managers, or hardware instances) can only be implemented through

subsequent deployments of updated blueprints. We record these changes systematically

using simple version control on the blueprint itself, ensuring a publicly visible record of

analysis development.

2.2. NEUROCAAS Supports Simple Use and Development

Users analyze data on NEUROCAAS solely through interactions with cloud storage.

Therefore, NEUROCAAS supports any interface that allows users to transfer data files to and

from cloud storage. The standard interface to NEUROCAAS is a website, www.neurocaas.org,

where users can sign up for an account, browse analyses, deposit data and monitor analysis

progress until results are returned to them as described in Figure 2. We will describe

other interfaces to NEUROCAAS in §2.4 and §3. Regardless of interface, there is no need

to manage persistent compute resources during or after analysis, and costs directly reflect

usage time.

For comparison, IaGS begins with a number of time-consuming manual steps, including

hardware acquisition, hardware setup, and software installation. With a functional

infrastructure stack in hand, the user must prepare datasets for analysis, manually recording

analysis parameters and monitoring the system for errors as they work. While parallel

processing is possible, it must be scripted by the user, and in many cases datasets are run

serially. What results from IaGS is massive inefficiency of time and resources. Users must

also support the cost of new hardware “up front,” before ever seeing the scientific value of

the infrastructure that they are purchasing. Likewise, labs or institutions must pay support

costs to maintain infrastructure when it is not being used, and replace components when they

fail or become obsolete (see Figure S1 for a side-by-side comparison with NEUROCAAS).

Two editorial remarks bear mentioning at this point: first, the stark difference laid out in

these workflows is the essence of IaGS vs IaC, and explains the dominance of IaC in modern

industrial settings. Second, NEUROCAAS is and will remain an open-source tool for the

scientific community, in keeping with its sole purpose of improving the reproducibility and

dissemination of neuroscience analysis tools.

For analysis developers interested in NEUROCAAS, we designed a developer workflow and

companion python package that streamlines the process of migrating an existing analysis

to the NEUROCAAS platform (see §9.2 and Figure S6 for an overview). Our developer

workflow abstracts away the cloud infrastructure that NEUROCAAS is built on, allowing for

analysis development entirely from the developer’s command line. We highlight several key

features of this workflow here. Importantly, we do not expect any previous experience in

containerization technology, cloud tools, or IaC from developers.

Abe et al. Page 7

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neurocaas.org/

Curated deployments.—After setting up an IAE and initializing a corresponding

blueprint, developers submit blueprints and test data to our code repository in publicly

visible pull requests. NEUROCAAS team members then review the submitted blueprint and

deploy the corresponding infrastructure stack in “test mode,” reviewing outputs, requesting

updates, and ensuring stated function in a public forum before releasing the analysis to

users.

Improving analysis robustness.—A central challenge of building general-purpose

data analysis is the difficulty of anticipating all analysis use cases as a developer and

ensure robustness to all possible datasets. This is true even with the testing, review, and

development practices that NEUROCAAS puts in place. However, NEUROCAAS ‘s design

has several features intended to accelerate the process of improving analysis robustness

both during and after initial deployment. When errors occur, users can refer the analysis

developer to version controlled analysis outputs using standard interfaces like Github

issues, greatly simplifying error replication. Developers can then set up fixes on the

same infrastructure, and update the analysis blueprint in subsequent deployments. Since

infrastructure is rebuilt from the blueprint for each NEUROCAAS job, an updated blueprint

fixes the bug, for all future analysis runs of all analysis users. Importantly, updates can be

made to a public analysis without influencing the reproducibility of past results (see 9.2 and

Figure S6 for details, and §9.4 for links to a full developer guide).

2.2.1. Testing the NEUROCAAS Usage Model—Next, we study how the design of

NEUROCAAS translates into quantifiable analysis benefits. We confirmed the accessibility of

data analyses on NEUROCAAS by opening the platform to a group of alpha testers (users

and developers) over a period of 22 months. In Figure 3A, we see that while some users

analyzed a handful of datasets, others analyzed hundreds and spent days of compute with

the platform. Figure 3B further studies the co-occurrence of different usage patterns: a large

number of single dataset jobs are suggestive of one-off exploratory use, while there is also

a considerable proportion of jobs that leverage NEUROCAAS ‘s capacity for parallelism,

analyzing anywhere from 2 to 70 datasets in a single job. We also grouped usage by data

analysis (Figure 3C). We classified different analyses as follows: dark blue bars indicate

existing analysis adapted for NEUROCAAS by manuscript authors. These analyses were

developed collaboratively, and in many cases, we iterated on an initial “dev” version of an

analysis adapted for NEUROCAAS with feedback from users, before releasing a “public”

version that was robust to various differences in workflow and dataset type. Light green bars

indicate analyses developed by independent researchers following our developer workflow.

We highlight the fact that analyses built following the developer workflow are well used,

indicating the viability of the workflow that we have built. Dark green bars indicate analyses

that we introduce in this paper specifically for NEUROCAAS infrastructure, described further

in §2.4, 2.5. Finally, light blue bars indicate “custom” analyses that we built for particular

user groups. NEUROCAAS authors built custom analyses through simple copying and editing

of existing, general purpose blueprints. While per-user custom analyses are not a focus of

our platform, these results demonstrate the ease with which different variants of an analysis

can be provided within NEUROCAAS ‘s design, and we discuss how users can leverage

NEUROCAAS for custom use cases in §3.

Abe et al. Page 8

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Next we confirmed that the design of data analysis using NEUROCAAS ‘s IaC approach does

indeed provide robust reproducibility. We selected two analyses available on our platform

and we analyzed the similarity of analysis outputs across multiple runs in Table 2 (see

Figure S3 for in depth analysis, and Figure S4 for corresponding analysis of timings).

Fixing a single dataset, configuration file, and blueprint for each analysis, we evaluated

reproducibility of results in terms of differences between analysis outputs (see Table 2

caption for metrics.) First, we observe that over multiple runs conducted by the same

researcher in the United States, (Table 2, vs Run 2), results showed no scientifically

relevant differences. Second, we varied the identity and physical location of the person

requesting NEUROCAAS jobs: compared to jobs started by independent researchers in India

and Switzerland (Table 2, vs Run 5, Run 10 respectively) we once again note no meaningful

differences in the outputs of these analyses. Whereas physical location might bias or restrict

researchers to use specific analysis infrastructure on other platforms, they have access to

the exact same analysis infrastructure through NEUROCAAS. Finally, we conducted a test

to measure if our platform was truly IaC: given dataset, configuration file, and analysis

blueprint, there should be no reliance on the compute resources that we used to develop

these analysis and perform reference runs. For a final run, we automatically deployed a

complete clone of the NEUROCAAS platform on a new set of cloud resources, as any user

of our platform can do in a few simple steps (details in §3, Figure S5). We then ran jobs

with the blueprints, datasets and configuration files for the corresponding analyses (Table 2,

vs Run 14), showing that results from this cloned platform are indistinguishable from those

generated by the original platform.

2.3. Existing Platforms Leave Infrastructure Gaps

Although we do not attempt an exhaustive review of existing analysis platforms in

neuroscience here, we characterize some exemplars in order to contrast NEUROCAAS from

typical alternatives. In Figure 4, we plot a variety of popular neuroscience analyses onto a

space defined by 1) their place in the adoption lifecycle and 2) corresponding infrastructure

needs. We overlay several exemplar platforms on this graph, with shading representing

the kinds of analyses they are able to support. The degree to which a platform’s support

extends to the right defines its accessibility, or the ease with which developers and users

can configure analyses on the platform, and begin to process data. Accessibility is a key

feature for analyses that are still early in the adoption lifecycle with active development and

a growing user base. Likewise, the degree to which a platform’s support extends upwards

defines its scale, a one dimensional approximation of the infrastructure needs for which it

can provide. While the exact positioning of these analyses and platforms is subjective and

dynamic, there are general features of the analysis platform landscape that we discuss in

what follows.

Local platforms like CellProfiler (Carpenter et al., 2006), Ilastik (Sommer et al., 2011)

(cell-based image processing), Icy (Chaumont et al., 2012), ImageJ (Schneider et al.,

2012) (generic bioimage analysis), BIDS Apps (Gorgolewski et al., 2017) (MRI analyses

for Brain Imaging Data Structure format), and Bioconductor (Amezquita et al., 2020)

(genomics) have all achieved success in the field by packaging together popular analyses

with necessary software dependencies and intuitive, streamlined user interfaces. Most of

Abe et al. Page 9

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

these local platforms also have an open contribution system for interested developers. Local

platforms are thus highly accessible to both developers and users, but are in the large

majority of cases designed only for use on a user’s local hardware, limiting their scale

(Figure 4, bottom).

In contrast, remote platforms like the Neuroscience Gateway (NSG) (Sanielevici et al.,

2018) (specializing in neural simulators), Flywheel (flywheel.io) (emphasizing fMRI and

medical imaging), and neuroscience-focused research computing clusters offer powerful

hardware through the XSEDE (Extreme Science and Engineering Discovery Environment)

portal (Towns et al., 2014), the public cloud and on-premises hardware, respectively. These

remote platforms offer powerful compute, but at the cost of accessibility to users, who must

adapt their software and workflow to new conventions (i.e. wait times for jobs to run on

shared resources, hardware specific installation, custom scripting environments, limitations

on concurrency) in order to make use of offered hardware. As a particular example, NSG

requires users to submit a script that they would like to have run on existing compute

nodes in the XSEDE cluster, making it more similar to a traditional on-premises cluster in

usage than NEUROCAAS. NSG also restricts jobs to run serially, and does not have an open

system for contributing new analyses, making it incompatible with the usage model and

analyses that we present here. Likewise, while Flywheel () (with a focus on human brain

imaging tools) offers the option of cloud compute, the platform is not structured in terms of

infrastructure stacks for given analyses, in effect leaving many infrastructure design choices

to individual users. Altogether, remote platforms are best for committed, experienced users

who are already familiar with the analyses available on the remote platform and understand

how to optimize them for available hardware. It is also more difficult to contribute new

analyses to these platforms than their locally hosted counterparts (see Figure 4, left side).

This difficulty makes them less suitable for actively developing or novel analyses, as updates

may be slow to be incorporated, or introduce breaking changes to user-written scripts,

making remote platforms altogether less accessible than local ones.

Some platforms provide both local or remote style usage: Galaxy (Goecks et al., 2010)

and Brainlife (Avesani et al., 2019) offer a set of default compute resources, but can

also be used to run analyses on personal computing resources, or the cloud. These mixed-

compute models provide a useful way to increase the accessibility of many analyses, and

can provide levels of reproducibility similar to that provided by the IAE and job manager

of NEUROCAAS. However, without having an IaC framework that makes a reproducible

configuration of compute resources available to all analysis users, we lose the guarantee

that all platform users will be able to use analyses that depend on specific infrastructure

configurations. As noted in (Goecks et al., 2010), it is a challenge even for these mixed-

compute platforms to ensure accessibility for an analysis developed on a given set of

local compute resources-significant work must be done to make this analysis functional

on other computing platforms, or to maintain these local compute resources in order to

ensure that others can use them whenever needed. These challenges are only exacerbated

by the increasing reliance of analysis tools upon more powerful and specific infrastructure

configurations, such as high performance GPUs.

Abe et al. Page 10

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Although undeniably useful, all available platforms operate on a tradeoff that forces

researchers to choose between accessibility and scale. While these platforms often

concentrate on applications that mitigate the effects of this tradeoff, there are many popular

analyses that would not be suitable for existing analysis platforms (see Figure 4, center).

Furthermore, critically for reproducibility, across all existing platforms analysis users and

developers are still required to manually configure analysis infrastructure, whether by

installing new tools onto one’s personal infrastructure, or porting code and dependencies

to run in a remote (and sometimes variably allocated) infrastructure stack.

Some platforms in cellular and molecular biology (Riley, 2010), as well as bioinformatics

(Simonyan and Mazumder, 2014,,Terra, 2022) have shown that IaC approaches are feasible

to handle these infrastructure issues. A notable difference in the design of our platform is

that these other platforms assume that individual users will themselves manually configure

analyses- that they will choose relevant resources to support the analyses that they want to

conduct, or compose an analysis of interest out of a set of small modular parts, in each case

performing the work of a NEUROCAAS developer. While resulting analyses can be shared

with other individuals on a case-by-case basis, this is very different from NEUROCAAS.

Our platform is geared towards a heterogeneous community of researchers, where some

researchers are developing general purpose analyses that only need to be configured or

updated once before being used by a large group of potential users.

Next, we concretely demonstrate how the infrastructure benefits of the NEUROCAAS

platform address ongoing challenges in neuroscience data analysis. We show two examples

of NEUROCAAS native analyses that would not be feasible without the simultaneous benefits

to accessibility, scale, and reproducibility that we provide.

2.4. NEUROCAAS Simplifies Large Data Pipelines: Widefield Imaging Protocol

Often, big data pipelines demand many individual preprocessing steps, creating the need

for unwieldy multi-analysis infrastructure stacks— infrastructure stacks that support the

needs of multiple core analyses at the same time. A notable example is widefield calcium

imaging (WFCI)— a high-throughput imaging technique that can collect activity dependent

fluorescence signals across the entire dorsal cortex of an awake, behaving mouse (Couto et

al., 2021), potentially generating terabytes of data across chronic experiments. The protocol

paper Couto et al. (2021) describes a complete WFCI analysis that links together cutting-

edge data compression/denoising with demixing techniques designed explicitly for WFCI

(via Penalized Matrix Decomposition, or PMD (Buchanan et al., 2018) and LocaNMF

(Saxena et al., 2020), respectively). Each of these analyses depends upon its own specialized

hardware and installation, creating many competing requirements on a multi-analysis

infrastructure stack that are difficult to satisfy in practice. While we offer a NEUROCAAS

implementation of the described WFCI analysis in Couto et al. (2021), we do not discuss

how NEUROCAAS addresses the issue of multi-analysis infrastructure stacks, which can pose

IaGS challenges even to our blueprint based infrastructure.

Instead of working with multi-analysis infrastructure stacks, for this analysis NEUROCAAS

extends the function of a standard job manager (see Figure 5A) to trigger multiple jobs, built

from separate blueprints, in sequence (Figure 5B). We employ this design to dramatically

Abe et al. Page 11

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

simplify the infrastructure requirements for a complete WFCI pipeline. First the initial

steps of motion correction, denoising, and hemodynamic correction of the data are run

from a blueprint that emphasizes multicore parallelism (64 CPU cores) to suit the matrix

decomposition algorithms employed by PMD. Upon termination of this first step, analysis

results are not only returned to user storage, but also used as inputs to a second job,

performing demixing with LocaNMF on infrastructure supporting a high performance

GPU. This modular organization improves the performance and efficiency of each analysis

component (see Figure 7), and also allows users to run steps individually if desired, giving

them the freedom to interleave existing analysis pipelines with the components offered

here. As an alternative to the standard NEUROCAAS interface, this WFCI analysis can be

controlled from a custom-built graphical user interface (GUI). This GUI further extends

NEUROCAAS ‘s accessibility with features such as interactive alignment of a brain atlas to

user data as part of parameter configuration (in the process validating input data as well).

Following parameter configuration, this GUI interacts with NEUROCAAS programmatically,

using locally run code scripts to perform data upload and job submission, and to detect and

retrieve results once analysis is complete. Results can be visualized directly in this GUI as

well. Altogether, this GUI can be used as a model for researchers who would like to take

advantage of our computational infrastructure within a more sophisticated user interface, or

integrate NEUROCAAS programmatically with other software tools. Importantly, despite its

interactivity, the performance of our WFCI analysis does not depend on the infrastructure

available to the user. For example, users could simultaneously launch many analyses and

have them run in parallel through this GUI, easily conducting a hyperparameter search over

their entire multi-step analysis. Researchers can find the GUI for this WFCI analysis with

NEUROCAAS integration at https://github.com/jcouto/wfield.

For developers, this analysis presents a counterpart to existing domain specific projects

such as CaImAn (Giovannucci et al., 2019) for cellular resolution calcium imaging or

SpikeInterface (Buccino et al., 2020) for electrophysiology, which explicitly make multi-step

data analyses compatible with optimized hardware. In contrast, our WFCI analysis is made

directly available to users on powerful remote hardware without the need for anyone to

revise existing analysis or infrastructure. To our knowledge, there is no other neuroscience

platform with the accessibility, scale, and support for reproducibility to link together cutting-

edge analyses across separate infrastructures, and make this exact configuration available

directly to the research community.

2.5. NEUROCAAS Stabilizes Deep Learning Models: Ensemble Markerless Tracking

The black box nature of deep learning can generate sparse, difficult to detect errors that

reduce the benefits of deep learning based tools in sensitive applications. For modern

markerless tracking analyses built on deep neural networks (Mathis et al., 2018, Graving

et al., 2019, Nilsson et al., 2020, Wu et al., 2020), these errors can manifest as “glitches”

(Wu et al., 2020), where a marker point will jump to an incorrect location, often without

registering as an error in the network’s generated likelihood metrics (see Figure 6).

One general purpose approach to combat the unreliable nature of individual machine

learning models is ensembling (Dietterich, 2000): instead of working with a single model,

Abe et al. Page 12

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jcouto/wfield

a researcher simultaneously prepares multiple models on the same task, subsequently

aggregating their outputs into a single consensus output. Ensemble methods have been

shown to be effective for deep networks in a variety of contexts, (Lakshminarayanan et

al., 2017, Fort et al., 2019, Ovadia et al., 2019), but they confer a massive infrastructure

burden if run on limited local compute resources: researchers must simultaneously train,

manage, and aggregate outputs across many different deep learning models, incurring either

prohibitively large commitments to deep learning specific infrastructure and/or infeasibly

long wait times.

In contrast, NEUROCAAS enables easy and routine implementation of ensemble methods.

By modifying the NEUROCAAS job manager, we designed an analysis which takes input

training data, and distributes it to N identical sets of IAEs and resource bank instances

(Figure 5C). For the application shown here, we used an IAE with DeepGraphPose (Wu et

al., 2020) as our core analysis; the N infrastructures differ only in the minibatch order of

data used to train models. The results from each trained model are then used to produce a

consensus tracking output, taking each individual model’s estimate of part location across

the entire image (i.e. the confidence map output) and averaging these estimates. Even with

this relatively simple approach, we find the consensus tracking output is robust to the errors

made by individual models (Figure 6A,C). This consensus performance is maintained even

when we significantly reduce the size of the training set (Figure 6B). Finally, in Figure

6C, we can see that there are portions of the dataset where the individual model detections

fluctuate around the consensus detection. This fluctuation offers an empirical readout of

tracking difficulty within any given dataset; frames with large diversity in the ensemble

outputs are good candidates for further labeling, and could be easily incorporated in an

active learning loop. After training, models can be kept in user storage, and used to analyze

further behavioral data, without moving these models out of NEUROCAAS. Overall, Figure 6

shows that with the scale of infrastructure available on NEUROCAAS, ensembling can easily

improve the robustness of markerless tracking, naturally complementing the infrastructure

reproducibility provided by the platform.

NEUROCAAS is uniquely capable of providing the flexible infrastructure necessary to

support a generally available, on-demand ensemble markerless tracking application. To our

knowledge, none of the platforms with the scale to support markerless tracking on publicly

available resources (e.g. on premise clusters, Google Colab, Galaxy Goecks et al. (2010),

NSG (Sanielevici et al., 2018), Brainlife Avesani et al. (2019)) can satisfactorily alleviate the

burden of a deep ensembling approach, still forcing the user to accept either long wait times

or manual management of infrastructure. These limitations also prohibit use cases involving

the quantification of ensemble behavior across different parameter settings (c.f. Figure 6B,

where we trained 45 networks simultaneously).

2.6. NEUROCAAS is Faster and Cheaper than IaGS Analogues

NEUROCAAS offers a number of major advantages over IaGS : reproducibility, accessibility,

and scale, whether we compare against a personal workstation or resources allocated from

a locally available cluster. However, since NEUROCAAS is based on a cloud computing

architecture, one might worry that data transfer times (i.e., uploading and downloading data

Abe et al. Page 13

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to and from the cloud) could potentially lead to slower overall processing or that the cost of

cloud compute could outweigh that of local infrastructure.

Figure 7 considers this question quantitatively, comparing NEUROCAAS to a simulated

personal workstation (see §9.3 for details). For the analogous comparisons (with similar

conclusions) against a simulated local cluster, see Figure S7. Figure 7 presents time and

cost benchmark results on four popular analyses that cover a variety of data modalities:

CaImAn (Giovannucci et al., 2019) for cellular resolution calcium imaging; DeepLabCut

(DLC) (Mathis et al., 2018) for markerless tracking in behavioral videos; and a two-step

analysis consisting of PMD (Buchanan et al., 2018) and LocaNMF (Saxena et al., 2020)

for analysis of widefield imaging data. To be (extremely) conservative, we assume local

infrastructure is set up, neglecting all of the time associated with installing and maintaining

software and hardware.

Across all analyses and datasets considered in Figure 7, analyses run on NEUROCAAS

were significantly faster than those run on the selected local infrastructure, even accounting

for the time taken to stage data to the cloud (Figure 7A, left panes). We batched data

to take advantage of both compute optimization offered by individual core analyses, and

NEUROCAAS ‘s scale (see 9.3 for details). These examples show that many analyses

can be used efficiently on NEUROCAAS regardless of the degree to which they have

been intrinsically optimized for parallelism. Additionally NEUROCAAS upload time can

be ignored if analyzing data that is already in a user storage — for example if there is a

need to reprocess data with an updated algorithm or parameter setting — leading to further

speedups. Finally, although we found download speeds negligible (see 9.3 for full details

of timing quantifications) this could vary significantly based on user internet speeds and

analyses. Across our platform, we have attempted to design analyses with much smaller

outputs than input data- a point we will return to in the discussion (§3).

Next we turn to cost analyses. Over the range of algorithms and datasets considered here,

we found that the total baseline NEUROCAAS analysis cost was on the order of a few US

dollars per dataset (Figure 7A, right panels)- see Table S7 for pricing details. We observe

that for the most part, costs are approximately linear in compute time, ensuring that even

compute intensive operations like training a deep network for DLC (~12 hours on the same

machines used here) can be accomplished for ~ $10-trained networks can be maintained

in cloud storage to reduce data transfer cost. In addition to our baseline implementation,

we also offer an option to run analyses at a significantly lower price (indicated as “Std”

and “Save” respectively in the cost barplots in Figure 7), if the user can upper bound the

expected runtime of their analysis to anything lower than 6 hours (i.e. from previous runs of

similar data).

Finally, we compare the cost of NEUROCAAS directly to the cost of purchasing local

infrastructure. We use a total cost of ownership (TCO) metric (Morey and Nambiar, 2009)

that includes the purchase cost of local hardware, plus reasonable maintenance costs over

estimates of hardware lifetime; see §9.3 for full details. We first ask how frequently

one would have to run the analyses presented in Figure 7 before it becomes worthwhile

to purchase dedicated local infrastructure. This question is answered by the Local Cost

Abe et al. Page 14

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Crossover (LCC): the threshold weekly rate at which a user would have to analyze data for

NEUROCAAS costs to exceed the TCO of local hardware. As an example, the top two bars of

Figure 7B, left, show that in order for a local machine to be cost effective for CaImAn, one

must analyze ~ 100 datasets of 8.39 GB per week, every week for several years (see Table

S4 for a conversion to data dimensions). In all use cases, the LCC rates in Figure 7B show

that a researcher would have to consistently analyze ~ 10–100 datasets per week for several

years before it becomes cost effective to use local infrastructure. While such use cases are

certainly feasible, managing these use cases on local infrastructure via IaGS would involve

an significant amount of human labor.

In Figure 7C, we characterize this labor cost via the Local Utilization Crossover (LUC):

the actual time cost of analyzing data on a local machine at the corresponding LCC rate.

Across the analyses that we considered, local infrastructure would have to be dedicated to

the indicated analysis for 25–50% of the infrastructure’s total lifetime (i.e. ~ 6–12 hours

per day, every day) to achieve its corresponding LCC threshold, requiring an inordinate

amount of work on the part of the researcher to manually run datasets, monitor analysis

progress for errors, or build the computing infrastructure required to automate this process–

in essence forcing researchers to perform by hand the large scale infrastructure management

that NEUROCAAS achieves automatically. These calculations demonstrate that even without

considering all of the IaGS issues that our solution avoids, or explicitly assigning a cost to

researcher time, it is difficult to use local infrastructure more efficiently than NEUROCAAS

for a variety of popular analyses. Given the diversity of IaGS solutions, we also provide a

tool for users to benchmark their available infrastructure options against NEUROCAAS (see

the instructions at https://github.com/cunningham-lab/neurocaas).

2.7. NEUROCAAS is Offered as a Free Service for Many Users

In many cases, researchers may use infrastructure available on hand to test out analyses

before purchasing components for a dedicated infrastructure stack. Given the low per-dataset

cost and the major advantages summarized above of NEUROCAAS compared to the current

IaGS status quo, we have decided to mirror this model on the NEUROCAAS platform,

and subsidize a large part of NEUROCAAS usage by the community. Users do not need

to set up any billing information or worry about incurring any costs when starting work

on NEUROCAAS; we cover all costs up to a per-user cap (initially set at $300). This

subsidization removes one final friction point that might slow adoption of NEUROCAAS,

and protects NEUROCAAS as a non-commercial open-source effort. Since NEUROCAAS is

relatively inexpensive, many users will not hit the cap; thus, for these users, NEUROCAAS

is offered as a free service. We note that we are also open to consider budget increases for

researchers as they become necessary.

3. Discussion

NEUROCAAS integrates rigorous infrastructure practices into neural data analysis while

also respecting current development and use practices. The fundamental choice made by

NEUROCAAS is to provide analysis infrastructure with as much automation as possible. This

choice naturally makes NEUROCAAS into a service, and in the simplest case neither analysis

Abe et al. Page 15

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cunningham-lab/neurocaas

users nor analysis developers have to manage infrastructure directly; rather, NEUROCAAS

removes the infrastructure burden entirely. However, as an open source project, NEUROCAAS

also acknowledges the possibility that some users may want to accept some degree of

responsibility for computing infrastructure, in return for a greater degree of flexibility in

how they use the platform. We highlight two notable alternative use cases here:

Working at scale: large datasets/many jobs.

Although our drag-and-drop console removes the need for users to have previous experience

with coding, some users may find the console restrictive when working with large datasets,

or managing many jobs at once- both important facets of analysis use that NEUROCAAS is

poised to improve. These restrictions can be reduced by working with NEUROCAAS from the

command line, or by integrating calls to NEUROCAAS within locally run applications, as is

done in §2.4. Since NEUROCAAS can be used solely by interacting with cloud storage, these

interfaces to NEUROCAAS are easily supported by general purpose data transfer tools. We

provide instructions for this use case in our developer documentation (see §9.4).

In order to streamline data transfer in cases where input or output data are unavoidably

large, we have also implemented a “storage bypass” option for our CLI interface. Using

this option, public data stored elsewhere in the AWS cloud can be analyzed, and results

can be written back directly to this location without incurring additional data transfer time

and costs, laying the groundwork for the integration of NEUROCAAS analyses with external

data sources. This option is intended for analyses which handle especially large input or

output data, where CLI use is preferable, but we plan to extend this functionality to all

analyses and our standard interface soon. We believe these additional features will better

equip NEUROCAAS to handle the ever increasing scale of neuroscience data (e.g. Steinmetz

et al., 2021; Couto et al., 2021), as well as methods that consider multiple data modalities

simultaneously (e.g. Batty et al., 2019), and faciliate sharing of analysis outputs across many

users.

Working independently: private management of costs/compute resources.

A major benefit of NEUROCAAS ‘s IaC construction is that the entire platform (except

private user data) can be reconstructed automatically given the code in the NEUROCAAS

source repository (§9.2, Figure S5): there is no dependence of the platform upon specifics

of infrastructure configuration that are not recorded in a blueprint. This benefit means

that if users anticipate very high costs, or would like to use IaC management for their

own custom analyses, it is easy for them to switch from using our public implementation

of NEUROCAAS, to one that they pay for themselves, maintaining all the benefits of

NEUROCAAS ‘s infrastructure management. We provide detailed instructions on this process

in our developer documentation (§9.4), describing platform setup and cloning of individual

analyses.

Finally, we revisit NEUROCAAS ‘s stated objectives of supporting reproducible, accessible,

and scalable data analyses. These are fundamentally multifaceted issues, and will manifest

in different ways across a variety of use cases. To this end, we identify strengths and

Abe et al. Page 16

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

limitations of NEUROCAAS ‘s approach to these issues (and related costs) so that researchers

can evaluate the suitability of NEUROCAAS to their particular use case.

Reproducibility.

What are the benefits and limits of analysis reproducibility in NeuroCAAS? In section

§2.2.1, we show that a dataset, configuration file, and analysis blueprint form a set of

sufficient resources to reproduce an analysis output against a set of practically relevant

interventions. We note some qualifications to this performance: First, it can be non-trivial

to maintain a dataset across multiple analysis runs. Importantly, when data is uploaded it

will not be versioned by default, creating the potential for it to be overwritten. For dataset

provenance, we recommend data infrastructure projects like DANDI Dandi Team (2019).

Integration with a data archive is an important future direction to extend reproducibility

for NEUROCAAS. Second, we are limited by the inherent computational reproducibility of

the core analysis we offer- for example, random computations can introduce significant

differences from run to run (although ensemble methods can mitigate these issues).

Finally, we can consider the lifecycle of different resources on the AWS cloud. For

example, reproducibility could be affected if support for certain hardware instances become

deprecated, and can no longer be used to run analyses. Given the large scale reliance of

industrial applications on the AWS cloud, such events are very rare and announced well in

advance, but we can take steps to address such a contingency. In particular, an important

future direction is to consider how we can expand our approach outside of a particular cloud

provider (see 9.2 for details).

Accessibility.

NEUROCAAS aims to improve the accessibility of data analysis by removing the need for

users to independently configure infrastructure stacks, as is the de facto standard with

IaGS approaches. By default, NEUROCAAS does not aim to improve other aspects of

usability, such as the scientific use of core analysis algorithms. For example, if a user

has data that is incorrectly formatted for a particular algorithm, the same error will happen

with NEUROCAAS as it would with conventional usage, although curated deployments and

blueprint based updates can significantly mitigate these issues.

Another approach towards achieving robust and general purpose analyses focuses on the

explicit standardization of data formats and workflow. As mentioned, we plan to integrate

with data archiving projects like DANDI (distributed archives for neurophysiology data

integration) (Dandi Team, 2019) which enforces the NWB (Teeters et al., 2015, Rübel et

al., 2019, Rübel et al., 2021) data standard, providing both a stable set of expectations

for analysis developers, while also improving reproducibility of analysis results. Likewise,

workflow management systems for neuroscience such as Datajoint (Yatsenko et al., 2015) or

more general tools like snakemake (Koster and Rahmann, 2012) and the Common Workflow

Language (Amstutz et al., 2016) codify the sequential steps that make up a data analysis

on given infrastructure, ensuring data integrity and provenance. Other platforms both within

(NeuroScout, 2022, Avesani et al., 2019) and outside of neuroscience (Seven Bridges, 2019)

provide well-designed examples of how standardized data formats paired with workflow

management systems can be used to make analyses more modular and easy to use.

Abe et al. Page 17

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Scale.

Although NEUROCAAS offers analyses at scale, it does not offer unstructured access to

cloud computational resources. The concept of IAEs should clarify this fact: NEUROCAAS

serves a set of analyses that are configured to a particular specification, as established by

the analysis developer. This constraint is often ideal, since the specification is in many

cases established by the analysis method’s original authors. Without specific structure to

manage the near infinite scale of resources available on the cloud, the management of

resources on the cloud easily becomes susceptible to the issues of IaGS that motivated

the development of NEUROCAAS to begin with (Monajemi et al., 2019). The constraint of

immutability distinguishes NEUROCAAS from interactive data analysis offerings that offer

cloud computing like Pan-neuro (Rokem et al., 2021) or Google Colab, in keeping with their

differing intended use cases. While interactive computing plays a key role in data analysis

applications, we believe there is fundamental value in immutable data analyses as well.

Importantly, immmutability does not suggest that analyses on NEUROCAAS are a black box.

All NEUROCAAS analyses are built from open source projects, the workflow scripts used

to parse datasets and config files inside an IAE are made available to all analysis users,

and jobs constantly print live status logs back to users. Furthermore, our novel analyses

show that there are means of comprehensively characterizing analysis performance that

only become available at scale (i.e. full parameter searches over a multi-step analysis, or

ensembling to evaluate reliability of analysis outputs).

Cost.

The cost quantifications that we present in this manuscript are intended to demonstrate

that the cost of using NEUROCAAS ‘s computing infrastructure is practically feasible

when compared against the cost of computing on typical IaGS infrastructure. One point

to note is that for individual research groups, the cost of using local infrastructure may

vary significantly across institutions. Our quantifications are best fit to the case where a

research group is supporting its own computing costs and resources. While the relative cost

of using NEUROCAAS may thus differ from group to group, it is our hope that offering

analyses at a uniform (and highly subsidized) cost will increase analysis accessibility to a

significant portion of the neuroscience community, and potentially provide a more concrete

understanding of the costs associated with the development and adoption of new analysis

tools.

Beyond compute, we do not discuss the costs of storing and retrieving data from the cloud in

depth. Without restricting data sizes on user storage, we found that data storage costs were

small enough that we could support them without counting them towards user budgets. A

common theme of the analyses that we discuss is that we can minimize data retrieval costs

by designing workflows such that analysis results that the user actually needed to retrieve

were far smaller than input data, specifically by modifying IAEs, and by maintaining large

intermediate results on the cloud for use in future analyses. NEUROCAAS ‘s cost benefits

may be reduced if these conditions are harder to achieve for a given analysis, although we

believe that alternative use cases, such as our CLI interface with “storage bypass” are well

poised to handle these contingencies, especially when paired with future directions such

Abe et al. Page 18

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

as integration with a data archive. Importantly, on private resources users will have to pay

for cloud storage. This cost can be minimized by deleting input data and storing all results

locally when not in use.

Beyond our proposed improvements above, NEUROCAAS will naturally continue to evolve

by virtue of its open source code and public cloud construction. First, we hope to build a

community of developers who will add more analysis algorithms to NEUROCAAS, with an

emphasis on subfields of computational analysis that we do not yet support. Throughout this

manuscript, we focus largely on analyses in systems neuroscience and neurophysiology, in

accordance with the previous experience of the authors, and the opinion that analyses in

this area are in great need of the platform design implemented by NEUROCAAS. We also

plan to add support for real-time processing (e.g., Giovannucci et al. (2017) for calcium

imaging, or Schweihoff et al. (2021), Kane et al. (2020) for closed-loop experiments, or

Lopes et al. (2015) for the coordination of multiple data streams), using blueprint based

methods to design fast, reliable infrastructure for closed loop analyses, in the same spirit

as these batch mode analyses. Second, other tools have brought large-scale distributed

computing to neural data analyses (Freeman, 2015, Rocklin, 2015) in ways that conform

to more traditional high performance computing ideas of scalability for applications that

are less easily parallelized than those presented here. Integrating more elaborate scaling

into NEUROCAAS while maintaining development accessibility will be an important goal

going forwards. Third, we aim to take inspiration from other computing platforms both

within and beyond neuroscience to improve the usability of our platform, such as reporting

the expected runtime and success rate of analyses Avesani et al. (2019), indicating the

compatibility of different analysis steps in a sequence (Seven Bridges, 2019), or improving

user and developer resources to include forums and full time support Goecks et al. (2010).

We also aim to identify platforms and tools that could potentially be integrated with

NEUROCAAS resources, in order to provide the infrastructure reliability that we prioritize.

Finally, a major opportunity for future work is the integration of NEUROCAAS with modern

visualization tools. We have emphasized above that immutable analysis environments on

NEUROCAAS are designed with the ideal of fully automated data analyses in mind, because

of the virtues that automation brings to data analyses. However, we recognize that for

some of the core analyses on NEUROCAAS, and indeed most of those popular in the

field, some user interaction is required to speed up analysis and optimize results. We have

already demonstrated the compatibility of interactive interfaces with NEUROCAAS in our

widefield calcium imaging analysis, and we will aim to establish a general purpose interface

toolbox for developers in the same spirit, without sacrificing the benefits of cost efficiency,

scalability, and reproducibility that distinguish NEUROCAAS in its current form.

Longer term, we hope to build a sustainable and open source user and developer community

around NEUROCAAS. We welcome suggestions for improvements from users, and new

analyses as well as extensions from interested developers, with the goal of creating a

sustainable community-driven resource that will enable new large-scale neural data science

in the decade to come.

Abe et al. Page 19

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

9. STAR Methods

9.1. Resource Availability

Lead Contact—Further information and requests for resources should be directed to and

will be fulfilled by the lead contact, John P. Cunningham (jpc2181@columbia.edu)

Materials Availability—This study did not generate new unique reagents.

Data/Code Availability

• Quantifications of performance and reproducibility of NeuroCAAS have been

deposited at Zenodo and are publicly available as of the date of publication.

DOIs are listed in the key resources table.

• This paper analyzes existing, publicly available data. These accession numbers

for the datasets are listed in the key resources table.

• All other data reported in this paper will be shared by the lead contact upon

request.

• All original code has been deposited at Zenodo and is publicly available as of the

date of publication. DOIs are listed in the key resources table.

9.2. Method Details

NEUROCAAS architecture specifics—The software supporting the NEUROCAAS

platform has been divided into three separate Github repositories. The first, https://

github.com/cunningham-lab/neurocaas is the main repository that hosts the Infrastructure-

as-Code implementation of NEUROCAAS. We will refer to this repository as the source
repo throughout this section. The source repo is supported by two additional repositories:

https://github.com/cunningham-lab/neurocaas_contrib hosts contribution tools to assist in

the development and creation of new analyses on NEUROCAAS, and https://github.com/

jjhbriggs/neurocaas_frontend hosts the website interface to NEUROCAAS. We will refer to

these as the contrib repo and the interface repo respectively throughout this section. We

discuss the relationship between these repositories in the following section, and in Figure

S5.

Source Repo—Section 2.1 gives an overview of how NEUROCAAS encodes individual

analyses into blueprints, and deploys them into full infrastructure stacks, following the

principle of Infrastructure-as-Code (IaC). This section presents blueprints in more depth

and show how the whole NEUROCAAS platform can be managed through IaC, encoding

features such as user data storage, credentials, and logging infrastructure in code documents

analogous to analysis blueprints as well. All of these code documents, together with code

to deploy them, make up NEUROCAAS ‘s source repo. There is a one-to-one correspondence

between NEUROCAAS ‘s source repo and infrastructure components: deploying the source

repo provides total coverage of all the infrastructure needed to analyze data on NEUROCAAS

(Figure S5, bottom). Although much of the code to translate blueprints and other

infrastructure code necessarily references AWS resources, NEUROCAAS blueprints and other

IaC artefacts are not tied to AWS, except in their reliance on particular hardware instance

Abe et al. Page 20

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cunningham-lab/neurocaas
https://github.com/cunningham-lab/neurocaas
https://github.com/cunningham-lab/neurocaas_contrib
https://github.com/jjhbriggs/neurocaas_frontend
https://github.com/jjhbriggs/neurocaas_frontend

configurations. We can potentially recreate these hardware instances in other public clouds,

using existing tools to support cloud-agnostic IaC approaches, as suggested by Brikman

(2019). Doing so will further improve the scale and robustness of our platform.

Within the source repo, each NEUROCAAS blueprint (see Figure S2 for an example) is

formatted as a JSON document with predefined fields. The expected values for most of

these fields identify a particular cloud resource, such as the ID for an immutable analysis

environment, or a hardware identifier to specify an instance within the resource bank

(Lambda.LambdaConfig.AMI and Lambda.LambdaConfig.INSTANCE_TYPE in Figure

S2, respectively). Upon deployment, these fields determine the creation of certain cloud

resources: AWS EC2 Amazon Machine Images in the case of IAE IDs, and AWS EC2

Instances in the case of hardware identifiers. One notable exception is the protocol

specifying behavior of a corresponding NEUROCAAS job manager (Lambda.CodeUri and

Lambda.Handler in Figure S2). Instead of identifying a particular cloud resource, each

blueprint’s protocol is a python module within the source repo that contains functions to

execute tasks on the cloud in response to user input. The ability to specify protocols in

python allows NEUROCAAS to support the complex workflows shown in Figure 5. Job

managers are deployed from these protocols as AWS Lambda functions that execute the

protocol code for a particular analysis whenever users submit data and parameters. Since

all parts of NEUROCAAS workflow can be managed with python code (i.e. through a

programmatic interface, job manager protocol, or within the IAE itself), external workflow

management tools can easily be integrated to analyses on a case-by-case basis in order to

deploy the scale of NEUROCAAS in parallel or sequentially, as needed.

Another major aspect of NEUROCAAS ‘s source repo that is not discussed in §2 is the

management of individual users. NEUROCAAS applies the same IaC principles to user

creation and management as it does to individual analyses. To add a new user to the

platform, NEUROCAAS first creates a corresponding user profile in the source repo (Figure

S5, right), that specifies user budgets, creates private data storage space, generates their

(encrypted) security credentials, and identifies other users who they collaborate with. Users

resources are created using the AWS Identity and Accesss Management (IAM) service.

Contrib and Interface Repos.—Given only the NEUROCAAS source repo, analyses can

be hosted on the NEUROCAAS platform and new users can be added to the platform simply

by deploying the relevant code documents. However, interacting directly with resources

provided by the NEUROCAAS source repo can be challenging for both analysis users and

developers. For developers, the steps required to fill in a new analysis blueprint may

not be clear, and the scripting steps necessary within an IAE to retrieve user data and

parameters requires knowledge of specific resources on the Amazon Web Services cloud.

For users, the NEUROCAAS source repo on its own does not support an intuitive interface or

analysis documentation, requiring users to interact with NEUROCAAS through generic cloud

storage browsers, forcing them to engage in tedious tasks like navigating file storage and

downloading logs before examining them. Collectively, these tasks lower the accessibility

that is a key part of NEUROCAAS ‘s intended design. To handle these challenges, we

created two additional code repositories, the NEUROCAAS contrib repo and interface repo,

for developers and users, respectively.

Abe et al. Page 21

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The NEUROCAAS contrib repo supports a command line tool and python code to streamline

the process of developing and creating new NEUROCAAS analyses. During the development

process, the NEUROCAAS contrib repo can create infrastructure stacks independently of

input-triggered job managers for a limited time, allowing developers to build and test IAEs

interactively on powerful hardware instances in “debug mode” (Figure S5, bottom right),

and populate the analysis blueprint as they go. Then, when a new analysis is ready to

be used on NEUROCAAS, the NEUROCAAS contrib repo automatically versions the entire

source repository after integrating and deploying the new blueprint, generating a unique

analysis version ID. All NEUROCAAS analyses can be updated only by directly editing

blueprints, and blueprints are assigned a new analysis version ID every time that they are

updated. By enforcing a tight correspondence between blueprints and analyses, we ensured

the reproducibility of all analyses conducted via NEUROCAAS, regardless of ongoing updates

to the underlying infrastructure or algorithm (Figure S5, top right). With an analysis version

ID, it is possible to replicate results that were generated with older versions of some

analysis algorithm, making this a particularly useful feature for users processing data with

an analysis that is still actively being developed. The NEUROCAAS developer documentation

§9.4 contains a detailed guide for developers to get started with NEUROCAAS.

The NEUROCAAS interface repo supports the website interface to NEUROCAAS, hosted at

www.neurocaas.org. In addition to providing documentation and a simpler user interface,

(Figure S5, bottom left) the interface repo interacts with the source repo to automatically

create and deploy user profiles when users sign up, significantly increasing the potential

scale of the platform (Figure S5, top left). This website based user credentialing system can

be referenced by other user interfaces as well, as is done in https://github.com/jcouto/wfield.

If users wish to share analysis access and data with other users, they can also use the website

to create and request unique “group codes” at sign up, that they can use to invite other users

into the same group. Doing so allows them to easily share analysis access with others.

Developer Workflow—In this section we give more specific steps of how developers and

authors built analyses for NEUROCAAS. See also Figure S6 for a corresponding schematic.

1. Flexible installation and scripting. Developers first install their core analysis

into an IAE and hardware instance, just as they would with a local

computer. Within an IAE any programming language can be supported,

although certain precautions must be taken when working with licensed

software such as Matlab (see developer documentation for more details

https://neurocaas.readthedocs.io/en/latest/index.html). We provide tools to help

developers write a workflow script to make their core analysis immutable (Figure

S6). Post installation, the configured IAE is automatically saved in a blueprint

(Figure S6, right).

2. Simple input/output handling. All NEUROCAAS analyses take a dataset file

and a YAML formatted configuration file as input. Datasets can be parallelized

over, and configuration files can specify any kind of parameter, including paths

to supplemental data files (we provide an example of such a workflow in our

custom analyses). NEUROCAAS handles transfer of data files from users into an

Abe et al. Page 22

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neurocaas.org/
https://github.com/jcouto/wfield
https://neurocaas.readthedocs.io/en/latest/index.html

IAE, and likewise writes any results back to users in timestamped folders that

ensure version control for analysis outputs. All messages that would be printed

to the IAE console during analysis are delivered back to the user in real time as

a set of automatically formatted log files, along with job success/failure status

messages, CPU usage, and memory usage. Developers can specify any files to be

returned to the user, including custom logs, or intermediate results that would be

useful to examine as analysis proceeds.

3. Testing with private data storage. Each user of a given analysis has a password

protected account that authorizes them to interface with their own private cloud

storage. Users have separated input and output areas in cloud storage, where they

can maintain datasets for re-analysis, or keep intermediate analysis results as

convenient. Although we have not capped the size of data we allow each user to

store overall, we restrict both as follows: users cannot download data from input

areas (although they can delete), and they cannot upload to output areas. These

restrictions have distinct benefits for cost and reproducibility. In the later stages

of testing, developers can upload test data and configuration files to private data

storage exactly as a user would, and ensure that results and logging information

appear as intended before releasing their analysis to the public. Developers can

also set up selective access for designated test users before releasing the analysis

to the general public. At this stage, we also work with developers to determine

the optimal hardware instance type from the resource bank for their analysis and

to determine if additional configuration of a custom job manager is necessary.

We note, importantly that our current storage solution does not meet HIPAA

standards and should not be used for sensitive health records.

4. Reproducible use and development By default, each analysis on NEUROCAAS

provisions a single type of hardware for all data. However, if needed instances

can be provisioned in a dataset-dependent manner, adjusting the size of storage

volumes, memory, or other computing resources. These per-job changes are still

recorded in versioned logs to ensure reproducibility of all jobs (see §2.2 for

details). Such dataset dependent changes can be triggered by users, with the

CLI interface, or programmed by developers through the job manager. In cases

where users report bugs, analysis developers can then access the exact same

IAE, resource bank instance, and inputs in interactive “debug mode” once again,

making changes, and redeploying the blueprint exactly as they did in the initial

deployment. Furthermore, if developers would like to continue updating their

analysis, they can do so without impacting the reproducibility of existing results,

because each NEUROCAAS job produces an analysis ID identifying a particular

blueprint version.

Novel Analyses—For each novel analysis §2.4 §2.5, we provide details on its component

infrastructure stacks, as well as details on relevant development outside the NEUROCAAS

framework we have already presented.

Abe et al. Page 23

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widefield Imaging.: The Widefield Calcium Imaging analysis that we present involves

two independent infrastructure stacks, with the second taking as input the results of the

first. The first infrastructure stack performs motion correction, denoising, compression, and

hemodynamic correction, and is performed on an instance with 64 virtual cores (further

infrastructure details are identical to the “PMD” row of Table S5). The second infrastructure

stack performs demixing of denoised, corrected widefield imaging data, and is performed

on an instance with a Tesla V100 GPU (further infrastructure details are identical to the

“LocaNMF” row of Table S5). In addition to these two infrastructure stacks, we support

a custom graphical user interface (available at https://github.com/jcouto/wfield). This user

interface integrates with the credentials generated for users on the NEUROCAAS website,

allowing users who have signed up via the website to use the GUI with an existing account.

The GUI hosts a number of initialization steps on the user’s local machine, involving

selection of parameters and alignment of data to landmarks on a given brain atlas. The GUI

is also able to upload data directly to NEUROCAAS cloud storage, submit jobs, and monitor

their progress. Next, the GUI is able to detect when the first step of processing is completed,

and submits the relevant results files as input to the second step, mimicking the steps a

user would take manually to manage this process. Finally, when all processing is complete

the GUI retrieves analysis results back to the user’s local machine. For more details on

implementation of each analysis step, please see Couto et al. (2021).

Ensemble Markerless Tracking.: The deep ensembling analysis that we present is also

performed in two separate infrastructure stacks, but both the initial training and the

consensus output generation steps are performed on the same IAE and resource bank

instance. In both cases, we use an instance equipped with a Tesla V100 GPU, otherwise

identical to the infrastructure shown in the DeepLabCut row of Table S5). We trained

DeepGraphPose with the default training settings provided in the file run_dgp_demo.py

within the core DeepGraphPose analysis code, on the “twomice-top-down” data from the

DeepGraphPose paper (Wu et al., 2020). That paper provides full videos of analysis of this

dataset using a single DeepGraphPose model. To enable ensembling, we built a separate

set of ensembling tools that work with DeepGraphPose (Wu et al., 2020) - they can

be found at https://github.com/cunningham-lab/neurocaas_ensembles. In order to create a

consensus output, we averaged the confidence maps from each model in an ensemble in

the following way: Assume a set of N trained DGP networks, ϕi, i∈1…N, and a video

frame, F ∈ ℝX × Y × 3. Assume that the network has been trained to track a single body

part (the general case follows immediately), and take the scoremap outputs (unnormalized

likelihoods) on this image from the output convolutional layer, denoted ϕi
sc(F), where

each scoremap ϕi
sc(F) ∈ ℝX × Y × 3. These scoremap outputs are unnormalized likelihoods

representing the probability that the body part of interest is located in any individual pixel of

the image. Then, we can compute the mean scoremap for a given image as:

ϕsc(F) = S−1 1
N ∑

i
S ϕi

sc(F) (1)

Abe et al. Page 24

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jcouto/wfield
https://github.com/cunningham-lab/neurocaas_ensembles

Where S is the elementwise sigmoid function. The consensus output is then calculated from

the softargmax function of this mean scoremap.

Furthermore, to calculate the rmse error, we use the following metric: Assume we have

detections for all of the test frames in a video as a tensor, x ∈ ℝT × D × C, with entries xtdc,

where t represents the frame index, d the part index, and c the coordinate ∈[x, y]. Likewise,

we have groundtruth data g with entries gtdc of the same dimension. Then the error is

calculated as follows:

RMSE(x, g) = ∑t, d, c [xtdc − gtdc
2]

T
(2)

Details and implementation can be found in the repository https://github.com/cunningham-

lab/neurocaas_ensembles, and the full analysis is available for use at http://neurocaas.org/

analysis/14.

9.3. Quantification and Statistical Analysis

Quantifying reproducibility on NEUROCAAS—In order to quantify the reproducibility

of analyses on NEUROCAAS, we selected two analyses already available on NEUROCAAS;

CaImAn Giovannucci et al. (2019), and Ensemble DeepGraphPose (§2.5). We fixed in place

the blueprint version for these analyses, as well as a dataset and configuration file, and

compared the results of 15 independent runs for each of these analyses. These runs capture

a variety of different real world interventions that can affect analysis reproducibility in

practice. In particular, Runs 1–5 were performed by a paper author in the United States,

Runs 6–10 were performed by a non-author researcher in India, and Runs 11–14 were

performed by a non-author researcher in Switzerland. Within each of these sets of runs,

we can test for the variation in analysis outputs over analysis runs conducted by the same

researcher. Across these sets of runs, we can test for variation in analysis outputs over

the physical location of the researcher performing experiments. Finally, for both analyses

Run 15 was performed using an entirely separate instatiation of the NeuroCAAS platform,

as described in the Discussion §3, and for which detailed instructions are provided in our

developer documentation. This run ensures that there is no dependence of our analysis

results on the particular set of infrastructure reosurces used to build and implement

NEUROCAAS analyses blueprints.

In the absence of a generic metric to compare analysis outputs, we chose specific metrics for

each analysis.

CaImAn.: We benchmarked CaImAn on the YST dataset introduced in the CaImAn paper

Giovannucci et al. (2019). To compare the outputs of CaImAn, we independently looked

at the differences between the spatial components (referred to as the “A” matrix in the

CaImAn software package) and the temporal components (referred to as the “C” matrix in

the CaImAn software package) found by the system independently. For both temporal and

spatial components, we assumed a deterministic ordering of components across runs. We

compared components pairwise, and reported average quantities across paired components.

Abe et al. Page 25

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cunningham-lab/neurocaas_ensembles
https://github.com/cunningham-lab/neurocaas_ensembles
http://neurocaas.org/analysis/14
http://neurocaas.org/analysis/14

To determine the variation of spatial components across runs, we quantified the Jaccard

similarity coefficient pairwise between detected components, as has been done previously in

Giovannucci et al. (2017). In order to compare the variation of temporal components across

runs, we quantified the root mean square error between paired temporal components. In both

cases, we found no detectable variation across runs.

Ensemble DeepGraphPose.: We benchmarked Ensemble DeepGraphPose on the

“twomice-top-down” data described in the methods above with the introduction of Ensemble

Markerless Tracking. We compared the outputs of each run as the time series describing

the temporal evolution of each individual body part. We quantified differences between two

runs, x1, x2 as the root mean squared error between time series describing the evolution

of each individual body part, averaged overall body parts. RMSE has previously been

used in the literature to quantify the similarity between the tracked positions of behavioral

markers, as in Mathis et al. (2018); Wu et al. (2020). We expect this variation to come from

non-deterministic computations used to speed up the computation of convolutions employed

in the relevant behavioral tracking model.

Timings.: As a separate but related question, we also quantified the variation in the time

taken to analyze data on NEUROCAAS across these same 15 runs. We quantified timings as

follows:

• The Setup Time of an analysis was calculated as the time between the moment

when a job was submitted to user storage (measured as the upload timestamp

associated with a job’s “submit.json” file) and when the job was marked as

started in the corresponding “certificate.txt” log in user storage (reported as a

delta following the statement “JOB MONITOR LOG COMPLETE”.)

• The Analysis Time was calculated as the time between the end of a job’s Setup

Time and the time when the last analysis output of a particular run is uploaded to

user storage (measured using upload timestamps of those analysis results).

• The Shutdown Time of an analysis is the time between the end of a job’s

Analysis Time and the time when all resources associated with the job have been

stopped. It is measured based upon the time when a job end marker file is written

to user storage (called “end.txt”).

The total timing of an analysis job is the sum of these three contributions. In practice, we

care most about variation in the first two components, as these are most relevant to a user’s

experience of NEUROCAAS.

Quantifying usage—By default, NEUROCAAS records metadata for each job that is

requested, such as the requester of the job, the time at which it was requested, and the

datasets and config file that were analyzed. These quantities are necessary to enable per-user

budgeting.

We aggregated this per-user metadata in order to generate the usage statistics shown in

Figure 3. Aggregation and analysis of user data is now offered to developers through the

Abe et al. Page 26

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

contrib repo described above, and the data for Figure 3 panels were generated by running the

command:

$ neurocaas-contrib monitor visualize-parallelism: This command is included with the

developer CLI, which lists the usage of a single analysis bucket. We ran this command for

the following analyses:

• epi-ncap-web

• dlc-ncap-web

• pmd-ncap-web

• caiman-ncap-web

• locanmf-ncap-web

• bardensr

• dlc-ncap-stable

• caiman-ncap-stable

• polleuxmonitored

• carceamonitored

• wfield-preprocess

• yass-ncap-stable

• one-photon-compress

• one-photon-demix

• one-photon-mcorr

• dgp-refactor

• ensemble-dgp

• label-job-create-web

We then iterated through all of these logs, and aggregated information across all platform

usage for these analyses, using metadata for individual jobs to group results by user, by

parallelism, and by developer. For each aggregated collection of jobs, we extracted the total

corresponding number of compute hours as well, using the script figures/parallelized.py
included in the contrib repo. Critically, here we exclude usage by NeuroCAAS team

members testing analyses for deployment, which is run from the user accounts ”reviewers”,

“debuggers,“examplegroup2”. In rare cases where metadata logging failed, we excluded the

corresponding analysis from this quantification.

Benchmarking algorithms on NEUROCAAS—For each analysis currently on

NEUROCAAS, the specific infrastructure choices in the corresponding blueprint (Figure

S5, right) are given in Table S5. To meaningfully benchmark NEUROCAAS against current

standards, we simulated corresponding local infrastructure. Local infrastructure was also

Abe et al. Page 27

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

built on AWS, and spans resources comparable to personal hardware and cluster compute,

depending on the use case (see Table S6). As a general guideline, we chose local

infrastructure representatives that would reasonably be available to a typical researcher,

unless the datasets we considered required more powerful resources. To account for the

diversity of resources available to neuroscience users, we offer alternative quantifications

to those presented in Figure 7 in the supplementary methods (see Figure S7), and make

performance quantification data and calculations available to users who would like to

compare to their own infrastructure through a custom tool on our project repository (see

README: https://github.com/cunningham-lab/neurocaas).

For each analysis that we benchmarked on NEUROCAAS, we chose three datasets of

increasing size as representative use cases of the algorithms in question. The size differences

of these datasets reflect the diversity of potential use cases among different users of the

same algorithm. The CaImAn benchmarking data consists of datasets N.02.00, J_123, J_115

from the data shared with the CaImAn paper (Giovannucci et al., 2019). Benchmark analysis

is based on a script provided to regenerate Figure 7 of the CaImAn paper. Note that

although this data could be batched, we choose to maintain all three datasets as contiguous

wholes. We took advantage of the fact that the algorithm was built to parallelize across

multiple cores of the same machine, and chose hardware to make effective use of this

implementation across data sizes (for details see Giovannucci et al. (2019), Figure 8).

DeepLabCut benchmarking data consists of behavioral video capturing social interactions

between two mice in their home cage. Data is provided courtesy of Robert C. Froemke and

Ioana Carcea, as analyzed and presented in Carcea et al. (2019). Data processing consisted

of analyzing these videos with a model that had previously been trained on other images

from the same dataset. The same dataset was used to benchmark PMD and LocaNMF as a

single analysis pipeline with two discrete parts. Input data consist of the dataset (“mSM30”),

comprising widefield calcium imaging data videos, provided courtesy of Simon Musall

and Anne Churchland, as used in Musall et al. (2019) and Saxena et al. (2020). The full

dataset is available in a denoised format at http://repository.cshl.edu/id/eprint/38599/. Data

processing on NEUROCAAS consisted of first processing the raw videos with PMD, then

passing the resulting output to LocaNMF. For DLC and PMD+LocaNMF, the NEUROCAAS

compute time was effectively constant across increasing total dataset size, as we assumed

data was evenly batched into subsets of approximately equal size and each batch was

analyzed in its own independent infrastructure stack (as in Figure 5A).

Further details on the datasets used can be found in Table S4.

We split the time taken to run analyses on NEUROCAAS into two separate quantities.

First, we quantified the time taken to upload data from local machines to NEUROCAAS,

denoted as NEUROCAAS (Upload) in Figure 7. This time depends upon the specifics of the

internet connection that is being used. It is also a one time cost: once data is uploaded to

NEUROCAAS, it can be reanalyzed many times without incurring this cost again. Upload

times were measured from the same NEUROCAAS interface made available to the user.

(This upload time was skipped in the quantification of local processing time.) Second, we

automatically quantified the total time elapsed between job submission and job termination,

when results have been delivered back to the end user in the NEUROCAAS interface

Abe et al. Page 28

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cunningham-lab/neurocaas
http://repository.cshl.edu/id/eprint/38599/

(denoted as NEUROCAAS (Compute) in Figure 7) via AWS native tools (see Supplemental

Information for details, and use of this data for Figure 3). Finally, we do not include time

taken to download data back to a local machine in these quantifications because we found

that this time was negligible across all analyses that we considered- at most ~ 2 minutes,

and in most cases on the order of a few seconds. Local timings were measured on automated

portions of workflow in the same manner as NEUROCAAS (Compute).

We quantified the cost of running analysis on NEUROCAAS by enumerating costs of each

of the AWS resources used in the course of a single analysis. Costs can be found in

Table S7. We provide the raw quantification data and corresponding prices in Table S7.

To further reduce costs, we also offer the option to utilize AWS Spot Instances (dedicated

duration); these are functionally identical to standard compute instances, but are provisioned

for a pre-determined amount of time with the benefit of significantly reduced prices. We

provide the estimated cost of running analyses with both of these options in Figure 7, with

quantifications labeled “NEUROCAAS Save” corresponding to analyses run with dedicated

duration spot instances, and those labeled “NEUROCAAS Std” corresponding to those run

with standard instances. For more on Spot Instance price quantification, see Supplemental

Information.

With simulated local infrastructures on AWS in hand, costs were calculated by pricing

analogous computing resources as if the user had purchased them for a personal workstation,

or as if they had been allocated to the user on an on-premises cluster (Table S8, https://

calculator.aws/). In Figure 7, we assume that the local infrastructures considered are hosted

on typical local laptop or desktop computing resources, supplemented with the resources

necessary to run analyses as they were done on NeuroCAAS (additional storage, memory,

GPU, etc), while maintaining approximate parity in processor power. We referred to (Morey

and Nambiar, 2009) to convert pricetag costs of local machines to Equivalent Annual Costs,

i.e. the effective cost per year if we assume our local machines will remain in service for

a given number of years, as our implementation of a TCO calculation (as is often done in

industry). Given a price tag cost xlocal, an assumed lifetime n, an annuity rate r, and cs (n)

defined as the estimated annual cost of local machine support given a lifetime n, we follow

Mahvi and Zarfaty (2009), Morey and Nambiar (2009) in calculating the Equivalent Annual

Cost as:

EAC xlocal, n, r =
xlocal

1 − (1 + r)−n
r

+ cs(n) .

Here cs (n) is provided in the cited paper (Morey and Nambiar, 2009), estimated from

representative data across many different industries. The denominator of the first term is

an annuity factor. We consider two different values for n, which we label as “realistic” (2

years) and “optimistic” (4 years) in the text. In industry, 3–4 years is the generally accepted

optimal lifespan for computers, after which support costs outweigh the value of maintaining

an old machine (, Mahvi and Zarfaty, 2009, Morey and Nambiar, 2009). Some have argued

that with more modern hardware, the optimal refresh cycle has shortened to 2 years (J.Gold

Abe et al. Page 29

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://calculator.aws/
https://calculator.aws/

Associates LLC, 2014). By providing quantifications assuming two and four year refresh

cycle, we consider the short and long end of this generally discussed optimal range.

Given a per-dataset NEUROCAAS cost xNeuroCAAS, we further derive the Local Cost

Crossover (LCC), the threshold weekly data analysis rate at which it becomes cost-effective

to buy a local machine. The LCC is given by:

LCC xlocal, n, r, xNeuroCAAS =
EAC xlocal, n, r

52 × xNeuroCAAS
.

Furthermore, given the per-dataset local analysis time, we can estimate the corresponding

Local Utilization Crossover (LUC). The LUC considers the LCC in the context of the

maximal achievable data analysis rate on local infrastructure as calculated in the previous

section. If the time taken to analyze a dataset on a local machine is given by tlocal (in

seconds), The LUC is given by:

LUC tlocal, xlocal, n, r, xNeuroCAAS

=
LCC xlocal, n, r, xNeuroCAAS × tlocal × 100

604800 .

Survey of Analyses and Platforms—We characterized data analysis infrastructure

stacks as consisting of three hierarchical parts (Dependencies, System, Hardware),

segmented consistently with infrastructure descriptions referenced elsewhere (Demchenko et

al., 2013, Zhou et al., 2016). In several different subfields of neuroscience, we then selected

10 recent or prominent analysis techniques, and asked how they fulfilled each component

of data analysis infrastructure to generate Figure 1D. We denoted a particular infrastructure

component as supported if it is referenced in the relevant installation and usage guides as

being provided in a reliable, automated manner (e.g., automatic package installation via pip),

offering a conservative estimate of lack of infrastructure support. Survey details are provided

in Tables S1, S2. We addressed the question of how data analyses are installed and used

with these surveys in the tradition of the open source usability literature. Surveys such as

these are standard methodology in this field, which relies upon empirical data from studies

of user’s usage habits (Nichols et al., 2001, Zhao and Deek, 2005), developer sentiment

(Terry et al., 2010), and observation of user-developer interactions via platforms like Github

(Cheng and Guo, 2018).

To generate Figure 4, we first quantified the traffic and infrastructure experienced by

individual analyses by examining their Github pages, and taking the maximum of the

number of forks, stars, and watchers, as well as the listed hardware requirements of each

analysis (numbers as of September 2020). We then overlaid several exemplar platforms

based on the analyses that they supported, as well as restrictions based on the accessibility

and scale requirements imposed by each (local hardware, limitation to one analysis at a

time), taking care to include analyses that the platforms supported in practice.

Abe et al. Page 30

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

9.4. Additional Resources

• Standard interface for users to work with analyses on NEUROCAAS :

www.neurocaas.org

• Documentation for developer workflow (and CLI usage):

https://neurocaas.readthedocs.io/en/latest/develop/installation.html

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Ioana Carcea and Robert C. Froemke for the use of benchmarking data for DeepLabCut, Simon Musall
and Anne Churchland for the use of benchmarking data for Penalized Matrix Decomposition and LocaNMF, and
Erica Rodriguez and C. Daniel Salzman for the use of data to demonstrate ensemble markerless tracking. We thank
Larry Abbott for feedback and support regarding the goals and usage of our platform, Danil Tyulmankov for useful
references and discussions of benchmarking, Dan Biderman and Michelle Stackmann for paper comments, and Jian
Wang and Yakov Stern for helpful discussions on NEUROCAAS ‘s architecture and extensions. We thank Dmitri
Yatsenko, Edgar Walker, Raphael Guzman, Thinh Nguyen, and other members of the Datajoint team, as well as Ben
Dichter, Alessio Buccino and other members of the CatalystNeuro and DANDI teams for discussions of how our
platform might integrate with others, as well as general advice. We thank Anjali Agarwal and Catalin Mitelut for
submitting neurocaas jobs as independent researchers to study reproducibility. We thank Peter Lee, Jackson Loper,
Shuonan Chen, and Nick Greenspan for development of additional algorithms early in development and for help
prototyping relevant extensions for job managers, Selmaan Chettih for suggesting ensembling of pose tracking, and
Zahra Adahman, Ioana Carcea, Claire Everett, Andres Bendesky, Andres Villegas, Franck Polleux, Vivek Athalye,
Darcy Peterka, and Avner Wallach for discussion and feedback on the use of NEUROCAAS during development, as
well as all users and developers during alpha testing. T.A. is supported by NIH training grant 2T32NS064929-11,
NSF DBI-1707398, and the Gatsby Charitable Foundation (Gatsby Charitable Foundation GAT3708). S.S. is
supported by the Swiss National Science Foundation P2SKP2_178197 and 5U19NS104649. E.K.B. is supported
by NIH training grant T32NS064929, NIH U19NS107613, NSF DBI-1707398, and the Gatsby Charitable
Foundation (Gatsby Charitable Foundation GAT3708). J.P.C. is supported by Simons 542963. L.P. is funded
by IARPA MICRONS D16PC00003, NIH 5U01NS103489, 5U19NS107613, 1UF1NS107696, 1UF1NS108213,
1RF1MH120680, DARPA NESD N66001-17-C-4002, 1U19NS123716-01 and Simons Foundation 543023. L.P.
and J.P.C. are supported by NSF Neuronex Award DBI-1707398 and NIH 5U19NS104649.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al.
(2016), Tensorflow: A system for large-scale machine learning, in ‘12th Symposium on Operating
Systems Design and Implementation (OSDI 16)’, pp. 265–283.

Aguiar A, Díaz J, Almaraz R, Pérez J and Garbajosa J (2018), DevOps in Practice – An Exploratory
Case Study, in ‘Proceedings of the 19th International Conference on Agile Software Development:
Companion, XP ‘18’, pp. 1–3.

Amezquita RA, Lun AT, Becht E, Carey VJ, Carpp LN, Geistlinger L, Marini F, Rue-Albrecht K,
Risso D, Soneson C et al. (2020), ‘Orchestrating single-cell analysis with bioconductor’, Nature
methods 17(2), 137–145. [PubMed: 31792435]

Amstutz P, Crusoe MR, Tijanic N. s., Chapman B, Chilton J, Heuer M, Kartashov A, Kern J, Leehr
D, Menager H, Nedeljkovich M, Scales M, Soiland-Reyes S and Stojanovic L (2016), ‘Common
Workflow Language, v1.0’. 10.6084/m9.figshare.3115156.v2

Avesani P, McPherson B, Hayashi S, Caiafa CF, Henschel R, Garyfallidis E, Kitchell L, Bullock D,
Patterson A, Olivetti E et al. (2019), ‘The open diffusion data derivatives, brain data upcycling
via integrated publishing of derivatives and reproducible open cloud services’, Scientific data 6(1),
1–13. [PubMed: 30647409]

Batty E, Merel J, Brackbill N, Heitman A, Sher A, Litke A, Chichilnisky E and Paninski L (2016),
‘Multilayer recurrent network models of primate retinal ganglion cell responses’, International
Conference on Learning Representations.

Abe et al. Page 31

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neurocaas.org/
https://neurocaas.readthedocs.io/en/latest/develop/installation.html

Batty E, Whiteway M, Saxena S, Biderman D, Abe T, Musall S, Gillis W, Markowitz J, Churchland
A, Cunningham JP et al. (2019), BehaveNet: nonlinear embedding and Bayesian neural decoding of
behavioral videos, in ‘Advances in Neural Information Processing Systems’, pp. 15680–15691.

Bittner SR, Palmigiano A, Piet AT, Duan CA, Brody CD, Miller KD and Cunningham JP (2019),
‘Interrogating theoretical models of neural computation with deep inference’, bioRxiv p. 837567.

Bloch J (2008), Effective java (the java series), Prentice Hall PTR.

Brikman Y (2019), Terraform: up and running: writing infrastructure as code, O’Reilly Media.

Buccino AP, Hurwitz CL, Garcia S, Magland J, Siegle JH, Hurwitz R and Hennig MH (2020),
‘SpikeInterface, a unified framework for spike sorting’, eLife 9, e61834. [PubMed: 33170122]

Buchanan EK, Kinsella I, Zhou D, Zhu R, Zhou P, Gerhard F, Ferrante J, Ma Y, Kim S, Shaik M et al.
(2018), ‘Penalized matrix decomposition for denoising, compression, and improved demixing of
functional imaging data’, arXiv preprint arXiv:1807.06203.

Buckheit JB and Donoho DL (1995), Wavelab and reproducible research, in ‘Wavelets and statistics’,
Springer, pp. 55–81.

Business Intelligence (2004), Pilot Study: Optimum Refresh Cycle and Method for Desktop
Outsourcing, Technical report, Intel Business Center.

Carcea I, Caraballo NL, Marlin BJ, Ooyama R, Navarro JMM, Opendak M, Diaz VE, Schuster L,
Torres MIA, Lethin H et al. (2019), ‘Oxytocin Neurons Enable Social Transmission of Maternal
Behavior’, bioRxiv p. 845495.

Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH,
Lindquist RA, Moffat J et al. (2006), ‘CellProfiler: image analysis software for identifying and
quantifying cell phenotypes’, Genome biology 7(10), R100. [PubMed: 17076895]

Carver JC, Gesing S, Katz DS, Ram K and Weber N (2018), ‘Conceptualization of a us research
software sustainability institute (URSSI)’, Computing in Science \and Engineering 20(3), 4–9.

Chan Zuckerberg Initiative (2019), ‘Essential Open Source Software for Science (EOSS) - Chan
Zuckerberg Initiative’. https://chanzuckerberg.com/eoss/

Chaumont FD, Dallongeville S, Chenouard N, Herve N, Pop S, Provoost T, Meas-Yedid V,
Pankajakshan P, Lecomte T, Montagner YL et al. (2012), ‘Icy: an open bioimage informatics
platform for extended reproducible research’, Nature methods 9(7), 690. [PubMed: 22743774]

Chen S, Loper J, Chen X, Zador T and Paninski L (2020), ‘BARcode DEmixing through Non-negative
Spatial Regression (BarDensr)’, bioRxiv p. 2020.08.17.253666.

Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Gonzalez JB, Hirvonsalo H, Kousidis D,
Lavasa A, Mele S et al. (2019), ‘Open is not enough’, Nature Physics 15(2), 113–119.

Cheng J and Guo JL (2018), How do the open source communities address usability and ux issues?:
An exploratory study, in ‘Extended Abstracts of the 2018 CHI Conference on Human Factors in
Computing Systems’, p. LBW523.

Couto J, Musall S, Sun XR, Khanal A, Gluf S, Saxena S, Kinsella I, Abe T, Cunningham JP, Paninski
L and Churchland AK (2021), ‘Chronic, cortex-wide imaging of specific cell populations during
behavior’, Nature Protocols 16(7), 3241–3263. [PubMed: 34075229]

Crook SM, Davison AP and Plesser HE (2013), Learning from the past: approaches for reproducibility
in computational neuroscience, in ‘20 Years of Computational Neuroscience’, Springer, pp. 73–
102.

Dandi Team (2019), ‘Dandi Archive’. https://www.dandiarchive.org/

Demchenko Y, Grosso P, Laat CD and Membrey P (2013), Addressing big data issues in scientific
data infrastructure, in ‘2013 International Conference on Collaboration Technologies and Systems
(CTS)’, pp. 48–55.

Dietterich TG (2000), ‘Multiple Classifier Systems, First International Workshop, MCS 2000 Cagliari,
Italy, June 21–23, 2000 Proceedings’, Lecture Notes in Computer Science pp. 1–15.

Donoho DL (2010), ‘An invitation to reproducible computational research’, Biostatistics 11(3), 385–
388. [PubMed: 20538873]

Editorial (2014), ‘Code share : Nature News and Comment’. https://www.nature.com/news/code-
share-1.16232

Abe et al. Page 32

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://chanzuckerberg.com/eoss/
https://www.dandiarchive.org/
https://www.nature.com/news/code-share-1.16232
https://www.nature.com/news/code-share-1.16232

Flywheel Exchange (2019), ‘Flywheel: Informatics Platform for Biomedical Research and
Collaboration’. https://flywheel.io/

Fort S, Hu H and Lakshminarayanan B (2019), ‘Deep Ensembles: A Loss Landscape Perspective’,
arXiv preprint arXiv:1912.02757.

Freeman J (2015), ‘Open source tools for large-scale neuroscience’, Current opinion in neurobiology
32, 156–163. [PubMed: 25982977]

Gao Y, Archer EW, Paninski L and Cunningham JP (2016), Linear dynamical neural population
models through nonlinear embeddings, in ‘Advances in neural information processing systems’,
pp. 163–171.

Genomics, S. B. (2019), ‘The seven bridges platform. (retrieved february 28,2022)’. https://
www.sbgenomics.com/

Ghosh SS, Poline J-B, Keator DB, Halchenko YO, Thomas AG, Kessler DA and Kennedy DN (2017),
‘A very simple, re-executable neuroimaging publication’, F1000Research 6.

Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA, Taxidis J, Najafi F, Gauthier JL,
Zhou P et al. (2019), ‘CaImAn an open source tool for scalable calcium imaging data analysis’,
Elife 8, e38173. [PubMed: 30652683]

Giovannucci A, Friedrich J, Kaufman M, Churchland A, Chklovskii D, Paninski L and Pnevmatikakis
EA (2017), Onacid: Online analysis of calcium imaging data in real time, in ‘Advances in neural
information processing systems’, pp. 2381–2391.

Glatard T, Lewis LB, Silva R. F. d., Adalat R, Beck N, Lepage C, Rioux P, Rousseau M-E, Sherif T,
Deelman E, Khalili-Mahani N and Evans AC (2015), ‘Reproducibility of neuroimaging analyses
across operating systems’, Frontiers in Neuroinformatics 9, 12. [PubMed: 25964757]

Goecks J, Nekrutenko A and Taylor J (2010), ‘Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences’, Genome
biology 11(8), 1–13.

Goodman DFM and Brette R (2009), ‘The Brian Simulator’, Frontiers in Neuroscience 3(2), 192–197.
[PubMed: 20011141]

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML and Ghosh SS
(2011), ‘Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in
python’, Frontiers in neuroinformatics 5, 13. [PubMed: 21897815]

Gorgolewski KJ, Alfaro-Almagro F, Auer T, Bellec P, Capota M, Chakravarty MM, Churchill NW,
Cohen AL, Craddock RC, Devenyi GA et al. (2017), ‘BIDS apps: Improving ease of use,
accessibility, and reproducibility of neuroimaging data analysis methods’, PLoS computational
biology 13(3), e1005209. [PubMed: 28278228]

Graving JM, Chae D, Naik H, Li L, Koger B, Costelloe BR and Couzin ID (2019), ‘DeepPoseKit, a
software toolkit for fast and robust animal pose estimation using deep learning’, eLife 8, e47994.
[PubMed: 31570119]

Hanson B, Sugden A and Alberts B (2011), ‘Making data maximally available’, Science331(6018),
649. [PubMed: 21310971]

Hinsen K (2015), ‘Technical Debt in Computational Science’, Computing in Science and Engineering
17(6), 103–107.

Hoffa C, Mehta G, Freeman T, Deelman E, Keahey K, Berriman B and Good J (2008), On the use
of cloud computing for scientific workflows, in ‘2008 IEEE fourth international conference on
eScience’, pp. 640–645.

Januszewski M, Kornfeld J, Li PH, Pope A, Blakely T, Lindsey L, Maitin-Shepard J, Tyka M, Denk
W and Jain V (2018), ‘High-precision automated reconstruction of neurons with flood-filling
networks’, Nature Methods15(8), 605–610. [PubMed: 30013046]

Jararweh Y, Al-Ayyoub M, Benkhelifa E, Vouk M, Rindos A et al. (2016), ‘Software defined cloud:
Survey, system and evaluation’, Future Generation Computer Systems 58, 56–74.

Gold Associates LLC J (2014), Replacing Enterprise PCs: The Fallacy of the 3–4 Year Upgrade Cycle
[White Paper], Technical report, J.Gold Associates LLC.

Kane GA, Lopes G, Sanders JL, Mathis A and Mathis M (2020), ‘Real-time, low-latency closed-loop
feedback using markerless posture tracking’, eLife 9, e61909. [PubMed: 33289631]

Abe et al. Page 33

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://flywheel.io/
https://www.sbgenomics.com/
https://www.sbgenomics.com/

Koster J and Rahmann S (2012), ‘Snakemake—a scalable bioinformatics workflow engine’,
Bioinformatics 28(19), 2520–2522. [PubMed: 22908215]

Krafczyk M, Shi A, Bhaskar A, Marinov D and Stodden V (2019), Scientific Tests and
Continuous Integration Strategies to Enhance Reproducibility in the Scientific Software Context,
in ‘Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of
Computer Systems’, pp. 23–28.

Lakshminarayanan B, Pritzel A and Blundell C (2017), ‘Simple and scalable predictive uncertainty
estimation using deep ensembles’, Advances in neural information processing systems 30.

Landhuis E (2017), ‘Neuroscience: Big brain, big data’, Nature 541(7638), 559–561. [PubMed:
28128250]

Lee JH, Carlson DE, Razaghi HS, Yao W, Goetz GA, Hagen E, Batty E, Chichilnisky E, Einevoll
GT and Paninski L (2017), Yass: Yet another spike sorter, in ‘Advances in neural information
processing systems’, pp. 4002–4012.

Lopes G, Bonacchi N, Frazao J, Neto JP, Atallah BV, Soares S, Moreira L, Matias S, Itskov PM,
Correia PA et al. (2015), ‘Bonsai: an event-based framework for processing and controlling data
streams’, Frontiers in neuroinformatics 9, 7. [PubMed: 25904861]

Magland J, Jun JJ, Lovero E, Morley AJ, Hurwitz CL, Buccino AP, Garcia S and Barnett AH (2020),
‘SpikeForest, reproducible web-facing ground-truth validation of automated neural spike sorters’,
eLife 9, e55167. [PubMed: 32427564]

Mahvi J and Zarfaty A (2009), ‘Using TCO to Determine PC Upgrade Cycles’, Intel Corporation.

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW and Bethge M (2018),
‘DeepLabCut: markerless pose estimation of user-defined body parts with deep learning’, Nature
Neuroscience 21(9), 1281–1289. [PubMed: 30127430]

Merali Z (2010), ‘Computational science: …Error’, Nature 467(7317), 775–777. [PubMed: 20944712]

Merkel D (2014), ‘Docker: lightweight linux containers for consistent development and deployment’,
Linux journal 2014(239), 2.

Miller G (2006), ‘A Scientist’s Nightmare: Software Problem Leads to Five Retractions’, Science
314(5807), 1856–1857. [PubMed: 17185570]

Minka TP (1999), ‘From Hidden Markov Models to Linear Dynamical Systems’.

Monajemi H, Murri R, Jonas E, Liang P, Stodden V and Donoho DL (2019), ‘Ambitious Data Science
Can Be Painless’, arXiv preprint arXiv:1901.08705.

Morey T and Nambiar R (2009), Using Total Cost of Owner-ship to Determine Optimal PC Refresh
Lifecycles [White Paper], Technical report, Wipro Ltd.

Morris K (2016), Infrastructure as code: managing servers in the cloud, ” O’Reilly Media, Inc.”.

Musall S, Kaufman MT, Juavinett AL, Gluf S and Churchland AK (2019), ‘Single-trial neural
dynamics are dominated by richly varied movements’, Nature neuroscience 22(10), 1677–1686.
[PubMed: 31551604]

NeuroScout (2022), ‘Neuroscout. (retrieved february 28, 2022)’. https://neuroscout.github.io/
neuroscout

Nichols DM, Thomson K and Yeates SA (2001), Usability and open-source software development, in
‘CHINZ’01’, pp. 49–54.

Nilsson SR, Goodwin NL, Choong JJ, Hwang S, Wright HR, Norville ZC, Tong X, Lin D, Bentzley
BS, Eshel N, McLaughlin RJ and Golden SA (2020), ‘Simple Behavioral Analysis (SimBA) –
an open source toolkit for computer classification of complex social behaviors in experimental
animals’, bioRxiv p. 2020.04.19.049452.

Nowogrodzki A (2019), ‘How to support open source software and stay sane’, Nature 571, 133–134.
[PubMed: 31263262]

Ovadia Y, Fertig E, Ren J, Nado Z, Sculley D, Nowozin S, Dillon J, Lakshminarayanan B and Snoek
J (2019), ‘Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset
shift’, Advances in neural information processing systems 32.

Pachitariu M, Steinmetz NA, Kadir SN, Carandini M and Harris KD (2016), Fast and accurate
spike sorting of high-channel count probes with KiloSort, in ‘Advances in Neural Information
Processing Systems’, pp. 4448–4456.

Abe et al. Page 34

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://neuroscout.github.io/neuroscout
https://neuroscout.github.io/neuroscout

Pachitariu M, Stringer C, Dipoppa M, Schroder S, Rossi LF, Dalgleish H, Carandini M and Harris
KD (2017), ‘Suite2p: beyond 10,000 neurons with standard two-photon microscopy’, Bioarxiv p.
061507.

Pandarinath C, O’Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM, Kaufman
MT, Ryu SI, Hochberg LR et al. (2018), ‘Inferring single-trial neural population dynamics using
sequential auto-encoders’, Nature methods 15(10), 805–815. [PubMed: 30224673]

Paninski L and Cunningham J (2018), ‘Neural data science: accelerating the experiment-analysis-
theory cycle in large-scale neuroscience’, Current opinion in neurobiology 50, 232–241. [PubMed:
29738986]

Parthasarathy N, Batty E, Falcon W, Rutten T, Rajpal M, Chichilnisky E and Paninski L (2017), Neural
networks for efficient bayesian decoding of natural images from retinal neurons, in ‘Advances in
Neural Information Processing Systems’, pp. 6434–6445.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N,
Antiga L et al. (2019), PyTorch: An imperative style, high-performance deep learning library, in
‘Advances in Neural Information Processing Systems’, pp. 8024–8035.

Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, Reardon T, Mu Y, Lacefield C,
Yang W et al. (2016), ‘Simultaneous denoising, deconvolution, and demixing of calcium imaging
data’, Neuron 89(2), 285–299. [PubMed: 26774160]

Radiuk PM (2017), ‘Impact of training set batch size on the performance of convolutional neural
networks for diverse datasets’, Information Technology and Management Science 20(1), 20–24.

Raff E (2019), A step toward quantifying independently reproducible machine learning research, Vol.
32.

Riley J (2010), Starcluster-numpy/scipy computing on amazon’s elastic compute cloud (ec2), in
‘SciPY2010: Python for Scientific Computing Conference,(Austin Texas)’.

Rocklin M (2015), Dask: Parallel Computation with Blocked algorithms and Task Scheduling, in
‘Proceedings of the 14th Python in Science Conference’, pp. 130–136.

Rokem A, Dichter B, Holdgraf C and Ghosh S (2021), ‘Pan-neuro: interactive computing at scale with
brain datasets’.

Rübel O, Tritt A, Dichter B, Braun T, Cain N, Clack N, Davidson T, Dougherty M, Fillion-Robin J-C,
Graddis N et al. (2019), ‘Nwb: N 2.0: an accessible data standard for neurophysiology’.

Rübel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, Soltesz I, Svoboda K, Frank L and Bouchard KE
(2021), ‘The neurodata without borders ecosystem for neurophysiological data science’, bioRxiv.

Sanielevici S, Sivagnanam S, Yoshimoto K, Carnevale NT and Majumdar A (2018), The Neuroscience
Gateway: Enabling Large Scale Modeling and Data Processing in Neuroscience, in ‘PEARC ‘18:
Proceedings of the Practice and Experience on Advanced Research Computing’, p. 52.

Saxena S, Kinsella I, Musall S, Kim SH, Meszaros J, Thibodeaux DN, Kim C, Cunningham J, Hillman
EM, Churchland A et al. (2020), ‘Localized semi-nonnegative matrix factorization (LocaNMF)
of widefield calcium imaging data’, PLOS Computational Biology 16(4), e1007791. [PubMed:
32282806]

Schneider CA, Rasband WS and Eliceiri KW (2012), ‘NIH Image to ImageJ: 25 years of image
analysis’, Nature Methods 9(7), 671–675. [PubMed: 22930834]

Schweihoff JF, Loshakov M, Pavlova I, Kück L, Ewell LA and Schwarz MK (2021), ‘Deeplabstream
enables closed-loop behavioral experiments using deep learning-based markerless, real-time
posture detection’, Communications biology 4(1), 1–11. [PubMed: 33398033]

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo J-F
and Dennison D (2015), ‘Hidden technical debt in machine learning systems’, Advances in neural
information processing systems28.

Simonyan V and Mazumder R (2014), ‘High-performance integrated virtual environment (hive) tools
and applications for big data analysis’, Genes 5(4), 957–981. [PubMed: 25271953]

Sommer C, Straehle C, Koethe U and Hamprecht FA (2011), Ilastik: Interactive learning and
segmentation toolkit, in ‘2011 IEEE international symposium on biomedical imaging: From nano
to macro’, pp. 230–233.

Abe et al. Page 35

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C,
Broux M et al. (2021), ‘Neuropixels 2.0: A miniaturized high-density probe for stable, long-term
brain recordings’, Science 372(6539), eabf4588. [PubMed: 33859006]

Stodden V, Seiler J and Ma Z (2018), ‘An empirical analysis of journal policy effectiveness for
computational reproducibility’, Proceedings of the National Academy of Sciences 115(11), 2584–
2589.

Sussillo D, Jozefowicz R, Abbott LF and Pandarinath C (2016), ‘LFADS - Latent Factor Analysis via
Dynamical Systems’, arXiv preprint arXiv:1608.06315.

Teeters J, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A,
Denisov G, Siegle J, Olsen S, Martin C, Chun M, Tripathy S, Blanche T, Harris K, Buzsáki G,
Koch C, Meister M, Svoboda K and Sommer F (2015), ‘Neurodata Without Borders: Creating a
Common Data Format for Neurophysiology’, Neuron 88(4), 629–634. [PubMed: 26590340]

Terra (2022), ‘Terra. (retrieved february 28, 2022)’. https://app.terra.bio

Terry M, Kay M and Lafreniere B (2010), Perceptions and practices of usability in the free/open
source software (FoSS) community, in ‘Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems’, pp. 999–1008.

Towns J, Peterson GD, Roskies R, Scott JR, Wilkins-Diehr N, Cockerill T, Dahan M, Foster I, Gaither
K, Grimshaw A, Hazlewood V, Lathrop S and Lifka D (2014), ‘XSEDE: Accelerating Scientific
Discovery’, Computing in Science and Engineering 16(5), 62–74.

Tukey JW (1962), ‘The future of data analysis’, The annals of mathematical statistics 33(1), 1–67.

Vogelstein JT, Mensh B, Hausser M, Spruston N, Evans AC, Kording K, Amunts K, Ebell C, Muller
J, Telefont M et al. (2016), ‘To the cloud! A grassroots proposal to accelerate brain science
discovery’, Neuron 92(3), 622–627. [PubMed: 27810005]

Waltz D and Buchanan BG (2009), ‘Automating science’, Science 324(5923), 43–44. [PubMed:
19342574]

Whiteway MR, Biderman D, Friedman Y, Dipoppa M, Buchanan EK, Wu A, Zhou J,
Noel J-P, Laboratory TIB, Cunningham J and Paninski L (2021), ‘Partitioning variability
in animal behavioral videos using semi-supervised variational autoencoders’, bioRxiv p.
2021.02.22.432309.

Wiltschko AB, Johnson MJ, Iurilli G, Peterson RE, Katon JM, Pashkovski SL, Abraira VE, Adams
RP and Datta SR (2015), ‘Mapping sub-second structure in mouse behavior’, Neuron 88(6),
1121–1135. [PubMed: 26687221]

Wu A, Buchanan EK, Whiteway MR, Schartner M, Meijer G, Noel J-P, Rodriguez E, Everett C,
Norovich A, Schaffer E, Mishra N, Salzman CD, Angelaki D, Bendesky A, Laboratory TIB,
Cunningham J and Paninski L (2020), ‘Deep Graph Pose: a semi-supervised deep graphical
model for improved animal pose tracking’, bioRxiv p. 2020.08.20.259705.

Yatsenko D, Reimer J, Ecker AS, Walker EY, Sinz F, Berens P, Hoenselaar A, Cotton RJ, Siapas
AS and Tolias AS (2015), ‘DataJoint: managing big scientific data using MATLAB or Python’,
bioRxiv.

Yoo AB, Jette MA and Grondona M (2003), ‘Job Scheduling Strategies for Parallel Processing, 9th
International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised Paper’, Lecture
Notes in Computer Science pp. 44–60.

Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV and Sahani M (2009), ‘Gaussian-
process factor analysis for low-dimensional single-trial analysis of neural population activity’,
J Neurophysiol 102(1), 614–35. [PubMed: 19357332]

Zhao L and Deek FP (2005), ‘Improving open source software usability’, AMCIS 2005 Proceedings p.
430.

Zhou A, He B, Ibrahim S, Buyya R, Calheiros R and Dastjerdi A (2016), ‘eScience and Big Data
Workflow in Clouds: A Taxonomy and Survey’, Big data: Principles and paradigms pp. 431–456.

Zhou P, Resendez SL, Rodriguez-Romaguera J, Jimenez JC, Neufeld SQ, Giovannucci A, Friedrich J,
Pnevmatikakis EA, Stuber GD, Hen R et al. (2018), ‘Efficient and accurate extraction of in vivo
calcium signals from microendoscopic video data’, Elife 7, e28728. [PubMed: 29469809]

Abe et al. Page 36

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://app.terra.bio

Highlights:

• The NeuroCAAS platform provides reprodicible data analysis infrastructure

at scale

• Reproducible, cloud based infrastructure enables novel analysis design

• Popular data analyses adapted to NeuroCAAS are faster and cheaper than

alternatives

Abe et al. Page 37

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1: Data Analysis Infrastucture.
A. Core analysis code depends upon an infrastructure stack. B. Common problems arise at

each layer of this infrastructure stack for analysis users and developers. C. Many common

management tools deal only with one or two layers in the infrastructure stack, leaving gaps

that users and developers must fill manually. D. In common neural data analysis tools for

calcium imaging and behavioral analysis many infrastructure components are not managed

by analysis developers and implicitly delegated to the user (see §9 for full details and

supporting data in Tables S2,S1).

Abe et al. Page 38

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2: Overview of NEUROCAAS User Workflow.
Left indicates the user’s experience; right indicates the work that NEUROCAAS performs.

The user chooses from the analyses encoded in NEUROCAAS. They then modify

corresponding configuration parameters as needed. Finally, the user uploads dataset(s)

and a configuration file for analysis. NEUROCAAS detects upload event and deploys

the requested analysis using an infrastructure blueprint (§2.1.4). NEUROCAAS builds the

appropriate number of IAEs (§2.1.1) and corresponding hardware instances (§2.1.3).

Multiple infrastructure stacks may be deployed in parallel for multiple datasets and the job

Abe et al. Page 39

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

manager (§2.1.2) automatically handles input and output scaling. The deployed resources

persist only as necessary, and results, as well as diagnostic information, are automatically

routed back to the user. See Figure S1 for comparison with IaGS, and Figure S3 for IAE list.

Abe et al. Page 40

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3: Usage statistics NEUROCAAS Platform.
Usage data over a 22-month alpha test period. A. Histogram for number of datasets (left)

and corresponding compute hours (right) spent by each active user of NEUROCAAS. B.

Histograms for job size indicates the number of datasets (top) and corresponding compute

hours (bottom) concurrently analyzed in jobs. C. Usage grouped by platform developer.

Dark blue: analyses adapted for NEUROCAAS by paper authors. Light green: analyses that

were not developed by NEUROCAAS authors. Dark green: NEUROCAAS native analyses

(§2.4, 2.5). Light blue: custom versions of generic analyses built for individual alpha users.

We exclude usage attributed to NEUROCAAS team members.

Abe et al. Page 41

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4: Landscape of Cellular/Circuit-Level Neuroscience Analysis Platforms.
Crosses: popular analyses in terms of their place in the adoption lifecycle (number of users,

rate of software updates), and their infrastructure needs. Coloring: representative platforms,

indicating the parts of analysis space that are covered by a given platform. (Example

analyses: (Goodman and Brette, 2009; Pnevmatikakis et al., 2016; Mathis et al., 2018;

Pachitariu et al., 2016; Pandarinath et al., 2018; Januszewski et al., 2018; Saxena et al.,

2020; Buchanan et al., 2018; Graving et al., 2019); Representative platforms: (Sanielevici et

al., 2018; Chaumont et al., 2012; Schneider et al., 2012).

Abe et al. Page 42

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
NeuroCAAS Supports Multi-Stack Design Patterns. A. Default workflow: If more than one

dataset is submitted, NEUROCAAS automatically creates separate infrastructure for each.

B. Chained workflow: Multiple analysis components with different infrastructure needs

are seamlessly combined on demand. Intermediate results are returned to the user so that

they can be examined and visualized as well (§2.4). C. Parallelism + chained workflow:

Workflows A and B can also be combined to support batch processing pipelines with a

separate postprocessing step (§2.5).

Abe et al. Page 43

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6: Ensemble Markerless Tracking.
A. Example frame from mouse behavior dataset (courtesy of Erica Rodriguez and C.

Daniel Salzman) tracking keypoints on the top down view of a mouse, as analyzed in

Wu et al. (2020). Marker shapes track different body parts: blue markers representing the

output of individual tracking models, and orange markers representing the consensus. Inset

image shows tracking performance on the nose and ears of the mouse. B. consensus test

performance vs. test performance of individual networks on a dataset with ground truth

labels as measured via root mean squared error (RMSE). C. traces from 9 networks (blue)

+ consensus (orange). Across the entire figure, ensemble size = 9. A and C correspond to

traces taken from the 100% split in B corresponding to 20 training frames.

Abe et al. Page 44

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7: Quantitative Comparison of NEUROCAAS vs. Local Processing for Three Different
Analyses
A. Simple quantifications of NEUROCAAS performance. Left graphs compare total

processing time on NEUROCAAS vs. local infrastructure (orange). NEUROCAAS processing

time is broken into two parts: Upload (yellow) and Compute (green). Right graphs quantify

cost of analyzing data on NEUROCAAS with two different pricing schemes: Standard (dark

blue) or Save (light blue). B. Cost comparison with local infrastructure (LCC). Figure

compares local pricing against both Standard and Save prices, with Realistic (2 year) and

Optimistic (4 year) lifecycle times for local hardware. C. Achieving Crossover Analysis

Rates. Local Utilization Crossover gives the minimum utilization required to achieve

crossover rates shown in B. Dashed vertical line indicates maximum feasible utilization

rate at 100% (utilizing local infrastructure 24 hours, every day). See Figure S7 for cluster

analysis, and Tables S4–S8 for supporting data.

Abe et al. Page 45

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Abe et al. Page 46

Table 1:
Quantifying reproducibility via output comparisons for two analyses on NEUROCAAS.

For CaImAn, (an algorithm to analyze calcium imaging data) we independently characterized differences in

the spatial and temporal components recovered by the model. Differences in spatial components are measured

by the average Jaccard Distance over pairs of spatial components. A Jaccard distance of 0 corresponds to

two spatial components that perfectly overlap. Differences in temporal components were calculated as the

average root mean squared error (RMSE) taken over paired time series of component activity. For Ensemble

DeepGraphPose (an algorithm to track body parts of animals during behavior from video), we considered

multiple sets of outputs from a single, pretrained model. RMSE takes units of pixels, so differences of order

1e-8 are not relevant for behavioral quantification. For both analyses, we fixed a single dataset, configuration

file and blueprint across runs. See Figures S3,S4 for more.

Reference Run Output vs. Run 2 vs. Run 5 vs. Run 10 vs. Run 14

Analysis (Comparison Metric) (US) (India) (Switzerland) (Platform Clone)

Spatial Components 0.0 0.0 0.0 0.0

CaImAn (Jaccard Distance)

(Giovannucci et al., 2019) Temporal Components 0.0 0.0 0.0 0.0

(RMSE)

Ensemble Body Part Traces 1.2e-8 1.2e-8 2.3e-8 1.4e-8

DeepGraphPose (§2.5) (RMSE)

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Abe et al. Page 47

Table 2:
Quantifying reproducibility via output comparisons for two analyses on NEUROCAAS.

For CaImAn, (an algorithm to analyze calcium imaging data) we independently characterized differences in

the spatial and temporal components recovered by the model. Differences in spatial components are measured

by the average Jaccard Distance over pairs of spatial components. A Jaccard distance of 0 corresponds to

two spatial components that perfectly overlap. Differences in temporal components were calculated as the

average root mean squared error (RMSE) taken over paired time series of component activity. For Ensemble

DeepGraphPose (an algorithm to track body parts of animals during behavior from video), we considered

multiple sets of outputs from a single, pretrained model. RMSE takes units of pixels, so differences of order

1e-8 are not relevant for behavioral quantification. For both analyses, we fixed a single dataset, configuration

file and blueprint across runs. See Figures S3,S4 for more.

Reference Run Output vs. Run 2 vs. Run 5 vs. Run 10 vs. Run 14

Analysis (Comparison Metric) (US) (India) (Switzerland) (Platform Clone)

Spatial Components 0.0 0.0 0.0 0.0

CaImAn (Jaccard Distance)

(Giovannucci et al., 2019) Temporal Components 0.0 0.0 0.0 0.0

(RMSE)

Ensemble Body Part Traces 1.2e-8 1.2e-8 2.3e-8 1.4e-8

DeepGraphPose (§2.5) (RMSE)

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Abe et al. Page 48

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw data used for the benchmarking of CaImAn (Giovannucci et al. 2019) Zenodo DOI: 10.5281/zenodo.1659149

Performance quantification data used to report timing and cost of analyses on
NeuroCAAS (related to Table 1, Figure 8)

Zenodo DOI: 10.5281/zenodo.6512118

Raw data used for to test WFCI analysis. Cold Spring Harbor
Repository

DOI: 10.14224/1.38599

Software and Algorithms

Source repository used to build analyses from blueprints. Zenodo DOI: 10.5281/zenodo.6512118

Contributor repository used to help developers add analyses to NeuroCAAS. Zenodo DOI: 10.5281/zenodo.6512121

Interface repository used to build the website www.neurocaas.org Zenodo DOI: 10.5281/zenodo.6512125

Repository used to generate ensemble outputs from individually trained models Zenodo DOI: 10.5281/zenodo.6513057

Neuron. Author manuscript; available in PMC 2023 September 07.

http://www.neurocaas.org

	Abstract
	eTOC Blurb:
	Introduction
	Results
	NeuroCAAS Builds Complete Infrastructure Stacks
	Immutable Analysis Environments for Software Infrastructure
	Job Managers for System Infrastructure
	Resource Banks for Hardware Infrastructure
	Blueprints for Instant Reproducibility

	NeuroCAAS Supports Simple Use and Development
	Curated deployments.
	Improving analysis robustness.
	Testing the NeuroCAAS Usage Model

	Existing Platforms Leave Infrastructure Gaps
	NeuroCAAS Simplifies Large Data Pipelines: Widefield Imaging Protocol
	NeuroCAAS Stabilizes Deep Learning Models: Ensemble Markerless Tracking
	NeuroCAAS is Faster and Cheaper than IaGS Analogues
	NeuroCAAS is Offered as a Free Service for Many Users

	Discussion
	Working at scale: large datasets/many jobs.
	Working independently: private management of costs/compute resources.
	Reproducibility.
	Accessibility.
	Scale.
	Cost.

	STAR Methods
	Resource Availability
	Lead Contact
	Materials Availability
	Data/Code Availability

	Method Details
	NeuroCAAS architecture specifics
	Source Repo
	Contrib and Interface Repos.
	Developer Workflow
	Novel Analyses
	Widefield Imaging.
	Ensemble Markerless Tracking.

	Quantification and Statistical Analysis
	Quantifying reproducibility on NeuroCAAS
	CaImAn.
	Ensemble DeepGraphPose.
	Timings.

	Quantifying usage
	$ neurocaas-contrib monitor visualize-parallelism

	Benchmarking algorithms on NeuroCAAS
	Survey of Analyses and Platforms

	Additional Resources

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Table 1:
	Table 2:
	KEY RESOURCES TABLE

