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Abstract

A key aspect of neuroscience research is the development of powerful, general-purpose data 

analyses that process large datasets. Unfortunately, modern data analyses have a hidden 

dependence upon complex computing infrastructure (e.g. software and hardware), which acts 

as an unaddressed deterrent to analysis users. While existing analyses are increasingly shared 

as open source software, the infrastructure and knowledge needed to deploy these analyses 

efficiently still pose significant barriers to use. In this work we develop Neuroscience Cloud 

Analysis As a Service (NEUROCAAS ): a fully automated open-source analysis platform offering 
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automatic infrastructure reproducibility for any data analysis. We show how NEUROCAAS supports 

the design of simpler, more powerful data analyses, and that many popular data analysis 

tools offered through NEUROCAAS outperform counterparts on typical infrastructure. Pairing 

rigorous infrastructure management with cloud resources, NEUROCAAS dramatically accelerates 

the dissemination and use of new data analyses for neuroscientific discovery.

eTOC Blurb:

Computing infrastructure is a fundamental part of neural data analysis. Abe et al. present an open 

source, cloud based platform called NeuroCAAS to automatically build reproducible computing 

infrastructure for neural data analysis. They show that NeuroCAAS supports novel analysis design 

and can improve the efficiency of popular existing methods.

1. Introduction

Driven by the constant evolution of new recording technologies and the vast quantities 

of data that they generate, neural data analysis — which aims to build the path from 

these datasets to scientific understanding — has grown into a centrally important part 

of modern neuroscience, enabling significant new insights into the relationships between 

neural activity, behavior, and the external environment (Paninski and Cunningham, 2018). 

Accompanying this growth however, neural data analyses have become much more complex. 

Historically, the software implementation of a data analysis (what we call the core 

analysis- Figure 1A) was typically a small, isolated code script with few dependencies. 

In stark contrast, modern core analyses routinely incorporate video processing algorithms 

(Pnevmatikakis et al., 2016, Pachitariu et al., 2017, Mathis et al., 2018, Zhou et al., 2018, 

Giovannucci et al., 2019), deep neural networks (Batty et al., 2016, Gao et al., 2016, 

Lee et al., 2017, Parthasarathy et al., 2017, Mathis et al., 2018, Pandarinath et al., 2018, 

Giovannucci et al., 2019), sophisticated graphical models (Yu et al., 2009, Wiltschko et al., 

2015, Gao et al., 2016; Wu et al., 2020), and other cutting-edge machine learning methods 

(Pachitariu et al., 2016, Lee et al., 2017) to create general purpose tools applicable to many 

datasets.

To support this increasing complexity, core analysis software is increasingly coupled to 

underlying analysis infrastructure (Figure 1A): software dependencies like the deep learning 

libraries PyTorch and TensorFlow (Abadi et al., 2016, Paszke et al., 2019), system level 

dependencies to manage jobs and computing resources (Merkel, 2014), and hardware 

dependencies such as a precisely configured CPU (central processing unit), access to 

a GPU (graphics processing unit), or a required amount of device memory. Figure 1A 

shows how these individual components form a full infrastructure stack: the necessary, but 

largely ignored foundation of resources enabling all data analyses (Demchenko et al., 2013, 

Jararweh et al., 2016, Zhou et al., 2016).

Neglected infrastructure has immediate implications already familiar to the neuroscience 

community: for every novel analysis, analysis users must spend labor and financial 

resources on hardware setup, software troubleshooting, unexpected interruptions during 

long analysis runs, processing constraints due to limited “on-premises” computational 
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resources, and more (Figure 1B). However, far from simply being a nuisance, neglected 

infrastructure has wide reaching and urgent scientific consequences. Most prominently, 

infrastructure impacts analysis reproducibility. As data analyses become more dependent 

on complex infrastructure stacks, it becomes extremely difficult for analysis developers 

to work reproducibly (Monajemi et al., 2019, Nowogrodzki, 2019). The current treatment 

of analysis infrastructure is a major contributor to the endemic lack of reproducibility 

suffered by modern data analysis (Crook et al., 2013, Hinsen, 2015, Stodden et al., 2018, 

Krafczyk et al., 2019, Raff, 2019), and infrastructure-based barriers have been noted to 

impede the proliferation of new neuroscientific tools (Magland et al., 2020). Specific cases 

where seemingly small infrastructure issues directly affect the representation of data-derived 

quantities have been documented across the biological sciences (Ghosh et al., 2017, Miller, 

2006, Glatard et al., 2015). Analogously, in machine learning, infrastructure components 

can dictate model performance (Sculley et al., 2015, Radiuk, 2017) and a recent survey 

of this literature observed that although local compute clusters claim to address the issue 

of hardware availability, none of the studies that required use of a compute cluster were 

reproducible (Raff, 2019).

Major efforts have been made by journals (Donoho, 2010, Hanson et al., 2011, ) and 

funding agencies (Carver et al., 2018) to encourage the sharing of core analysis software. 

Additionally, new tools have been developed to address related neuroscientific challenges 

like the formatting (Teeters et al., 2015, Rübel et al., 2019, Rübel et al., 2021) and storage 

of data (Dandi Team, 2019), or workflow management on existing infrastructure (Yatsenko 

et al., 2015, Gorgolewski et al., 2011) (see §3 for a detailed overview). However, these 

important efforts still neglect key issues in the configuration of infrastructure stacks. Despite 

calls to improve standards of practice in the field (Vogelstein et al., 2016), and work in 

fields such as astronomy, genomics, and high energy physics (Hoffa et al., 2008, Riley, 2010, 

Goecks et al., 2010, Zhou et al., 2016, Chen et al., 2019, Monajemi et al., 2019), there has 

been little concrete progress in our field towards a scientifically acceptable infrastructure 

solution for many popular core analyses. Some tools – compute clusters, versioning tools 

like Github (https://github.com), and containerization services like Docker (Merkel, 2014) – 

provide various infrastructure components (Figure 1C), but it is nontrivial to combine these 

components into a complete infrastructure stack. The ultimate effect of these partially used 

toolsets is a hodgepodge of often slipshod infrastructure practices (Figure 1D; supporting 

data in Tables S1, S2).

Critically, management of these issues most often falls upon trainees who are neither 

scientifically rewarded (Landhuis, 2017, Chan Zuckerberg Initiative, 2014), nor specifically 

instructed (Merali, 2010) on how to set up increasingly complex core analyses with 

infrastructure stacks, reliant on whatever resources are available on hand. We term this 

conventional model Infrastructure-as-Graduate-Student, or IaGS – infrastructure stacks 

treated as a scientific afterthought, delegated entirely to underresourced trainees and 

operating as a silent source of errors and inefficiency. The IaGS status quo fails any 

reasonable standard of scientific rigor, reduces the accessibility of valuable analytical tools, 

and impedes scientific training and progress.
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Of course, infrastructure challenges are not specific to neuroscience, or even science 

generally. Entities that deploy software at industrial scale have recently adopted the 

Infrastructure-as-Code (IaC) paradigm, automating the creation and management of 

infrastructure stacks (Morris, 2016, Aguiar et al., 2018). In contrast to IaGS approaches, 

the IaC paradigm begins with a code document that completely specifies the infrastructure 

stack supporting any given core software. From this code document, the corresponding 

infrastructure stack can be assembled automatically (most often on a cloud platform), in 

a process called deployment. After deployment, anyone with access to the platform can 

use the core software in question without knowledge of its underlying infrastructure stack, 

while still having the assurance that core software is functioning exactly as indicated in the 

corresponding code document. Altogether, IaC enables reproducible usage at scale, skirting 

all of the issues shown in Figure 1B. Despite these benefits, there has been no previous effort 

to extend IaC to general-purpose neuroscience data analyses and associated infrastructure 

stacks.

In response, we developed Neuroscience Cloud Analysis as a Service (NEUROCAAS ), an 

IaC platform that pairs core analyses for neuroscience data with bespoke infrastructure 

stacks through deployable code documents. NEUROCAAS assigns each core analysis a 

corresponding infrastructure stack, using a set of modular components concisely specified 

in code (see §2.1 for details). NEUROCAAS stores the specification of this core analysis 

and infrastructure stack in a code document called a blueprint, which any analysis user 

can then deploy to analyze their data. To maximize the scale and accessibility benefits of 

our platform, we provide an open source web interface to NEUROCAAS (§2.2), available 

to the neuroscience community at large. The result is scalable, reproducible, drag-and-drop 

usage of neural data analysis: neuroscientists can log on to the NEUROCAAS website, set 

some parameters for an analysis, and simply submit their data. A new infrastructure stack is 

then deployed on the cloud according to a specified blueprint and autonomously produces 

analysis results, which are returned to the user. This aspect of NEUROCAAS warrants 

emphasis, as it diverges starkly from traditional scientific practice: NEUROCAAS is not only 
a platform design, or suggestion that the reader can attempt to recreate on their own; instead, 

NEUROCAAS is offered as an open source infrastructure platform available for immediate 

use, via a website (www.neurocaas.org).

We first describe IaC analysis infrastructure on NEUROCAAS (§2.1), and how it addresses 

common engineering challenges related to analysis reproducibility, accessibility and scale 

(§2.2). In (§2.3) we compare NEUROCAAS ‘s solution to these engineering challenges with 

features of existing data analysis platforms. Next, in §2.4,2.5, we show how NEUROCAAS 

can enable novel analyses designed to take advantage of the platform’s infrastructure 

benefits. Finally, in §2.6, we quantify the performance of popular data analyses on 

NEUROCAAS, and find that analyses encoded in blueprints are cheaper and faster than 

analogues run on local infrastructure (e.g. a compute cluster).

2. Results

NEUROCAAS ‘s primary technical contribution is a method to precisely specify the entire 

infrastructure stack underlying any core analysis, and reproduce it on demand. Treating core 
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analysis and infrastructure as a unified whole within NEUROCAAS makes analyses more 

reproducible and accessible at scale than existing alternatives.

In the simplest use case, users simply log in to the platform and drag and drop their 

dataset(s) into a web browser (Figure 2, top left), sending it to cloud based user storage. 

After specifying a set of developer-defined parameters to apply to the selected dataset(s), 

they can submit a NEUROCAAS “job.” No further user input is needed: given the relevant 

datasets(s) and parameters, NEUROCAAS sets up core analysis for each dataset on an 

entirely new infrastructure stack from the corresponding blueprint (Figure 2, black arrows). 

NEUROCAAS then pulls data and parameters independently into each infrastructure stack 

(Figure 2, blue arrows), providing scalable and reproducible computational processing as 

needed (Figure 2, bottom right). Analysis outputs (including live status logs and a complete 

record of the job’s inputs and infrastructure) are then delivered back to timestamped 

folders in user storage for inspection by analysis users (Figure 2, bottom left), and finally 

infrastructure stacks are dissolved when data processing is complete (Figure 2, bottom 

right). As an example, Supplementary Video 1 shows how users can train three separate 

DeepGraphPose models (Wu et al., 2020) on three separate datasets simultaneously using 

the NEUROCAAS web interface.

2.1. NEUROCAAS Builds Complete Infrastructure Stacks

The structure of NEUROCAAS naturally solves the issues of reproducibility, accessibility, 

and scale that burden existing infrastructure tools and platforms. NEUROCAAS partitions 

a complete infrastructure stack into three decoupled parts that together are sufficient to 

support virtually any given core analysis. First, to address all software level infrastructure, 

NEUROCAAS offers all analyses in immutable analysis environments (§2.1.1). Second, 

to address system configuration, each NEUROCAAS analysis has a built-in job manager 

(§2.1.2) that automates all of the logistical tasks associated with analyzing data: configuring 

hardware, logging outputs, parallelizing jobs and more. Third, to provide reproducible 

computing hardware on demand, NEUROCAAS manages a resource bank (§2.1.3) built on the 

public cloud, making the service globally accessible at unmatched scale. For a given core 

analysis, the configuration of these three infrastructure components is concisely summarized 

in a NEUROCAAS blueprint, from which it can be automatically rebuilt (§2.1.4). We describe 

component implementation in further depth in §9.2.

2.1.1. Immutable Analysis Environments for Software Infrastructure—On 

NEUROCAAS, all core analyses run inside immutable analysis environments (IAEs). An 

IAE is an isolated computing environment containing the installed core analysis code and all 

necessary software dependencies, similar to a Docker container (Merkel, 2014). Importantly, 

an IAE also contains a single script that parses input and parameters in a prescribed way, 

and runs the steps of core analysis workflow (Figure 2, right; Figure S6, top left). The 

fact that analysis workflow is entirely governed by this script (i.e. non-interactive) makes 

our analysis environments immutable. IAEs eliminate the possibility of bugs resulting from 

incompatible dependencies, mid-analysis misconfiguration (Figure S1A, installation and 

troubleshooting), or other so-called “user degrees of freedom” and ensure that analyses 

are run within developer-defined workflows. Immutability has a long history as a principle 
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of effective programming and resource management in computer science (Bloch, 2008, 

Morris, 2016), and in this context is closely related to the view that data analysis should be 

automated as much as possible (Tukey, 1962, Waltz and Buchanan, 2009). These views are 

justified by observed benefits to analysis at scale, which we leverage in (§2.4.,2.5).

Each IAE has a unique ID, and analysis updates can be recorded in IAEs linked through 

blueprint versions (see §2.1.4 for details). We have currently implemented 22 analyses in a 

series of immutable analysis environments (Table S3) and are actively developing more (see 

www.neurocaas.org for current options).

2.1.2. Job Managers for System Infrastructure—Given a dataset and analysis 

parameters, how does NEUROCAAS set up the right IAE and computing hardware to process 

these inputs? This configuration is the responsibility of the NEUROCAAS job manager, which 

monitors analysis progress and returns timestamped job outputs to user storage from the IAE 

(including live job logs). Although similar in these regards to a cluster workload manager 

like slurm (Yoo et al., 2003) (Figure 2, blue arrows) the NEUROCAAS job manager does not 

assign jobs to running infrastructure, but rather set up all other infrastructure components 

“on the fly,” removing the need for manual infrastructure maintenance (Figure 2; black 

arrows). The job manager for each analysis functions according to a code “protocol” that 

describes what steps should be taken when a new NEUROCAAS job is requested. Importantly, 

protocols can be customized for each analysis, allowing developers to implement simple 

features like input parsing, or complex multi-stack workflows as shown in §2.4.,2.5.

2.1.3. Resource Banks for Hardware Infrastructure—To automatically reproduce 

infrastructure on demand, we crucially need a way to create identical hardware 

configurations across multiple users of the same analysis, who may be analyzing data 

simultaneously at many different locations around the world. This key requirement is 

handled by the NEUROCAAS resource bank. The NEUROCAAS resource bank can make 

hardware available through pre-specified instances: bundled collections of virtual CPUs, 

memory, and GPUs that can emulate any number of familiar hardware configurations 

(e.g. personal laptop, workstation, on premise cluster). However unlike these persistent 

computing resources, the NEUROCAAS resource bank is built upon globally available, 

virtualized compute hardware offered through the public cloud (currently Amazon Web 

Services). At any time, the resource bank can provide a large number of effectively identical 

hardware instances to execute a particular task (Figure 2, bottom right). The reproducible 

nature of hardware instances in the resource bank complements the immutability of 

workflows imposed by IAEs. By default, we fix a single instance type per analysis in order 

to facilitate reproducibility (see 9.2 for details).

2.1.4. Blueprints for Instant Reproducibility—For any given analysis, each of 

NEUROCAAS ‘s infrastructure components (§2.1.1–2.1.3) has a specification in code (IAEs 

and resource bank instances have IDs, job managers have protocol scripts). The collection of 

all infrastructure identifying code associated with a given NEUROCAAS analysis is stored 

in the blueprint of that analysis (Figure 2, top right- for an example see Figure S2), 

from which new instances of the infrastructure stack can be deployed at will, providing 

reproducibility by design. Despite sustained efforts to promote reproducible research, 
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(Buckheit and Donoho, 1995), in many typical cases data analysis remains frustratingly non-

reproducible (Crook et al., 2013, Gorgolewski et al., 2017, Stodden et al., 2018, Raff, 2019). 

NEUROCAAS sidesteps all of the typical barriers to reproducible research by tightly coupling 

the creation and function of infrastructure stacks to their documentation. For transparency, 

NEUROCAAS stores all currently available and developing analysis blueprints in a public 

code repository (see §9.2). Updates made to any component of an infrastructure stack on 

NeuroCAAS (IAEs, job managers, or hardware instances) can only be implemented through 

subsequent deployments of updated blueprints. We record these changes systematically 

using simple version control on the blueprint itself, ensuring a publicly visible record of 

analysis development.

2.2. NEUROCAAS Supports Simple Use and Development

Users analyze data on NEUROCAAS solely through interactions with cloud storage. 

Therefore, NEUROCAAS supports any interface that allows users to transfer data files to and 

from cloud storage. The standard interface to NEUROCAAS is a website, www.neurocaas.org, 

where users can sign up for an account, browse analyses, deposit data and monitor analysis 

progress until results are returned to them as described in Figure 2. We will describe 

other interfaces to NEUROCAAS in §2.4 and §3. Regardless of interface, there is no need 

to manage persistent compute resources during or after analysis, and costs directly reflect 

usage time.

For comparison, IaGS begins with a number of time-consuming manual steps, including 

hardware acquisition, hardware setup, and software installation. With a functional 

infrastructure stack in hand, the user must prepare datasets for analysis, manually recording 

analysis parameters and monitoring the system for errors as they work. While parallel 

processing is possible, it must be scripted by the user, and in many cases datasets are run 

serially. What results from IaGS is massive inefficiency of time and resources. Users must 

also support the cost of new hardware “up front,” before ever seeing the scientific value of 

the infrastructure that they are purchasing. Likewise, labs or institutions must pay support 

costs to maintain infrastructure when it is not being used, and replace components when they 

fail or become obsolete (see Figure S1 for a side-by-side comparison with NEUROCAAS ). 

Two editorial remarks bear mentioning at this point: first, the stark difference laid out in 

these workflows is the essence of IaGS vs IaC, and explains the dominance of IaC in modern 

industrial settings. Second, NEUROCAAS is and will remain an open-source tool for the 

scientific community, in keeping with its sole purpose of improving the reproducibility and 

dissemination of neuroscience analysis tools.

For analysis developers interested in NEUROCAAS, we designed a developer workflow and 

companion python package that streamlines the process of migrating an existing analysis 

to the NEUROCAAS platform (see §9.2 and Figure S6 for an overview). Our developer 

workflow abstracts away the cloud infrastructure that NEUROCAAS is built on, allowing for 

analysis development entirely from the developer’s command line. We highlight several key 

features of this workflow here. Importantly, we do not expect any previous experience in 

containerization technology, cloud tools, or IaC from developers.
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Curated deployments.—After setting up an IAE and initializing a corresponding 

blueprint, developers submit blueprints and test data to our code repository in publicly 

visible pull requests. NEUROCAAS team members then review the submitted blueprint and 

deploy the corresponding infrastructure stack in “test mode,” reviewing outputs, requesting 

updates, and ensuring stated function in a public forum before releasing the analysis to 

users.

Improving analysis robustness.—A central challenge of building general-purpose 

data analysis is the difficulty of anticipating all analysis use cases as a developer and 

ensure robustness to all possible datasets. This is true even with the testing, review, and 

development practices that NEUROCAAS puts in place. However, NEUROCAAS ‘s design 

has several features intended to accelerate the process of improving analysis robustness 

both during and after initial deployment. When errors occur, users can refer the analysis 

developer to version controlled analysis outputs using standard interfaces like Github 

issues, greatly simplifying error replication. Developers can then set up fixes on the 

same infrastructure, and update the analysis blueprint in subsequent deployments. Since 

infrastructure is rebuilt from the blueprint for each NEUROCAAS job, an updated blueprint 

fixes the bug, for all future analysis runs of all analysis users. Importantly, updates can be 

made to a public analysis without influencing the reproducibility of past results (see 9.2 and 

Figure S6 for details, and §9.4 for links to a full developer guide).

2.2.1. Testing the NEUROCAAS Usage Model—Next, we study how the design of 

NEUROCAAS translates into quantifiable analysis benefits. We confirmed the accessibility of 

data analyses on NEUROCAAS by opening the platform to a group of alpha testers (users 

and developers) over a period of 22 months. In Figure 3A, we see that while some users 

analyzed a handful of datasets, others analyzed hundreds and spent days of compute with 

the platform. Figure 3B further studies the co-occurrence of different usage patterns: a large 

number of single dataset jobs are suggestive of one-off exploratory use, while there is also 

a considerable proportion of jobs that leverage NEUROCAAS ‘s capacity for parallelism, 

analyzing anywhere from 2 to 70 datasets in a single job. We also grouped usage by data 

analysis (Figure 3C). We classified different analyses as follows: dark blue bars indicate 

existing analysis adapted for NEUROCAAS by manuscript authors. These analyses were 

developed collaboratively, and in many cases, we iterated on an initial “dev” version of an 

analysis adapted for NEUROCAAS with feedback from users, before releasing a “public” 

version that was robust to various differences in workflow and dataset type. Light green bars 

indicate analyses developed by independent researchers following our developer workflow. 

We highlight the fact that analyses built following the developer workflow are well used, 

indicating the viability of the workflow that we have built. Dark green bars indicate analyses 

that we introduce in this paper specifically for NEUROCAAS infrastructure, described further 

in §2.4, 2.5. Finally, light blue bars indicate “custom” analyses that we built for particular 

user groups. NEUROCAAS authors built custom analyses through simple copying and editing 

of existing, general purpose blueprints. While per-user custom analyses are not a focus of 

our platform, these results demonstrate the ease with which different variants of an analysis 

can be provided within NEUROCAAS ‘s design, and we discuss how users can leverage 

NEUROCAAS for custom use cases in §3.
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Next we confirmed that the design of data analysis using NEUROCAAS ‘s IaC approach does 

indeed provide robust reproducibility. We selected two analyses available on our platform 

and we analyzed the similarity of analysis outputs across multiple runs in Table 2 (see 

Figure S3 for in depth analysis, and Figure S4 for corresponding analysis of timings). 

Fixing a single dataset, configuration file, and blueprint for each analysis, we evaluated 

reproducibility of results in terms of differences between analysis outputs (see Table 2 

caption for metrics.) First, we observe that over multiple runs conducted by the same 

researcher in the United States, (Table 2, vs Run 2), results showed no scientifically 

relevant differences. Second, we varied the identity and physical location of the person 

requesting NEUROCAAS jobs: compared to jobs started by independent researchers in India 

and Switzerland (Table 2, vs Run 5, Run 10 respectively) we once again note no meaningful 

differences in the outputs of these analyses. Whereas physical location might bias or restrict 

researchers to use specific analysis infrastructure on other platforms, they have access to 

the exact same analysis infrastructure through NEUROCAAS. Finally, we conducted a test 

to measure if our platform was truly IaC: given dataset, configuration file, and analysis 

blueprint, there should be no reliance on the compute resources that we used to develop 

these analysis and perform reference runs. For a final run, we automatically deployed a 

complete clone of the NEUROCAAS platform on a new set of cloud resources, as any user 

of our platform can do in a few simple steps (details in §3, Figure S5). We then ran jobs 

with the blueprints, datasets and configuration files for the corresponding analyses (Table 2, 

vs Run 14), showing that results from this cloned platform are indistinguishable from those 

generated by the original platform.

2.3. Existing Platforms Leave Infrastructure Gaps

Although we do not attempt an exhaustive review of existing analysis platforms in 

neuroscience here, we characterize some exemplars in order to contrast NEUROCAAS from 

typical alternatives. In Figure 4, we plot a variety of popular neuroscience analyses onto a 

space defined by 1) their place in the adoption lifecycle and 2) corresponding infrastructure 

needs. We overlay several exemplar platforms on this graph, with shading representing 

the kinds of analyses they are able to support. The degree to which a platform’s support 

extends to the right defines its accessibility, or the ease with which developers and users 

can configure analyses on the platform, and begin to process data. Accessibility is a key 

feature for analyses that are still early in the adoption lifecycle with active development and 

a growing user base. Likewise, the degree to which a platform’s support extends upwards 

defines its scale, a one dimensional approximation of the infrastructure needs for which it 

can provide. While the exact positioning of these analyses and platforms is subjective and 

dynamic, there are general features of the analysis platform landscape that we discuss in 

what follows.

Local platforms like CellProfiler (Carpenter et al., 2006), Ilastik (Sommer et al., 2011) 

(cell-based image processing), Icy (Chaumont et al., 2012), ImageJ (Schneider et al., 

2012) (generic bioimage analysis), BIDS Apps (Gorgolewski et al., 2017) (MRI analyses 

for Brain Imaging Data Structure format), and Bioconductor (Amezquita et al., 2020) 

(genomics) have all achieved success in the field by packaging together popular analyses 

with necessary software dependencies and intuitive, streamlined user interfaces. Most of 

Abe et al. Page 9

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these local platforms also have an open contribution system for interested developers. Local 

platforms are thus highly accessible to both developers and users, but are in the large 

majority of cases designed only for use on a user’s local hardware, limiting their scale 

(Figure 4, bottom).

In contrast, remote platforms like the Neuroscience Gateway (NSG) (Sanielevici et al., 

2018) (specializing in neural simulators), Flywheel (flywheel.io) (emphasizing fMRI and 

medical imaging), and neuroscience-focused research computing clusters offer powerful 

hardware through the XSEDE (Extreme Science and Engineering Discovery Environment) 

portal (Towns et al., 2014), the public cloud and on-premises hardware, respectively. These 

remote platforms offer powerful compute, but at the cost of accessibility to users, who must 

adapt their software and workflow to new conventions (i.e. wait times for jobs to run on 

shared resources, hardware specific installation, custom scripting environments, limitations 

on concurrency) in order to make use of offered hardware. As a particular example, NSG 

requires users to submit a script that they would like to have run on existing compute 

nodes in the XSEDE cluster, making it more similar to a traditional on-premises cluster in 

usage than NEUROCAAS. NSG also restricts jobs to run serially, and does not have an open 

system for contributing new analyses, making it incompatible with the usage model and 

analyses that we present here. Likewise, while Flywheel () (with a focus on human brain 

imaging tools) offers the option of cloud compute, the platform is not structured in terms of 

infrastructure stacks for given analyses, in effect leaving many infrastructure design choices 

to individual users. Altogether, remote platforms are best for committed, experienced users 

who are already familiar with the analyses available on the remote platform and understand 

how to optimize them for available hardware. It is also more difficult to contribute new 

analyses to these platforms than their locally hosted counterparts (see Figure 4, left side). 

This difficulty makes them less suitable for actively developing or novel analyses, as updates 

may be slow to be incorporated, or introduce breaking changes to user-written scripts, 

making remote platforms altogether less accessible than local ones.

Some platforms provide both local or remote style usage: Galaxy (Goecks et al., 2010) 

and Brainlife (Avesani et al., 2019) offer a set of default compute resources, but can 

also be used to run analyses on personal computing resources, or the cloud. These mixed-

compute models provide a useful way to increase the accessibility of many analyses, and 

can provide levels of reproducibility similar to that provided by the IAE and job manager 

of NEUROCAAS. However, without having an IaC framework that makes a reproducible 

configuration of compute resources available to all analysis users, we lose the guarantee 

that all platform users will be able to use analyses that depend on specific infrastructure 

configurations. As noted in (Goecks et al., 2010), it is a challenge even for these mixed-

compute platforms to ensure accessibility for an analysis developed on a given set of 

local compute resources-significant work must be done to make this analysis functional 

on other computing platforms, or to maintain these local compute resources in order to 

ensure that others can use them whenever needed. These challenges are only exacerbated 

by the increasing reliance of analysis tools upon more powerful and specific infrastructure 

configurations, such as high performance GPUs.
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Although undeniably useful, all available platforms operate on a tradeoff that forces 

researchers to choose between accessibility and scale. While these platforms often 

concentrate on applications that mitigate the effects of this tradeoff, there are many popular 

analyses that would not be suitable for existing analysis platforms (see Figure 4, center). 

Furthermore, critically for reproducibility, across all existing platforms analysis users and 

developers are still required to manually configure analysis infrastructure, whether by 

installing new tools onto one’s personal infrastructure, or porting code and dependencies 

to run in a remote (and sometimes variably allocated) infrastructure stack.

Some platforms in cellular and molecular biology (Riley, 2010), as well as bioinformatics 

(Simonyan and Mazumder, 2014,,Terra, 2022) have shown that IaC approaches are feasible 

to handle these infrastructure issues. A notable difference in the design of our platform is 

that these other platforms assume that individual users will themselves manually configure 

analyses- that they will choose relevant resources to support the analyses that they want to 

conduct, or compose an analysis of interest out of a set of small modular parts, in each case 

performing the work of a NEUROCAAS developer. While resulting analyses can be shared 

with other individuals on a case-by-case basis, this is very different from NEUROCAAS. 

Our platform is geared towards a heterogeneous community of researchers, where some 

researchers are developing general purpose analyses that only need to be configured or 

updated once before being used by a large group of potential users.

Next, we concretely demonstrate how the infrastructure benefits of the NEUROCAAS 

platform address ongoing challenges in neuroscience data analysis. We show two examples 

of NEUROCAAS native analyses that would not be feasible without the simultaneous benefits 

to accessibility, scale, and reproducibility that we provide.

2.4. NEUROCAAS Simplifies Large Data Pipelines: Widefield Imaging Protocol

Often, big data pipelines demand many individual preprocessing steps, creating the need 

for unwieldy multi-analysis infrastructure stacks— infrastructure stacks that support the 

needs of multiple core analyses at the same time. A notable example is widefield calcium 

imaging (WFCI)— a high-throughput imaging technique that can collect activity dependent 

fluorescence signals across the entire dorsal cortex of an awake, behaving mouse (Couto et 

al., 2021), potentially generating terabytes of data across chronic experiments. The protocol 

paper Couto et al. (2021) describes a complete WFCI analysis that links together cutting-

edge data compression/denoising with demixing techniques designed explicitly for WFCI 

(via Penalized Matrix Decomposition, or PMD (Buchanan et al., 2018) and LocaNMF 

(Saxena et al., 2020), respectively). Each of these analyses depends upon its own specialized 

hardware and installation, creating many competing requirements on a multi-analysis 

infrastructure stack that are difficult to satisfy in practice. While we offer a NEUROCAAS 

implementation of the described WFCI analysis in Couto et al. (2021), we do not discuss 

how NEUROCAAS addresses the issue of multi-analysis infrastructure stacks, which can pose 

IaGS challenges even to our blueprint based infrastructure.

Instead of working with multi-analysis infrastructure stacks, for this analysis NEUROCAAS 

extends the function of a standard job manager (see Figure 5A) to trigger multiple jobs, built 

from separate blueprints, in sequence (Figure 5B). We employ this design to dramatically 
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simplify the infrastructure requirements for a complete WFCI pipeline. First the initial 

steps of motion correction, denoising, and hemodynamic correction of the data are run 

from a blueprint that emphasizes multicore parallelism (64 CPU cores) to suit the matrix 

decomposition algorithms employed by PMD. Upon termination of this first step, analysis 

results are not only returned to user storage, but also used as inputs to a second job, 

performing demixing with LocaNMF on infrastructure supporting a high performance 

GPU. This modular organization improves the performance and efficiency of each analysis 

component (see Figure 7), and also allows users to run steps individually if desired, giving 

them the freedom to interleave existing analysis pipelines with the components offered 

here. As an alternative to the standard NEUROCAAS interface, this WFCI analysis can be 

controlled from a custom-built graphical user interface (GUI). This GUI further extends 

NEUROCAAS ‘s accessibility with features such as interactive alignment of a brain atlas to 

user data as part of parameter configuration (in the process validating input data as well). 

Following parameter configuration, this GUI interacts with NEUROCAAS programmatically, 

using locally run code scripts to perform data upload and job submission, and to detect and 

retrieve results once analysis is complete. Results can be visualized directly in this GUI as 

well. Altogether, this GUI can be used as a model for researchers who would like to take 

advantage of our computational infrastructure within a more sophisticated user interface, or 

integrate NEUROCAAS programmatically with other software tools. Importantly, despite its 

interactivity, the performance of our WFCI analysis does not depend on the infrastructure 

available to the user. For example, users could simultaneously launch many analyses and 

have them run in parallel through this GUI, easily conducting a hyperparameter search over 

their entire multi-step analysis. Researchers can find the GUI for this WFCI analysis with 

NEUROCAAS integration at https://github.com/jcouto/wfield.

For developers, this analysis presents a counterpart to existing domain specific projects 

such as CaImAn (Giovannucci et al., 2019) for cellular resolution calcium imaging or 

SpikeInterface (Buccino et al., 2020) for electrophysiology, which explicitly make multi-step 

data analyses compatible with optimized hardware. In contrast, our WFCI analysis is made 

directly available to users on powerful remote hardware without the need for anyone to 

revise existing analysis or infrastructure. To our knowledge, there is no other neuroscience 

platform with the accessibility, scale, and support for reproducibility to link together cutting-

edge analyses across separate infrastructures, and make this exact configuration available 

directly to the research community.

2.5. NEUROCAAS Stabilizes Deep Learning Models: Ensemble Markerless Tracking

The black box nature of deep learning can generate sparse, difficult to detect errors that 

reduce the benefits of deep learning based tools in sensitive applications. For modern 

markerless tracking analyses built on deep neural networks (Mathis et al., 2018, Graving 

et al., 2019, Nilsson et al., 2020, Wu et al., 2020), these errors can manifest as “glitches” 

(Wu et al., 2020), where a marker point will jump to an incorrect location, often without 

registering as an error in the network’s generated likelihood metrics (see Figure 6).

One general purpose approach to combat the unreliable nature of individual machine 

learning models is ensembling (Dietterich, 2000): instead of working with a single model, 
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a researcher simultaneously prepares multiple models on the same task, subsequently 

aggregating their outputs into a single consensus output. Ensemble methods have been 

shown to be effective for deep networks in a variety of contexts, (Lakshminarayanan et 

al., 2017, Fort et al., 2019, Ovadia et al., 2019), but they confer a massive infrastructure 

burden if run on limited local compute resources: researchers must simultaneously train, 

manage, and aggregate outputs across many different deep learning models, incurring either 

prohibitively large commitments to deep learning specific infrastructure and/or infeasibly 

long wait times.

In contrast, NEUROCAAS enables easy and routine implementation of ensemble methods. 

By modifying the NEUROCAAS job manager, we designed an analysis which takes input 

training data, and distributes it to N identical sets of IAEs and resource bank instances 

(Figure 5C). For the application shown here, we used an IAE with DeepGraphPose (Wu et 

al., 2020) as our core analysis; the N infrastructures differ only in the minibatch order of 

data used to train models. The results from each trained model are then used to produce a 

consensus tracking output, taking each individual model’s estimate of part location across 

the entire image (i.e. the confidence map output) and averaging these estimates. Even with 

this relatively simple approach, we find the consensus tracking output is robust to the errors 

made by individual models (Figure 6A,C). This consensus performance is maintained even 

when we significantly reduce the size of the training set (Figure 6B). Finally, in Figure 

6C, we can see that there are portions of the dataset where the individual model detections 

fluctuate around the consensus detection. This fluctuation offers an empirical readout of 

tracking difficulty within any given dataset; frames with large diversity in the ensemble 

outputs are good candidates for further labeling, and could be easily incorporated in an 

active learning loop. After training, models can be kept in user storage, and used to analyze 

further behavioral data, without moving these models out of NEUROCAAS. Overall, Figure 6 

shows that with the scale of infrastructure available on NEUROCAAS, ensembling can easily 

improve the robustness of markerless tracking, naturally complementing the infrastructure 

reproducibility provided by the platform.

NEUROCAAS is uniquely capable of providing the flexible infrastructure necessary to 

support a generally available, on-demand ensemble markerless tracking application. To our 

knowledge, none of the platforms with the scale to support markerless tracking on publicly 

available resources (e.g. on premise clusters, Google Colab, Galaxy Goecks et al. (2010), 

NSG (Sanielevici et al., 2018), Brainlife Avesani et al. (2019)) can satisfactorily alleviate the 

burden of a deep ensembling approach, still forcing the user to accept either long wait times 

or manual management of infrastructure. These limitations also prohibit use cases involving 

the quantification of ensemble behavior across different parameter settings (c.f. Figure 6B, 

where we trained 45 networks simultaneously).

2.6. NEUROCAAS is Faster and Cheaper than IaGS Analogues

NEUROCAAS offers a number of major advantages over IaGS : reproducibility, accessibility, 

and scale, whether we compare against a personal workstation or resources allocated from 

a locally available cluster. However, since NEUROCAAS is based on a cloud computing 

architecture, one might worry that data transfer times (i.e., uploading and downloading data 
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to and from the cloud) could potentially lead to slower overall processing or that the cost of 

cloud compute could outweigh that of local infrastructure.

Figure 7 considers this question quantitatively, comparing NEUROCAAS to a simulated 

personal workstation (see §9.3 for details). For the analogous comparisons (with similar 

conclusions) against a simulated local cluster, see Figure S7. Figure 7 presents time and 

cost benchmark results on four popular analyses that cover a variety of data modalities: 

CaImAn (Giovannucci et al., 2019) for cellular resolution calcium imaging; DeepLabCut 

(DLC) (Mathis et al., 2018) for markerless tracking in behavioral videos; and a two-step 

analysis consisting of PMD (Buchanan et al., 2018) and LocaNMF (Saxena et al., 2020) 

for analysis of widefield imaging data. To be (extremely) conservative, we assume local 

infrastructure is set up, neglecting all of the time associated with installing and maintaining 

software and hardware.

Across all analyses and datasets considered in Figure 7, analyses run on NEUROCAAS 

were significantly faster than those run on the selected local infrastructure, even accounting 

for the time taken to stage data to the cloud (Figure 7A, left panes). We batched data 

to take advantage of both compute optimization offered by individual core analyses, and 

NEUROCAAS ‘s scale (see 9.3 for details). These examples show that many analyses 

can be used efficiently on NEUROCAAS regardless of the degree to which they have 

been intrinsically optimized for parallelism. Additionally NEUROCAAS upload time can 

be ignored if analyzing data that is already in a user storage — for example if there is a 

need to reprocess data with an updated algorithm or parameter setting — leading to further 

speedups. Finally, although we found download speeds negligible (see 9.3 for full details 

of timing quantifications) this could vary significantly based on user internet speeds and 

analyses. Across our platform, we have attempted to design analyses with much smaller 

outputs than input data- a point we will return to in the discussion (§3).

Next we turn to cost analyses. Over the range of algorithms and datasets considered here, 

we found that the total baseline NEUROCAAS analysis cost was on the order of a few US 

dollars per dataset (Figure 7A, right panels)- see Table S7 for pricing details. We observe 

that for the most part, costs are approximately linear in compute time, ensuring that even 

compute intensive operations like training a deep network for DLC (~12 hours on the same 

machines used here) can be accomplished for ~ $10-trained networks can be maintained 

in cloud storage to reduce data transfer cost. In addition to our baseline implementation, 

we also offer an option to run analyses at a significantly lower price (indicated as “Std” 

and “Save” respectively in the cost barplots in Figure 7), if the user can upper bound the 

expected runtime of their analysis to anything lower than 6 hours (i.e. from previous runs of 

similar data).

Finally, we compare the cost of NEUROCAAS directly to the cost of purchasing local 

infrastructure. We use a total cost of ownership (TCO) metric (Morey and Nambiar, 2009) 

that includes the purchase cost of local hardware, plus reasonable maintenance costs over 

estimates of hardware lifetime; see §9.3 for full details. We first ask how frequently 

one would have to run the analyses presented in Figure 7 before it becomes worthwhile 

to purchase dedicated local infrastructure. This question is answered by the Local Cost 
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Crossover (LCC): the threshold weekly rate at which a user would have to analyze data for 

NEUROCAAS costs to exceed the TCO of local hardware. As an example, the top two bars of 

Figure 7B, left, show that in order for a local machine to be cost effective for CaImAn, one 

must analyze ~ 100 datasets of 8.39 GB per week, every week for several years (see Table 

S4 for a conversion to data dimensions). In all use cases, the LCC rates in Figure 7B show 

that a researcher would have to consistently analyze ~ 10–100 datasets per week for several 

years before it becomes cost effective to use local infrastructure. While such use cases are 

certainly feasible, managing these use cases on local infrastructure via IaGS would involve 

an significant amount of human labor.

In Figure 7C, we characterize this labor cost via the Local Utilization Crossover (LUC): 

the actual time cost of analyzing data on a local machine at the corresponding LCC rate. 

Across the analyses that we considered, local infrastructure would have to be dedicated to 

the indicated analysis for 25–50% of the infrastructure’s total lifetime (i.e. ~ 6–12 hours 

per day, every day) to achieve its corresponding LCC threshold, requiring an inordinate 

amount of work on the part of the researcher to manually run datasets, monitor analysis 

progress for errors, or build the computing infrastructure required to automate this process– 

in essence forcing researchers to perform by hand the large scale infrastructure management 

that NEUROCAAS achieves automatically. These calculations demonstrate that even without 

considering all of the IaGS issues that our solution avoids, or explicitly assigning a cost to 

researcher time, it is difficult to use local infrastructure more efficiently than NEUROCAAS 

for a variety of popular analyses. Given the diversity of IaGS solutions, we also provide a 

tool for users to benchmark their available infrastructure options against NEUROCAAS (see 

the instructions at https://github.com/cunningham-lab/neurocaas).

2.7. NEUROCAAS is Offered as a Free Service for Many Users

In many cases, researchers may use infrastructure available on hand to test out analyses 

before purchasing components for a dedicated infrastructure stack. Given the low per-dataset 

cost and the major advantages summarized above of NEUROCAAS compared to the current 

IaGS status quo, we have decided to mirror this model on the NEUROCAAS platform, 

and subsidize a large part of NEUROCAAS usage by the community. Users do not need 

to set up any billing information or worry about incurring any costs when starting work 

on NEUROCAAS; we cover all costs up to a per-user cap (initially set at $300). This 

subsidization removes one final friction point that might slow adoption of NEUROCAAS, 

and protects NEUROCAAS as a non-commercial open-source effort. Since NEUROCAAS is 

relatively inexpensive, many users will not hit the cap; thus, for these users, NEUROCAAS 

is offered as a free service. We note that we are also open to consider budget increases for 

researchers as they become necessary.

3. Discussion

NEUROCAAS integrates rigorous infrastructure practices into neural data analysis while 

also respecting current development and use practices. The fundamental choice made by 

NEUROCAAS is to provide analysis infrastructure with as much automation as possible. This 

choice naturally makes NEUROCAAS into a service, and in the simplest case neither analysis 
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users nor analysis developers have to manage infrastructure directly; rather, NEUROCAAS 

removes the infrastructure burden entirely. However, as an open source project, NEUROCAAS 

also acknowledges the possibility that some users may want to accept some degree of 

responsibility for computing infrastructure, in return for a greater degree of flexibility in 

how they use the platform. We highlight two notable alternative use cases here:

Working at scale: large datasets/many jobs.

Although our drag-and-drop console removes the need for users to have previous experience 

with coding, some users may find the console restrictive when working with large datasets, 

or managing many jobs at once- both important facets of analysis use that NEUROCAAS is 

poised to improve. These restrictions can be reduced by working with NEUROCAAS from the 

command line, or by integrating calls to NEUROCAAS within locally run applications, as is 

done in §2.4. Since NEUROCAAS can be used solely by interacting with cloud storage, these 

interfaces to NEUROCAAS are easily supported by general purpose data transfer tools. We 

provide instructions for this use case in our developer documentation (see §9.4).

In order to streamline data transfer in cases where input or output data are unavoidably 

large, we have also implemented a “storage bypass” option for our CLI interface. Using 

this option, public data stored elsewhere in the AWS cloud can be analyzed, and results 

can be written back directly to this location without incurring additional data transfer time 

and costs, laying the groundwork for the integration of NEUROCAAS analyses with external 

data sources. This option is intended for analyses which handle especially large input or 

output data, where CLI use is preferable, but we plan to extend this functionality to all 

analyses and our standard interface soon. We believe these additional features will better 

equip NEUROCAAS to handle the ever increasing scale of neuroscience data (e.g. Steinmetz 

et al., 2021; Couto et al., 2021), as well as methods that consider multiple data modalities 

simultaneously (e.g. Batty et al., 2019), and faciliate sharing of analysis outputs across many 

users.

Working independently: private management of costs/compute resources.

A major benefit of NEUROCAAS ‘s IaC construction is that the entire platform (except 

private user data) can be reconstructed automatically given the code in the NEUROCAAS 

source repository (§9.2, Figure S5): there is no dependence of the platform upon specifics 

of infrastructure configuration that are not recorded in a blueprint. This benefit means 

that if users anticipate very high costs, or would like to use IaC management for their 

own custom analyses, it is easy for them to switch from using our public implementation 

of NEUROCAAS, to one that they pay for themselves, maintaining all the benefits of 

NEUROCAAS ‘s infrastructure management. We provide detailed instructions on this process 

in our developer documentation (§9.4), describing platform setup and cloning of individual 

analyses.

Finally, we revisit NEUROCAAS ‘s stated objectives of supporting reproducible, accessible, 

and scalable data analyses. These are fundamentally multifaceted issues, and will manifest 

in different ways across a variety of use cases. To this end, we identify strengths and 
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limitations of NEUROCAAS ‘s approach to these issues (and related costs) so that researchers 

can evaluate the suitability of NEUROCAAS to their particular use case.

Reproducibility.

What are the benefits and limits of analysis reproducibility in NeuroCAAS? In section 

§2.2.1, we show that a dataset, configuration file, and analysis blueprint form a set of 

sufficient resources to reproduce an analysis output against a set of practically relevant 

interventions. We note some qualifications to this performance: First, it can be non-trivial 

to maintain a dataset across multiple analysis runs. Importantly, when data is uploaded it 

will not be versioned by default, creating the potential for it to be overwritten. For dataset 

provenance, we recommend data infrastructure projects like DANDI Dandi Team (2019). 

Integration with a data archive is an important future direction to extend reproducibility 

for NEUROCAAS. Second, we are limited by the inherent computational reproducibility of 

the core analysis we offer- for example, random computations can introduce significant 

differences from run to run (although ensemble methods can mitigate these issues). 

Finally, we can consider the lifecycle of different resources on the AWS cloud. For 

example, reproducibility could be affected if support for certain hardware instances become 

deprecated, and can no longer be used to run analyses. Given the large scale reliance of 

industrial applications on the AWS cloud, such events are very rare and announced well in 

advance, but we can take steps to address such a contingency. In particular, an important 

future direction is to consider how we can expand our approach outside of a particular cloud 

provider (see 9.2 for details).

Accessibility.

NEUROCAAS aims to improve the accessibility of data analysis by removing the need for 

users to independently configure infrastructure stacks, as is the de facto standard with 

IaGS approaches. By default, NEUROCAAS does not aim to improve other aspects of 

usability, such as the scientific use of core analysis algorithms. For example, if a user 

has data that is incorrectly formatted for a particular algorithm, the same error will happen 

with NEUROCAAS as it would with conventional usage, although curated deployments and 

blueprint based updates can significantly mitigate these issues.

Another approach towards achieving robust and general purpose analyses focuses on the 

explicit standardization of data formats and workflow. As mentioned, we plan to integrate 

with data archiving projects like DANDI (distributed archives for neurophysiology data 

integration) (Dandi Team, 2019) which enforces the NWB (Teeters et al., 2015, Rübel et 

al., 2019, Rübel et al., 2021) data standard, providing both a stable set of expectations 

for analysis developers, while also improving reproducibility of analysis results. Likewise, 

workflow management systems for neuroscience such as Datajoint (Yatsenko et al., 2015) or 

more general tools like snakemake (Koster and Rahmann, 2012) and the Common Workflow 

Language (Amstutz et al., 2016) codify the sequential steps that make up a data analysis 

on given infrastructure, ensuring data integrity and provenance. Other platforms both within 

(NeuroScout, 2022, Avesani et al., 2019) and outside of neuroscience (Seven Bridges, 2019) 

provide well-designed examples of how standardized data formats paired with workflow 

management systems can be used to make analyses more modular and easy to use.
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Scale.

Although NEUROCAAS offers analyses at scale, it does not offer unstructured access to 

cloud computational resources. The concept of IAEs should clarify this fact: NEUROCAAS 

serves a set of analyses that are configured to a particular specification, as established by 

the analysis developer. This constraint is often ideal, since the specification is in many 

cases established by the analysis method’s original authors. Without specific structure to 

manage the near infinite scale of resources available on the cloud, the management of 

resources on the cloud easily becomes susceptible to the issues of IaGS that motivated 

the development of NEUROCAAS to begin with (Monajemi et al., 2019). The constraint of 

immutability distinguishes NEUROCAAS from interactive data analysis offerings that offer 

cloud computing like Pan-neuro (Rokem et al., 2021) or Google Colab, in keeping with their 

differing intended use cases. While interactive computing plays a key role in data analysis 

applications, we believe there is fundamental value in immutable data analyses as well.

Importantly, immmutability does not suggest that analyses on NEUROCAAS are a black box. 

All NEUROCAAS analyses are built from open source projects, the workflow scripts used 

to parse datasets and config files inside an IAE are made available to all analysis users, 

and jobs constantly print live status logs back to users. Furthermore, our novel analyses 

show that there are means of comprehensively characterizing analysis performance that 

only become available at scale (i.e. full parameter searches over a multi-step analysis, or 

ensembling to evaluate reliability of analysis outputs).

Cost.

The cost quantifications that we present in this manuscript are intended to demonstrate 

that the cost of using NEUROCAAS ‘s computing infrastructure is practically feasible 

when compared against the cost of computing on typical IaGS infrastructure. One point 

to note is that for individual research groups, the cost of using local infrastructure may 

vary significantly across institutions. Our quantifications are best fit to the case where a 

research group is supporting its own computing costs and resources. While the relative cost 

of using NEUROCAAS may thus differ from group to group, it is our hope that offering 

analyses at a uniform (and highly subsidized) cost will increase analysis accessibility to a 

significant portion of the neuroscience community, and potentially provide a more concrete 

understanding of the costs associated with the development and adoption of new analysis 

tools.

Beyond compute, we do not discuss the costs of storing and retrieving data from the cloud in 

depth. Without restricting data sizes on user storage, we found that data storage costs were 

small enough that we could support them without counting them towards user budgets. A 

common theme of the analyses that we discuss is that we can minimize data retrieval costs 

by designing workflows such that analysis results that the user actually needed to retrieve 

were far smaller than input data, specifically by modifying IAEs, and by maintaining large 

intermediate results on the cloud for use in future analyses. NEUROCAAS ‘s cost benefits 

may be reduced if these conditions are harder to achieve for a given analysis, although we 

believe that alternative use cases, such as our CLI interface with “storage bypass” are well 

poised to handle these contingencies, especially when paired with future directions such 
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as integration with a data archive. Importantly, on private resources users will have to pay 

for cloud storage. This cost can be minimized by deleting input data and storing all results 

locally when not in use.

Beyond our proposed improvements above, NEUROCAAS will naturally continue to evolve 

by virtue of its open source code and public cloud construction. First, we hope to build a 

community of developers who will add more analysis algorithms to NEUROCAAS, with an 

emphasis on subfields of computational analysis that we do not yet support. Throughout this 

manuscript, we focus largely on analyses in systems neuroscience and neurophysiology, in 

accordance with the previous experience of the authors, and the opinion that analyses in 

this area are in great need of the platform design implemented by NEUROCAAS. We also 

plan to add support for real-time processing (e.g., Giovannucci et al. (2017) for calcium 

imaging, or Schweihoff et al. (2021), Kane et al. (2020) for closed-loop experiments, or 

Lopes et al. (2015) for the coordination of multiple data streams), using blueprint based 

methods to design fast, reliable infrastructure for closed loop analyses, in the same spirit 

as these batch mode analyses. Second, other tools have brought large-scale distributed 

computing to neural data analyses (Freeman, 2015, Rocklin, 2015) in ways that conform 

to more traditional high performance computing ideas of scalability for applications that 

are less easily parallelized than those presented here. Integrating more elaborate scaling 

into NEUROCAAS while maintaining development accessibility will be an important goal 

going forwards. Third, we aim to take inspiration from other computing platforms both 

within and beyond neuroscience to improve the usability of our platform, such as reporting 

the expected runtime and success rate of analyses Avesani et al. (2019), indicating the 

compatibility of different analysis steps in a sequence (Seven Bridges, 2019), or improving 

user and developer resources to include forums and full time support Goecks et al. (2010). 

We also aim to identify platforms and tools that could potentially be integrated with 

NEUROCAAS resources, in order to provide the infrastructure reliability that we prioritize. 

Finally, a major opportunity for future work is the integration of NEUROCAAS with modern 

visualization tools. We have emphasized above that immutable analysis environments on 

NEUROCAAS are designed with the ideal of fully automated data analyses in mind, because 

of the virtues that automation brings to data analyses. However, we recognize that for 

some of the core analyses on NEUROCAAS, and indeed most of those popular in the 

field, some user interaction is required to speed up analysis and optimize results. We have 

already demonstrated the compatibility of interactive interfaces with NEUROCAAS in our 

widefield calcium imaging analysis, and we will aim to establish a general purpose interface 

toolbox for developers in the same spirit, without sacrificing the benefits of cost efficiency, 

scalability, and reproducibility that distinguish NEUROCAAS in its current form.

Longer term, we hope to build a sustainable and open source user and developer community 

around NEUROCAAS. We welcome suggestions for improvements from users, and new 

analyses as well as extensions from interested developers, with the goal of creating a 

sustainable community-driven resource that will enable new large-scale neural data science 

in the decade to come.

Abe et al. Page 19

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. STAR Methods

9.1. Resource Availability

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, John P. Cunningham (jpc2181@columbia.edu)

Materials Availability—This study did not generate new unique reagents.

Data/Code Availability

• Quantifications of performance and reproducibility of NeuroCAAS have been 

deposited at Zenodo and are publicly available as of the date of publication. 

DOIs are listed in the key resources table.

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the key resources table.

• All other data reported in this paper will be shared by the lead contact upon 

request.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

9.2. Method Details

NEUROCAAS architecture specifics—The software supporting the NEUROCAAS 

platform has been divided into three separate Github repositories. The first, https://

github.com/cunningham-lab/neurocaas is the main repository that hosts the Infrastructure-

as-Code implementation of NEUROCAAS. We will refer to this repository as the source 
repo throughout this section. The source repo is supported by two additional repositories: 

https://github.com/cunningham-lab/neurocaas_contrib hosts contribution tools to assist in 

the development and creation of new analyses on NEUROCAAS, and https://github.com/

jjhbriggs/neurocaas_frontend hosts the website interface to NEUROCAAS. We will refer to 

these as the contrib repo and the interface repo respectively throughout this section. We 

discuss the relationship between these repositories in the following section, and in Figure 

S5.

Source Repo—Section 2.1 gives an overview of how NEUROCAAS encodes individual 

analyses into blueprints, and deploys them into full infrastructure stacks, following the 

principle of Infrastructure-as-Code (IaC). This section presents blueprints in more depth 

and show how the whole NEUROCAAS platform can be managed through IaC, encoding 

features such as user data storage, credentials, and logging infrastructure in code documents 

analogous to analysis blueprints as well. All of these code documents, together with code 

to deploy them, make up NEUROCAAS ‘s source repo. There is a one-to-one correspondence 

between NEUROCAAS ‘s source repo and infrastructure components: deploying the source 

repo provides total coverage of all the infrastructure needed to analyze data on NEUROCAAS 

(Figure S5, bottom). Although much of the code to translate blueprints and other 

infrastructure code necessarily references AWS resources, NEUROCAAS blueprints and other 

IaC artefacts are not tied to AWS, except in their reliance on particular hardware instance 

Abe et al. Page 20

Neuron. Author manuscript; available in PMC 2023 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cunningham-lab/neurocaas
https://github.com/cunningham-lab/neurocaas
https://github.com/cunningham-lab/neurocaas_contrib
https://github.com/jjhbriggs/neurocaas_frontend
https://github.com/jjhbriggs/neurocaas_frontend


configurations. We can potentially recreate these hardware instances in other public clouds, 

using existing tools to support cloud-agnostic IaC approaches, as suggested by Brikman 

(2019). Doing so will further improve the scale and robustness of our platform.

Within the source repo, each NEUROCAAS blueprint (see Figure S2 for an example) is 

formatted as a JSON document with predefined fields. The expected values for most of 

these fields identify a particular cloud resource, such as the ID for an immutable analysis 

environment, or a hardware identifier to specify an instance within the resource bank 

(Lambda.LambdaConfig.AMI and Lambda.LambdaConfig.INSTANCE_TYPE in Figure 

S2, respectively). Upon deployment, these fields determine the creation of certain cloud 

resources: AWS EC2 Amazon Machine Images in the case of IAE IDs, and AWS EC2 

Instances in the case of hardware identifiers. One notable exception is the protocol 

specifying behavior of a corresponding NEUROCAAS job manager (Lambda.CodeUri and 

Lambda.Handler in Figure S2). Instead of identifying a particular cloud resource, each 

blueprint’s protocol is a python module within the source repo that contains functions to 

execute tasks on the cloud in response to user input. The ability to specify protocols in 

python allows NEUROCAAS to support the complex workflows shown in Figure 5. Job 

managers are deployed from these protocols as AWS Lambda functions that execute the 

protocol code for a particular analysis whenever users submit data and parameters. Since 

all parts of NEUROCAAS workflow can be managed with python code (i.e. through a 

programmatic interface, job manager protocol, or within the IAE itself), external workflow 

management tools can easily be integrated to analyses on a case-by-case basis in order to 

deploy the scale of NEUROCAAS in parallel or sequentially, as needed.

Another major aspect of NEUROCAAS ‘s source repo that is not discussed in §2 is the 

management of individual users. NEUROCAAS applies the same IaC principles to user 

creation and management as it does to individual analyses. To add a new user to the 

platform, NEUROCAAS first creates a corresponding user profile in the source repo (Figure 

S5, right), that specifies user budgets, creates private data storage space, generates their 

(encrypted) security credentials, and identifies other users who they collaborate with. Users 

resources are created using the AWS Identity and Accesss Management (IAM) service.

Contrib and Interface Repos.—Given only the NEUROCAAS source repo, analyses can 

be hosted on the NEUROCAAS platform and new users can be added to the platform simply 

by deploying the relevant code documents. However, interacting directly with resources 

provided by the NEUROCAAS source repo can be challenging for both analysis users and 

developers. For developers, the steps required to fill in a new analysis blueprint may 

not be clear, and the scripting steps necessary within an IAE to retrieve user data and 

parameters requires knowledge of specific resources on the Amazon Web Services cloud. 

For users, the NEUROCAAS source repo on its own does not support an intuitive interface or 

analysis documentation, requiring users to interact with NEUROCAAS through generic cloud 

storage browsers, forcing them to engage in tedious tasks like navigating file storage and 

downloading logs before examining them. Collectively, these tasks lower the accessibility 

that is a key part of NEUROCAAS ‘s intended design. To handle these challenges, we 

created two additional code repositories, the NEUROCAAS contrib repo and interface repo, 

for developers and users, respectively.
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The NEUROCAAS contrib repo supports a command line tool and python code to streamline 

the process of developing and creating new NEUROCAAS analyses. During the development 

process, the NEUROCAAS contrib repo can create infrastructure stacks independently of 

input-triggered job managers for a limited time, allowing developers to build and test IAEs 

interactively on powerful hardware instances in “debug mode” (Figure S5, bottom right), 

and populate the analysis blueprint as they go. Then, when a new analysis is ready to 

be used on NEUROCAAS, the NEUROCAAS contrib repo automatically versions the entire 

source repository after integrating and deploying the new blueprint, generating a unique 

analysis version ID. All NEUROCAAS analyses can be updated only by directly editing 

blueprints, and blueprints are assigned a new analysis version ID every time that they are 

updated. By enforcing a tight correspondence between blueprints and analyses, we ensured 

the reproducibility of all analyses conducted via NEUROCAAS, regardless of ongoing updates 

to the underlying infrastructure or algorithm (Figure S5, top right). With an analysis version 

ID, it is possible to replicate results that were generated with older versions of some 

analysis algorithm, making this a particularly useful feature for users processing data with 

an analysis that is still actively being developed. The NEUROCAAS developer documentation 

§9.4 contains a detailed guide for developers to get started with NEUROCAAS.

The NEUROCAAS interface repo supports the website interface to NEUROCAAS, hosted at 

www.neurocaas.org. In addition to providing documentation and a simpler user interface, 

(Figure S5, bottom left) the interface repo interacts with the source repo to automatically 

create and deploy user profiles when users sign up, significantly increasing the potential 

scale of the platform (Figure S5, top left). This website based user credentialing system can 

be referenced by other user interfaces as well, as is done in https://github.com/jcouto/wfield. 

If users wish to share analysis access and data with other users, they can also use the website 

to create and request unique “group codes” at sign up, that they can use to invite other users 

into the same group. Doing so allows them to easily share analysis access with others.

Developer Workflow—In this section we give more specific steps of how developers and 

authors built analyses for NEUROCAAS. See also Figure S6 for a corresponding schematic.

1. Flexible installation and scripting. Developers first install their core analysis 

into an IAE and hardware instance, just as they would with a local 

computer. Within an IAE any programming language can be supported, 

although certain precautions must be taken when working with licensed 

software such as Matlab (see developer documentation for more details 

https://neurocaas.readthedocs.io/en/latest/index.html). We provide tools to help 

developers write a workflow script to make their core analysis immutable (Figure 

S6). Post installation, the configured IAE is automatically saved in a blueprint 

(Figure S6, right).

2. Simple input/output handling. All NEUROCAAS analyses take a dataset file 

and a YAML formatted configuration file as input. Datasets can be parallelized 

over, and configuration files can specify any kind of parameter, including paths 

to supplemental data files (we provide an example of such a workflow in our 

custom analyses). NEUROCAAS handles transfer of data files from users into an 
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IAE, and likewise writes any results back to users in timestamped folders that 

ensure version control for analysis outputs. All messages that would be printed 

to the IAE console during analysis are delivered back to the user in real time as 

a set of automatically formatted log files, along with job success/failure status 

messages, CPU usage, and memory usage. Developers can specify any files to be 

returned to the user, including custom logs, or intermediate results that would be 

useful to examine as analysis proceeds.

3. Testing with private data storage. Each user of a given analysis has a password 

protected account that authorizes them to interface with their own private cloud 

storage. Users have separated input and output areas in cloud storage, where they 

can maintain datasets for re-analysis, or keep intermediate analysis results as 

convenient. Although we have not capped the size of data we allow each user to 

store overall, we restrict both as follows: users cannot download data from input 

areas (although they can delete), and they cannot upload to output areas. These 

restrictions have distinct benefits for cost and reproducibility. In the later stages 

of testing, developers can upload test data and configuration files to private data 

storage exactly as a user would, and ensure that results and logging information 

appear as intended before releasing their analysis to the public. Developers can 

also set up selective access for designated test users before releasing the analysis 

to the general public. At this stage, we also work with developers to determine 

the optimal hardware instance type from the resource bank for their analysis and 

to determine if additional configuration of a custom job manager is necessary. 

We note, importantly that our current storage solution does not meet HIPAA 

standards and should not be used for sensitive health records.

4. Reproducible use and development By default, each analysis on NEUROCAAS 

provisions a single type of hardware for all data. However, if needed instances 

can be provisioned in a dataset-dependent manner, adjusting the size of storage 

volumes, memory, or other computing resources. These per-job changes are still 

recorded in versioned logs to ensure reproducibility of all jobs (see §2.2 for 

details). Such dataset dependent changes can be triggered by users, with the 

CLI interface, or programmed by developers through the job manager. In cases 

where users report bugs, analysis developers can then access the exact same 

IAE, resource bank instance, and inputs in interactive “debug mode” once again, 

making changes, and redeploying the blueprint exactly as they did in the initial 

deployment. Furthermore, if developers would like to continue updating their 

analysis, they can do so without impacting the reproducibility of existing results, 

because each NEUROCAAS job produces an analysis ID identifying a particular 

blueprint version.

Novel Analyses—For each novel analysis §2.4 §2.5, we provide details on its component 

infrastructure stacks, as well as details on relevant development outside the NEUROCAAS 

framework we have already presented.
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Widefield Imaging.: The Widefield Calcium Imaging analysis that we present involves 

two independent infrastructure stacks, with the second taking as input the results of the 

first. The first infrastructure stack performs motion correction, denoising, compression, and 

hemodynamic correction, and is performed on an instance with 64 virtual cores (further 

infrastructure details are identical to the “PMD” row of Table S5). The second infrastructure 

stack performs demixing of denoised, corrected widefield imaging data, and is performed 

on an instance with a Tesla V100 GPU (further infrastructure details are identical to the 

“LocaNMF” row of Table S5). In addition to these two infrastructure stacks, we support 

a custom graphical user interface (available at https://github.com/jcouto/wfield). This user 

interface integrates with the credentials generated for users on the NEUROCAAS website, 

allowing users who have signed up via the website to use the GUI with an existing account. 

The GUI hosts a number of initialization steps on the user’s local machine, involving 

selection of parameters and alignment of data to landmarks on a given brain atlas. The GUI 

is also able to upload data directly to NEUROCAAS cloud storage, submit jobs, and monitor 

their progress. Next, the GUI is able to detect when the first step of processing is completed, 

and submits the relevant results files as input to the second step, mimicking the steps a 

user would take manually to manage this process. Finally, when all processing is complete 

the GUI retrieves analysis results back to the user’s local machine. For more details on 

implementation of each analysis step, please see Couto et al. (2021).

Ensemble Markerless Tracking.: The deep ensembling analysis that we present is also 

performed in two separate infrastructure stacks, but both the initial training and the 

consensus output generation steps are performed on the same IAE and resource bank 

instance. In both cases, we use an instance equipped with a Tesla V100 GPU, otherwise 

identical to the infrastructure shown in the DeepLabCut row of Table S5). We trained 

DeepGraphPose with the default training settings provided in the file run_dgp_demo.py 

within the core DeepGraphPose analysis code, on the “twomice-top-down” data from the 

DeepGraphPose paper (Wu et al., 2020). That paper provides full videos of analysis of this 

dataset using a single DeepGraphPose model. To enable ensembling, we built a separate 

set of ensembling tools that work with DeepGraphPose (Wu et al., 2020) - they can 

be found at https://github.com/cunningham-lab/neurocaas_ensembles. In order to create a 

consensus output, we averaged the confidence maps from each model in an ensemble in 

the following way: Assume a set of N trained DGP networks, ϕi, i∈1…N, and a video 

frame, F ∈ ℝX × Y × 3. Assume that the network has been trained to track a single body 

part (the general case follows immediately), and take the scoremap outputs (unnormalized 

likelihoods) on this image from the output convolutional layer, denoted ϕi
sc(F), where 

each scoremap ϕi
sc(F) ∈ ℝX × Y × 3. These scoremap outputs are unnormalized likelihoods 

representing the probability that the body part of interest is located in any individual pixel of 

the image. Then, we can compute the mean scoremap for a given image as:

ϕsc(F) = S−1 1
N ∑

i
S ϕi

sc(F) (1)
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Where S is the elementwise sigmoid function. The consensus output is then calculated from 

the softargmax function of this mean scoremap.

Furthermore, to calculate the rmse error, we use the following metric: Assume we have 

detections for all of the test frames in a video as a tensor, x ∈ ℝT × D × C, with entries xtdc, 

where t represents the frame index, d the part index, and c the coordinate ∈[x, y]. Likewise, 

we have groundtruth data g with entries gtdc of the same dimension. Then the error is 

calculated as follows:

RMSE(x, g) = ∑t, d, c [ xtdc − gtdc
2]

T
(2)

Details and implementation can be found in the repository https://github.com/cunningham-

lab/neurocaas_ensembles, and the full analysis is available for use at http://neurocaas.org/

analysis/14.

9.3. Quantification and Statistical Analysis

Quantifying reproducibility on NEUROCAAS—In order to quantify the reproducibility 

of analyses on NEUROCAAS, we selected two analyses already available on NEUROCAAS; 

CaImAn Giovannucci et al. (2019), and Ensemble DeepGraphPose (§2.5). We fixed in place 

the blueprint version for these analyses, as well as a dataset and configuration file, and 

compared the results of 15 independent runs for each of these analyses. These runs capture 

a variety of different real world interventions that can affect analysis reproducibility in 

practice. In particular, Runs 1–5 were performed by a paper author in the United States, 

Runs 6–10 were performed by a non-author researcher in India, and Runs 11–14 were 

performed by a non-author researcher in Switzerland. Within each of these sets of runs, 

we can test for the variation in analysis outputs over analysis runs conducted by the same 

researcher. Across these sets of runs, we can test for variation in analysis outputs over 

the physical location of the researcher performing experiments. Finally, for both analyses 

Run 15 was performed using an entirely separate instatiation of the NeuroCAAS platform, 

as described in the Discussion §3, and for which detailed instructions are provided in our 

developer documentation. This run ensures that there is no dependence of our analysis 

results on the particular set of infrastructure reosurces used to build and implement 

NEUROCAAS analyses blueprints.

In the absence of a generic metric to compare analysis outputs, we chose specific metrics for 

each analysis.

CaImAn.: We benchmarked CaImAn on the YST dataset introduced in the CaImAn paper 

Giovannucci et al. (2019). To compare the outputs of CaImAn, we independently looked 

at the differences between the spatial components (referred to as the “A” matrix in the 

CaImAn software package) and the temporal components (referred to as the “C” matrix in 

the CaImAn software package) found by the system independently. For both temporal and 

spatial components, we assumed a deterministic ordering of components across runs. We 

compared components pairwise, and reported average quantities across paired components. 
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To determine the variation of spatial components across runs, we quantified the Jaccard 

similarity coefficient pairwise between detected components, as has been done previously in 

Giovannucci et al. (2017). In order to compare the variation of temporal components across 

runs, we quantified the root mean square error between paired temporal components. In both 

cases, we found no detectable variation across runs.

Ensemble DeepGraphPose.: We benchmarked Ensemble DeepGraphPose on the 

“twomice-top-down” data described in the methods above with the introduction of Ensemble 

Markerless Tracking. We compared the outputs of each run as the time series describing 

the temporal evolution of each individual body part. We quantified differences between two 

runs, x1, x2 as the root mean squared error between time series describing the evolution 

of each individual body part, averaged overall body parts. RMSE has previously been 

used in the literature to quantify the similarity between the tracked positions of behavioral 

markers, as in Mathis et al. (2018); Wu et al. (2020). We expect this variation to come from 

non-deterministic computations used to speed up the computation of convolutions employed 

in the relevant behavioral tracking model.

Timings.: As a separate but related question, we also quantified the variation in the time 

taken to analyze data on NEUROCAAS across these same 15 runs. We quantified timings as 

follows:

• The Setup Time of an analysis was calculated as the time between the moment 

when a job was submitted to user storage (measured as the upload timestamp 

associated with a job’s “submit.json” file) and when the job was marked as 

started in the corresponding “certificate.txt” log in user storage (reported as a 

delta following the statement “JOB MONITOR LOG COMPLETE”.)

• The Analysis Time was calculated as the time between the end of a job’s Setup 

Time and the time when the last analysis output of a particular run is uploaded to 

user storage (measured using upload timestamps of those analysis results).

• The Shutdown Time of an analysis is the time between the end of a job’s 

Analysis Time and the time when all resources associated with the job have been 

stopped. It is measured based upon the time when a job end marker file is written 

to user storage (called “end.txt”).

The total timing of an analysis job is the sum of these three contributions. In practice, we 

care most about variation in the first two components, as these are most relevant to a user’s 

experience of NEUROCAAS.

Quantifying usage—By default, NEUROCAAS records metadata for each job that is 

requested, such as the requester of the job, the time at which it was requested, and the 

datasets and config file that were analyzed. These quantities are necessary to enable per-user 

budgeting.

We aggregated this per-user metadata in order to generate the usage statistics shown in 

Figure 3. Aggregation and analysis of user data is now offered to developers through the 
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contrib repo described above, and the data for Figure 3 panels were generated by running the 

command:

$ neurocaas-contrib monitor visualize-parallelism: This command is included with the 

developer CLI, which lists the usage of a single analysis bucket. We ran this command for 

the following analyses:

• epi-ncap-web

• dlc-ncap-web

• pmd-ncap-web

• caiman-ncap-web

• locanmf-ncap-web

• bardensr

• dlc-ncap-stable

• caiman-ncap-stable

• polleuxmonitored

• carceamonitored

• wfield-preprocess

• yass-ncap-stable

• one-photon-compress

• one-photon-demix

• one-photon-mcorr

• dgp-refactor

• ensemble-dgp

• label-job-create-web

We then iterated through all of these logs, and aggregated information across all platform 

usage for these analyses, using metadata for individual jobs to group results by user, by 

parallelism, and by developer. For each aggregated collection of jobs, we extracted the total 

corresponding number of compute hours as well, using the script figures/parallelized.py 
included in the contrib repo. Critically, here we exclude usage by NeuroCAAS team 

members testing analyses for deployment, which is run from the user accounts ”reviewers”,

“debuggers,“examplegroup2”. In rare cases where metadata logging failed, we excluded the 

corresponding analysis from this quantification.

Benchmarking algorithms on NEUROCAAS—For each analysis currently on 

NEUROCAAS, the specific infrastructure choices in the corresponding blueprint (Figure 

S5, right) are given in Table S5. To meaningfully benchmark NEUROCAAS against current 

standards, we simulated corresponding local infrastructure. Local infrastructure was also 
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built on AWS, and spans resources comparable to personal hardware and cluster compute, 

depending on the use case (see Table S6). As a general guideline, we chose local 

infrastructure representatives that would reasonably be available to a typical researcher, 

unless the datasets we considered required more powerful resources. To account for the 

diversity of resources available to neuroscience users, we offer alternative quantifications 

to those presented in Figure 7 in the supplementary methods (see Figure S7), and make 

performance quantification data and calculations available to users who would like to 

compare to their own infrastructure through a custom tool on our project repository (see 

README: https://github.com/cunningham-lab/neurocaas).

For each analysis that we benchmarked on NEUROCAAS, we chose three datasets of 

increasing size as representative use cases of the algorithms in question. The size differences 

of these datasets reflect the diversity of potential use cases among different users of the 

same algorithm. The CaImAn benchmarking data consists of datasets N.02.00, J_123, J_115 

from the data shared with the CaImAn paper (Giovannucci et al., 2019). Benchmark analysis 

is based on a script provided to regenerate Figure 7 of the CaImAn paper. Note that 

although this data could be batched, we choose to maintain all three datasets as contiguous 

wholes. We took advantage of the fact that the algorithm was built to parallelize across 

multiple cores of the same machine, and chose hardware to make effective use of this 

implementation across data sizes (for details see Giovannucci et al. (2019), Figure 8). 

DeepLabCut benchmarking data consists of behavioral video capturing social interactions 

between two mice in their home cage. Data is provided courtesy of Robert C. Froemke and 

Ioana Carcea, as analyzed and presented in Carcea et al. (2019). Data processing consisted 

of analyzing these videos with a model that had previously been trained on other images 

from the same dataset. The same dataset was used to benchmark PMD and LocaNMF as a 

single analysis pipeline with two discrete parts. Input data consist of the dataset (“mSM30”), 

comprising widefield calcium imaging data videos, provided courtesy of Simon Musall 

and Anne Churchland, as used in Musall et al. (2019) and Saxena et al. (2020). The full 

dataset is available in a denoised format at http://repository.cshl.edu/id/eprint/38599/. Data 

processing on NEUROCAAS consisted of first processing the raw videos with PMD, then 

passing the resulting output to LocaNMF. For DLC and PMD+LocaNMF, the NEUROCAAS 

compute time was effectively constant across increasing total dataset size, as we assumed 

data was evenly batched into subsets of approximately equal size and each batch was 

analyzed in its own independent infrastructure stack (as in Figure 5A).

Further details on the datasets used can be found in Table S4.

We split the time taken to run analyses on NEUROCAAS into two separate quantities. 

First, we quantified the time taken to upload data from local machines to NEUROCAAS, 

denoted as NEUROCAAS (Upload) in Figure 7. This time depends upon the specifics of the 

internet connection that is being used. It is also a one time cost: once data is uploaded to 

NEUROCAAS, it can be reanalyzed many times without incurring this cost again. Upload 

times were measured from the same NEUROCAAS interface made available to the user. 

(This upload time was skipped in the quantification of local processing time.) Second, we 

automatically quantified the total time elapsed between job submission and job termination, 

when results have been delivered back to the end user in the NEUROCAAS interface 
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(denoted as NEUROCAAS (Compute) in Figure 7) via AWS native tools (see Supplemental 

Information for details, and use of this data for Figure 3). Finally, we do not include time 

taken to download data back to a local machine in these quantifications because we found 

that this time was negligible across all analyses that we considered- at most ~ 2 minutes, 

and in most cases on the order of a few seconds. Local timings were measured on automated 

portions of workflow in the same manner as NEUROCAAS (Compute).

We quantified the cost of running analysis on NEUROCAAS by enumerating costs of each 

of the AWS resources used in the course of a single analysis. Costs can be found in 

Table S7. We provide the raw quantification data and corresponding prices in Table S7. 

To further reduce costs, we also offer the option to utilize AWS Spot Instances (dedicated 

duration); these are functionally identical to standard compute instances, but are provisioned 

for a pre-determined amount of time with the benefit of significantly reduced prices. We 

provide the estimated cost of running analyses with both of these options in Figure 7, with 

quantifications labeled “NEUROCAAS Save” corresponding to analyses run with dedicated 

duration spot instances, and those labeled “NEUROCAAS Std” corresponding to those run 

with standard instances. For more on Spot Instance price quantification, see Supplemental 

Information.

With simulated local infrastructures on AWS in hand, costs were calculated by pricing 

analogous computing resources as if the user had purchased them for a personal workstation, 

or as if they had been allocated to the user on an on-premises cluster (Table S8, https://

calculator.aws/). In Figure 7, we assume that the local infrastructures considered are hosted 

on typical local laptop or desktop computing resources, supplemented with the resources 

necessary to run analyses as they were done on NeuroCAAS (additional storage, memory, 

GPU, etc), while maintaining approximate parity in processor power. We referred to (Morey 

and Nambiar, 2009) to convert pricetag costs of local machines to Equivalent Annual Costs, 

i.e. the effective cost per year if we assume our local machines will remain in service for 

a given number of years, as our implementation of a TCO calculation (as is often done in 

industry). Given a price tag cost xlocal, an assumed lifetime n, an annuity rate r, and cs (n) 

defined as the estimated annual cost of local machine support given a lifetime n, we follow 

Mahvi and Zarfaty (2009), Morey and Nambiar (2009) in calculating the Equivalent Annual 

Cost as:

EAC xlocal, n, r =
xlocal

1 − (1 + r)−n
r

+ cs(n) .

Here cs (n) is provided in the cited paper (Morey and Nambiar, 2009), estimated from 

representative data across many different industries. The denominator of the first term is 

an annuity factor. We consider two different values for n, which we label as “realistic” (2 

years) and “optimistic” (4 years) in the text. In industry, 3–4 years is the generally accepted 

optimal lifespan for computers, after which support costs outweigh the value of maintaining 

an old machine (, Mahvi and Zarfaty, 2009, Morey and Nambiar, 2009). Some have argued 

that with more modern hardware, the optimal refresh cycle has shortened to 2 years (J.Gold 
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Associates LLC, 2014). By providing quantifications assuming two and four year refresh 

cycle, we consider the short and long end of this generally discussed optimal range.

Given a per-dataset NEUROCAAS cost xNeuroCAAS, we further derive the Local Cost 

Crossover (LCC), the threshold weekly data analysis rate at which it becomes cost-effective 

to buy a local machine. The LCC is given by:

LCC xlocal, n, r, xNeuroCAAS =
EAC xlocal, n, r

52 × xNeuroCAAS
.

Furthermore, given the per-dataset local analysis time, we can estimate the corresponding 

Local Utilization Crossover (LUC). The LUC considers the LCC in the context of the 

maximal achievable data analysis rate on local infrastructure as calculated in the previous 

section. If the time taken to analyze a dataset on a local machine is given by tlocal (in 

seconds), The LUC is given by:

LUC tlocal, xlocal, n, r, xNeuroCAAS

=
LCC xlocal, n, r, xNeuroCAAS × tlocal × 100

604800 .

Survey of Analyses and Platforms—We characterized data analysis infrastructure 

stacks as consisting of three hierarchical parts (Dependencies, System, Hardware), 

segmented consistently with infrastructure descriptions referenced elsewhere (Demchenko et 

al., 2013, Zhou et al., 2016). In several different subfields of neuroscience, we then selected 

10 recent or prominent analysis techniques, and asked how they fulfilled each component 

of data analysis infrastructure to generate Figure 1D. We denoted a particular infrastructure 

component as supported if it is referenced in the relevant installation and usage guides as 

being provided in a reliable, automated manner (e.g., automatic package installation via pip), 

offering a conservative estimate of lack of infrastructure support. Survey details are provided 

in Tables S1, S2. We addressed the question of how data analyses are installed and used 

with these surveys in the tradition of the open source usability literature. Surveys such as 

these are standard methodology in this field, which relies upon empirical data from studies 

of user’s usage habits (Nichols et al., 2001, Zhao and Deek, 2005), developer sentiment 

(Terry et al., 2010), and observation of user-developer interactions via platforms like Github 

(Cheng and Guo, 2018).

To generate Figure 4, we first quantified the traffic and infrastructure experienced by 

individual analyses by examining their Github pages, and taking the maximum of the 

number of forks, stars, and watchers, as well as the listed hardware requirements of each 

analysis (numbers as of September 2020). We then overlaid several exemplar platforms 

based on the analyses that they supported, as well as restrictions based on the accessibility 

and scale requirements imposed by each (local hardware, limitation to one analysis at a 

time), taking care to include analyses that the platforms supported in practice.
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9.4. Additional Resources

• Standard interface for users to work with analyses on NEUROCAAS : 

www.neurocaas.org

• Documentation for developer workflow (and CLI usage):

https://neurocaas.readthedocs.io/en/latest/develop/installation.html

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• The NeuroCAAS platform provides reprodicible data analysis infrastructure 

at scale

• Reproducible, cloud based infrastructure enables novel analysis design

• Popular data analyses adapted to NeuroCAAS are faster and cheaper than 

alternatives
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Figure 1: Data Analysis Infrastucture.
A. Core analysis code depends upon an infrastructure stack. B. Common problems arise at 

each layer of this infrastructure stack for analysis users and developers. C. Many common 

management tools deal only with one or two layers in the infrastructure stack, leaving gaps 

that users and developers must fill manually. D. In common neural data analysis tools for 

calcium imaging and behavioral analysis many infrastructure components are not managed 

by analysis developers and implicitly delegated to the user (see §9 for full details and 

supporting data in Tables S2,S1).
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Figure 2: Overview of NEUROCAAS User Workflow.
Left indicates the user’s experience; right indicates the work that NEUROCAAS performs. 

The user chooses from the analyses encoded in NEUROCAAS. They then modify 

corresponding configuration parameters as needed. Finally, the user uploads dataset(s) 

and a configuration file for analysis. NEUROCAAS detects upload event and deploys 

the requested analysis using an infrastructure blueprint (§2.1.4). NEUROCAAS builds the 

appropriate number of IAEs (§2.1.1) and corresponding hardware instances (§2.1.3). 

Multiple infrastructure stacks may be deployed in parallel for multiple datasets and the job 
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manager (§2.1.2) automatically handles input and output scaling. The deployed resources 

persist only as necessary, and results, as well as diagnostic information, are automatically 

routed back to the user. See Figure S1 for comparison with IaGS, and Figure S3 for IAE list.
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Figure 3: Usage statistics NEUROCAAS Platform.
Usage data over a 22-month alpha test period. A. Histogram for number of datasets (left) 

and corresponding compute hours (right) spent by each active user of NEUROCAAS. B. 

Histograms for job size indicates the number of datasets (top) and corresponding compute 

hours (bottom) concurrently analyzed in jobs. C. Usage grouped by platform developer. 

Dark blue: analyses adapted for NEUROCAAS by paper authors. Light green: analyses that 

were not developed by NEUROCAAS authors. Dark green: NEUROCAAS native analyses 

(§2.4, 2.5). Light blue: custom versions of generic analyses built for individual alpha users. 

We exclude usage attributed to NEUROCAAS team members.
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Figure 4: Landscape of Cellular/Circuit-Level Neuroscience Analysis Platforms.
Crosses: popular analyses in terms of their place in the adoption lifecycle (number of users, 

rate of software updates), and their infrastructure needs. Coloring: representative platforms, 

indicating the parts of analysis space that are covered by a given platform. (Example 

analyses: (Goodman and Brette, 2009; Pnevmatikakis et al., 2016; Mathis et al., 2018; 

Pachitariu et al., 2016; Pandarinath et al., 2018; Januszewski et al., 2018; Saxena et al., 

2020; Buchanan et al., 2018; Graving et al., 2019); Representative platforms: (Sanielevici et 

al., 2018; Chaumont et al., 2012; Schneider et al., 2012).
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Figure 5: 
NeuroCAAS Supports Multi-Stack Design Patterns. A. Default workflow: If more than one 

dataset is submitted, NEUROCAAS automatically creates separate infrastructure for each. 

B. Chained workflow: Multiple analysis components with different infrastructure needs 

are seamlessly combined on demand. Intermediate results are returned to the user so that 

they can be examined and visualized as well (§2.4). C. Parallelism + chained workflow: 

Workflows A and B can also be combined to support batch processing pipelines with a 

separate postprocessing step (§2.5).
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Figure 6: Ensemble Markerless Tracking.
A. Example frame from mouse behavior dataset (courtesy of Erica Rodriguez and C. 

Daniel Salzman) tracking keypoints on the top down view of a mouse, as analyzed in 

Wu et al. (2020). Marker shapes track different body parts: blue markers representing the 

output of individual tracking models, and orange markers representing the consensus. Inset 

image shows tracking performance on the nose and ears of the mouse. B. consensus test 

performance vs. test performance of individual networks on a dataset with ground truth 

labels as measured via root mean squared error (RMSE). C. traces from 9 networks (blue) 

+ consensus (orange). Across the entire figure, ensemble size = 9. A and C correspond to 

traces taken from the 100% split in B corresponding to 20 training frames.
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Figure 7: Quantitative Comparison of NEUROCAAS vs. Local Processing for Three Different 
Analyses
A. Simple quantifications of NEUROCAAS performance. Left graphs compare total 

processing time on NEUROCAAS vs. local infrastructure (orange). NEUROCAAS processing 

time is broken into two parts: Upload (yellow) and Compute (green). Right graphs quantify 

cost of analyzing data on NEUROCAAS with two different pricing schemes: Standard (dark 

blue) or Save (light blue). B. Cost comparison with local infrastructure (LCC). Figure 

compares local pricing against both Standard and Save prices, with Realistic (2 year) and 

Optimistic (4 year) lifecycle times for local hardware. C. Achieving Crossover Analysis 

Rates. Local Utilization Crossover gives the minimum utilization required to achieve 

crossover rates shown in B. Dashed vertical line indicates maximum feasible utilization 

rate at 100% (utilizing local infrastructure 24 hours, every day). See Figure S7 for cluster 

analysis, and Tables S4–S8 for supporting data.
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Table 1:
Quantifying reproducibility via output comparisons for two analyses on NEUROCAAS.

For CaImAn, (an algorithm to analyze calcium imaging data) we independently characterized differences in 

the spatial and temporal components recovered by the model. Differences in spatial components are measured 

by the average Jaccard Distance over pairs of spatial components. A Jaccard distance of 0 corresponds to 

two spatial components that perfectly overlap. Differences in temporal components were calculated as the 

average root mean squared error (RMSE) taken over paired time series of component activity. For Ensemble 

DeepGraphPose (an algorithm to track body parts of animals during behavior from video), we considered 

multiple sets of outputs from a single, pretrained model. RMSE takes units of pixels, so differences of order 

1e-8 are not relevant for behavioral quantification. For both analyses, we fixed a single dataset, configuration 

file and blueprint across runs. See Figures S3,S4 for more.

Reference Run Output vs. Run 2 vs. Run 5 vs. Run 10 vs. Run 14

Analysis (Comparison Metric) (US) (India) (Switzerland) (Platform Clone)

Spatial Components 0.0 0.0 0.0 0.0

CaImAn (Jaccard Distance)

(Giovannucci et al., 2019) Temporal Components 0.0 0.0 0.0 0.0

(RMSE)

Ensemble Body Part Traces 1.2e-8 1.2e-8 2.3e-8 1.4e-8

DeepGraphPose (§2.5) (RMSE)
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Table 2:
Quantifying reproducibility via output comparisons for two analyses on NEUROCAAS.

For CaImAn, (an algorithm to analyze calcium imaging data) we independently characterized differences in 

the spatial and temporal components recovered by the model. Differences in spatial components are measured 

by the average Jaccard Distance over pairs of spatial components. A Jaccard distance of 0 corresponds to 

two spatial components that perfectly overlap. Differences in temporal components were calculated as the 

average root mean squared error (RMSE) taken over paired time series of component activity. For Ensemble 

DeepGraphPose (an algorithm to track body parts of animals during behavior from video), we considered 

multiple sets of outputs from a single, pretrained model. RMSE takes units of pixels, so differences of order 

1e-8 are not relevant for behavioral quantification. For both analyses, we fixed a single dataset, configuration 

file and blueprint across runs. See Figures S3,S4 for more.

Reference Run Output vs. Run 2 vs. Run 5 vs. Run 10 vs. Run 14

Analysis (Comparison Metric) (US) (India) (Switzerland) (Platform Clone)

Spatial Components 0.0 0.0 0.0 0.0

CaImAn (Jaccard Distance)

(Giovannucci et al., 2019) Temporal Components 0.0 0.0 0.0 0.0

(RMSE)

Ensemble Body Part Traces 1.2e-8 1.2e-8 2.3e-8 1.4e-8

DeepGraphPose (§2.5) (RMSE)
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw data used for the benchmarking of CaImAn (Giovannucci et al. 2019) Zenodo DOI: 10.5281/zenodo.1659149

Performance quantification data used to report timing and cost of analyses on 
NeuroCAAS (related to Table 1, Figure 8)

Zenodo DOI: 10.5281/zenodo.6512118

Raw data used for to test WFCI analysis. Cold Spring Harbor 
Repository

DOI: 10.14224/1.38599

Software and Algorithms

Source repository used to build analyses from blueprints. Zenodo DOI: 10.5281/zenodo.6512118

Contributor repository used to help developers add analyses to NeuroCAAS. Zenodo DOI: 10.5281/zenodo.6512121

Interface repository used to build the website www.neurocaas.org Zenodo DOI: 10.5281/zenodo.6512125

Repository used to generate ensemble outputs from individually trained models Zenodo DOI: 10.5281/zenodo.6513057
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