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a b s t r a c t 

Background and objective: COVID-19 outbreak has become one of the most challenging problems for 

human being. It is a communicable disease caused by a new coronavirus strain, which infected over 

375 million people already and caused almost 6 million deaths. This paper aims to develop and design 

a framework for early diagnosis and fast classification of COVID-19 symptoms using multimodal Deep 

Learning techniques. 

Methods: we collected chest X-ray and cough sample data from open source datasets, Cohen and datasets 

and local hospitals. The features are extracted from the chest X-ray images are extracted from chest X-ray 

datasets. We also used cough audio datasets from Coswara project and local hospitals. The publicly avail- 

able Coughvid DetectNow and Virufy datasets are used to evaluate COVID-19 detection based on speech 

sounds, respiratory, and cough. The collected audio data comprises slow and fast breathing, shallow and 

deep coughing, spoken digits, and phonation of sustained vowels. Gender, geographical location, age, pre- 

existing medical conditions, and current health status (COVID-19 and Non-COVID-19) are recorded. 

Results: The proposed framework uses the selection algorithm of the pre-trained network to determine 

the best fusion model characterized by the pre-trained chest X-ray and cough models. Third, deep chest 

X-ray fusion by discriminant correlation analysis is used to fuse discriminatory features from the two 

models. The proposed framework achieved recognition accuracy, specificity, and sensitivity of 98.91%, 

96.25%, and 97.69%, respectively. With the fusion method we obtained 94.99% accuracy. 

Conclusion: This paper examines the effectiveness of well-known ML architectures on a joint collection 

of chest-X-rays and cough samples for early classification of COVID-19. It shows that existing methods 

can effectively used for diagnosis and suggesting that the fusion learning paradigm could be a crucial 

asset in diagnosing future unknown illnesses. The proposed framework supports health informatics basis 

on early diagnosis, clinical decision support, and accurate prediction. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

COVID-19 pandemic has had an unprecedented economic and 

ocial impact worldwide. By early February 2022, with more than 

lmost six million deaths and over 375 million infections, the pan- 

emic is still a global concern, without showing any signs of near- 

ng to an end. The number of infected people across the world 

s still increasing [25] . In dealing with the COVID-19 pandemic, 

https://doi.org/10.1016/j.cmpb.2022.107109
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.107109&domain=pdf
mailto:santosh@iiitnr.edu.in
mailto:mithilesh@iiitnr.edu.in
mailto:saeed.alsamhi@insight-centre.org
mailto:sachin.gupta@smvdu.ac.in
mailto:mguizani@ieee.org
mailto:r.gravina@dimes.unical.it
mailto:giancarlo.fortino@unical.it
https://doi.org/10.1016/j.cmpb.2022.107109


S. Kumar, M.K. Chaube, S.H. Alsamhi et al. Computer Methods and Programs in Biomedicine 226 (2022) 107109 

t

m

d

p

t

v

t

p

t

c

n

d

e  

m

g

m

i

r

t

c

f

c

i

R

a

c

s

C

R

d

a

t

f

p

n

a

n

p

p

m

d

m

e

i

m

v

o

k

v

e

m

a

d

s

s

p

a

s

c

Fig. 1. SIR model using statistical learning. 
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here is the need to design reliable early diagnosis and intervention 

ethods and implement effective mitigation effort s. Theref ore, the 

esign of these early diagnosis strategies hinges on the effective 

rediction of surveillance of the disease’s spatio-temporal evolu- 

ion [1] . 

A reliable learning method of forecasting the spread of the 

irus and early diagnosis could significantly enhance the predic- 

ive surveillance capability and help designing disease containment 

olicies. Prior research has suggested and evaluated different sta- 

istical, epidemiological, and Machine Learning (ML)-based fore- 

asting models for COVID-19 [1,4,9] based on factors such as the 

umber of current infections, fatalities, and recoveries. Other epi- 

emic forecasting models, such as those suggested in Windmon 

t al. [10] , Alsamhi et al. [11] , Alsamhi and Lee [12] , rely on hu-

an movement and within- and between-season data. 

Although these models can forecast the initial outbreak and 

rowth trajectories, they are restricted in their ability to capture 

any temporally dynamic and geographically variable aspects driv- 

ng disease spread [1] . Therefore, governments are looking for dis- 

uptive technologies to promptly diagnose individuals and control 

he widespread COVID-19 pandemic [4,26,27,29,30] . Several clini- 

al diagnosis-based frameworks and strategies have been deployed 

or testing, tracing, and treatment, helping to crush the pandemic 

urve across the world (e.g., in Singapore, South Korea, and China) 

n its early stages. The test works are similar to Polymerase Chain 

eaction (PCR) to identify a portion of the COVID-19 ribonucleic 

cid (RNA) in the nasopharyngeal or oropharyngeal swab [5] . 

Based on World Health Organization (WHO) supervision, Nu- 

leic Acid Amplification Tests (NAAT) like real-time Reverse Tran- 

cription (rRT-PCR) must be applied for routine confirmation of 

OVID-19 infection by detecting the unique sequences of virus 

NA. Thanks to the enormous advancement of medical science and 

isruptive technologies, most existing diseases have been appropri- 

tely diagnosed based on available tools and methods. In addition, 

hese methods allow for curing or preventing the individual from 

urther consequences [5] . 

The traditional controlling mechanism is reported as manual 

rocedures. However, traditional medical clinical procedures diag- 

osis methods take more time to process the samples for early di- 

gnosis and predictions, favoring the spread of a highly commu- 

icable disease such as COVID-19. Social isolation of positive sus- 

ected subjects, strict quarantine policies, social distance between 

eople, personal hygiene, and use of personal protection equip- 

ent such as face masks are globally implemented guidelines [6,7] . 

The collected databases/samples of infected people from the 

ifferent communities are analyzed to find significant diagnosis 

easures using diversified methods, including mathematical mod- 

lling, statistical techniques, simulation, statistical modelling, var- 

ous ML-based representation techniques, and data mining. These 

ethods are also used to predict disease behaviour both at indi- 

idual and community level. 

Unfortunately, we are still struggling to stop the fast-spreading 

f infection at the community level because proper medical testing 

its and procedural methods are not used at a large scale to pro- 

ide vaccination to citizens of different countries [8] . Based on lit- 

rature work, several statistical analysis-based models and mathe- 

atical modelling systems are used for early diagnosis. In addition, 

rtificial intelligence methods are highly used to analyze collected 

ata of infected people from different countries. The workflow of a 

tatistical model is illustrated in Fig. 1 . The statistical model con- 

ists of different com ponents: (1) input data collection, (2) data 

re-processing of the collected sample, (3) data modelling, (4) data 

nalysis, (5) data visualization and representation. 

The input data is collected from different individual patient and 

tored at a cloud server for further processing. The input data 

onsists of patients information such as age, sex, infected or not 
2 
nfected status, medical procedures taken for complete diagnosis, 

nd records of taken medicines. In pre-processing step, the col- 

ected input data is treated using pre-processing techniques to 

chieve essential data after removing noises and artifacts stored 

sing statistical methods. 

Data modelling techniques and data representation and visu- 

lization steps identify data that can be grouped into different 

lusters to analyze the growth and prediction of infection rates 

sing Autoregressive Integrated Moving Average (ARIMA) mod- 

ls (shown in Fig. 1 ). Based on the literature, several statistical 

nalysis-based models and mathematical modelling systems are 

sed for early diagnosis. However, collected datasets consist of 

ifferent between-class and within-class labeled information on 

OVID-19. The shared labeled information of infected people can- 

ot analyze by applying statistical machine learning techniques 

ue to overlapped information, including Autoregressive Integrated 

oving Average (ARIMA) models. These techniques and models 

annot find the scatter matrix to separate these classes for better 

nalysis of the infected patient. 

.1. Motivation 

With the ever-growing requirement for expediting early diag- 

osis and screening millions of patients, huge efforts and techno- 

ogical innovation are deployed to face COVID-19 spread [1,4–6] . It 

s worth noting that COVID-19 outbreak is partially due to false- 

egative results in Reverse Transcription Polymerase chain Reac- 

ion and Reverse Transcription (RT-PCR) tests. 

To tackle this issue, several interdisciplinary studies proposed 

rameworks for fast and accurate COVID-19 diagnosis and predic- 

ion. These frameworks have been used to estimate growth rates 

nd infection rates to prevent acute infection due to the COVID- 

9 pandemic. However, the proposed methods and frameworks are 

nable to process massive amount of data [19] . As a result, sev- 

ral clinical testing labs and medical doctors have faced significant 

ifficulties in disease prediction. Several research groups [5] , and 

edical expert committees have recommended to follow the imag- 

ng of the chest of humans for early COVID-19 diagnosis. Based on 

outine use of scanning methods, it has been widely demonstrated 

hat Chest X-Ray-based imaging (CXR), and Computed Tomography 

CT) scans are highly reliable for COVID-19 early diagnosis. How- 

ver, several researchers have recommended that CT-based analysis 

ethods are not appropriate in many circumstances due to the use 

f contrast material (dye), making it inapplicable for patients with 

ignificant medical conditions such kidneys failure. In addition, CT 

cans are non-specific and overlap with other acute viral infections 

ncluding influenza, H1N1, SARS, and MERS [10] . 

Based on the available literature, the analysis of chest X-ray im- 

ges using ML techniques represents a valuable methodology for 

arly and accurate prediction. 

Moreover, the chest X-ray images are repeatedly obtained 

ver time to monitor the evolution of lung disease. Wong 

t al. [8] showed that the severity of CXR results peaked at 10–
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2 days from the date of symptom onset and proposed a model 

ased on X-ray analysis obtaining 69% sensitivity. Artificial Intelli- 

ence (AI) techniques are attracting interest due to the high need 

or early COVID-19 diagnosis. In particular, Deep Learning (DL) has 

eceived prevalent attention for the analysis of chest X-ray im- 

ges [22] and cough (audio) signals. However, there is a need of 

ery effective computational approaches to realize fast, automated, 

ffective computing systems and algorithms to detect abnormali- 

ies in chest X-rays images that are due to early COVID-19 infec- 

ion. 

To address this problem, we proposed a novel multimodal 

ramework for COVID-19 patients early diagnosis and accurate pre- 

iction using DL techniques. The proposed framework uses a Con- 

olutional Neural Network (CNN) to train the model based on the 

hest X-ray images database and cough (voice) samples. We em- 

loy the weighted sum rule method to fuse both the chest X-ray 

nd cough (audio) model to predict COVID-19 accurately. 

The benefits of the proposed multimodal framework are to use, 

or early diagnosis, non-invasive, fast prediction method and novel 

rchitectures. The proposed framework also uses voice samples to 

rocess the spectrograms of cough episodes for model training. 

.2. Contributions 

The major contributions of this work are highlighted as follows: 

1. A novel multimodal framework is proposed for COVID-19 pa- 

tients early diagnosis and accurate prediction using DL tech- 

niques. 

2. The proposed multimodal framework consists of chest X-ray 

images and cough (voice) based models on processing the chest 

X-ray images and cough sample database for extracting dis- 

criminatory features and performing early prediction of COVID- 

19 and non-COVID-19 patients. 

3. The proposed framework applied the U Net DL technique, CNN 

speech processing techniques to perform segmentation and to 

extract features from the preprocessed chest X rays images by 

isolating the image portion containing the lung parts. 

4. The experimental results show accurate classification based on 

different settings and protocols. This may help in analyzing 
Fig. 2. Proposed model for early acc

3 
data, predicting, and planning prospective applications for fu- 

ture pandemics. 

The rest of the paper is organized as follows. Section 2 illus- 

rates the method for early diagnosis of COPD. Section 2.6 depicts 

he feature extraction and classification techniques applied in this 

ork. Section 3 shows the experimental results and performance 

valuation based on different existing benchmark protocols and 

ethods. Section 3.4 reports the results of statistical analysis car- 

ied out on the X-ray and cough audio datasets. Finally, conclusions 

nd prospected future directions are drawn in Section 5 . 

. Methods 

This section presents the proposed multimodal learning frame- 

ork for early diagnosis and fast prediction of COVID-19 patients. 

he framework consists of two learning models: (1) chest-X-rays 

mage classification model, (2) cough (voice) based analysis model 

see Fig. 2 ). The steps involved in the workflow are explained in 

he block diagram and detailed in the following. 

.1. Chest X-ray model 

We collected the chest X-ray image database for extracting rich 

nd distinct information. The proposed model extracts the discrim- 

natory features from the captured chest X-ray images for predic- 

ion. In the proposed multimodal system, we used CNN learning 

odel to classify COVID-19 and non-COVID-19 (non-infected sub- 

ects) based on the adopted chest X-ray image datasets. 

The chest X-ray-based working model consists of the follow- 

ng steps: (1) collection of database description and preprocess- 

ng/cleaning, (2) segmentation and clustering of images, (3) feature 

xtraction, and (4) classification. Since we focus on one disease, 

he chest X-ray model is binary, so the result is either positive 

o COVID-19 or negative. In many literature works, we found that 

ith the increase of the number of classes, the classification be- 

omes less accurate on average. We have divided the whole work 

f the chest X-ray model into several parts. 
urate prediction of COVID-19. 
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Fig. 3. Segmentation of chest X-ray image using U-net model. 

Fig. 4. Workflow of chest X-ray model using CNN architecture. 
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.2. Data collection 

We have collected the COVID-19 chest X-ray images and cough 

amples from open datasets [2,22] . Specifically, details on the X-ray 

mages database are summarized in Table 1 . 

.3. Segmentation of chest-X-ray image 

Segmentation is the process of dividing the input image into 

he distinct region of interest. In the chest X-ray image process- 

ng model, the lung images of infected patients are divided into 

egions of interest using the deep U-Net-based DL architecture for 

lassification (see Fig. 3 ). 

We trained the U-Net model on the Shenzhen hospital X-rays 

ataset and validated the proposed framework based on the Mont- 

omery County dataset since segmentation of the medical image 

s a significant challenge for obtaining an accurate region of in- 

erest. For example, the chest X-ray image separates the lungs re- 

ion in a chest X-ray. Therefore, we have used the Montgomery 

nd Shenzhen datasets with the lungs masks and trained the pro- 

osed model with the masks to get the lungs region as output (see 

ig. 3 ). 
able 1 

atabase of chest X-ray images. 

Dataset Size Used model 

A 468 Used to make COVID-19 class data 

B 5860 Used to make non-COVID-19 class data 

C 566 Segmentation model 

D 138 Used for validation of segmentation model 

E 852 426N(190W + 236M) + D 

: IEEE-8023 CXR - Cohen dataset [23] , B: Pneumonia and normal chest X-ray, C: 

henzhen CXR with Masks, D: Montgomery county CXR images, E: COVIDGR 1.0, 

 = Women, M = Men, N = Negative cases, P = positive D = 426P(239W + 187M) 

sed training model. 

a

o

(

t

o

h

s

t

p

W

l

b

(

4 
.4. Classification model 

The proposed system employs the CNN technique and the 

-Net learning model to classify COVID-19 and non COVID-19 

atients based on provided four labeled classes (i.e. Normal, 

acteria infection, Tuberculosis (TB), Viral infection(VI), COVID-19, 

on finding (non COVID-19). The basic architecture of the U-Net 

earning-based CNN framework is shown in Fig. 4 . The classifi- 

ation model contains convolution, pooling, and fully connected 

ayers. We used the Darknet-19 model [13] for the classification of 

OVID-19. It consists of 19 convolutional and five max-pool layers. 

ach convolutional layer has a different number of filters with 

ize 5 × 5 . Thus, the number of convolution filters increased in the 

rchitecture. In the proposed framework, we used fewer layers for 

lassification. 

The proposed system consists of 17 convolutional layers, a pool- 

ng layer, and a fully connected layers. We used the batch nor- 

alization method and LeakyReLU non-linear activation function 

o train the proposed system’s over-collected chest X-ray image 

atabase (see Fig. 4 ). The batch normalization technique is used 

o solve the over-fitting problem in the trained model for classi- 

ying COVID-19 and non-COVID-19 based on the chest X-ray im- 

ge database. In LeakyRelu non-linear activation function, instead 

f function becoming zero for (x, 0), it has a slight negative slope 

nearly 0.01), which prevents the dying ReLU. An activation func- 

ion takes a value and performs a mathematical operation. Based 

n the output of the activation function, it decides which neuron 

as to activate. 

The pooling layer reduces feature maps’ dimension using down- 

ampling by summarizing the features using the down-sampling 

echnique. The fully connected layer evaluates measured scores 

robability of the output COVID-19 and non COVID-19 classes. 

e have used several combinations of convolution layer and max 

ayer according to the requirement of the proposed method for 

etter training and testing of COVID-19 and non COVID-19 classes 

see Fig. 4 ). 
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Algorithm 1: Feature extraction. 

1. Initialization: Let y(n) be an input cough (voice signal): y[n] 

= x[n]-ax[n]. 

2. Processing and filtering noise of the input signal y[n] 

(shown in Eq.(1): 

y [ n ] = 

1 
n 

∑ n −1 
i =0 y [ n − i ] (1) 

3. Segmentation using Hamming Window: The hamming 

window method is used to reduce noises and ripple from 

cough sample. 

4. Mel Frequency Cepstral Coefficients (MFCCs) features: 

5. Segment the signal into short frames: Each frame’s period 

gram was determined, and the power spectrum’s period 

gram estimate was calculated. 

6. Apply the Mel filter bank method and use algorithm of all 

filter bank energies. 

7. Computation of Discrete Cosine Transformation (DCT: We 

used DCT [18] to calculate the log filter bank energies and 

kept DCT coefficients 2–13 while discarding the rest. 

8. The MeI scale is given as follows: 

M(f) = 1125ln(1+f/700) (2) 
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.5. Cough based COVID-19 diagnosis model 

The noticeable symptoms of COVID-19 infected patients include 

evere cough and breathing difficulties. Therefore, when these 

reathing and cough samples are analyzed using speech signal pro- 

essing and ML techniques, we claim that the respiratory sounds of 

atients provide valuable insights, enabling the development of an 

arly diagnostic DL tool. 

.5.1. Data collection and description 

We used several open datasets from different sources. 

1. Collection of Coswara sound database: The Coswara project, 

which is affiliated with IISc Banglore in India, provided us 

with a cough (audio) recording database. The main goal of this 

project is to create a diagnostic tool for detecting COVID-19 

using respiratory, cough, and speech sounds. Such dataset in- 

cludes breathing noises (rapid and slow), cough sounds (deep 

and shallow), phonation of sustained vowels (/a/ as in made, 

/i/,/o/), and counting numbers at a slow and fast rhythm. 

2. Subjects were from all continents except Africa, and audio 

recordings were sampled at 44.1 KHz. The dataset comprised 

of various categories, namely cough (two kinds: heavy and 

shallow), breathing (two kinds: heavy and shallow), sustained 

vowel phonation (three kinds: a , e , o), and digit counting (two 

kinds: fast and regular) along with metadata information. The 

Coughvid [14] , DetectNow [15] , Sarcos, and Virufy [16] datasets 

are publicly available. 

3. Sarcos cough sample Dataset: In the Sarcos cough database, 

the infected people (subjects) were motivated to record their 

cough (voice) using their smartphone’s microphone. The au- 

dio samples are recorded by infected people participants online. 

The sampling rate of cough (voice) audio recordings is 44.1 KHz. 

All the cough sample audio recordings are considered from dif- 

ferent people. They presented with a voluntary and anonymous 

questionnaire and provided informed consent. 

4. The questionnaire includes information about instructions and 

set of phonetical phonemes and alphabet and constant collec- 

tion, including age, disease history, and gender. Suspected cases 

are tested by an authorized COVID-19 testing center and diag- 

nosed with the COVID-19 positive or negative. This information 

is stored in the databases along with the country of residence. 

The spectrogram representation of one recorded cough sample 

is shown in Fig. 5 . 

.5.2. Pre-processing of cough (audio) database 

The samples of recorded audio cough are manually segmented 

nto binary classes, namely, positive and negative case. The cough 

amples are labeled as positive, mild, or positive, segmented as 

ositive, and samples in which COVID-19 status was labeled as 

ealthy or no respiratory illness exposed were segmented as neg- 

tive. We down-sampled the audio recordings at 16 KHz. We cre- 

ted an amplitude of 100 Hz to get rid of dead spaces and tiny 

ackground noises from the audio signal. We divided cough audio 

amples into chunks of 4 seconds each and padded as needed. The 

ignificant challenges are that the Coswara audio sample database 

ncludes signals with significant amount of irrelevant data; further- 

ore, the recordings were variable in length [5] . 

Fig. 2 shows the cough model to classify audio recordings. It in- 

ludes preprocessing of a wide-band spectrogram of heavy cough 

amples for feature extraction and classification. The cough model 

onsists of the following steps: (1) collection of data, (2) prepro- 

essing of data, (3) data cleaning, (4) feature extraction, and (5) 

lassification. We used 80% of the Coswara sample dataset for 

raining the proposed cough model, while the remaining 20% was 

sed for testing and validation. 
5

1. Data preprocessing: Preprocessing techniques are used to re- 

move noises from input images. The input cough voice data 

consists of several artifacts and noises. We employed the filter 

approach to reduce noise in the cough sample database after 

isolating these artefacts. To reduce noise in the collected nasal 

images, we used a low-pass filter. The filter method performs 

computation on X[ n ] using MA filtering technique, which takes 

previous ( X[ n − i ] , for i = (1 , 2 , 3 . . . , n ) low illumination sample

images from the unconstrained background. The output filtered 

image is denoted as Y [ n ] . Let I be a vector of pixel values of

given images, then: 

Y [ n ] = 

1 

n 

n ∑ 

i =1 

X [ n − i ] (3) 

.6. Feature extraction and classification 

We computed the MFCCs feature of the Intrinsic Mode Func- 

ions (IMFs), and windowed cough signal samples from spectro- 

rams used as MFCC features to classify cough using a deep CNN 

odel. Because MFCCs features consists of complete human res- 

iratory, characteristics varies with time. Therefore, the discrimi- 

atory MFCCs features are extracted from cough sample together 

ith ( � ) first order derivatives, and second-order ( �� ) derivatives 

n measured short term power spectrum of cough/sound sample 

or early diagnosis 

Moreover, in this work, we computed MFCCs features are used 

long with first-order derivatives ( � ) and second-order derivatives 

 �� ) features for differentiating dry coughs from wet coughs and 

uberculosis coughs based on computed delta coefficients(shown in 

q. (4). The computation of delta coefficient ( � t ) from cough sam- 

les and MFCC features are illustrated in Algorithms 1 and 2 , re- 

pectively. 

The proposed model extracted MFCC features from the pre- 

rocessed audio sample database using ML techniques. The pri- 

ary objective is to select discriminatory features from extracted 

eatures using the subspace feature selection method and Principal 

omponent Analysis (PCA) method [17] . Then, the extracted fea- 

ures are used to train the cough model to perform prediction for 

ough samples. 
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Fig. 5. Illustration of cough for volume and its power spectrum. 

Algorithm 2: Calculation of delta-delta ( � t � t ) coefficient for 

cough. 

1. The Discrete Fourier Transform (DFT) technique [18] is 

applied to transform the signal in the time domain from 

the frequency domain after dividing the speech signal 

into speech frames. 

2. The power spectrum was obtained and triangular filters 

were used to map it onto the Mel scale. Figure 5 illustrates 

an example of a speech input volume power spectrum. 

3. Log outputs are found using Discrete Cosine Transform 

technique. 

4. Delta ( � ) and delta-delta ( � ) ( � ) coefficients are calculated 

as follows: 

5. Finally, let us denote the MFCC of a window frame (t) by C t . 

The delta coefficient ( � t ) is computed as follows: 

� t = 

∑ I 
i =1 i ×(C t+ i −C t−i ) 

2 ×∑ I 
i =1 i 

2 
(4) 

Algorithm 3: Segmentation of chest X ray images. 

1. Initialization: Chest X-ray image I [M × N]=[ 

I 1 (a q , b r ) , . . . , I N (a q , b r ) for input image. 

2. Normalization: the input images are resized into 500 

× 500 pixels. 

3. Enhancement process: The gray scale images are enhanced 

by histogram equalization technique. 

4. Applying filter at center pixel ( a 0 , b 0 ) of each block: 

C(a, b) = (a + qb) × Gb(a, b) (5) 

where Gb(a,b) is defined as follows: 

Gb(a, b) = e −(a 2 + b 2 ) / 2 σ 2 (6) 

where Gb(x, y ) is a Gaussian kernel window with [ m × n ] . 

σ = 1 . 2 is Gaussian variance. Responses on implementing 

Gaussian kernel window filters on every patch/block is 

acquired as follows: 

C(a, b) ∗ D (a, b) = (e −(a 2 + b 2 ) / 2 σ 2 (a + qb) ∗ D (a, b)) (7) 

5. Filtered images are reconstructed. Highest responses from 

thee complex filter within already filtered image could be 

presumed as important features, where D (a, b) is the 

oriented image of pixels. 

6. Output: Segmented regions of chest X ray images. 
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6 
The MFCC feature extraction includes windowing the signal, 

aking the Fourier Transform, wrapping the spectrum’s powers into 

he Mel scale, and taking the powers’ logs. The Mel log powers list 

s a signal applying discrete cosine transform to signals and results 

n amplitudes known as MFCCs. The steps involved in this process 

re further explained in Fig. 4 . 

After windowing and frame blocking the cough audio signal, 

FT technique [18] is applied to each windowed frame to convert 

he audio signal to power spectrum moving from the time domain 

o frequency domain using the following formula. 

 (k ) = 

N−1 ∑ 

n =0 

x (n ) e 
− j2 πnk 

N 

(8) 

here N is the number of points used to compute the DFT [18] and 

 ranges between 0 and N − 1 . 

After obtaining the spectrum, we compute the log power spec- 

rum, which gives the magnitude in decibels. This spectrum is a 

ontinuous signal with some periodic structures because the log 

ower spectrum has some harmonic components. Hence, treating 

he signal as a time domain signal, we applied discrete inverse 

ourier transform [18] to get a spectrum; namely, cepstrum is in a 

seudo frequency domain known as Quefrency. The cepstrum rep- 

esents how these quefrencies are present in the log power spec- 

rum. The mathematical equation to obtain a cepstrum is the fol- 

owing. 

[ x (t)] = F −1 [ log(F [ x (t)])] (9) 

here C is the obtained cepstrum and F −1 is the Inverse discrete 

ourier transform, and F is the DFT technique [18] . The next step 

nvolves the computation of Mel spectrum. Mel is a unit of mea- 

ure based on how the human ear perceives a frequency. Human 

uditory systems do not perceive pitch linearly in a physical fre- 

uency scale. The Mel approximation from physical frequency is 

xpressed as follows: 

f Mel = 2595 log 10 (1 + 

f 

700 

) (10) 

here f Mel and f denote the perceived frequency and the physical 

requency which is partitioned the physical frequency scale into 

ins and, using overlapping triangular filters, transform each bin 

nto the corresponding bin in the Mel scale. A Mel spectrogram 

an be computed by multiplying each triangular Mel weighing fil- 

er with the magnitude spectrum. 

We have considered the first 13 MFCC coefficients truncating 

he high order DCT coefficients to make the system robust. The 

ero th coefficient was removed since it represents the signal’ aver- 
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Fig. 6. Segmentation of chest X-ray images using proposed model. 
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Table 2 

Performance of proposed chest X-ray model based on fold cross validation. 

Folds Sensitivity Specificity Precision Accuracy F1 

1 0.9459 1.0000 1.0000 0.9890 0.9722 

2 1.00009 1.0000 1.0000 1.0000 1.0000 

3 0.9453 0.91235 0.9367 0.9578 0.9646 

4 0.9354 0.94285 0.9669 0.9677 0.9879 

5 0.9891 0.97685 0.9556 0.9576 0.9789 

Table 3 

Performance metrics of proposed multimodal framework on Sarcos sample. 

Method MFCC Frames HW SP ST A F1 

LR 120 1024 120 67 91 75.5 73.62 

LSTM 130 1024 75 63 74 68.30 72.88 

CNN + SVM 60 148 1050 78 74 77.28 81.54 

MLP + K-NN 175 2048 100 90 88 93.5 89.69 

MLP + BM 200 1024 110 84 94 76.02 83.29 

CNN + Y 250 1024 140 92 90 96.57 95.30 

CNN + G 78 300 100 93 90 97.35 94.99 

Proposed 450 4024 250 94 95 97.57 98.90 

MFCC = MFCC Features, SP = Specificity, ST = Sensitivity, A = Accuracy (%), F1 = F1 

score, BM = Bayesian Model, Y = ReLu + SVM, G = SVM + LDA. 
ge log energy and contains little information. The following equa- 

ion is used to calculate MFCC characteristics: 

(n ) = 

M−1 ∑ 

m =0 

log 10 (s (m )) cos ( 
πn (m − 0 . 5) 

M 

) , [ n = 0 , 1 . . . , C − 1] 

(11) 

here (c) is the number of MFCCs of cough sample, M and c(n ) are

espectively the number of cough samples and cepstral coefficients. 

. Results 

The performance of the proposed framework is evaluated based 

n chest X-ray and cough sample data for accurate prediction of 

OVID-19 patients for early diagnosis. 

1. Performance evaluation based on chest X-ray and cough 

sample datasets: The proposed system is trained with 566 im- 

ages with lung masks using U-Net based DL architecture. The 

segmentation model provided the segmented input images to 

the classification model of chest X-ray with the validation accu- 

racy of 98.46%. The input chest X-ray image, the actual masks, 

and the output predicted mask are highlighted in Fig. 6 . 

2. Classification performance metrics: To evaluate the perfor- 

mance of the classification methods, we calculated the follow- 

ing indicators based on confusion matrix based measures: 

Accuracy (A ) = 

T P + T N 

T P + T N + F P + F N 

(12) 

P recision (P ) = 

T P 

T P + F 
(13) 

Recal l (R ) = 

T P 

T P + F N 

(14) 

F 1 − measure = 

2(P + R ) 

P + R 

(15) 

Speci f icity = 

T N 

T N + F P 
(16) 

where TP are True Positive, FP are False Positive, TN are True 

Negative, and FN are False Negative cases.Among them, the F1 

score was employed as the evaluation criteria for early halting. 

Finally, the overall metric scores of the algorithm were obtained 

by averaging each metric over numerous classes, as shown in 

Table 2 . 

The proposed multimodal framework for identifying COVID-19 

and non COVID-19 discoveries uses the segmented chest X-ray 

images as input. For training the model, we have 468 images 
7 
of COVID-19 positive patients and 720 images of non-COVID- 

19 patients. We employed 20% and 80% of the chest X-ray im- 

age database for training and validation of the proposed model, 

respectively, and for measuring system performance. A 5-fold 

cross-validation procedure was used to validate the suggested 

model. We used 20% of the total images for validation and the 

remaining 80% for the suggested model training scheme (see 

Fig. 9 shows fold 3 and fold 4 accuracy). 

Table 2 shows the performance results. Fig. 7 depicts segmenta- 

tion of chest X-ray images using the proposed model. The con- 

fusion matrix of the proposed method is shown in Fig. 8 (a) for 

chest X-ray images and in Fig. 8 (b) for cough audio signals. 

.1. Evaluation on chest X ray image dataset 

The performance of the proposed framework is shown in 

igs. 3 and 10 , respectively. Our cough detection algorithm classi- 

es cough sample for predicting COVID-19 with an overall accuracy 

f 82.30%. Table 3 shows the Resnet-50 classifier mode and other 

lassifiers. These classification models provide better performance 

ased on cough (audio) databases. The Restnet-50 model provided 

7.60% accuracy for classification cough samples. The evaluation is 

one based on extracted 256-dimensional feature vectors. The pro- 

osed approach showed 95.30% accuracy, 93% sensitivity, and 98% 

pecificity. This outperforms the WHO’s baseline standards for a 

ommunity-based triage test. The cough-based model, which used 

NN and LSTM-based classifiers, also performed better in terms 
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Fig. 7. Confusion Matrix features (a) chest X-ray images and (b) cough based diagnosis. 

Fig. 8. Confusion Matrix for (a) chest X-ray images and (b) cough based diagnosis. 

Fig. 9. (a) shows accuracy of fold 3 and (b) fold 4 for CXR classification. 
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f classification accuracy, obtaining 95.3% and 94.2% respectively. 

herefore, the MultiLayer Perceptron (MLP) learning model per- 

ormed better than other classification methods. The classification 

ccuracy provided by MLP method is an AUC of 0.897%. To classify 

he cough sample database, we optimized the Logistic Regression 

LR) and Support Vector Machine (SVM) classifiers. Both classifiers 

how substantially weaker performance, with AUCs of 73.60% and 

1.50%, respectively. Based on overall observation, Table 4 shows 

he classification accuracy of different ML techniques for classi- 

ying cough (audio) sample databases. A more significant num- 
8 
er of MFCCs features extracted from the cough sample consis- 

ently leads to improve the performance of the proposed method 

see Fig. 7 ). 

The spectral resolution is used to evaluate the 39-dimensional 

FCCs features that surpass the human auditory system from the 

ough database. We conclude that the proposed multimodal frame- 

ork uses cough features not generally perceivable by the human 

ar. The performance of the proposed framework is evaluated on 

hest X-ray images and its features for classifying COVID-19 and 

on COVID-19 using deep Darknet techniques [13] . The confusion 
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Fig. 10. Confusion matrix (fold5) for COVID-19 classification based on CXR images. 
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Table 5 

Accuracy of the proposed chest X-ray model based on COVIDGR-1.0 dataset. 

Class Precision Recall F1 Accuracy Support 

COVID-19 0.967 0.989 0.971 0.9890 86 

No-findings 0.972 0.969 0.966 0.975 86 

Accuracy – – – 0.97.7 172 

Macro avg 0.9654 0.96285 0.967 0.9677 172 

Weighted avg 0.9893 0.97985 0.976 0.9876 172 

Table 6 

Statistical significance analysis of lung areas based on measured intensity value of 

lung images. 

Class Mean STD Normal TB BI VI 

Normal 0.546 0.0589 n/a n/a n/a n/a 

TB 0.532 0.043 A n/a n/a n/a 

BI 0.558 0.042 n/a C n/a n/a 

VI 0.509 0.047 B n/a C n/a 

CO-19 0.504 0.051 C B C n/a 

BI = Bacteria infection, VI = Viral infection, TB = Tuberculosis, CO-19 = COVID-19. 
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atrix of classifying COVID-19 and non-COVID-19 is depicted in 

ig. 8 . 

.2. Performance analysis on sarcos cough sample dataset 

Table 3 illustrates performance matrices of the different ML 

echniques based on extracted MFCC features from the Sarcos 

ough (audio) sample database. 

DL techniques are used to measure the performance of the pro- 

osed framework based on extracted MFCC features based on a 

elected number of frames and segmented cough samples from 

he Sarcos cough database. It includes CNN with ReLU+SVM and 

LP+Bayesin methods. The framework provides classification ac- 

uracy of 96.57% and F1 measure of 95.30%, which are higher than 

he MLP+Bayesin method (accuracy 76.02%, F1 measure 83.29%). 

oreover, we used MLP+K-NN, LR, and LSTM techniques to di- 

gnose and accurately predict COVID-19 infection. The MLP+K-NN 

echnique provides higher classification accuracy (93.5%), and F1- 

easure (89.69%) than LR (accuracy 68.30%, F1 measure 72.88%), 

nd LSTM methods (accuracy 75.5%, F1 measure 73.62%). 

The Linear Discriminant Analysis (LDA) technique measured 

ptimal features based on within-class and between-class cough 

amples because the number of overlapped frames of segmented 

oice is similar in datasets. The F1 score of the proposed method is 

8.9% accuracy which is greater than other methods. The LR tech- 

ique is used for classifying cough sample classes based on ex- 

racted features of 120 MFCCs. LR techniques provide specificity, 

ensitivity, accuracy, and F1 measures are 67%, 91%, 94%, 75.5%, 

nd 73.6%. Other classifiers such as LSTM, CNN+SVM techniques 

re used to evaluate performance while trained on the Coswara 

ataset and evaluated on the Sarcos and Coswara cough voice 

atasets. LSTM technique provides 63% specificity, 74% sensitivity, 

8.3% accuracy, and 72.9% F1-measure. 

To evaluate the performance of the proposed framework, 

e used SVM classifiers, CNN, LSTM+LDA, Resnet-50 network, 
able 4 

verage performance of proposed chest X-ray model of 5 fold cross validation re- 

ults. 

Method Feature set SP ST A AC 

CNN + SVM 120 61.95 85.90 73.02 75.50 

LSTM + LDA 150 73.95 75.89 73.78 77.86 

Resnet50 200 57.86 93 74.58 74.89 

LSTM + SFS 250 91.75 98.80 92.45 90.75 

Proposed 350 97.90 96.65 95.91 94.75 

FCC = MFCC Features, SP = Specificity, ST = Sensitivity, A = Accuracy (%), 

C = Area Under Curve. 

a
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d
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9 
nd LSTM+SFS, LDA, and LSTM for classifying the chest X-ray 

amples for accurate prediction of COVID-19 and non-findings. 

able 4 shows that the proposed method provides high accuracy 

95.91%) for diagnosis of COVID-19 and non-COVID-19 cases based 

n subspace feature selection (SFS) method. We used the SFS tech- 

ique to select a discriminatory set of features from the extracted 

eatures to train the proposed framework. These classifiers re- 

orted better accuracy in comparison to the other classifiers based 

n different f eature selection techniques. For example, based on se- 

ected features using SFS, the LSTM+SFS method achieved 93.75% 

ccuracy for the classification of COVID-19 patients. 

.3. Evaluation based on COVIDGR-1.0 sample dataset 

Due to the high deviations between various executions, five dif- 

erent five-fold cross-validations are conducted in all the exper- 

mental setups. We have used 80% of the COVIDGR-1.0 chest X- 

ay image dataset for training, and the remaining 20% samples are 

sed for testing. A random 10% of each training sample set is used 

o validate the proposed model to determine when to stop the 

raining process. We conducted the data-augmentation techniques 

n each experiment, and good samples are selected carefully. All 

esults are illustrated using the average values and the standard 

eviation of the 50 epoch executions. The experimental results are 

hown in Table 5 . 

.3.1. Performance analysis on COVIDGR 1.0 dataset 

We tested the pre-trained weights of the proposed framework 

sing Cohen (also known as COVIDx) on the COVIDGR-1.0 dataset 

or accurate classification of COVID-19 patients. The overall accu- 

acy of the proposed framework is 0.977%, with a total support 

f 172. The macro average accuracy of the proposed framework 

s 0.9654% (precision), and 0.96285% (recall). F1-score is 0.9669% 

ccuracy is the 0.9677% with total support of 172. The weighted 

verage accuracy of the proposed is 0.9893%, 0.97985%, 0.9756%, 

.9876%, and support of 172 (see Table 5 ). 

.4. Statistical analysis 

In this work, we computed statistical measures over the chest 

-ray image sample (as shown in Tables 6–8 ). The following stan- 

ard measures of the biomarkers from chest X-rays image analysis 

re highlighted: 

1. Measuring the morphology structure: Morphology structure 

analysis method is used to segment chest and lung area. As 
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Fig. 11. (left) Lung segmentation result, (center) detection of contour in segmented images, and (right) scatter histogram plot of lung areas pixels. 

Table 7 

Statistical significance of lung areas based on measured mean intensity value of 

lung images. 

Class Mean STD Normal TB BI VI 

Normal 0.158 0.027 n/a n/a n/a n/a 

TB 0.135 0.017 n/a n/a n/a n/a 

BI 0.143 0.020 n/a n/a n/a n/a 

VI 0.163 0.025 C C B n/a 

CO-19 0.161 0.022 C C C A 

Table 8 

Lung intensity based variance statistics. 

Class Mean STD Normal TB BI VI 

Normal 0.139 0.017 n/a n/a n/a n/a 

TB 0.136 0.016 n/a n/a n/a n/a 

BI 0.145 0.019 A B n/a n/a 

VI 0.165 0.022 C C C n/a 

CO-19 0.163 0.022 C C C n/a 

Table 9 

Variance statistics analysis based on inter- and intra-class segmented lung areas. 

Class Mean STD Normal TB BI VI 

Normal 0.446 0.051 n/a n/a n/a n/a 

TB 0.476 0.078 A n/a n/a n/a 

BI 0.472 0.074 n/a n/a n/a n/a 

VI 0.502 0.064 C A n/a n/a 

CO-19 0.499 0.068 C C A n/a 

C: infection of COVID-19. 
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shown in Figs. 11 (left) and 11 (center), it was evaluated on dif- 

ferent classes. 

2. Computation of Mean lung intensity: We measured the statis- 

tical second-order (mean value, standard deviation, variance) to 

validate significant statistical measures of the segmented region 

of lung region values (see Fig. 11 (right)). 

3. Standard deviation based Analysis: We evaluated the second- 

order statistic measure (standard deviation) from the seg- 

mented chest X-ray images. The gray level intensity-based his- 

togram is measured from the segmented lung pixels. The se- 

lected regions are considered from the segmented images. The 

black double-headed arrow is shown in Fig. 11 (right). 

4. Cardiothoracic Ratio (CTR): CTR is calculated as the ratio be- 

tween the maximal transverse cardiac diameter and the maxi- 

mal internal thoracic diameter annotated images; it is a widely 

used marker to diagnose cardiomegaly. It is suggested that if 

the cardiothoracic border in COVID-19 CXR [4,5] is obscured by 

rounding opacity or consolidation, a clear off-average CTR value 

can be used as an anomaly warning. 

5. Kolmogorov Smirnov test: We performed the Kolmogorov 

Smirnov test [20] to measure the normal distribution of poten- 

tial biomarkers candidates, because the cardiothoracic bound- 

ary becomes blurred by rounded opacities or consolidation in of 

the segmented chest X-ray images. We used the non normally 

distributed variables to perform the Wilcoxon performance 

measure method [21] to check the significance of the chest im- 

ages using the rank testing method. The rank is computed to 

compare segmentation method performance with identical data 

size, and the rank-sum method using the Wilcoxon rank test 

compares COVID-19 candidates to those of other labels with 

different data sizes. 

6. To provide significant statistical measures for computed fea- 

tures from segmented regions, we used the statistical signifi- 
10 
cance (SS) levels for computed values which are indicated for 

p -test p(A ) ≤ 0 . 05 , p(B ) ≤ 0 . 01 , and p(C) for p ≤ 0 . 001 and F -

measures. 

Table 6 shows the corresponding results using chest X-rays im- 

ges based on the statistical analysis method. It shows SS measures 

or different segmented images of the chest part of COVID-19 pa- 

ients. We have computed the SS measures for the scatter plot of 

he histogram, as shown in Fig. 11 (centre). It depicts the major 

verlap regions between labelled chest image classes. 

In the following, we summarize the analysis of lung areas in- 

ensity variance based on pneumonia dataset and COVID-19 chest 

-ray images.Standard deviation is measured from the pixel in- 

ensity of each segmented lung area. The computed values are 

hown in Table 6 . We concluded that variance value is higher for 

OVID-19 cases while viral cases have higher variance values than 

ther labelled classes with SS ( p ≤ 0 . 001 ). To investigate the im-

act of scanning protocol on statistics, we analyzed by excluding 

P Supine radiographs from the entire chest X-ray image dataset 

ith documented patient information. The AP Supine protocol is 

sed as a substituted method to standard chest Anterior Posterior 

AP) or Posterior Anterior (PA) radiographs method that depends 

n patient condition since AP Supine protocol is not common in 

tandard cases. We performed analysis based on obtained results 

rom Tables 7 , 8 . The results are compared by different classifica- 

ion methods, as shown in Tables 6, 7 , and 9 , respectively. Based

n overall observations, statistical measures method highlights dif- 

erences in mean values and standard deviation values from com- 

uted histogram responses of segmented lung images. Based on 

hese measures, the proposed framework classifies COVID-19 cases, 

uberculosis (TB), bacterial infection and other viral infections. 

Based on significant measures, the computed accuracy illus- 

rates that the statistical mean and STD values of COVID-19 and 

iral classes show significant differences were based on highly 

ntensity-variable characteristics in segmented lung areas. This is 

ecause we did not considered the dynamic changes in to scanning 

rotocol. Based on overall observation, the classification between 

OVID-19 and other viral cases shows a significant difference. De- 

pite statistical differences between the COVID-19 cases and other 

isease classes, the selected parameters (confidence intervals) are 

p < 0 . 001 for Normal and TB, p < 0 . 05 for Bacteria, broad overlaps

etween several classes. 



S. Kumar, M.K. Chaube, S.H. Alsamhi et al. Computer Methods and Programs in Biomedicine 226 (2022) 107109 

Table 10 

Weighted Sum Rule fusion method based Accuracy for classification of COVID-19 

patients. 

Modality Weight Mean accuracy (S i ) W sm score 

Chest X ray 0.54 98.67 53.35 

Cough audio 0.46 86.53 39.80 

Table 11 

Weighted sum rule fusion method based accuracy for classification of COVID-19 pa- 

tients. 

Model W A WS 

M1 0.54 98.37% 53.35 

M2 0.46 90.53% 41.64 

Fused Accuracy (%) – – 94.99 

M1: Chest X ray, M2: Cough (audio), W = Weight ( (W i ) , A = Accuracy ( S i ), WS = 

Weighted sum fusion score. 
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The method performs the classification of bacteria infection, 

uberculosis, COVID-19, and other viral infection based on ex- 

racted features from lung regions. The statistical significance of 

xtracted features is evaluated using a statistical model (as re- 

orted in Tables 10 and 11 ). Based on the statistical analysis of po-

ential extracted features from chest X-ray images that signify es- 

ential changes in the pixel intensity distribution of the segmented 

ung images for accurate classification. The accurate distribution 

evealed that distinct patterns within the segmented lung area 

ould be changed. Therefore, these features are the most effective 

n the early diagnosis and accurate prediction based on CXR. 

.5. Analysis of inter- and intra-class lung images 

Based on extracted features from intra-class and inter-class seg- 

ented images, we computed local (shape features) and global 

ixel intensity distribution of chest X-ray images for accurate pre- 

iction for early diagnosis of COVID-19 patients. Our goal is to 

ompute optimal discriminant between inter-class and intra-class 

f lung image database. The mean intensity for each lung imaging 

atch is calculated using the computed values. We computed the 

TD of every patch of lung pictures referred to as intra-patch in- 

ensity distribution for early identification of COVID-19 cases, and 

e denoted these patches as the inter-patch intensity distribution. 

The distribution of inter-patch intensity of the unified COVID- 

9 and other viral infection class showed that the lower inten- 

ity values ( p ≤ 0 . 001 for all) of other classes are highly intensity-

ariant characteristics and showed it as a large error bar. The ac- 

uracy is measured based on selected different Regions of Inter- 

st (RoI) of lung images and computed histogram responses of 

ach ROI for analysis of inter-patch and intra-patch lung images. 

n analyzing intra-patch intensity-based pixel distribution, we have 

oncluded that there are no differences compared to the normal 

lass ( p ≥ 0 . 05 ). Based on overall observations, the intra-class im- 

ge patches based on pixel variance represent local texture infor- 

ation for classifying chest X-rays. 

We computed the global features and multi-focal intensity from 

he segmented images, and the change can be discriminating fea- 

ures for COVID-19 diagnosis. It is statistically significant with a 

trong correlation to chest X image analysis, as shown in Table 7 . 

.5.1. Theoretical and analytical model: weighted sum-rule fusion 

ethod 

In this section we devise a theoretical and analytical model for 

arly diagnosis and accurate classification of COVID-19 cases based 

n the weighted sum rule fusion method. To the best of our knowl- 

dge, there are no available fusion models and techniques based on 
11 
hest X-rays images and cough (audio) data fusion for early diag- 

osis of COVID-19 cases in the literature. 

The proposed multimodal framework performs data fusion from 

he chest X-rays and cough datasets obtained from different sub- 

ects samples. 

The fusion-based accuracy is calculated as average accuracy of 

he two models i.e., chest X-ray based detection based model ( M 1 ) 

nd Cough-based detection model ( M 2 ) using the weighted sum- 

ule method for both models. The weighted sum-rule-based fusion 

ethod is used to give more weight to the model, which is less 

usceptible to errors. Referring to the same analogy, we calculated 

he mean deviation value on the 5-fold cross-validation accuracy 

or both X-ray and cough sound models, as mean deviation directly 

orresponds to the system consistency. Therefore, we observe that 

he mean deviation (Md) value gives an idea of the method error 

ate. 

For calculating the weights, we have used the confusion matrix 

f each model (see Tables 9 and 11 ). 

d = 

1 

n 

�i 
n =1 | x i − S| (17) 

he similarity measures S 1 and S 2 are calculated as: 

 1 = 

5 ∑ 

i =1 

chestX − rayaccuracy (A i ) 

5 

(18) 

 2 = 

5 ∑ 

i =1 

Cough (A i ) 

5 

(19) 

lso, the computation of weights for each models are illustrated as 

ollows: 

 2 = 

M d 1 × M d 2 
sum (M d 1 + M d 2 ) 

= 0 . 46 (20) 

 1 = 1 − W 2 = 0 . 54 (21) 

W 2 and W 1 are assigned weight for the model. 

Finally, the multimodal framework fusion-based classification 

ccuracy is computed as follows: 

 s = sum (W sm 

Score ) = 93 . 1538% (22) 

.6. Analysis of ensemble learning classification models 

The primary objective to use the customized ensemble learning 

ased classification models is to improve overall performance of 

he multimodal framework over individual cough and chest X di- 

gnostic model. The multimodal framework integrates the ensem- 

le learning based classification models to mitigate the spread or 

ispersion of the predictions and model performance for early di- 

gnosis and accurate prediction of COVID-19. 

We used a two-level stacking-based ensemble method consist- 

ng of the first base and second levels. The base-level constructs 

rom ensemble methods include decision trees, random forests, lo- 

istic regression, boosted and bagged learning models using ma- 

ority voting method. The predictions of the base level ensemble 

odels are fed into the second level as inputs of feature sets for 

ccurate prediction of COVID-19 cases based on the chest X-ray 

mages. Therefore, ensemble classifier with 350 trees was used to 

lassify participants positively and negatively to COVID-19 cases. 

lternatively, the bagging model is configured with 350 decision 

rees with a maximum depth equal to 4 (see in Fig. 12 ). Finally,

daBoost.M1 algorithm is used for adaptive boosting with 350 de- 

ision stumps, i.e., one-level trees with two leaf nodes. The sec- 

nd level in the ERLX model is an extreme gradient boosting (XG- 

oost) classifier. XGBoost is an ensemble algorithm based on deci- 

ion trees and a gradient boosting framework. 
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Fig. 12. RF classifier model. 

Table 12 

Comparison of multimodal system with other techniques. 

Ref. Dataset Technique Accuracy 

[3] CO ML 66.74% 

[14] CXR DTL 92.10% 

[16] CC ED 77.10% 

[22] COV S-Dnet 53.35% 

[24] COV ML 68.64% 

Prop. CXR + CC DL 94.99% 

COV: COVIDGR-1.0, CXR: Chest X ray database, CC: cough sample, CO: Coswara 

cough samples, ML: Machine Learning techniques. 
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Table 13 

Comparison of the performance of proposed system. 

Ref. Dataset Technique Accuracy 

[28] COVIDx 1.0 COD 92.60% 

[14] COVIDx 1.0 COP 93.70% 

[13] COVIDx 2.0 DK 87.02% 

[22] COVIDx 2.0 VG 91.35% 

[24] COV CS 76 . 18 ± 2 . 70 % 

Prop. CXR + CC DL 94.99% 

COD = COVIDx 1.0 + COVIDNet, COP = COVIDx 1.0 + COVID-CAPS (a capsule 

network-based model), CT = Chest X-ray8 dataset, Dk = DarkCovidNet + 5FVC 

Class: No-finding, COVID-19, Pneumonia), COV = COVIDGR-1.0, CS = COVID-SDNet, 

VG = VGG-19 + DK-161. 
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. Discussion 

We have developed a multimodal framework for early diagno- 

is of CoVID-19 patients based on extracted features from chest- 

 ray image and cough(audio) sample databases by applying DL 

nd ensemble classification techniques. Hence, we have illustrated 

he contribution of various levels of predictors including statistical 

L techniques, DL techniques and fusion techniques for early di- 

gnosis. The proposed framework provided evaluation on chest-X 

ay based model and cough based model on individual chest X- 

ays and cough datasets. To improve the overall performance of 

he proposed framework, both chest-X ray based and cough based 

odel are integrated to fuse the individual accuracy based on ex- 

racted features from each datasets using weighted sum rule fusion 

ethod. The overall accuracy is reported as 94.99% for early clas- 

ification of COVID-19 cases. The existing ML techniques showed 

n adequate predictive ability with confusion matrices values for 

lassification (shown in Tables 3–5 ). Apart from the evaluation on 

xisting methods, we evaluated the performances and significance 

f proposed multimodal framework on different DL classification 

odels. 

We have computed results based on experimental setup on 

arious combinations of public datasets and benchmark settings 

shown in Table 13 ). The author [28] showed that COVIDNet pro- 

ided accuracy of 92.60%, with 9.0% sensitivity in normal class, 

0% in Non-findings and 87.10% in COVID-19. In [14] , COVID-CAPS 

odel achieved an accuracy of 93.70%, sensitivity of 90%, and 

pecificity of 95.80%. These results look too remarkable compared 

o expert radiologist sensitivity, 69% [24] . This can be explained be- 

ause the used dataset is biased to severe COVID-19 cases [22] due 

o statistically unreliable data and several authors evaluated results 

ithout cross-validation testing. Our proposed framework is better 

han these models [14,28] based on different evaluation matrices 

able 12 ) and Table 13 , respectively. 
12 
Finally, we compared the performance of the proposed multi- 

odal framework with existing methods for early diagnosis and 

ccurate prediction of COVID-19. To the best of our knowledge, 

ost systems use CXR image used to evaluate the detection of 

OVID-19 [22] . This makes a direct comparison between the pro- 

osed system and the existing ones unfair. To make the compari- 

on fair, we only compare the proposed system with the existing 

ork that used CXR and cough samples to predict COVID-19 accu- 

ately (shown in Table 12 ). 

. Conclusions 

In this work, a novel multimodal framework is proposed to pre- 

ict COVID-19 patients accurately. The framework extracts feature 

rom chest X-ray images and cough audio databases using DL tech- 

iques. The MFCC features are extracted from the Sarcos cough 

audio) and Coswara sample database and classified by logistic 

egression, LSTM, CNN + SVM, and MLP techniques. The frame- 

ork used U-Net and Darknet architectures to extract the chest 

-ray database features [13] . DL techniques are used to measure 

he performance of the proposed framework, including CNN with 

eLU + SVM and MLP + Bayesin methods. The frameworks provides 

lassification accuracy of 96.57% and F1 measure of 95.30%, which 

re higher than the MLP + Bayesin method (accuracy 76.02%, F1- 

easure 83.29%). Moreover, we used MLP + K-NN, LR, and LSTM 

echniques to diagnose and accurately predict COVID-19 infection. 

he MLP + K-NN technique provides higher classification accuracy 

93.5%), and F1-measure (89.69%) than LR (accuracy 68.30%, F1- 

easure 72.88%), and LSTM methods (accuracy 75.5%, F1 measure 

3.62%). 

We used the weighted sum rule fusion-based method for early 

iagnosis of COVID-19 patients with the accuracy of 94.99%. The 
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erformance of the proposed framework is evaluated on discrim- 

natory features using CNN, LSTM using LDA, Resnet-50 network, 

nd LSTM + SFS. The overall accuracy of the framework is 98.90% 

hich is higher than other methods based on Sarcos cough sam- 

les. 

The performance proposed model will improve based on dif- 

erent database using deep multimodal fusion techniques. We will 

lso develop intelligent devices for the early diagnosis of noncom- 

unicable diseases in rural and remote areas worldwide. 

thical approval 

The authors declare that no ethical approval was required for 

his study. 

eclaration of Competing Interest 

Authors declare that they have no conflict of interest. 

cknowledgements 

Funding: This work was supported by the Science Foundation 

reland, co-funded by the European Regional Development Fund 

nder Grant no. SFI/12/RC/2289_P2 and by the Italian MIUR, PRIN 

017 Project Fluidware” (CUP H24I170 0 0 070 0 01) and PRIN 2020 

roject “COMMON-WEARS”. The work is also carried out within 

he frame of the SPINE Body of Knowledge (SPINE-BoK, https: 

/projects.dimes.unical.it/spine-bok ). 

eferences 

[1] F. Hu, H. Mingfang, J. Sun, X. Zhang, J. Liu, An analysis model of diagnosis and
treatment for COVID-19 pandemic based on medical information fusion, Inf. 

Fusion 73 (2021) 11–21 . 
[2] D. Now, https://detect-now.org/ , last accessed on jan, 2022, 

[3] N. Sharma, K. Prashant, K. Rohit, R. Shreyas, S.R. Chetupalli, P.K. Ghosh, S. 
Ganapathy, Coswara–a database of breathing, cough, and voice sounds for 

COVID-19 diagnosis, 2020, arXiv preprint arXiv: 2005.10548 . 

[4] WHO, Coronavirus disease 2019 (COVID-19) Situation Report - 35, WHO(2020). 
[5] Y. Pathak, P.K. Shukla, K.V. Arya, Deep bidirectional classification model for 

COVID-19 disease infected patients, IEEE/ACM Trans. Comput. Biol. Bioinform. 
18 (4) (2021) 1234–1241 . 

[6] A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, M. Kaur, Classification of the 
COVID-19 infected patients using densenet201 based deep transfer learning, J. 

Biomol. Struct. Dyn. 39 (15) (2020) 56 82–56 89 . 

[7] D. Toppenberg-Pejcic, J. Noyes, T. Allen, N. Alexander, M. Vanderford, 
G. Gamhewage, Emergency risk communication: lessons learned from a rapid 

review of recent gray literature on Ebola, Zika, and yellow fever, Health Com- 
mun. 34 (4) (2018) 437–455 . 

[8] WHO, Advice for public, WHO Int., 2020. 
[9] S.H. Alsamhi, B. Lee, M. Guizani, N. Kumar, Y. Qiao, X. Liu, Blockchain for de-

centralized multi-drone to combat COVID-19, 2021, arXiv: 2102.00969 . 
13 
[10] A. Windmon, M. Minakshi, P. Bharti, S. Chellappan, M. Johansson, B.A. Jenkins, 
P.R. Athilingam, Tussiswatch: a smart-phone system to identify cough episodes 

as early symptoms of chronic obstructive pulmonary disease and congestive 
heart failure, IEEE J. Biomed. Health Inform. 23 (4) (2018) 1566–1573 . 

[11] S.H. Alsamhi, B. Lee, M. Guizani, N. Kumar, Y. Qiao, X. Liu, Blockchain for de-
centralized multi-drone to combat COVID-19 and future pandemics: frame- 

work and proposed solutions, Trans. Emerg. Telecommun. Technol. (2021) 
4255 . 

12] S.H. Alsamhi, B. Lee, Blockchain-empowered multi-robot collaboration to fight 

COVID-19 and future pandemics, IEEE Access 9 (2020) 4 4173–4 4197 . 
[13] I. Afyouni, Z. Al, R. Aghbari, A. Razack, Multi-feature, multi-modal, and multi- 

-source social event detection: a comprehensive survey, Inf. Fusion 79 (2022) 
279–308 . 

[14] A.T. Porter, A Path-specific Approach to SEIR Modeling, University of Iowa, 
2012 Ph.D. Thesis . 

[15] Coronavirus Map, John Hopkins University, 17 March, 2020, 

[16] J.T. Wu, K. Leung, G.M. Leung, Nowcasting and forecasting the potential domes- 
tic and international spread of the 2019-nCoV outbreak originating in Wuhan, 

China: a modelling study, Lancet 395 (10225) (2020) 689–697 . 
[17] A .M. Martinez, A .C. Kak, PCA versus LDA , IEEE Trans. Pattern Anal. Mach. Intell.

23 (2) (2001) 228–233 . 
[18] L. Zhan, Y. Liu, A clarke transformation-based DFT phasor and frequency algo- 

rithm for wide frequency range, IEEE Trans. Smart Grid 9 (2016) 67–77 . 

[19] C.D. Vente, Automated COVID-19 grading with convolutional neural networks 
in computed tomography scans: a systematic comparison, IEEE Trans. Artif. In- 

tell. 3 (2) (2021) 129–138 . 
20] J. Wang, L. Gu, L. Yang, Oracle-efficient estimation for functional data error 

distribution with simultaneous confidence band, Comput. Stat. Data Anal. 167 
(2022) . 

21] Y. Oh, S. Park, J.C. Ye, Deep learning COVID-19 features on CXR using limited

training data sets, IEEE Trans. Med. Imaging 39 (8) (2020) 2688–2700 . 
22] S. Tabik, A. Gez-Ros, J. L. Martn-Rodrguez, I. Sevillano-Garca, M. Rey-Area, 

D. Charte, E. Guirado, J.L. Surez, J. Luengo, M.A. Valero-Gonzlez, P. Garca-Vil- 
lanova, E. Olmedo-Snchez, F. Herrera, COVIDGR dataset and COVID-SDNet 

methodology for predicting COVID-19 based on chest X-ray images, IEEE J. 
Biomed. Health Inform. 24 (12) (2020) 3595–3605 . 

23] J.P. Cohen, P. Morrison, L. Dao, COVID-19 image data collection, arXiv Prepr. 

arXiv: 2003.11597 2020. 
24] S. Tabik, A. Gmez-Ros, J.L. Martn-Rodrguez, I. Sevillano-Garca, M. Rey-Area, 

D. Charte, E. Guirado, et al., COVIDGR dataset and COVID-SDNet methodology 
for predicting COVID-19 based on chest X-ray images, IEEE J. Biomed. Health 

Inform. 24 (12) (2020) 3595–3605 . 
25] L. Garg, E. Chukwu, N. Nasser, C. Chakraborty, G. Garg, Anonymity preserving 

IoT-based COVID-19 and other infectious disease contact tracing model, IEEE 

Access 8 (2020) 159402–159414 . 
26] L. Garg, C. Chakraborty, S. Mahmoudi, V.S. Sohmen, Healthcare Informatics 

for Fighting COVID-19 and Future Epidemics, Springer International Publishing, 
2022 . 

27] A . Anand, A .K. Singh, Dual watermarking for security of COVID-19 patient 
record, IEEE Trans. Dependable Secure Comput. (2022) 1–9, doi: 10.1109/TDSC. 

2022.3144657 . 
28] L. Wang, Z.Q. Lin, A. Wong, Covid-net: a tailored deep convolutional neural 

network design for detection of COVID-19 cases from chest x-ray images, Sci. 

Rep. 10 (1) (2020) 1–12 . 
29] R. Sahal, S.H. Alsamhi, K.N. Brown, D. O’Shea, B. Alouffi, Blockchain-based dig- 

ital twins collaboration for smart pandemic alerting: decentralized COVID-19 
pandemic alerting use case, Computational Intelligence and Neuroscience 2022 

(2022) 1–14 Hindawi . 
30] A. Aggarwal, et al., COVID-19 risk prediction for diabetic patients using fuzzy 

inference system and machine learning approaches, J. Healthc. Eng. 2022 

(2022) 1–10 . 

https://doi.org/10.13039/501100008530
https://projects.dimes.unical.it/spine-bok
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0001
https://detect-now.org/
http://arxiv.org/abs/2005.10548
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0007
http://arxiv.org/abs/2102.00969
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0016
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0017
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0022
http://arxiv.org/abs/2003.11597
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0026
https://doi.org/10.1109/TDSC.2022.3144657
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0028
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0029
http://refhub.elsevier.com/S0169-2607(22)00490-4/sbref0030

	A novel multimodal fusion framework for early diagnosis and accurate classification of COVID-19 patients using X-ray images and speech signal processing techniques
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Methods
	2.1 Chest X-ray model
	2.2 Data collection
	2.3 Segmentation of chest-X-ray image
	2.4 Classification model
	2.5 Cough based COVID-19 diagnosis model
	2.5.1 Data collection and description
	2.5.2 Pre-processing of cough (audio) database

	2.6 Feature extraction and classification

	3 Results
	3.1 Evaluation on chest X ray image dataset
	3.2 Performance analysis on sarcos cough sample dataset
	3.3 Evaluation based on COVIDGR-1.0 sample dataset
	3.3.1 Performance analysis on COVIDGR 1.0 dataset

	3.4 Statistical analysis
	3.5 Analysis of inter- and intra-class lung images
	3.5.1 Theoretical and analytical model: weighted sum-rule fusion method

	3.6 Analysis of ensemble learning classification models

	4 Discussion
	5 Conclusions
	Ethical approval
	Declaration of Competing Interest
	Acknowledgements
	References


