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Lassa fever is an often-​fatal viral haemorrhagic fever 
(VHF) caused by Lassa virus (LASV). Genetic dating 
suggests that zoonotic transfers of LASV to humans have 
been occurring for centuries1. However, it was not until 
1969 that the first patient with Lassa fever was described. 
That patient was a missionary nurse infected while 
working in a rural clinic near Lassa, Nigeria2 (Fig. 1). She 
died after being transported to a hospital in the city of 
Jos more than 600 km away. In Jos, two additional nurses 
were infected and died. A third nurse, Lily (Penny) 
Pinneo, survived infection after being transported to 
New York City3. Blood samples from the infected nurses 
were analysed at Yale University, where LASV was first 
isolated. The isolate from Pinneo was designated as the 
type strain. Two Yale researchers were infected with 
LASV during these initial studies. Tragically, one of these 
infections was fatal. The surviving virologist Dr Jordi 
Casals received blood donated from Pinneo as passive 
immunotherapy4–6. These early experiences with LASV 
provided incentives for developing improved measures 
to study emerging pathogens, including construction 
of high-​biocontainment laboratories operating under 
stringent regulations and oversight.

Investigation of a 1972 outbreak of Lassa fever in the 
Eastern Province of Sierra Leone led to the finding that 
the peri-​domestic rodent Mastomys natalensis is the 
major reservoir of LASV7 (Fig. 2). LASV is transmitted 
vertically to the offspring of infected rodents and hori-
zontally to humans and other rodents8,9. Lassa fever is 
endemic in the Mastomys populations of Nigeria, Sierra 
Leone, Guinea and Liberia. Infected rodents or sporadic 
human cases have been reported in other West African 
countries, including Mali, Togo and Benin10,11. The 
endemic range of LASV appears to be increasing12.

Although animal models for Lassa fever have been 
available since the 1980s, specific and effective coun-
termeasures have not yet been approved for use13,14. 
Currently, the only available treatment is off-​label use of 
the nucleoside drug ribavirin15. Progress on managing 
Lassa fever was further slowed by a lengthy civil conflict 
in Sierra Leone (1991–2002) and, later, a large outbreak 
of Ebola virus disease, another severe VHF, in the Lassa 
fever zone (2013–2016)16. More recently, progress has 
been made towards development of an immunothera-
peutic and small-​molecule drugs17–20. Although there is 
no approved Lassa fever vaccine, new initiatives includ-
ing large-​scale epidemiology studies to address this 
urgent public health issue are now underway21.

Structural biology and replication cycle
The small (80–200 nm) enveloped LASV virion appears 
to be filled with grains of sand. The grains are host ribo-
somes and their role, if any, is unknown22 (Fig. 3). Their 
presence led to the name Arenaviridae from arenos (Latin 
for sandy) for the virus family that includes LASV and 
other important human pathogens such as lymphocytic 
choriomeningitis virus23. Except for the unexplained 
inclusion of ribosomes, LASV appears to be a minimalist. 
Each virion contains two single-stranded RNA segments 
and each segment encodes two proteins24. The four pro-
teins encoded by LASV are multifunctional. The nucleo-
protein (NP) encapsulates the viral genome segments and 
is essential for both transcription of viral mRNAs and 
replication of genome segments for incorporation into 
progeny virions25–27. The glycoprotein complex (GPC) 
mediates viral attachment and cell entry28. The Large (L) 
protein is an RNA polymerase involved in transcription 
and replication29,30. L protein has additional functions 
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such as cap-​snatching. The Zinc-​binding (Z) protein 
serves as the matrix protein and is sufficient for viral 
assembly and budding31. Z protein negatively regulates 
viral replication and transcription and is important for 
the suppression of both viral and host cell translation.

The primary cell surface receptor for LASV entry is 
matriglycan, an extended oligosaccharide located on a 
widely distributed peripheral membrane protein named 
α-​dystroglycan (α-​DG)32–37 (Fig. 3). After binding, LASV 
virions are internalized via endocytosis. GPC responds to 
the acidic endosomal environment by undergoing a con-
formational shift termed ‘GPC priming’, which causes its 
dissociation from α-​DG. Primed GPC binds to an endoso-
mal receptor, lysosomal-​associated membrane protein 1  
(LAMP1)38,39. Following LAMP1 binding, GPC under-
goes additional conformational changes that mediate 
virus–endosomal membrane fusion and enable release 
of the LASV genome segments into the cytosol40.

Both LASV genome segments are ambisense, mean-
ing that one portion is positive sense, the same sense 
as mRNA, and another portion is negative sense, the 
complement of mRNA41 (Fig. 3). A stem–loop structure 
between the positive and negative sense genes terminates 
the bidirectional transcription. The ambisense strategy 
aids in regulating LASV gene expression and genome 
replication. The endonuclease activity of L protein 
cleaves the 5′ ends of cellular mRNAs, which then prime 
synthesis of mRNAs transcribed using the negative 
sense portions of the small and large genome segments 
as templates42. Thus, the first viral proteins made are 
NP and L protein. Together, newly synthesized NP and 
L protein enable synthesis of complementary strands of 
the genome segments referred to as antigenomes, via 
RNA-​dependent RNA polymerization. The antigenomes 
then serve as templates for mRNAs encoding the GPC 

precursor and Z protein. The antigenomes also serve as 
templates for production of more genome segments that 
are incorporated into progeny virions.

More than 30 glycans are added to the LASV GPC 
trimer43. The host cell subtilase SKI-1/S1P proteolytically 
processes GPC into its components, receptor-​binding 
glycoprotein 1 (GP1), GP2, which is a class I mem-
brane fusion protein, and a myristoylated stable signal 
peptide (SSP)44. NP encases the viral genome via its 
amino-​terminal domain27. Cleaved glycoproteins are 
incorporated into the virion envelope. Z protein con-
trols the packing and budding of infectious particles45. 
NP, Z protein, L protein and the genomic RNA are 
assembled and released from the cell membrane.

Genetics and epidemiology of Lassa fever
An analysis of LASV using the tools of genetic epide-
miology suggests a likely origin in Nigeria more than 
a thousand years ago1. LASV spread into neighbouring 
West African countries over the past several hundred 
years and has undergone substantial genetic divergence 
(Fig. 1). Many of the mutations have accumulated in 
epitopes of viral surface proteins, suggesting selection 
for immune escape, most likely in the rodent reservoirs. 
Three distinct lineages are found in Nigeria, with the 
first lineage from the north-​east designated lineage I. 
Lineages II and III are commonly found in the south 
and central regions, respectively46. Lineage IV is present 
in Sierra Leone, Guinea and Liberia47. Both the spread 
and the diversification of LASV appear to be ongoing. 
In 2015, Nigeria reported a greater incidence of Lassa 
fever than had previously been reported48. This trend has 
continued49–53. New LASV lineages, termed lineages V, 
VI and VII, have emerged in Mali, Côte d’Ivoire, Nigeria, 
Benin and Togo54,55.
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Fig. 1 | Lassa fever endemic zone of West Africa. The first described cases (squares) of Lassa fever were in the town of 
Lassa, Nigeria. The infected persons were transported to Jos. Seven lineages (I–VII) of Lassa virus (LASV) are present across 
West Africa. Important centres for Lassa fever research (circles) are located at the Kenema Government Hospital (KGH), 
the National Public Health Institute of Liberia (NPHIL), the Irrua Specialist Teaching Hospital (ISTH), Owo and Abakaliki. The  
African Center of Excellence for the Genetics of Infectious Diseases (ACEGID) is located at Redeemers University. The circles 
with Roman numerals I–VII represent the approximate ranges of the seven different LASV lineages.
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The initial symptoms of Lassa fever are similar to 
other febrile illnesses, often leading to misdiagnoses 
as common endemic illnesses such as malaria56. Most 
persons infected with LASV in West Africa never see 
health professionals due to limited access to medical 
care. The true incidence of Lassa fever has not been 
determined, in part because of the general lack of avail-
able diagnostic assays. Extrapolations from prior limited 
serological studies suggested that there may be as many 
as 500,000 LASV infections and 5,000 deaths per year in 
West Africa57,58. Recent imported cases document that 
Lassa fever is also a threat to non-​endemic countries59. 
Confirmed human-​to-​human transmission occurred in 
Germany in 2018 (ref.60), two medical personnel were 
infected with LASV will working in Sierra Leone in 2019 
and were evacuated to The Netherlands61 and, recently, 
a person contracted Lassa fever in Mali and then trans-
mitted it to family members in the United Kingdom with 
a fatal fetal outcome62.

Ecology and spillover of Lassa fever. LASV is a prime 
example of a zoonotic virus, one that circulates in an 
animal reservoir, or reservoirs, but is capable of infecting 
humans. A recent ranking based on host, viral and envi-
ronmental risk factors determined that LASV poses the 
highest threat for spillover amongs known pathogens63. 
The main reservoir of LASV is M. natalensis, a peri-​
domestic rodent that is abundant across sub-​Saharan 
Africa64 (Fig. 2). Although M. natalensis is broadly distrib-
uted throughout sub-​Saharan Africa, only populations 
in West Africa are known to carry LASV. Anti-​LASV 
IgG antibodies and LASV itself have been detected in 
other rodent species, including common rats (Rattus rat-
tus), providing evidence of occasional animal-​to-​animal 
spillover11,20,21. LASV and LASV-​like viruses have been 
isolated in Pygmy mice (Mus baoulei) in Benin and 
Ghana24,25. These newly sequenced viral genomes do 
not cluster with genomes of viruses in known LASV 
lineages, revealing a potentially new lineage.

Knowledge regarding habitats, reproduction and 
movement of rodents that carry LASV is essential for 
implementing effective preventative measures against 

Lassa fever. M. natalensis is the most common rodent 
in sub-​Saharan Africa, and a serious agricultural pest64. 
Lassa fever has a seasonal distribution, although cases 
can occur year-​round65. In West Africa, the rainy season 
spans from May to November, whereas the hot and dry 
season extends from January to March4. There is a dis-
tinct increase in Lassa fever cases at the beginning and 
end of the dry season65. Rodents are nocturnal animals 
that source food during the night. The dry season drives 
rodents into homes, where food and water containers 
can become contaminated with rodent excrement66. 
LASV can also become aerosolized in dust particles or 
urine droplets. Upon inhalation or handling the infec-
tious material, the virus can enter through mucous 
membranes or micro-​abrasions. Rodents are also 
consumed as food, which can lead to infection of the 
persons trapping or cooking the rodents67. Abatement 
practices, including keeping household cats, protecting 
food and water and chemical rodenticides, can help 
control LASV68.

Lassa fever — a variable clinical course
There are a range of possible outcomes following infec-
tion with LASV, from asymptomatic to fatal. Despite a 
lack of reliable epidemiological data, it is likely that only 
a minority of infections result in severe disease. It has 
been estimated that as many as 80% of LASV infections 
are asymptomatic or mild69. The reasons for the variation 
in disease severity are unknown, but may be related to 
differences in LASV strain, route and dose of inocula-
tion, host genetic susceptibility, or comorbid infections 
or conditions. The period between LASV infection and 
the initial signs and symptoms is also variable, from 1 to 
3 weeks. After 4–7 days of mild illness, an estimated 20% 
of infected individuals develop symptoms of VHF. Fever, 
sore throat, vomiting and coughing are common, but 
each case presentation is distinct57,70,71. Approximately 
40% of patients with Lassa fever experience bleeding 
from the nose, mouth, other orifices and mucosal sur-
faces, which confers a poor prognosis. Case fatality rates 
(CFRs) vary among countries. Patients who present to 
the Lassa fever ward in Kenema, Sierra Leone, have a 
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Fig. 2 | Lassa virus transmission. The major reservoir of Lassa virus (LASV) is Mastomys natalensis. LASV spreads among 
Mastomys via horizontal or vertical (congenital) routes. Other animal species can also be infected with LASV. Spillover of 
LASV occurs by exposure to excretions of Mastomys or intermediate hosts, or during preparation of infected animals for 
food. Human-​to-​human transmission can occur in the home or clinical setting.
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CFR of 69%65. Lassa CFRs vary by location in Nigeria, 
but are typically lower at 20–30%50,72–74. However, the 
2015–2016 surge in Nigeria was associated with 60% 
case fatality in clinics75.

Death from Lassa fever generally occurs between 
10 and 14 days after symptom onset and is attributed 
to diminished effective circulating volume, shock and 
multi-​organ system failure71. High LASV load is consis
tently observed as a significant risk factor for fatal infec-
tion. Other significant laboratory findings associated 
with fatality are elevated liver enzymes (aspartate and 
alanine transamidases (AST and ALT)), as well as ele-
vated levels of the kidney enzyme creatinine65. Clinical 
laboratory investigations have shown reduced platelet 
and white cell counts, increased blood urea and protein-
uria in patients with acute Lassa fever. Age older than 
45 years is a risk factor for death in Nigeria73, whereas 
in Sierra Leone more fatal cases occur in children, 
teenagers or young adults65. Central nervous system 
manifestations and renal failure are strongly associated 
with a poor outcome of Lassa fever73. Infection is highly 
lethal to women in the third trimester of pregnancy76,77. 
Termination of the pregnancy can improve survival. 
Lassa fever is usually fatal for the developing fetus. 
Temporary or permanent unilateral or bilateral deafness 
has been reported to occur in ~30% of those who survive 
Lassa fever73,78–80. Other long-​term sequelae in survivors 
include neurological and visual defects81–83. The risk of 
LASV recrudescence, as is well documented for Ebola 
virus84,85, has yet to be adequately investigated.

Supportive care is the mainstay for manage-
ment of patients with Lassa fever. Dialysis in patients 
with evidence of kidney injury is used frequently in 
Nigeria for the treatment of Lassa fever73. At pres-
ent, there are no approved drugs for the treatment 
of Lassa fever. The nucleoside analogue ribavirin 
(1-​β-​d-​ribofuranosyl-1,2,4-​triazole-3-​carboxamide) 
remains the standard treatment for Lassa fever. Its mode 
of action is not established even though oral and aerosol 
formulations have been used for treatment of respira-
tory syncytial virus and hepatitis C virus infections. The 
efficacy of ribavirin was observed in an early study in 
Sierra Leone86. Early administration of ribavirin follow-
ing infection with LASV appears critical for successful 
recovery. However, considerable uncertainty remains 
about ribavirin’s efficacy in Lassa fever87,88.

Immune responses to Lassa virus
Both innate and adaptive immunity play important roles 
in response to LASV infection (Fig. 4).

Innate immunity. The innate immune system is the 
primary line of defence against invading pathogens.  
It involves various cell types, including macrophages, neu-
trophils, dendritic cells, mast cells, eosinophils and natu-
ral killer cells. One of the most important innate responses  
to a virus involves the interferon system. The interferon 
response in cells can be induced by double-​stranded 
RNA, a by-​product of viral transcription and replication. 
An example of double-​stranded RNA in LASV-​infected 
cells would be a complex between a genome and an 
antigenome (Fig. 4a). The carboxy-​terminal domain of 

NP has similar structure to the DEDD family of exonu-
cleases and functions as a 3′,5′-​exoribonuclease that spe-
cifically and rapidly digests double-​stranded RNA25,26,89. 
LASV NP and Z protein strongly inhibit human reti-
noic acid-​inducible gene I (RIG-​I) and RIG-​I-​like pro-
teins as well as other pathways to suppress host innate 
immunity90 (Fig. 4a).

Humoral immunity. Humoral immunity involves pro-
duction of antibodies that bind with a high degree of 
specificity to various pathogen components. In some 
cases, antibody binding to viral surface proteins blocks, 
and thus neutralizes, virus infectivity. Antibodies can also 
direct effector functions, such as antibody-​dependent 
cellular cytotoxicity, which kills virus-​infected cells. 
Infected humans develop high levels of antibodies in 
response to LASV infection; however, those antibodies 
mostly recognize non-​neutralizing epitopes28. Many of 
the antibodies formed recognize linear epitopes exposed 
only in the post-​fusion conformation of the glycoprotein 
trimer present after the virus has entered the cell28. Such 
antibodies cannot block viral infectivity. The numerous 
glycans on LASV GPC form a dense shield that blocks 
antibody binding to the glycoprotein trimer, leaving only 
a few vulnerable areas91 (Fig. 4b). Neutralizing epitopes 
of LASV require the glycoprotein to be in its prefusion 
(virion) configuration and usually recognize complex 
epitopes. LASV neutralizing antibodies, if detected at all, 
are usually only present after recovery. Most neutraliz-
ing antibodies are of the IgG class. LASV interferes with 
antibody class switching via an unknown mechanism, 
which limits or delays production of LASV neutralizing 
antibodies92.

Cellular immunity. The adaptive immune response leads 
to recognition of specific ‘non-​self ’ molecules on viruses 
or other pathogens. It is divided into cellular (T cell) and 
humoral (B cell) responses. Cytotoxic T cells specifically 
kill infected cells that express short viral peptides (typ-
ically 8–11 amino acids in length) displayed by major 
histocompatibility complex (MHC) class I molecules. 
Protective immunity has been correlated with cellu-
lar immune responses to LASV, rather than humoral 
responses93 (Fig. 4c). T cell responses directed to both 
GPC and NP have been detected. Some T cell epitopes 
are restricted to certain LASV lineages, and others are 
pan-​lineage94,95. Severe or fatal LASV infection appears 
to involve low or delayed T cell responses96–98.

Lassa fever medical countermeasures
Because of its alarming CFR, pervasive socio-​economic 
impacts in endemic regions, wide geographic range 
and frequent importation to other countries, LASV has 
been targeted for accelerated development of medical 
countermeasures.

Diagnostics. Because Lassa fever is difficult to recog-
nize clinically, especially in the early stages, prompt lab-
oratory diagnosis is essential to enable the initiation of 
specific treatments. Laboratory-​made and commercial 
assays are now available, but LASV testing is still con-
fined to central laboratories in West Africa. PCR testing 
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is sensitive and specific, but requires advanced labora-
tory infrastructure72,99. A qualitative rapid diagnostic 
test that is visually interpreted by the end user, requir-
ing no instrumentation, is also available but in limited 
use100,101. In principle, rapid tests could be disseminated 
to peripheral clinics and laboratories and reliably and 
safely performed by persons with limited laboratory 
training. Likewise, LASV antigen-​capture and IgM and 
IgG-​capture enzyme-​linked immunosorbent assays 

(ELISAs) using recombinant LASV proteins have been 
produced and characterized101,102. IgM antibodies appear 
not to be a reliable indicator of recent LASV infection, as 
this class of anti-​LASV antibody can persist for months 
or years after infection92.

Therapeutics. Ribavirin is ineffective when admin-
istered late in the course of disease after viraemia has 
peaked and physiological dysregulation has progressed 
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tein 5 (MDA5). The exoribonuclease function of nucleoprotein (NP) 
degrades LASV double-​stranded RNA, thereby blunting RIG-​I and MDA5 
activation. LASV Zinc-​binding (Z) protein binds RIG-​I and MDA5 and pre-
vents mitochondrial antiviral signalling (MAVS) protein activation of tumour 
necrosis factor (TNF) receptor-​associated factor 3 (TRAF3) and TANK-​binding 
kinase 1 (TBK1), which are also involved in interferon induction via 
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inhibiting activation of IRFs. NP blocks nuclear factor-​κ light-​chain enhancer 
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Elements of panel a were inspired by ref.131. b | LASV evades humoral immu-
nity by elaborating a dense glycan shield on the glycoprotein complex (GPC) 
shown modelled onto trimeric LASV GPC [PDB:5VK2]91,113. LASV also blocks 
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Class switching of anti-​NP IgM to IgG is not affected. c | Antigen presenting 
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rial from LASV-​infected cells in local tissues, degrade it and display the 
resultant peptides (step 1). T cell proliferation requires recognition of the dis-
played peptides by the T cell receptor (TCR; co-​receptor CD28 and 
co-​stimulatory molecule B7 not shown) (step 2). Proliferation of effector cells 
is dependent on stimulation with cytokines. Direct killing of infected cells by 
natural killer cells or cytotoxic T cells involves recognition of viral peptide–
major histocompatibility complex (MHC) class I complexes (step 3). Effector 
functions can also involve other immune cells (for example, antibody-​ 
dependent cellular cytotoxicity). Humans or experimental animals that fail 
to develop effective cellular immunity have a higher fatality rate than 
individuals who develop effective cellular immune responses (step 4).
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into severe and often irreversible stages86. Although side 
effects of ribavirin are manageable and acceptable in 
the life-​threatening situation of acute LASV infection, 
these toxicities preclude the use of the drug to prevent 
infection. Additional small-​molecule drugs are under 
evaluation to treat Lassa fever20. Favipiravir (T-705), 
a small-​molecule purine analogue103, has greater effi-
cacy than ribavirin in treating LASV infection in sev-
eral animal models104–109. Two patients with Lassa fever 
survived after a combination treatment with favipira-
vir and ribavirin, but viral RNA was detected in their 
blood and semen for a prolonged period110. The novel 
drug LHF-535 (Kineta, Seattle, WA, USA), a viral entry 
inhibitor of LASV, has proven safe in a phase Ia human 
clinical trial. It is an enhanced analogue of ST-193 
(a benzimidazole derivative; SIGA, Corvallis, OR, USA) 
and acts to inhibit LASV entry by targeting the envelope 
glycoprotein of the virus111.

Immunotherapeutics. Although humoral immune 
responses play a minor role, if any, in recovery from 
LASV infection, immunotherapy may provide a signifi-
cant therapeutic benefit. Although neutralizing antibod-
ies against LASV GPC are rare, 16 neutralizing human 
monoclonal antibodies from survivors — some of whom 
had long-​term, multiple LASV exposures — have been 
cloned and expressed112. These antibodies have vari-
ous mechanisms of action, including competition with 
cellular entry factors and inhibiting fusion of viral and 
host cell membranes28,43,113,114. A monoclonal antibody 
cocktail, termed Arevirumab-3 and comprising three 
neutralizing antibodies, has been extensively evaluated 
in guinea pigs and non-​human primate models of Lassa 
fever17,18. Arevirumab-3 completely protected non-​human 
primates from lethal Lassa fever even when first adminis-
tered as late as 8 days post challenge18. Protection has been 
achieved against challenge with representative viral strains 
from lineages II, III (Nigeria) and IV (Sierra Leone). 
Pharmacokinetic studies suggest that Arevirumab-3 
should also be evaluated as a prophylactic immunother-
apeutic drug for Lassa fever. The high genetic diversity of 
LASV may be problematic for creating a broadly reactive 
immunotherapeutic. Antibodies that are highly potent 
against LASV of lineage IV were ineffective against the 
divergent lineage I115. Synergistic drug combinations may 
be needed to achieve therapeutic levels116. Combinations 
of drugs from different classes and mechanisms of 
action, such as an immunotherapeutic combined with a  
small-​molecule inhibitor, should be evaluated.

Vaccines. There are currently no LASV vaccines 
approved for use. However, several vaccine platforms 
have been developed that show efficacy in animal mod-
els, and some of these have recently entered phase I  
human clinical trials21. Among platforms that have 
been evaluated as potential LASV vaccines are a ML29 
MOPV/LASV live reassortant117, a DNA vaccine118 
and recombinant vesicular stomatitis virus119,120, rabies 
virus121, measles virus122, vaccinia virus123 and adeno
virus vectored vaccines124,125. Additional vaccine candi-
dates include LASV virus-​like particles126,127 and a virus 
replicon particle vaccine128.

The road ahead and recommendations
Improved diagnostic assays based on recombinant LASV 
proteins, and the potential of vaccines and therapeutics 
in or about to enter human clinical trials, raise the possi-
bility of greatly improving clinical management of Lassa 
fever and preventing the disease in at-​risk populations. 
Important considerations for LASV vaccines and drugs 
stem from their use in Africa, where cost, stability and 
accessibility are key factors. Seroprevalence and inci-
dence studies using recombinant antigen ELISAs and 
incidence studies based on PCR with reverse transcrip-
tion of LASV in West Africa are ongoing. Such studies 
will be essential for conducting clinical trials to deter-
mine vaccine or therapeutic efficacy in patients with 
Lassa fever129. The seroprevalence and incidence studies 
will also provide important information for managing 
Lassa fever in endemic countries.

Although development of LASV vaccines and drugs 
has taken a promising turn, this does not mean that 
research on potential countermeasures should be sus-
pended or stopped. Multiple vaccines may be required 
for use in different situations or populations. Travellers 
to endemic regions may benefit from different vaccines to  
people living in endemic areas. Short-​term efficacy will 
be a more important consideration for travellers, whereas 
considerations of long-​term durability of protective 
responses would be more important for people living in 
the Lassa fever zone. If a vaccine is proven safe and effec-
tive, public health experts in endemic countries in con-
sultation with the World Health Organization (WHO) 
must formulate equitable distribution mechanisms.

Developing effective drugs to treat Lassa fever should 
continue apace with vaccine development. Combinations 
of drugs with different mechanisms of action may prove to 
be more effective than any one drug alone. Furthermore, 
the pathway to approval of drugs is uncertain and alter-
native candidates should be available for testing if existing 
candidates fail. This will be a challenge, in part, because 
non-​human primate resources are becoming increasingly 
scarce, which will make future pathogenesis studies and 
critical evaluations of countermeasures more difficult. 
Investment in broader distribution of LASV diagnostics 
as well as in non-​pharmaceutical interventions should 
continue. Point-​of-​care diagnostics are of particular value 
in remote settings and in hospitals where patients who 
are acutely ill, including pregnant women, are at high risk 
for Lassa fever.

The initiation of clinical trials for vaccine and drugs 
should be seen as an opportunity to further understand-
ing of Lassa fever pathobiology. Clinical markers, such as 
high virus load and elevated transamidases, can predict 
outcome. Early markers of developing severe disease or 
death are not available, but would be useful for patient 
management. Clinical studies on managing central nerv-
ous system manifestations and renal failure could also 
improve patient outcomes. Further characterization of 
cell-​mediated and humoral immune responses to LASV 
infection, and identifying immune correlates of survival 
following infection, can also benefit patient manage-
ment. Post-​Lassa fever syndromes beyond deafness have 
not been well studied and should be further evaluated in 
well-​defined survivor cohorts.
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Rodent control is an effective means to prevent out-
breaks of Lassa fever across endemic countries in West 
Africa, and should continue to be a point of emphasis. 
Studies are needed to determine best practices for the 
use of rodenticides that are effective against Mastomys 
and intermediate hosts of LASV. Likewise, methods to 
prevent invasions of Mastomys into homes should be 
tested and optimized. Well-​sealed metal roofs and for-
tified walls potentially provide a barrier to Mastomys 
that are seeking food or water. Additional studies on the 
ecology of Mastomys and their interactions with other 
rodent species, such as Rattus, should also be prioritized. 
Careful attention to the considerable genetic diversity of 
this species is important. It will be important to conduct 
controlled studies on the rodent-​to-​rodent transmission 
of LASV, including immune responses and intra-​host 
and inter-​host genetic diversity. Although such studies 
should involve wild-​caught animals, establishing breed-
ing colonies of Mastomys will facilitate determining the 
immunology and molecular genetics of LASV infection.

In addition to its original Lassa fever facility at the 
Irrua Specialist Teaching Hospital (ISTH), Nigeria 
has recently added new facilities for LASV basic and 

clinical research in Owo and Abakaliki (Fig. 1). These 
centres join the Kenema Government Hospital (KGH) 
in Sierra Leone and the National Public Health Institute 
of Liberia (NPHIL) as leading centres for LASV research 
in West Africa. Strengthening the capacity of these and 
other African institutions to conduct clinical trials will 
benefit not only Lassa fever research but also research 
on other understudied diseases. It is vital to build on 
progress by the African Center of Excellence for the 
Genetics of Infectious Diseases (ACEGID) at Redeemers 
University in Nigeria, which leads viral sequencing 
efforts in Nigeria. The AGEGID is also training scientists 
from other African countries and worldwide (Fig. 1). The 
ability to deeply characterize genetic diversity of LASV 
is possible with new accessible technologies, such as 
nanopore sequencing. Steps should be taken to ensure 
that this capacity becomes available in all endemic coun-
tries. To reduce the burden of Lassa fever, government 
policies that strengthen fragile health systems, including 
facilitating heath-​seeking behaviours, must continue to 
be implemented across the Lassa fever endemic zone130.
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