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Hepatocellular carcinoma (HCC) is a common type of malignant tumor with high morbidity and mortality. The oxidative
phosphorylation (OXPHOS) metabolic pathway produces adenosine triphosphate (ATP) by delivering electrons to
transmembrane protein complexes in the mitochondria. This research was dedicated to identifying an OXPHOS-associated
signature for the assessment of prognosis of HCC patients. A total of 371 HCC patients from the Cancer Genome Atlas
(TCGA) and 231 HCC patients from the International Cancer Genome Consortium (ICGC) with RNA expression data and
clinical data were employed as construction and validation cohorts, respectively. The least absolute shrinkage and selection
operator (LASSO) Cox regression was applied to establish a multigene signature in the TCGA cohort, and the ICGC cohort
was used for validation. The prognostic value of the risk signature was evaluated using univariate and multivariate Cox
regression, Kaplan–Meier curves, and receiver operating characteristic (ROC) curves. The potential enrichment of biological
functions was investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses. Meanwhile, we analyzed the correlation between the risk score and the tumor microenvironment (TME). A five-gene
signature including ATP6V0B, ATP6V1C1, ATP6V1E1, TIMM9, and UQCRH was identified by LASSO Cox regression to
classify patients into low- and high-risk groups. ROC curve analysis indicated that the five-gene signature is a prospective
prognostic factor in HCC patients. Univariate and multivariate Cox regression analyses demonstrated that the risk score was
an independent prognostic factor for overall survival (OS). Functional analysis showed that differentially expressed genes
(DEGs) between the low- and high-risk groups were enriched in mitosis and the cell cycle pathway. In addition, the five-gene
signature was associated with innate immune cell infiltration, immune subtypes, and tumor stemness. A novel OXPHOS-
associated gene signature can be used for prognostic prediction for patients with HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is the fourth leading cause
of cancer-associated death and ranks sixth in terms of mor-
bidity among all cancers [1]. The most common etiologies of
HCC include hepatitis B or C virus infection and alcohol
abuse, which can cause liver cirrhosis and chronic inflam-
mation [2]. In addition to comprehensive cancer manage-
ment, surgery remains the cornerstone of treatment for
most patients with HCC [3]. Despite great advances in the
treatment of HCC over the past decades, the 5-year survival

rate of patients with HCC remains unsatisfactory [1]. Mean-
while, due to the substantial heterogeneity in HCC, it is dif-
ficult to evaluate the prognosis of patients with HCC and
provide more precise guidance for comprehensive treatment
based only on traditional histological classification [4, 5].
Therefore, there is a pressing need to establish a more read-
ily available prognostic evaluation model for HCC.

The oxidative phosphorylation (OXPHOS) metabolic
pathway is a fundamental and indispensable process for
most cells, which can yield adenosine triphosphate (ATP)
by transferring electrons to transmembrane protein
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complexes in the mitochondrial membrane and subse-
quently providing energy for the metabolic process [6]. Fur-
thermore, ATP can be released from cells and is involved in
different physiological and pathological conditions [7]. Stud-
ies have shown that ATP is one of the major components of
the tumor microenvironment (TME), and it has been proven
to promote or repress certain types of tumor progression [8,
9]. Compared with normal cells, well-oxygenated cancer
cells exhibit increased glycolysis, upregulated glucose con-
sumption, and increased lactate production, indicating that
OXPHOS is downregulated in cancers [10]. This is true for
many cancers. Additionally, OXPHOS downregulation is
linked to poor clinical outcomes across several cancer types
and is related to the characteristics of invasive or metastatic
tumors [11]. However, growing evidence has demonstrated
that certain cancers, such as breast cancer, pancreatic ductal
adenocarcinoma, melanoma, and lymphomas, are depen-
dent on OXPHOS, which is upregulated in these cancers,
and that OXPHOS inhibition is an effective treatment for
these cancer subtypes [12, 13]. Furthermore, earlier studies
have suggested that increased liver cancer cell migration
and proliferation were associated with upregulation of
OXPHOS and that decreased OXPHOS can exacerbate cell
death and suppress tumor growth in HCC [14–16]. All of
these indications suggest that OXPHOS might be involved
in the progression of HCC and may represent a potential
target for the treatment of HCC subtypes. However, the
involvement of OXPHOS in the clinical prognosis and bio-
logical features of patients with HCC remains unknown.
Thus, it is worthwhile to comprehensively investigate these
associations.

In this study, we gathered gene expression and clinical
data for HCC patients from the Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium
(ICGC). The HCC patients were divided into two groups by
integrating the gene expression and clinical data through
LASSO Cox regression. We established a five-gene signature
associated with OXPHOS to predict the clinical outcomes of
HCC patients and validated it based on the ICGC cohort. In
addition, we identified the possible underlying mechanisms
using functional enrichment analysis. Then, we analyzed
the correlations between the risk score and TME as well as
immune status. Ultimately, we identified the associations
between drug sensitivity and the five genes of the signature.

2. Materials and Methods

2.1. Data Collection. The total RNA expression matrix of 371
HCC patients and their corresponding clinicopathological
data were obtained from the Cancer Genome Atlas (TCGA)
database (http://portal.gdc.cancer.gov/repository). The other
RNA expression matrix and clinical data of 231 HCC
patients were obtained from the International Cancer
Genome Consortium (ICGC) database (http://dcc.icgc.org/
projects/LIRI-JP). A total of 200 OXPHOS-associated genes
(OAGs) are obtained via the “HALLMARK_OXIDATIVE_
PHOSPHORYLATION” gene set in the Molecular Signa-
tures Database (MSigDB) (http://www.gsea-msigdb.org/
gsea/msigdb) and are presented in Supplementary Table S1.

2.2. Construction and Validation of a Prognostic Oxidative
Phosphorylation-Associated Gene Signature. The “limma” R
package was used to recognize the differentially expressed genes
(DEGs) between tumor and normal samples of HCC patients
by analyzing RNA expression data from the TCGA cohort with
a false discovery rate (FDR) <0.05 and |log 2 Fold Change (FC)|
>1. Univariate Cox analysis was applied to distinguish the
OAGs with prognostic value by using the “survival” R package,
and the P value was adjusted using the Benjamini and Hoch-
berg (BH) correction method. The DEGs and prognosis-
related OAGs that overlapped were regarded as candidate prog-
nostic OAGs for model construction and are presented in a
Venn diagram using the “Venn” R package. The candidate
prognostic OAGs were further used for correlation network
analysis to predict the potential interactions among the proteins
encoded by these genes, which were presented using the
“igraph” and “reshape” R packages. A novel OXPHOS-
associated risk signature in HCC was established based on
LASSO-penalized Cox regression analysis [17, 18] using the
“glmnet” R package. The penalty parameter (λ) was verified
by tenfold cross-validation following the minimum criteria.
The model was established by the following formula: risk
score = expression of gene1 × C1 + expression of gene2 × C2
+⋯ + expression of gene n × Cn, where Cn is the correspond-
ing coefficient of gene n. Based on the above model, the risk
scores of HCC tumor samples in the TCGA and ICGC cohorts
were obtained. HCC tumor samples in the TCGA and ICGC
cohorts were classified into low- and high-risk groups according
to themedian risk score. Finally, TCGA and ICGC cohorts were
used as construction and validation cohorts, respectively. The
expression levels of individual genes in the prognostic model
between tumor and normal samples and the relationship
between the individual genes and overall survival (OS) of
HCC patients were analyzed by gene expression profiling inter-
active analysis (GEPIA) (http://gepia.cancer-pku.cn) using
TCGA LIHC tumor data and matched data of normal tissue
from TCGA and GTEx [19].

2.3. Evaluation of the Gene Signature Accuracy. The distribu-
tion of risk groups of the TCGA and ICGC cohorts was pre-
sented by t-SNE and PCA analyses using the “Rtsne” and
“ggplot2” R packages. The OS analysis between the low-
and high-risk groups was compared using the “survival”
and “survminer” R packages. The predictive accuracy of
the model was verified by the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve in the
two groups using the “timeROC” R package. The indepen-
dent prognostic value of the risk score was evaluated
through univariate and multivariate Cox regression analyses
using the “survival” R package. Parameters with P < 0:05
based on the univariate Cox regression analysis were further
involved in the multivariate Cox regression analysis.

2.4. Functional Enrichment Analysis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were conducted and visualized by using
the “clusterProfiler,” “org.Hs.eg.db” and “ggplot2” R packages
to investigate the potential biological functions of the DEGs
between the low- and high-risk groups. Biological process
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Figure 1: Screening the prognostic genes associated with OXPHOS in the TCGA cohort. (a) Venn diagram of the overlapping DEGs and
OAGs with prognostic value. (b) Heatmap of the 12 overlapping genes. (c) The forest plots of associations between the 12 genes and OS of
patients were analyzed by univariate Cox regression. (d) The correlation network of the 12 genes.
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(BP), molecular function (MF), and cellular component (CC)
were used for GO enrichment analyses. The P value was
adjusted using the BH method. The infiltration scores of six-
teen immune cell subpopulations and the activities of thirteen
immune-related pathways between the high- and low-risk
groups were computed by single-sample gene set enrichment
analysis (ssGSEA) [20] with the “GSVA,” “limma,” and
“GSEABase” R packages. The annotated gene set is presented
in Supplementary Table S2.

2.5. Tumor Microenvironment and Immune Response
Analysis. The infiltration levels of immune cells and stromal
cells in different tumor samples from the TCGA cohort were
determined by immune and stromal scores that were calcu-
lated using the estimation of stromal and immune cells in
malignant tumor tissues using expression data (ESTIMATE)
algorithm [21](https://bioinformatics.mdanderson.org/
publicsoftware/estimate/). The correlation between risk
score and those scores was determined using the Spearman
correlation. Two-way ANOVA was used to determine the
correlation between risk score and immune infiltration sub-
types. Tumor stem cell features retrieved from the tran-
scriptome and epigenetics data of TCGA tumor tissues
were used to quantify stem cell-like features of the tumor.
Tumor stemness was measured by the RNA stemness score
(RNAss) according to mRNA expression and the DNA
stemness score (DNAss) according to the DNA methylation
pattern. The Spearman correlation test was used to deter-
mine the correlation between tumor stemness and risk score.
The results were visualized by the “ggExtra,” “ggplot2,” and
“ggpubr” R packages.

2.6. Chemotherapy Drug Sensitivity Analysis. The NCI-60
database was obtained through the CellMiner interface
(https://discover.nci.nih.gov/cellminer). The association
between the signature genes of the prognostic model and
drug sensitivity was investigated using Pearson correlation
analysis. Analysis of the efficacy of 216 chemotherapy drugs
(Supplementary Table S3) approved by the Food and Drug
Administration (FDA) was performed. Outcomes were
presented using the “limma,” “impute,” “ggplot2,” and
“ggpubr” R packages.

2.7. Statistical Analysis. The Wilcoxon test was used to com-
pare the DEGs between tumor and normal samples. The
Mann–Whitney test was used to compare the ssGSEA scores
of immune cells or immunity between the low- and high-

risk groups, and the P value was adjusted using the BH
method. The Kaplan–Meier method was applied to compare
the differences in OS across different groups. Univariate and
multivariate Cox analyses were used to identify the indepen-
dent predictors for OS. Spearman or Pearson correlation
analysis was used to analyze the association of risk scores
or gene expression levels with stemness score, stromal score,
immune score, and drug sensitivity. P value less than 0.05
demonstrated that the difference was statistically significant.
R software (Version 4.1.2) (http://www.r-project.org/) and
Perl language (http://www.perl.org) were applied to conduct
all analyses.

3. Results

The study scheme is presented in Supplementary Figure S1.
A total of 365 HCC patients from the TCGA-LIHC cohort
and 231 HCC patients from the ICGC (LIRI-JP) cohort
were involved. The clinical data of these patients are
summarized in Supplementary Table S4.

3.1. Screening the Prognostic Genes Associated with OXPHOS
in the TCGA Cohort. There were 38 OAGs identified as
DEGs between tumor and normal samples within the TCGA
cohort. Univariate Cox analysis demonstrated that 50 OAGs
were significantly related to the OS of patients with HCC.
Subsequent analysis showed that 12 genes were implicated
in both DEGs and prognosis-related OAGs (Figure 1(a)).
The expression levels of the 12 genes were found to be differ-
entially expressed between tumor and normal samples. The
expression of ALDH6A1 and ETFDH was downregulated
in tumor samples, and the remaining ten genes were upreg-
ulated in tumor samples as compared with normal samples
(Figure 1(b)). The hazard ratio (HR) was used to identify
the effects of the candidate genes on the prognosis of HCC
patients. Univariate Cox analysis demonstrated that
ALDH6A1 and ETFDH served protective roles in the prog-
nosis of HCC patients (HR<1), while the other ten genes
exhibited adverse effects (HR>1) (Figure 1(c)). The correla-
tion network among the 12 genes was analyzed, and the
results revealed that they were correlated with each other.
More specifically, ETFDH and ALDH6A1 were negatively
correlated with the expression of the other ten candidate
genes, while most of the other ten candidate genes were pos-
itively correlated with each other. (Figure 1(d)). As a result,
the 12 OAGs were regarded as candidate prognostic genes
for model construction.

Table 1: Five OXPHOS-associated genes model in the TCGA cohort constructed by LASSO.

Gene name
Univariate cox regression analysis

Differential gene expression
analysis LASSO coefficient

Hazard ratio P value LogFc P value

ATP6V0B 1.6023 0.0002 1.0301 1.13e-18 0.1025

ATP6V1C1 1.4395 0.0036 1.6496 1.00e-24 0.1635

ATP6V1E1 1.7355 0.0019 1.0763 3.47e-25 0.0086

TIMM9 1.8805 0.0003 1.0469 9.02e-23 0.2387

UQCRH 1.6633 5.31 e-05 1.2455 2.01e-22 0.2341
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Figure 2: Continued.
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3.2. Construction of a Prognostic Model for Patients with
HCC in the TCGA Cohort. The expression profiles of the
12 prognostic candidate genes were analyzed by LASSO

Cox regression (Supplementary Figure S2). A five-gene
prognostic model including ATPase H+ Transporting V0
subunit B (ATP6V0B), ATPase H+ Transporting V1
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Figure 2: Prognosis analysis of the prognostic model in TCGA and ICGC cohorts. The distribution and median value of the risk score in the
TCGA cohort (a) and the ICGC cohort (g). The distributions of survival status and risk scores in the TCGA cohort (b) and the ICGC cohort
(h). PCA plot of the TCGA cohort (c) and the ICGC cohort (i). t-SNE analysis of the TCGA cohort (d) and the ICGC cohort (j). The
Kaplan–Meier curves of the TCGA cohort (e) and the ICGC cohort (k). The AUC of time-dependent ROC curves used to predict the
OS of patients from the TCGA cohort (f) and the ICGC cohort (l).
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subunit C1 (ATP6V1C1), ATPase H+ Transporting V1
subunit E1 (ATP6V1E1), translocase of inner
mitochondrial membrane 9 (TIMM9), and ubiquinol-
cytochrome C reductase hinge (UQCRH) was established
according to the optimal value of λ. The risk score was
calculated using the following formula: risk score = 0:1025
× expression level of ATP6V0B + 0:1635 × expression level
of ATPV1C1 + 0:0086 × expression level of ATP6V1E1 +
0:2387 × expression level of TIMM9 + 0:2341 × expression
level of UQCRH (Table 1). Patients were classified into two
groups according to the median risk scores (Figure 2(a)).
Additionally, the plot chart showed that patients in the
high-risk group were more prone to die earlier than those
in the low-risk group (Figure 2(b)). PCA and t-SNE
analysis indicated that patients in the two groups were
located in diverse regions of the charts (Figures 2(c) and
2(d)). In addition, the Kaplan–Meier curve demonstrated
that the patients in the high-risk group had lower OS than
those in the low-risk group (Figure 2(e), P < 0:05). Receiver
operating characteristic (ROC) curves were used to
evaluate the prediction accuracy of the prognostic model.
The area under the curve (AUC) was 0.721 at one year,
0.687 at two years, and 0.639 at three years (Figure 2(f)).
We then investigated the association between a single gene
of the prognostic model and prognosis using GEPIA,
which revealed that high expression of these genes was
significantly associated with poor OS in patients with
HCC, except for ATP6V1C1 (Figures 3(f)–3(j), P < 0:05).
In addition, the expression levels of the five genes in tumor
samples were higher than those in normal samples
(Figures 3(a)–3(e), P < 0:05).

3.3. Validation of the 5-Gene Prognostic Model in the ICGC
Cohort. To verify the stability of the 5-gene prognostic

model from the TCGA cohort, patients from the ICGC
cohort were classified into low- and high-risk groups based
on the risk score formula from the TCGA cohort
(Figure 2(g)). Survival analysis revealed that patients in the
high-risk group were more prone to die earlier
(Figure 2(h)) and had a lower OS than those in the low-
risk group (Figure 2(k), P < 0:05). In line with the TCGA
cohort, PCA and t-SNE analyses demonstrated that patients
in different groups from the ICGC cohort were spread in dif-
ferent regions of the charts (Figures 2(i) and 2(j)). Addition-
ally, the AUC of the 5-gene signature was 0.690 at one year,
0.726 at two years, and 0.720 at three years (Figure 2(l)).

3.4. Independent Prognostic Value of the 5-Gene Prognostic
Model. To test whether the risk score of the 5-gene prognos-
tic model was an independent prognostic factor for OS, uni-
variate and multivariate Cox analyses were conducted for
both the TCGA and ICGC cohorts. Univariate Cox analysis
indicated that the risk score was significantly associated with
OS in both cohorts (TCGA cohort: HR = 4:342, 95%CI =
2.477-7.613, P < 0:001; ICGC cohort: HR = 4:865, 95%CI =
2.350-10.072, P < 0:001; Figures 4(a) and 4(c)). After cor-
recting for other confounding variables, multivariate Cox
analysis demonstrated that the risk score remained an inde-
pendent predictor for OS (TCGA cohort: HR = 4:267, 95%
CI =2.429-7.495, P < 0:001; ICGC cohort: HR = 3:414, 95%
CI =1.625-7.175, P = 0:001; Figures 4(b) and 4(d)).

3.5. Biological Functional Enrichment Analysis in the TCGA
and ICGC Cohorts. GO and KEGG enrichment analyses
were conducted to identify the biological functions that cor-
related with the risk score, and the DEGs between the high-
and low-risk groups were utilized to perform the analysis.
Based on the GO analysis, the DEGs were enriched in
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Figure 3: The expression profiles and survival analysis of single genes from the prognostic model. The expression profiles of single genes
from the prognostic model differed between the tumor samples and the normal samples (a–e). Kaplan–Meier curves of single genes from
the prognostic model (f–j). ∗P < 0:05.
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Figure 4: Continued.
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mitotic processes such as mitotic nuclear division, chromo-
some segregation, and mainly involved in chromosome cen-
tromeric region in the TCGA cohort (P < 0:05, Figure 5(a)).
In accordance with the TCGA cohort, eight mitosis-
associated biological processes or components, including
organelle fission, nuclear division, chromosome segregation,
mitotic nuclear division, sister chromatid segregation,
mitotic sister chromatid segregation, chromosome centro-
meric region, and condensed chromosome centromeric
region, were further verified by the ICGC cohort (P < 0:05,
Figure 5(c)). In addition, according to the KEGG analysis,
the cell cycle pathway was significantly enriched in both
the TCGA and ICGC cohorts (P < 0:05, Figures 5(b) and
5(d)).

3.6. Immune Response and Microenvironment Analysis. To
explore the relationship between the risk scores and immune
response in the TCGA cohort, enrichment scores of different
immune cell subpopulations and correlated immune path-
ways were analyzed using ssGSEA. The results demonstrated
that the innate immune cells or antigen presentation process
components in the TCGA cohort, consisting of aDCs, iDCs,
macrophages, APC co-stimulation, and HLA, were signifi-
cantly elevated in the high-risk group (P < 0:05,
Figures 6(a) and 6(c)). In addition, inflammatory-
associated responses, including Th1 cells, Th2 cells, Tregs,
T cell co-inhibition, and check-points, were elevated in the
high-risk group, while the type II IFN response and mast
cells were decreased compared to the low-risk group
(P < 0:05, Figures 6(a) and 6(c)). The comparison results of
the ICGC cohort confirmed that aDCs, macrophages, Th2
cells, Tregs, HLA, and MHC class I were elevated in the
high-risk group, while NK cells, T helper cells, and the type
II IFN response were decreased in the high-risk group com-
pared to the low-risk group (P < 0:05, Figures 6(b) and 6(d)).
We analyzed the correlation between the risk scores and
immune infiltration. Six kinds of immune infiltrate were val-
idated in human tumors, i.e., C1 (wound healing), C2 (IFN-
γ dominant), C3 (inflammatory), C4 (lymphocyte depleted),
C5 (immunologically quiet), and C6 (TGF-β dominant).
Because no patient was part of the C5 subtype in HCC and

just one patient belonged to the C6 subtype, C5 and C6 were
not involved in the analysis. We analyzed the immune infil-
tration of HCC patients in the TCGA cohort and linked it
with risk score; the results indicated that high-risk scores
were significantly correlated with C1 and low-risk scores
were significantly correlated with C3 (Figure 6(e)). Since
the immune microenvironment (i.e., immune scores, stro-
mal scores) and tumor stemness (i.e., DNAss and RNAss)
are critical regulators of tumor progression, we analyzed
the correlation between risk score and the immune microen-
vironment and tumor stemness. The risk score was posi-
tively associated with RNAss but not significantly
associated with DNAss (Figures 7(a) and 7(b)). In addition,
the results indicated that the risk score was negatively asso-
ciated with stromal scores but not significantly associated
with immune scores (Figures 7(c) and 7(d)).

3.7. Associations between Signature Gene Expression and
Chemotherapy Drug Sensitivity. We explored the expression
of the five signature genes in NCI-60 cell lines and analyzed
the associations between their expression levels and drug
sensitivity. The results indicated that the five genes were
linked with the sensitivity of certain chemotherapy drugs
(P < 0:05, Figure 8). For example, UQCRH gene expression
in tumor cells was positively associated with the sensitivity
of asparaginase, ifosfamide, carmustine, lomustine, and oxa-
liplatin but negatively associated with everolimus and rapa-
mycin. ATP6V1E1 gene expression was negatively
associated with the sensitivity of brigatinib, alectinib, and
docetaxel. ATP6V1C1 gene expression was positively associ-
ated with the sensitivity of trametinib, cobimetinib, and
ARRY-162 but negatively associated with everolimus. The
expression of TIMM9 was positively associated with the sen-
sitivity of ifosfamide.

4. Discussion

The heterogeneity of HCC continues to be a challenge for
the treatment and prognostic evaluation of HCC [22]. Many
previous studies have concentrated on searching for prog-
nostic models to predict the outcomes of HCC patients, such

Gender 0.013 0.433 (0.224–0.836)

Stage

riskScore

p value

0.011

0.001

Hazard ratio

2.352 (1.215–4.551)

3.414 (1.625–7.175)

0 1 2 3 4 65 7
Hazard ratio

(d)

Figure 4: Univariate and multivariate Cox regression analyses concerning OS in the TCGA cohort (a, b) and the ICGC cohort (c, d).
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Figure 5: Representative outcomes of GO and KEGG enrichment analyses of the DEGs between the low-risk and high-risk groups. The
most significant GO and KEGG enrichment in the TCGA cohort (a, b) and the ICGC cohort (c, d).
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Figure 6: The immune status and infiltration subtypes between different risk groups. The boxplots for scores of sixteen immune cell
subpopulations of the low-risk and high-risk groups in the TCGA cohort (a) and the ICGC cohort (b). The boxplots for thirteen
immune-associated functions of the low-risk and high-risk groups in the TCGA cohort (c) and the ICGC cohort (d). Correlations
between risk score and immune infiltration subtypes (e). The P value is presented as: ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ns indicates
“not significant”.
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as models based on ferroptosis-related genes, inflammatory
response-related genes, and epithelial-mesenchymal
transition-related genes [22–24]. In recent years, OXPHOS
has been shown to be upregulated in various cancers, and
OXPHOS inhibitors have been revealed as possible thera-
peutic agents targeting cancer cell metabolism [10, 25].
Additionally, upregulated OXPHOS metabolic activity in
cancer cells can promote tumorigenesis [26]. However, the
OXPHOS-associated prognostic model for HCC has not
been reported.

In the present study, we thoroughly investigated the
expression of 200 OAGs in HCC patients, comparing tumor
samples to normal samples. Twelve OAGs were identified as
candidate genes for model construction. Interestingly, two of
the 12 genes, ALDH6A1 and ETFDH, were downregulated
in the tumor group, but the other ten genes were upregu-
lated compared with the normal group. Studies have shown
that ETFDH and ALDH6A1 might be tumor suppressor
genes [27, 28], which might explain this trend. Subsequently,
a novel prognostic model involving five OAGs was estab-

lished by LASSO Cox regression based on the above 12 can-
didate genes and validated in the other cohort. Similar to the
aforementioned prognostic models, this model also had high
predictive accuracy for the OS of patients with HCC. In
addition, the five-gene model was demonstrated to be an
independent prognostic predictor for HCC. The prognostic
model was composed of five genes, namely, ATP6V0B,
ATP6V1C1, ATP6V1E1, TIMM9, and UQCRH. The
expression of the five genes was upregulated in tumor sam-
ples and positively correlated with risk scores and hazard
ratios, implying that increased OXPHOS activity might be
associated with poor prognosis in certain HCC subgroups.
Then, we further analyzed the functional enrichment of the
DEGs between the low- and high-risk groups. The results
revealed that the DEGs were considerably enriched in a
series of mitotic processes and cell cycle pathways. Previous
studies have indicated that mitosis and proliferation are
highly dependent on ATP synthesis, which is mainly pro-
duced by the OXPHOS metabolic pathway in the mitochon-
dria [29, 30]. Apart from energy transfer, ATP is also
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Figure 7: The correlation between the risk score and tumor microenvironment in the TCGA cohort. The correlation between the risk score
and DNAss (a), RNAss (b), immune score (c), and stromal score (d).
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Figure 8: Continued.
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involved in signaling pathways and the biosynthesis of a
variety of messengers [31]. Additional studies have identified
the roles of ATP in diverse pathological conditions, includ-
ing inflammation and cancer, and shown that extracellular
ATP signaling plays a role in tumor cell proliferation, tumor
microenvironment, and immune cell regulation [7, 31].
Interestingly, three genes (ATP6V0B, ATP6V1C1, and
ATP6V1E1) in this prognostic model are subunits of vacuo-

lar ATPase (V-ATPase), which hydrolyzes ATP to release
energy and transports protons. The emerging roles of V-
ATPase include amino acid sensing, glucose sensing, and
Wnt and Notch signaling [32]. Besides, certain studies have
demonstrated that V-ATPases are conducive to the survival
and metastasis of cancer cells through preservation of neu-
tral cytosolic pH [32]. Inhibitors of V-ATPase have been
shown to facilitate apoptosis in cancer cells [33]. The present
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Figure 8: Scatter plots of the top sixteen kinds of associations between the five genes of the prognostic model and chemotherapy drug
sensitivity.
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study demonstrated that the three previously mentioned
subunits of the V-ATPase were upregulated in HCC tumor
samples and inversely correlated with the OS of patients
with HCC, except for ATP6V1C1. A recent study demon-
strated that impaired OXPHOS limits T cell proliferation
in response to antigenic stimulation [34]. Moreover, the V-
ATPase appears to be engaged in immune signaling that
affects the tumor microenvironment [33]. We then further
analyzed the immune cell infiltration, responses, and
immune subtypes in the low- and high-risk groups. The
results showed that the risk scores were associated with cer-
tain innate immune cell infiltrates such as macrophages,
aDCs, and NK cells. Moreover, the risk scores were associ-
ated with certain immune responses such as T cell co-
inhibition and type II IFN response. High-risk scores were
associated with wound healing, whereas low-risk scores were
associated with the inflammatory pathway. Through tumor
microenvironment analysis, we found that the risk scores
were positively associated with RNAss but negatively associ-
ated with stromal scores. The above results suggest that asso-
ciations exist between OXPHOS and immune cell regulation
as well as the tumor microenvironment, which is consistent
with earlier studies. Another study has shown that V-
ATPases can facilitate cancer cell survival by preventing can-
cer drugs from reaching their targets [35]. Thus, we exam-
ined the associations between the five genes of the model
and the sensitivity of chemotherapy drugs. The results indi-
cated that the expression levels of the five genes were associ-
ated with drug sensitivity, especially for the three subunits of
ATPase, suggesting that targeting ATPases might be a
potential strategy to improve the treatment efficacy for HCC.

TIMM9 is a mitochondrial protein that is expressed in
various cancer cells depending on the cancer type. Overex-
pression of TIMM9 is associated with vascular invasion in
gastric cancers and is inversely correlated with the survival
of patients with gastric cancer, which indicates that TIMM9
can be used as a marker to predict the outcomes of patients
with gastric cancer [36]. In our study, TIMM9 expression
was also elevated in HCC tumor samples compared to non-
tumor liver samples. Moreover, the survival analysis revealed
that TIMM9 expression is adversely associated with the OS
of patients with HCC. UQCRH is a hinge protein for the
mitochondrial electron transport chain that participates in
the processes of electron transfer reaction in the OXHPOS
pathway. Certain types of cancer are linked with the expres-
sion of UQCRH. A study demonstrated that UQCRH
expression was positively associated with survival in patients
with renal cell carcinoma, suggesting that UQCRH may act
as a tumor suppressor gene in renal cancer [37, 38]. How-
ever, another study indicated that UQCRH expression was
elevated in HCC and that its overexpression is associated
with poor prognosis in HCC patients [39]. Additionally,
UQCRH can be used as a prognostic predictor for lung ade-
nocarcinoma [40]. The present study also indicated that
UQCRH was upregulated in HCC tumor samples and that
overexpression of UQCRH was inversely associated with
worse OS in patients with HCC. However, the exact mecha-
nisms of TIMM9 and UQCRH involvement in HCC remain
unknown.

Our study has three main limitations. First, experimental
research is required to corroborate the results discovered by
our bioinformatics analysis. Second, this study was designed
through retrospective analysis, and prospective studies
should be conducted to verify the model’s efficiency. Third,
the precise mechanisms of the OXPHOS-associated prog-
nostic genes involved in the occurrence and development
of HCC remain unknown and need to be explored in our
future study.

All in all, this study identified a novel OXPHOS-
associated prognostic model with strong predictive capacity.
To our knowledge, this is the first OXPHOS-associated gene
signature that can predict the prognosis of patients with
HCC. This gene signature was significantly associated with
mitosis and cell cycle pathway and partly involved in
immune cell infiltration, immune functions, TME, and drug
sensitivity in HCC. The study provides new understanding
of the role of OXPHOS in HCC, which might contribute
to individualized treatment and prognosis evaluation.
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