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Integrated multi-omics analysis of adverse cardiac
remodeling and metabolic inflexibility upon ErbB2
and ERRα deficiency
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Etienne Audet-Walsh1, Alexey A. Sergushichev 4, Andrew Emili3 & Vincent Giguère 1,2✉

Functional oncogenic links between ErbB2 and ERRα in HER2+ breast cancer patients support

a therapeutic benefit of co-targeted therapies. However, ErbB2 and ERRα also play key roles

in heart physiology, and this approach could pose a potential liability to cardiovascular health.

Herein, using integrated phosphoproteomic, transcriptomic and metabolic profiling, we

uncovered molecular mechanisms associated with the adverse remodeling of cardiac func-

tions in mice with combined attenuation of ErbB2 and ERRα activity. Genetic disruption of

both effectors results in profound effects on cardiomyocyte architecture, inflammatory

response and metabolism, the latter leading to a decrease in fatty acyl-carnitine species

further increasing the reliance on glucose as a metabolic fuel, a hallmark of failing hearts.

Furthermore, integrated omics signatures of ERRα loss-of-function and doxorubicin treatment

exhibit common features of chemotherapeutic cardiotoxicity. These findings thus reveal

potential cardiovascular risks in discrete combination therapies in the treatment of breast and

other cancers.
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The heart relentlessly relies on the coordinated regulation of
mitochondria, energy-producing pathways, and signaling
conduits to fuel contraction and sustain blood flow, and

these functions are dependent on the precise control of metabolite
levels, gene expression, and enzyme activities. Any derangement
can negatively impact cellular homeostasis and drive pathological
remodeling. Heart failure remains an important cause of mor-
tality worldwide posing a tremendous burden on the healthcare
system1. Characterization of cardiac metabolic, molecular, and
structural reprogramming events in response to genetic or
extrinsic factors is key to understanding the metabolic flexibilities
of the heart, identify causal determinants and risk factors, and
ultimately guide drug development and treatment strategies for a
wide range of diseases.

The tyrosine kinase receptor ErbB2 (also referred to as HER2)
is well-known for its oncogenic activity in breast cancer (BCa),
but it also plays an important role in both cardiac embryonic
development and in the adult heart2,3. Genetic or pharmacolo-
gical inhibition of ErbB2 has been shown to cause dilated car-
diomyopathy (DCM), characterized by chamber dilatation and
decreased contractility4–6. Treatment regimens for HER2+ BCa
typically involve ErbB2-targeted therapies including trastuzumab
in combination with chemotherapies such as the anthracycline
doxorubicin and alkylating agent cyclophosphamide to enhance
the anti-tumor effects of HER2-blockade, albeit increasing the
cardiotoxic risk from 3-7% to 27% of patients7–9. Impaired stress
responses and cardiomyocyte apoptosis consequential to com-
promised cell survival and repair are implicated in trastuzumab-
induced cardiac dysfunction10. Doxorubicin-induced adverse
cardiac effects are the most severe; however, both doxorubicin
and cyclophosphamide can cause mitochondrial damage and
dysfunction, oxidative and nitrative stress, calcium deregulation,
inflammation, and fibrosis10,11. The precise underlying mechan-
isms for the observed cardiotoxicities remain incompletely
understood, and inevitably, treatment cessation due to adverse
cardiac events is undesirable, warranting further investigation
into the identification of underlying risk factors and causal
mechanisms.

Orphan nuclear receptor oestrogen-related receptor α (ERRα,
NR3B1) is a key transcriptional regulator of mitochondrial
function, redox homeostasis and energy metabolism12–14, thus
being an attractive therapeutic target for the treatment of meta-
bolic disorders and diseases including type 2 diabetes, obesity and
cancer15–17. ERRα is also a broad regulator of cardiac programs
including intracellular fuel sensing, fatty acid β-oxidation (FAO),
citric acid cycle (CAC), ATP transport, and calcium handling18.
ERRα is essential for the bioenergetic and functional adaptation
to cardiac pressure overload induced by transverse aortic con-
striction via its direct transcriptional regulation of ATP generat-
ing programs19.

In malignant BCa, ERRα, and ErbB2 are functionally linked
and their expression levels correlate positively20–22. Notably,
attenuation of ERBB2 signaling disrupts ERRα activity22, and
reciprocally, ERRα ablation reduces ERBB2 amplicon gene tran-
scription and impedes ErbB2-induced murine BCa
development20. Thus, targeting ERRα in combination with ErbB2
may offer a therapeutic benefit in HER2+ patients23. However, as
both factors play cardioprotective roles, we investigated the
consequence of their combined loss of function on the heart.
Herein, we report that in-depth cross-analyses of cardiac phos-
phoproteomic, transcriptomic and metabolic profiles reveal that
while ErbB2 and ERRα play distinct and complementary roles in
maintaining myocardial homeostasis and function, combined
genetic attenuation of ErbB2 and ERRα severely amplifies adverse
cardiac remodeling and metabolic inflexibility observed in mice
deficient in a single factor. Furthermore, an integrated omics

signature driven by ERRα loss was predictive of doxorubicin
response and reciprocally, an assembled cardiac multi-omics
doxorubicin signature was found to be characteristic of decreased
ERRα activity, identifying a hitherto unsuspected functional link
between ERRα and doxorubicin action in the heart.

Results
Loss of ErbB2 and ERRα signaling independently contribute to
myocardial dysfunction. To investigate the functional con-
sequence and possible molecular and genetic crosstalk between
ErbB2 and ERRα in the adult heart, we crossed ERRα knock-out
(KO) mice24 with the ErbB2 hypomorphic mouse model25

(ErbB2 KI) giving rise to ErbB2 KI/ERRα KO mice (herein
referred to as KI:KO) in a FVB background. KI:KO mice are
viable, fertile and do not display any gross anatomical abnorm-
alities. The concomitant loss of both ErbB2 and ERRα in KI:KO
mice was confirmed by RT-qPCR (Supplementary Fig. 1a). Given
that ErbB2 KI mice develop age-dependent DCM with earliest
signs of pathophysiology at 4-months of age6, cardiac function
was evaluated on 15-week-old ErbB2 KI, ERRα KO, and KI:KO
mice in comparison to WT controls.

Loss of ErbB2 and ERRα had opposite effects on heart size with
KI:KO reflecting the average outcome (Fig. 1a–c). Masson’s
trichrome staining revealed increased fibrosis in ERRα KO hearts
and to a greater extent in KI:KO mice (Fig. 1a, d). Ultrasound
echocardiography confirmed the development of DCM in the
ErbB2 KI model, marked by a reduction in left ventricular (LV)
contractile function as demonstrated by lower LV ejection
fraction (LVEF) and LV fractional shortening (LVFS) parameters
as well as increased LV dilatation with augmented end-systolic
(LVIDs) and end-diastolic dimensions (LVIDd) relative to WT
(Fig. 1e–i). ERRα KO mice also presented with DCM similarly to
ErbB2 KI mice (Fig. 1e–i), with cardiac fibrogenesis likely playing
a crucial role in the pathogenesis. KI:KO displayed a synergistic
effect of impaired ErbB2 and ERRα signaling on DCM
development (Fig. 1e–i), not associated with greater vascular
defects, cardiomyocyte apoptosis or hypertrophy (Supplementary
Fig. 1b–e). Consistent with their increased disease severity, KI:KO
hearts expressed higher transcript levels of two biomarkers of
hemodynamic stress and heart failure, atrial natriuretic peptide
(ANP) and brain natriuretic peptide (BNP)26 (Fig. 1j), thus
supporting both ERRα- and ErbB2-dependent contributions to
the observed DCM.

Cardiac phosphoproteomics reveals ErbB2 and ERRα depen-
dencies for proper structural and functional integrity. Changes
in protein phosphorylation and associated signaling mechanisms
have been linked with cardiac dysfunction. Unbiased label-free
LC-MS/MS-based phosphoproteomics profiling identified 2066
phosphorylated peptides mapped to 602 proteins using a high
confidence site localization probability of the modified residues
(≥0.7). Relative to WT, KI:KO hearts displayed 48 to 63% more
significant phosphopeptide changes (limma, p < 0.05, |FC | ≥ 1.5)
than ErbB2 KI and ERRα KO models, respectively, mostly serine
modifications, and clustered more closely with ErbB2 KI samples
(Fig. 2a, Supplementary Fig. 2a–c, and Supplementary Data 1).
Consolidated phosphoserine and phosphothreonine motifs of
differentially expressed phosphopeptides were marked by a strong
preference for proline at position +1 and arginine at position −3
in all groups compared to WT (Fig. 2b and Supplementary
Fig. 2d). The MoMo tool27, which expands on the robust algo-
rithm Motif-x28, identified the pSP and RXXpS motifs in all 3
models vs WT, the former being the most frequently observed
motif (Fig. 2c and Supplementary Fig. 2e). Among the other
enriched motifs identified, we found the pTP motif in both ERRα
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KO and KI:KO as well as pSXXE and RXXpT motifs in the KI:KO
model. PhosphoMotif Finder29 predicted GSK3 and ERK family
kinases to be responsible for a significant number of altered
phosphopeptides along with CaMKII, PKA, and PKC (Fig. 2c).

Kinase Enrichment Analysis 2 (KEA2)30 found altered
phosphorylation states of gap junction protein alpha 1 (Gja1),

also known as connexin 43 (Cx43), among several biological
terms (e.g., gap, ion-channel gating, trafficking, junctions,
conductance) linked to diminished ErbB2 signaling (Supplemen-
tary Fig. 2f). Metabolism-related terms PDK1 (pyruvate dehy-
drogenase kinase 1) and insulin associated with ERRα loss. GO
cellular component enrichment analysis of differentially
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expressed phosphoproteins (DEPPs) found actin cytoskeleton,
focal adhesion, intercalated disc, and the contractile apparatus
among the top 10 targets across the models (Fig. 2d, Supple-
mentary Fig. 2g, and Supplementary Data 1). Ingenuity Pathway
Analysis (IPA) revealed PKA, DCM and integrin linked kinase
(ILK) among common over-represented pathways in the 3 groups
compared to WT, with a greater number of associated
perturbations found in KI:KO hearts (Supplementary Fig. 2h
and Supplementary Data 1).

The cardiomyocyte localization of a subset (51) of KI:KO
DEPPs is illustrated in Fig. 2e with selected ErbB2 and/or ERRα-
dependent effects shown in Fig. 2f. The data indicate deregulation
of protein activities at all three cell-cell junctions in intercalated
disks including Cx43 (S306, S314, S328, S364, S365, S368) at gap
junctions, desmoplakin (Dsp; S2, S7, S2221) at desmosomes, and
catenin alpha 3 (Ctnna3; S637, S647, T649) part of fascia
adherens. Immunoblot analysis of phospho-Cx43 S368 levels
support the hypophosphorylation of gap junction proteins in
hearts with down-regulated ErbB2 signaling (Fig. 2g). Sarcoplas-
mic reticulum proteins, important for calcium signaling and
contraction, as well as sarcomeric proteins exhibited noted
phospho-levels changes. In addition, DEPPs involved in anchor-
ing sarcomeres to the costameric complexes and plasma
membrane via the actin cytoskeleton were found including
vinculin (Vcl; S97, S346), desmin (Des; S28, S32, S68), filamin C
(Flnc; S2234, S2237) and dystrophin (Dmd; S3616).

A limited number of DEPPs involved in cellular metabolism
were found, many of which were linked to glucose metabolism
(Fig. 2h). In particular, hyperphosphorylation of the rate-limiting
glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bipho-
sphatase 2 (Pfkfb2) at the known activating site S486 was
observed in all models compared to WT, indicating their
increased reliance on glucose. Phosphorylation of Aldoa at S36,
found significantly elevated in ERRα KO and more prominently
in KI:KO hearts, was recently found to drive glycolytic
metabolism of liver cancer cells31. In the absence of ERRα,
phosphorylation at the inhibitory site S232 of the E1 alpha
1 subunit (Pdha1) of the pyruvate dehydrogenase (PDH) complex
was strongly reduced, an effect confirmed by immunoblot
analysis (Fig. 2h, i). As indicated by KEA2 (Supplementary
Fig. 2f), this finding is likely attributable to decreased expression
of the upstream kinase Pdk1 (Fig. 2i). Consistently, increased
PDH activity was found in ERRα KO and KI:KO hearts (Fig. 2j).
Taken together, ERRα and ErbB2 contribute to the phospho-level
regulation of proteins associated with structural integrity,
contractile force, and glucose handling.

Transcriptomics identifies ERRα-dependent signatures of
inflammation and fibrogenesis. Cardiac transcriptome profiling
using DNA microarray technology revealed a considerably
greater number of differentially expressed genes (DEGs) in KI:KO
hearts relative to WT, overlapping 38% and 8% with ERRα KO
and ErbB2 KI groups, respectively (ANOVA, p < 0.05, |FC| ≥ 1.2)
(Fig. 3a, Supplementary Fig. 3a, and Supplementary Data 2). As
such, a larger subset of KI:KO DEGs were linked to cardiac

disease phenotypes (Supplementary Fig. 3b and Supplementary
Data 2). Similar to phosphoproteomics analyses (Supplementary
Fig. 2g), GO enrichment component analysis showed a stronger
enrichment of DEGs related to cardiomyocyte structural frame-
work in KI:KO hearts, specifically the intercalated disk, actin
cytoskeleton and focal adhesion (Supplementary Fig. 3c). Cross-
examination of DEGs and DEPPs showed marginal overlap in
ErbB2 KI with ~20% of ERRα KO and KI:KO DEPPs displaying
altered transcriptional regulation (Supplementary Fig. 3d). The
data support operative transcriptional and post-translational
mechanisms underlying the pathological cardiac remodeling.

Gene Set Enrichment Analysis uncovered a significant up-
regulation of inflammation-related gene signatures in ERRα KO
and KI:KO hearts (Fig. 3b and Supplementary Data 2). In
agreement, ERRα loss triggered macrophage infiltration (Fig. 3c),
noting a general switch from pro-inflammatory M1-type to an
anti-inflammatory and pro-fibrotic M2-type macrophage gene
expression profile (Supplementary Fig. 3e). ERRα KO and KI:KO
hearts displayed the highest expression of matrisome genes
encoding extracellular matrix (ECM) and ECM-associated
proteins including key genes involved in transforming growth
factor β (TGF-β) activation and signaling (Fig. 3d, e). TGF-β
signaling is known to promote ECM deposition and fibrosis
associated with tissue inflammation and injury32. Indeed,
Masson’s trichrome showed augmented fibrogenesis in ERRα
KO and KI:KO hearts (Fig. 1a, d), further supported by their
elevated expression of α-smooth muscle actin (α-SMA) encoded
by Acta2 (Fig. 3f, g and Supplementary Data 2).

Computational identification of cardiac metabolic gene mod-
ules. To establish a regulatory link between ErbB2 and ERRα and
cardiac metabolism, we applied an in-house bioinformatics tool
capable of identifying networks of interconnected
transcriptionally-regulated metabolic genes (modules) capable of
multi-condition comparisons33–35. Our analysis discovered seven
differentially regulated modules (Fig. 4a). Impaired ErbB2-
signaling alone had minimal impact but essentially neutralized
the effects of ERRα inhibition on modules II and V (Fig. 4a and
Supplementary Fig. 4). In stark contrast, concomitant loss of
ErbB2 and ERRα significantly perturbed five modules (I, III, IV,
VI, VII), with modules I and VI largely ascribed to ERRα loss
alone (Fig. 4a–c). Interconnected gene networks involved in FA
degradation, amino acid, pyruvate, CAC, and phospholipid
metabolism were most significantly down-regulated in KI:KO
hearts (Fig. 4b). On the other hand, a more prominent up-
regulation of networks linked to N-glycan biosynthesis, glycolysis,
arachidonic acid, phospholipid, and sphingolipid metabolism was
found in these mice (Fig. 4c). Phospholipid metabolism was
paradoxically found as both activated and repressed.

Cardiac metabolomics reveals ERRα- and ErbB2-dependent
metabolic reprogramming. To validate the power of our com-
putational tool to predict the dysregulation of precise metabolic
programs, we proceeded to characterize the mouse cardiac

Fig. 1 Cardiac phenotype of mice with impaired ErbB2 and/or ERRα activity. a Representative Hematoxylin and Eosin (H&E), wheat germ agglutinin
(WGA), and Masson’s trichrome staining of heart sections from 15-week old mice with ErbB2 and/or ERRα loss-of-function. Scale bars, 500 μm (H&E) and
50 μm (WGA, Trichrome). b, c Mean heart weight (HW) (b) and normalized HW to body weight (BW) ratios (c) of mice (n= 30). d Quantification of
interstitial fibrosis (Trichrome, n= 6). e Representative M-mode echocardiographic images for each mouse genotype. f–i Percent of left ventricular ejection
fraction (LVEF) (f) and LV fractional shortening (LVFS) (g) as well as echo-derived LV internal diameter end systole (LVIDs) (h) and end diastole (LVIDd)
(i) in mice (WT and ErbB2 KI, n= 7; ERRα KO and KI:KO, n= 5). Cardiac RT-qPCR analysis of the genes encoding atrial natriuretic peptide (ANP) and brain
natriuretic peptide (BNP), both markers of cardiac dysfunction (j) (n= 6). Data are normalized to Rplp0 levels. Data in (b–d) and (f–j) represent
means ± SEM, *p < 0.05 by ANOVA relative to WT controls, unless otherwise indicated. See also Supplementary Fig. 1.
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metabolomes. Cardiac large-scale UPLC/MS-based untargeted
profiling resulted in the detection of 571 biochemicals (Supple-
mentary Data 3). KI:KO hearts displayed 287 differentially
expressed metabolites (DEMs; ANOVA, p < 0.05) relative to WT,
that were primarily down-regulated, mostly ERRα-dependent,
and largely related to lipid metabolism (Fig. 5a, b). Supervised

clustering using partial least squares-discriminant analysis (PLS-
DA) showed a similar group separation as to unsupervised
clustering (Fig. 5b), highlighting ADP-ribose, pyruvate and
AICAR as the most distinguishing metabolites (strongest VIP
scores), though 40% of the top 15 were annotated to lipid
metabolism (e.g., acetyl-CoA, corticosterone) (Supplementary
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Fig. 5a). Random Forest classification differentiated all four
groups with an overall predictive accuracy of ∼88%, substantially
greater than random chance alone (25% accuracy), with most top
classifying metabolites related to lipid metabolism including myo-
inositol, L-carnitine, and phospholipid species (Supplementary
Fig. 5b).

Impaired ErbB2 signaling modestly impacted FA levels, mostly
poly-unsaturated FAs (PUFAs), whereas ERRα ablation reduced
medium- and long-chain FAs along with PUFAs including
linoleic and arachidonic acid (Fig. 5c). Diminished circulating FA
pools mirrored cardiac FA profiles (Supplementary Fig. 6a).
ERRα loss significantly lowered arachidonic acid-derived eicosa-
noids with lowest levels in KI:KO hearts (Supplementary Fig. 6b).
These findings contrasted with the up-regulation of two
metabolic modules encompassing arachidonic acid metabolism
in KI:KO, driven by increased transcription of cyclooxygenase-1
(COX-1) and COX-2-encoding genes, Ptgs1 and Ptgs2, respec-
tively, required for prostaglandin synthesis from arachidonic acid
(Fig. 4c). Higher COX-2 protein levels in KI:KO hearts were
validated by immunoblot analysis (Supplementary Fig. 6c).
Although the prostaglandin subclass of eicosanoids was not
measured in our metabolomics study, the data indicate their
augmentation in KI:KO mice. Further, ERRα inhibition promoted
the biosynthesis of phosphatidylcholine (PC) and phosphatidy-
lethanolamine (PE) phospholipids, while a general marked
decline in PC- and PE-containing glycerophospholipids, lysoli-
pids, plasmalogens and lysoplasmalogens was observed (Supple-
mentary Fig. 6d–f and Supplementary Data 3). These data
corroborate the inferred bi-directional transcriptional control of
phospholipid metabolism (Fig. 4b, c). ERRα deficiency also
stimulated sphingomyelin production (Supplementary Fig. 6g),
supported by up-regulation of sphingolipid metabolic genes
(Fig. 4c). Remarkably, while several fatty-acyl carnitine species
were decreased in ERRα KO hearts, dual inhibition of ERRα and
ErbB2 led to their robust global decline (Fig. 5d). KI:KO also
displayed the highest and lowest levels of free CoA and carnitine,
respectively (Fig. 5e and Supplementary Fig. 6h).

Disturbances in carbohydrate metabolism were found, with
more prominent elevations in glycogen metabolites and many
glycolytic intermediates in KI:KO (Fig. 5f). Albeit increased,
several metabolites including glucose did not reach statistical
significance, likely due to the non-static flux of glucose through
the glycolytic pathway. Higher myocardial and serum levels of
lactate were observed in conjunction with increased cardiac
mRNA expression of lactate dehydrogenase alpha (Ldha)
(Fig. 5f–h). Hearts lacking ERRα exhibited markedly diminished
pyruvate levels with accumulating upstream glycolytic inter-
mediates found more striking in KI:KO (Fig. 5f). While the

activity of pyruvate kinase was not perturbed (Supplementary
Fig. 6i), ERRα KO and KI:KO hearts exhibited augmented PDH
activities (Fig. 2j). This significant up-regulation of pyruvate
oxidation and pattern of upstream glycolytic intermediates
denotes a “bottleneck” of pyruvate entry into the CAC in the
absence of ERRα.

Regarding amino acid metabolism, loss of ErbB2 alone resulted
in either no change or an increase in a few amino acids (e.g.,
alanine and glutamine) in stark contrast to ERRα inhibition
which generally lowered amino acid profiles (Fig. 5i). Glutamate
accumulation was a common feature, a precursor for glutathione
(GSH) synthesis important for antioxidant response, also found
augmented (Supplementary Fig. 6j). Dipeptide levels (Fig. 5j), an
indicator of protein synthesis, reflected the mouse heart to body
weight ratios (Fig. 1c).

FA, glucose, and ketogenic amino acid oxidation each
contribute to the intracellular acetyl-CoA pool, found indepen-
dently fostered by impaired ErbB2 and ERRα signaling, denoting
decreased incorporation into the CAC (Fig. 5k). Several
perturbations in CAC intermediates were observed including
increased succinate and decreased fumarate levels in KI:KO
(Supplementary Fig. 6k). In addition, loss of either factor
augmented α-ketoglutarate derivative 2-hydroxyglutarate (2-
HG), found highest in KI:KO hearts (Supplementary Fig. 6k).

Integrative omics analysis of ErbB2- and ERRα-dependent
signatures. To gain a more holistic understanding of ErbB2 and
ERRα contributions to increased DCM severity in KI:KO mice,
integrated omics signatures comprising molecules with a greater
likelihood for disease causality were generated (Fig. 6a and Sup-
plementary Data 4). Perturbations occasioned by the loss of one
factor and counterbalanced by loss of the other were deemed
unlikely to be causal. Multi-omics signatures of ErbB2 KI and
ERRα KO effects sustained in KI:KO were constructed alongside a
KI:KO only signature requiring the concomitant loss of both
factors. Pathway enrichment analysis and prediction of pathway
activation (z-score ≥ 2) or repression (z-score ≤ −2) states were
assessed by IPA (Fig. 6b, Supplementary Fig. 7a, and Supple-
mentary Data 4). The ErbB2 KI-driven signature, harboring the
least molecules, showed less modulated pathways underscored by
phosphoprotein- and/or gene-level changes including perturbed
phosphorylation of sarcomeric Myl2 and Tnni3 proteins asso-
ciated with ILK, PKA and/or DCM signaling and deregulated
expression of several growth factors (e.g., Fgf6/16, Igf1, Pgf). S15
and S14/S15 of myosin light chain 2 (Myl2) in human and mouse,
respectively, are critical regulatory phosphorylation sites targeted
by myosin light chain kinase in which their reduced phosphor-
ylation associates with DCM and heart failure via impacts on

Fig. 2 Phosphoproteomics identification of ErbB2 and ERRα post-translational control of cardiomyocyte structure and metabolism. a Volcano plots
illustrating the significantly up-regulated (red) and down-regulated (blue) phosphopeptides from cardiac phosphoproteomics profiling of mouse models
relative to WT (limma, p < 0.05, |FC |≥ 1.5, n= 5). b Consolidated phosphomotifs generated by PHOSIDA79 of pSer-modified phosphopeptides found
differentially expressed in the mouse models compared to WT showing site-specific amino acid preferences adjacent to the central serine phosphorylated
residue. c Phosphopeptide sequence motif discovery by the MoMo27 software tool based on the Motif-x28 algorithm along with PhosphoMotif Finder29

predicted phosphomotif-targeting kinases. d Bar chart showing the number of identified DEPPs from (a) harboring up- and/or down-regulated site-specific
phosphorylation (limma, p < 0.05, |FC|≥ 1.5, n= 5). e Schematic showing the cardiomyocyte localization of 25% of DEPPs identified in KI:KO hearts from
(d). Both the number and directional change of protein phosphosites are indicated. Sarcomere regions are shown: M, M line; Z, Z line; I, I band; A, A band,
H, H zone. f Box plot of relative phosphorylation levels of DEPPs important for cardiomyocyte structural integrity across the genotypes relative to WT
(n= 5). g Immunoblot analysis of total and phospho-Cx43 (S368) levels in heart tissue extracts (n= 3). Vinculin levels are shown as a loading control.
h Box plot of relative phosphorylation levels of DEPPs important for glucose uptake and catabolism across the genotypes relative to WT (n= 5).
i Immunoblot analysis of total and phospho-Pdha1 (S232) levels and its upstream kinase Pdk1 in heart tissue extracts (n= 3). Clock levels are shown as a
loading control. j Scatter dot plot of mouse cardiac pyruvate dehydrogenase (PDH) activities (n= 5). Data in (f) and (h) are shown as box and whiskers
plots: center line denotes median, box extends from 25th to 75th percentiles, and whiskers extend to the lowest and highest values; *p < 0.05, |FC|≥ 1.5 by
limma relative to WT controls. Data in (j) represent means ± SEM; *p < 0.05 by ANOVA. See also Supplementary Fig. 2.
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cross-bridge cycling kinetics and contractile force36. In support of
Myl2 S14/S15 dephosphorylation in hearts with down-regulated
ErbB2 activity, we detected lower levels of p-Myl2 using a
phospho S15-specific antibody (Supplementary Fig. 7b). Accu-
mulation of protein aggregates marked by hyperphosphorylation
of Tau is a well-known hallmark of Alzheimer’s disease, but it has

also been linked to the pathogenesis of heart disease37. Using an
antibody recognizing phospho-Tau S385 in mice, corresponding
to S396 in human, we observed lower levels of phosphorylated
Tau in hearts lacking ErbB2 and/or ERRα, suggesting that this
proteotoxic stress is not an underlying cause of the observed
DCM in these mice (Supplementary Fig. 7b). The ERRα KO-
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driven signature was marked by the up-regulation of fibrosis
signaling (e.g., Acta2, Ccn2, Tgfb3), validated previously (Figs. 1a,
d, and 3e–g), as well as perturbations in metabolic processes,
noting the transcriptional down-regulation of several mitochon-
drial FAO (e.g., Acaa2, Acadm, Acsl1) and Oxphos genes (e.g.,
Atp5e, Ndufb2, Ndufv3). Diminished protein levels of Acadm and
Acsl1 in hearts lacking ERRα supported their transcriptional
repression with further analysis revealing reduced cardiac
mtDNA abundance in ERRα KO and KI:KO mice, consistent
with lower expression levels of the mitochondrial transcription
factor A (Tfam) (Supplementary Fig. 7c, d). The largest signature,
KI:KO only, displayed an up-regulation of molecules associated
with immune/inflammation (e.g., Mapk11, Myd88, Stat3) as well
as multiple changes linked to cardiac remodeling including
altered ILK, PI3K/AKT, PKA, RHOA, ERK/MAPK, mTOR, and
actin cytoskeleton. Examination by Western blotting showed
increased phosphorylation and hyperactivation of AKT (S473 and
T308) and ERK1/2 (T202 and Y204) signaling as well as a pro-
minent elevation in S3 phospho-Cofilin 1 (Cfl1) linked to ILK,
RHOA, and actin cytoskeleton (Supplementary Fig. 7e). Cofilins 1
and 2 (Cfl1/2), which functionally overlap, play a key role in
sarcomeric actin dynamics and their deactivation by phosphor-
ylation at the conserved S3 residue inhibits their actin severing
function, thus impairing actin turnover. Notably, increased Cfl2
S3 phosphorylation was previously observed in human idiopathic
DCM patients38.

Given that mitochondria are a primary target of doxorubicin
action, that loss of ERRα triggers mitochondrial dysfunction, and
that both facets augment cardiotoxicity induced by ErbB2-
targeted approaches, we surmised a strong inverse relationship
between doxorubicin and ERRα signaling. Fittingly, a doxorubi-
cin response was deemed activated exclusively in the ERRα KO-
driven signature (Fig. 6c), suggesting that impaired ERRα
function is a molecular facet of doxorubicin-driven cardiotoxicity.
To explore this notion, we constructed a cardiac-specific
doxorubicin-dependent multi-omics signature comprising 724
molecules established from 1 phosphoproteomics39, 9
transcriptomics40–45 and 9 metabolomics46–54 datasets derived
from doxorubicin-treated animals (Fig. 6d and Supplementary
Data 5). Genes/metabolites with inconsistent directional changes
across studies were removed and only DEGs found in 5 of 9
transcriptomes were retained. Noteworthy, Esrra, found down-
regulated in 4 of 9 datasets, did not meet our inclusion criteria.
Functional analysis showed enrichment and/or deregulation of
pathways linked to doxorubicin including oxidative stress,
antioxidant response, ferroptosis, fibrosis, autophagy, and cardiac
and metabolic remodeling55–58 (Supplementary Fig. 7f, g and
Supplementary Data 5). Importantly, ERRα activity was strongly
down-regulated in the doxorubicin signature (Fig. 6e). Indepen-
dent analysis of the integrated doxorubicin-modulated transcrip-
tomes, overlapping ∼10–25% with respect to the ERRα KO &
KI:KO signature, revealed significantly decreased ERRα activity in
7 of 9 datasets (Fig. 6f and Supplementary Fig. 7h). Remarkably,

ERRα was the most consistently and strongly down-regulated
transcriptional regulator across the datasets (Supplementary
Fig. 7i). Cross-examination of ERRα- and doxorubicin-
dependent signatures identified 89 similarly deregulated mole-
cules, 74 genes and 15 metabolites, linked to multiple functions
most notably lipid metabolism (Fig. 6g and Supplementary
Data 5). Decreased FAs (palmitoleate, linoleate, arachidonate)
and FAO-associated Acsl1, Hadh, and carnitine as well as
perturbed membrane lipids were noted. Key targeted processes
included p53 (↑Fas), insulin (↑Irs2), PKA (↓Pkia), and RAS
signaling (↓Rasgrp3), ECM (e.g,. ↑Ccn2, ↑Mmp2, ↓Itgb6,
↓Sema3b), cytoskeleton (e.g., ↑Rhobtb1, ↓Auts2, ↓Lmod3),
immune/inflammation (e.g., ↑C4b, ↑Osmr), axon guidance (e.g.,
↓Nrp1, ↓Nrp2), transcription (↑Per2, ↑Tsc22d3, ↓Mycn, ↓Rcor2),
ATP homeostasis (↓Adk, ↓Rnf207), oxidative stress response (e.g.,
↑Nfe2l2, ↑Hmox1), calcium homeostasis (↑Grina, ↑Tmbim1), and
iron metabolism/homeostasis (↓Glrx5, ↓Hjv). These findings
establish a previously unknown molecular connection between
doxorubicin and loss of ERRα activity in the heart.

Discussion
The limited access to human heart tissue specimens increases the
reliance on animal model systems to study cardiovascular dis-
orders. Herein, we used genetically engineered whole-body mouse
models to mimic systemic exposure to candidate drug therapies
against BCa. Using a systems biology approach, we characterized
ErbB2- and ERRα-dependent molecular features of the DCM
developed in these mice whereby their dual inhibition worsened
the disease. Our integrated phosphoproteomics, transcriptomics,
and metabolomics studies uncovered profound effects of con-
comitant ErbB2 and ERRα loss-of-function on cardiomyocyte
architecture, inflammatory response, and metabolism. To the best
of our knowledge, no prior investigation globally mapped the
ERRα-dependent phosphoproteome or metabolome in any cel-
lular context and no prior study performed phosphoproteomics
or metabolomics profiling downstream loss of ErbB2 signaling in
the adult heart. Moreover, integrated multi-omics signatures of
ERRα loss-of-function and doxorubicin treatment revealed
common features of chemotherapeutic cardiotoxicity. Taken
together, our findings highlight previously unrecognized potential
cardiovascular risks associated with current and prospective
combination therapeutic approaches for the management of BCa.

This study allowed for the delineation of ERRα- and ErbB2-
dependent molecular mechanisms. First, reduced ErbB2 signaling
lowered PUFAs, up-regulated glycolysis, and altered growth
hormone and DCM signaling. Proteins at cell-cell junctions (e.g.,
Cx43) and within distinct regions of the sarcomere were major
targets for altered phospho-dependent regulation, implying that
DCM occasioned by ErbB2 inhibition involves decreased
mechanical coupling and electrophysiological properties as well
as sarcomeric dysfunction via altered structural assembly and
force. Notably, our results uncover ErbB2 signaling as a positive
regulator of sarcomeric protein Myl2 S14/S15 phosphorylation,

Fig. 3 ERRα ablation in mice induces a transcriptional inflammatory and fibrogenic response. a Heatmap and Venn diagram illustrating cardiac DEGs
(ANOVA, p < 0.05, |FC|≥ 1.2, n= 3) identified across the genotypes relative to WT by microarray analysis. For the heatmap, DEGs were first sorted from
most up-regulated to most down-regulated in KI:KO hearts compared to WT prior to unsupervised sample clustering using Euclidean distance measure and
average linkage. b Gene Set Enrichment Analysis showing an up-regulated hallmark inflammatory gene signature in ERRα KO and KI:KO cardiac
transcriptomes vs WT. Normalized enrichment scores (NES), representative plots and gene heatmaps are shown. c Representative images and
quantification of Aif-1 staining of mouse heart sections as a marker of macrophage infiltration (n= 3). Scale bar, 50 μm. d Heatmap of matrisome DEGs.
Arrows adjacent to genes signify that their expression was validated by RT-qPCR in (e). e Cardiac RT-qPCR analysis of key genes in (d) linked to TGF-β
activation and signaling (n= 6). Data are normalized to Rplp0 levels. f Immunoblot analysis of α-SMA in heart tissue extracts (n= 3). Vinculin levels are
shown as a loading control. g Representative images and quantification of α-SMA staining of mouse heart sections (n= 3). Scale bar, 50 μm. Data in
(c, e, and g) represent means ± SEM; *p < 0.05 by ANOVA relative to WT controls, unless otherwise indicated. See also Supplementary Fig. 3.
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key regulatory sites important for cardiac muscle contraction. The
phosphorylation of intercalated disc protein Cx43 at residues
S306, S328, S364, S365, and S368 have reported positive actions
on gap junction trafficking/assembly and gating59,60, all found
hypophosphorylated in hearts with suppressed ErbB2 signaling.
Second, ERRα ablation impacted several signaling processes (e.g.,

DCM, ILK, PKA), fibrosis, immune/inflammation, and repro-
grammed energy metabolism. The strong inflammatory signature,
ECM deposition, and observed macrophage infiltration further
solidify the important role of ERRα in attenuating inflammatory
responses found in other tissue/cellular contexts61–63. Metabo-
lomics corroborated key transcriptome-based predicted metabolic
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Fig. 4 Computational integrative analysis of mouse heart gene expression profiles and metabolic networks. a Simultaneous multi-comparison analysis
of mouse heart transcriptomes integrated into metabolic networks identified 7 significantly perturbed metabolic modules among the genotypes. Genes
found with the greatest correlation in expression and distance in a metabolic reaction network are scored higher and the relative expression of metabolic
modules identified for a pattern of scoring genes was calculated across the groups. Heatmap expression patterns for each metabolic module across the
groups are shown. b, c Gene signature heatmap and gene/metabolic network for 5 metabolic modules found in (a) displaying the strongest down-
regulation (b) and up-regulation (c) upon the loss of both ErbB2 and ERRα signaling. Key significantly enriched pathways associated with DEGs within the
metabolic networks are also shown. See also Supplementary Fig. 4.
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remodeling events including deregulation of phospholipid meta-
bolism, up-regulation of glycolysis and sphingolipid metabolism,
and down-regulation of FAO, pyruvate, and amino acid meta-
bolism, extending the role of ERRα in metabolism to the control
of lipid membrane homeostasis. Diminished pyruvate levels were
attributed to increased PDH activity, a gatekeeper of glucose
oxidation, due to decreased phosphorylation of the inhibitory site
of Pdha1 at S232. Increased glycolytic rates in failing hearts have
been conflictingly associated with either depressed or enhanced
pyruvate oxidation64,65. Third, several commonalities between
loss of ErbB2 and ERRα signaling were determined. Key effects
included cardiomyocyte structural and contractile force protein
modifications with links to perturbed GSK3, ERK, CaMKII, PKA,
and PKC signaling. Mutations or variants of several co-targets
serve as markers of human DCM and/or other cardiomyopathies
such as desmoplakin (Dsp), filamin C (Flnc), myomesin 1
(Myom1), striated muscle enriched protein kinase (Speg), tro-
ponin I, cardiac muscle (Tnni3), and titin (Ttn)66–68. Loss of
either factor contributed independently to acetyl-CoA and 2-HG
accumulation, both biomarkers of failing hearts69,70, with impli-
cations for epigenetic reprogramming events. While inhibition of
either ErbB2 or ERRα signaling increased the reliance on a fetal
metabolic program, a hallmark of declining heart health71, their
combined loss-of-function resulted in a sharp decrease in fatty
acyl-carnitine species further increasing the dependence of the
heart on glucose as cellular energy fuel. The observed up-
regulation of AKT and ERK1/2 signaling as well as phosphor-
ylation of Cofilin 1 at S3 upon dual inhibition of ErbB2 and ERRα
signaling is an indication of profound cardiac remodeling and
deregulated sarcomeric structure and function, underlying fea-
tures of the aggravated DCM pathogenesis in KI:KO mice.
Overall, altered structural integrity/mechanical stress and meta-
bolic inflexibility are likely major contributing factors to increased
reliance on glucose upon ErbB2 and ERRα loss, respectively.
Finally, several mechanisms implicated in doxorubicin-induced
cardiotoxicity were instilled by ERRα ablation including
decreased FAO, increased glucose utilization, inflammation, and
fibrosis, as well as perturbed calcium signaling72. Consistently, a
compiled cardiac doxorubicin multi-omics signature was char-
acteristic of decreased ERRα activity, harboring 89 molecules
found similarly modulated by ERRα inhibition including key
genes (eg Acsl1, Hadh, Hmox1, Mmp2, Mycn, Nfe2l2, Pkia) and
metabolites (e.g. carnitine, arachidonate, myo-inositol). Doxor-
ubicin is the most widely prescribed anthracycline, supporting the
wide-ranging efforts for identification of the precise causal
mechanisms underlying its cardiotoxicity. Whether impaired
ERRα activity is indeed a contributor to doxorubicin-induced
cardiotoxicity in the clinical setting remains to be validated.
Intriguingly, statins, which harbor anti-oxidative and anti-
inflammatory benefits, display ERRα agonism in vitro73, and

their use has been shown to reduce the cardiotoxic risk of
HER2+ patients treated with trastuzumab and/or anthracyclines
such as doxorubicin74,75.

This multi-omics study provides a rich resource of data sup-
porting key roles for both ErbB2 and ERRα in the maintenance of
normal cardiac function, however, we note several limitations.
First, the phosphoproteomics and metabolomics studies involve
MS-based identifications which will not capture all molecules
present in each sample and can lead to false positives. Second,
proteome-level changes were not evaluated and thus could not
serve to normalize the phosphoproteome-level changes. Third,
albeit the construction of integrated omics signatures filtered for
increased potential for DCM causality, further investigation is
needed to identify the precise causal pathogenic mechanisms
instilled by ErbB2 and/or ERRα loss.

Our comprehensive investigation of cardiac regulomes pro-
vides key insights into the critical roles of ErbB2 and ERRα in the
heart, characterizing integrated omics signatures of impaired
ErbB2 and/or ERRα signaling linked to the pathogenesis of DCM,
found most prominent upon their combined loss of action. In
conclusion, the combinatory use of defined mouse models with
integration of in-depth multi-omics analyses has proven to be a
valuable approach to reveal several disturbed signaling pathways
and thus potential cardiovascular risks in both prospective and
current therapeutic strategies to treat cancer and metabolic
diseases.

Methods
Animals. All animal experimentations were conducted in accord with accepted
standards of humane animal care and all protocols were approved by the McGill
Facility Animal Care Committee and the Canadian Council on Animal Care. For
all mouse experiments, male mice aged 15 weeks were sacrificed by cervical dis-
location at Zeitgeber time (ZT) 4 for serum and tissue isolations. WT, ERRα KO24,
ErbB2 cDNA knock-in (ErbB2 KI)25, and KI:KO mice generated from the cross of
ErbB2 KI mice with ERRα KO mice in an FVB genetic background were housed at
22 °C under a 12-h light/dark cycle and fed ad libitum with free access to water in
an animal facility at McGill University.

Mouse Echocardiography. Mice were lightly anaesthetized using 1-1.5% iso-
flurane in oxygen and placed on a heated platform to maintain body temperature.
Cardiac function and morphology were assessed by transthoracic echocardio-
graphy using a Vevo 2100 High-Resolution Imaging System with a 40MHz MS
550D transducer (VisualSonics). Parasternal long-axis projection was used for
orientation and left ventricular end-systolic and end-diastolic internal diameters
were determined by two-dimensional M-mode images of a short-axis view at the
proximal level of the papillary muscles. Ejection fraction and fractional shortening
were calculated using VisualSonics Cardiac Measurements software included in the
Vevo 2100 system following manual delineation of endocardial and epicardial
borders in the parasternal short-axis cine loop.

Histology. Mouse hearts were cut on the short axis (transverse cut) and fixed in
10% buffered formalin for 48 h followed by paraffin embedding and serial sec-
tioning (5 μm sections). For histological examination, slides were stained with
Hematoxylin and Eosin (H&E) or Masson’s trichrome (fibrosis marker). For

Fig. 5 Characterization of ErbB2 KI, ERRα KO and KI:KO cardiac metabolomes. a Bar chart and Venn diagram illustrating cardiac DEMs identified across
genotypes relative to WT using a large-scale unbiased LC/MS-based screen (ANOVA, p < 0.05, n= 8). b Heatmap and pie charts of the cardiac mouse
metabolomes subdivided into 8 major metabolic pathways. For the heatmap, DEMs were sorted from most up-regulated to most down-regulated in KI:KO
hearts compared to WT within each metabolic category prior to unsupervised hierarchical sample clustering using Euclidean distance measure and average
linkage. c, d Heatmap of cardiac fatty acid (c) and fatty acyl-carnitine (d) levels detected among the genotypes. e Box plot of free carnitine levels in mouse
hearts (n= 8). f Heatmap of relative glycogen metabolite and glycolytic intermediate levels in the mouse hearts and box plot of heart lactate levels (n= 8).
g RT-qPCR analysis of Ldha expression in mouse hearts (n= 6). Data are normalized to Rplp0 levels. h Bar chart of circulating lactate levels in the mice
(n= 24). i, j Heatmap of amino acid (i) and dipeptide (j) profiles in the mouse hearts. k Box plot of mouse cardiac acetyl-CoA levels (n= 8), produced by
the breakdown and oxidation of lipids, carbohydrates, and protein. Data in (e, f, and k) are shown as box and whiskers plots: center line denotes median,
box extends from 25th to 75th percentiles, and whiskers extend to the lowest and highest values; *p < 0.05 by ANOVA relative to WT controls, unless
otherwise indicated. Data in (g and h) represent means ± SEM; *p < 0.05 by ANOVA relative to WT controls, unless otherwise indicated. Metabolites with
an asterix (*) in the heatmap representations (c, d, f, i, j) were found significantly altered in the indicated mouse model versus WT, *p < 0.05 by ANOVA.
See also Supplementary Fig. 5 and 6.
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immunohistochemistry analysis, heart sections were immunostained with allograft
inflammatory factor 1 (Aif-1, also known as Iba-1, macrophage infiltration marker,
FUJIFIILM Wako Pure Chemical Corporation, Cat# 019-19741, RRI-
D:AB_839504), CD31 (PECAM-1, endothelial marker for blood vessel density, Cell
Signaling Technology, Cat# 77699, RRID:AB_2722705), or α-SMA (α-smooth
muscle actin, Thermo Fisher Scientific, Cat# 14-9760-82, RRID:AB_2572996).
Immunofluorescence staining with wheat germ agglutinin (WGA) conjugated to

Alexa Fluor 488 (Invitrogen, W11261) was performed to determine mean cardi-
omyocyte cross-sectional area. Apoptotic levels were evaluated using terminal
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay with the
ApopTag Peroxidase In Situ Apoptosis Detection Kit (Millipore, S7100). Images of
WGA-stained slides were taken with a Zeiss Axio Scan.Z1 instrument using a 20x
objective and Fiji software76 was used to quantify cardiomyocyte cross-sectional
area from manual delineation of cell contours. Other slides were scanned with an
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Aperio ScanScope instrument (Aperio Technologies Inc.) and viewed with Aperio’s
ImageScope software. Quantification of interstitial fibrosis and Aif-1, CD31, and α-
SMA immunoreactivity was performed using optimized Aperio digital analysis
algorithms. TUNEL-positive cells were detected using HALO software (Indica
Labs). Aside from WGA and TUNEL staining, histological procedures were per-
formed by the Histology Core Facility of the Rosalind and Morris Goodman
Cancer Institute (GCI).

Biochemistry measurements and enzymatic assays. Blood lactate was measured
from the submandibular vein of mice using a Lactate Scout meter (Lactate.com).
Collected blood was incubated at RT for 30 min prior to centrifugation at 5000 rpm
for 30 min for serum separation. Serum free fatty acid levels were determined using
a commercial quantification kit (Abcam, Cat# ab65341). Mouse cardiac pyruvate
dehydrogenase (PDH) and pyruvate kinase (PK) enzymatic activities were mea-
sured using frozen tissue powder with commercial kits (Biovision, Cat# K679-100
and Abcam, Cat# ab83432, respectively).

Mitochondrial content. Cardiac mitochondrial (mt) content was assessed by
measuring the ratio of mtDNA to nuclear DNA. DNA from frozen mouse heart
tissue (n= 6/genotype) was isolated using a Qiagen DNeasy Blood & Tissue kit
(Cat# 69504). mtDNA and nuclear DNA were amplified by qPCR using SYBR
Green Master Mix (Roche) and a LightCycler 480 instrument (Roche) with specific
primers for mitochondrial cytochrome b (mt-Cytb) and nuclear-encoded Pgk2,
respectively, listed in Supplementary Data 6.

Immunoblot analysis. Whole-cell extracts from mouse hearts were prepared using
Buffer K (sodium phosphate 20 mM, NaCl 150 mM, NP40 1%, EDTA 5mM)
containing protease and phosphatase inhibitor cocktail tablets (Roche) and
quantified using the Bradford method (Bio-Rad Protein Assay, Cat# 5000006).
Proteins (40 μg) were resolved on 8–12% SDS-PAGE gels then transferred onto
PVDF membranes (Amersham Biosciences) and blocked for 1 h at RT in PBS-T
(PBS+ 0.1% Tween-20) containing 5% milk. Membranes were incubated overnight
with primary antibodies (see below) diluted in PBS-T containing 5% milk. Fol-
lowing three washes in PBS-T+ 5% milk, the membranes were incubated for 1 h
with a secondary antibody either anti-rabbit (GE Healthcare, Cat# NA9340,
Research Resource Identifier (RRID):AB_772191), anti-mouse (GE Healthcare,
Cat# NA934, RRID:AB_772206), or anti-goat (Santa Cruz Biotechnology, Cat# sc-
2020, RRID:AB_631728) diluted in PBS-T containing 5% milk. After washing three
times with PBS-T, proteins were detected using ECL or ECL Prime Western
Blotting detection reagent (Amersham). Primary antibodies used were: anti-
phospho-Cx43 Ser368 (Cell Signaling Technology, Cat# 3511, RRID:AB_211016),
anti-Cx43 (Millipore, Cat# 3512, RRID:AB_229459), anti-Vinculin (Santa Cruz
Biotechnology, sc-25336, RRID:AB_628438), anti-phospho-Pdha1 Ser232 (Milli-
pore, Cat# AP1063, RRID:AB_10616070), anti-Pdha1 (Cell Signaling Technology,
Cat# 3205, RRID:AB_2162926), anti-Pdk1 (Enzo Life Sciences, Cat# ADI-KAP-
PK112, RRID:AB_10618932), anti-Clock (Santa Cruz Biotechnology, sc-6927,
RRID:AB_2082577), anti-α-SMA (Thermo Fisher Scientific, Cat# 14-9760-82,
RRID:AB_2572996), anti-COX-2 (Cell Signaling Technology, Cat# 12282, RRI-
D:AB_2571729), phospho-Myl2 Ser15 (Thermo Fisher Scientific, Cat# PA5-
104265, RRID:AB_2816014), Myl2 (Cell Signaling Technology, Cat# 3672, RRI-
D:AB_10692513), phospho-Tau Ser396 (Ser385 in mouse) (Abclonal, Cat#
AP1028, RRID:AB_2863912), Tau (Abclonal, Cat# A0002, RRID:AB_2756869),
Acadm (St John’s Laboratory, Cat# STJ96389, RRID:AB_2922676), Acsl1 (Cell
Signaling Technology, Cat# 4047, RRID:AB_2222411), Tfam (Abcam, Cat#
ab131607, RRID:AB_11154693), phospho-AKT Ser473 (Cell Signaling Technology,
Cat# 9271, RRID:AB_329825), phospho-AKT Thr308 (Cell Signaling Technology,
Cat# 9275, RRID:AB_329828), AKT (Cell Signaling Technology, Cat# 9272, RRI-
D:AB_329827), phospho-ERK1/2 (p44/42 MAPK) T202/Y204 (Cell Signaling
Technology, Cat# 9101, RRID:AB_331646), ERK1/2 (p44/42 MAPK) (Cell Sig-
naling Technology, Cat# 9102, RRID:AB_330744), phospho-Cfl1 S3 (Cell Signaling
Technology, Cat# 3313, RRID:AB_2080597), and Cfl1 (Abclonal, Cat# A2658,
RRID:AB_2922675). Immunoblot images were generated from film scanned with

an Epson Perfection V700 Photo scanner or obtained using a ChemiDoc MP
imaging system (Bio-Rad, Cat# 12003154). Scanned images were cropped using
Adobe Photoshop. Uncropped immunoblots are presented in Supplementary
Fig. 8.

Phosphoproteomics—protein lysis and digestion. For each sample (n= 5 per
group), 20 mg of frozen heart tissue powder (corresponding to an approximate
protein amount of 1 mg) were lysed, reduced, and alkylated in lysis buffer (8M
Urea, 2 mM DTT, 100 uM Orthovanadate, supplemented with 40 mM iodoaceta-
mide (IAA) after half an hour). The samples were then diluted in 50 mM
ammonium bicarbonate to a Urea concentration of 1M. Proteins were digested
overnight at 25 °C with trypsin (Promega) with an enzyme/substrate ratio of 1:250.
After digestion, samples were supplemented with 2 volumes of acetonitrile (ACN)
and 6% trifluoroacetic acid (TFA) and precipitate was eliminated after a 10 min
centrifugation in an Eppendorf centrifuge at 14,000 rpm.

Phosphoproteomics—phosphorylated peptide enrichment. The supernatant
was transferred to Eppendorf tubes containing 10 μL of 5 μm TiO2 beads (Cana-
dian Biosciences) and incubated for 30 min on a rotating wheel. The supernatant
was collected and the TiO2 beads were washed twice with 50% ACN/0.5% TFA in
200 mM NaCl and once with 50% ACN/0.1% formic acid (FA). Phosphopeptides
were eluted with 10% ammonia in 50% ACN. This process was repeated once, to
ensure quantitative phosphopeptide capture. Samples were dried down in a speed
vac, resuspended in 20 μL of 0.1% FA in water and stored frozen, if not processed
immediately.

Phosphoproteomics — Mass Spectrometry: RP-nanoLC-MS/MS. The data
were acquired using an UHPLC Easy nLC 1000 (Thermo Scientific) coupled to an
Orbitrap Q Exactive HF mass spectrometer (Thermo Scientific). 50% of the
phosphopeptide enriched samples were first trapped (Acclaim PepMap 100 C18, 3
μm, 2 cm) before being separated on an analytical column (Acclaim, C18 2 μm,
25 cm). Trapping was performed in solvent A (0.1% FA in water), and the gradient
was as follows: 2-20 % solvent B (0.1% FA in ACN) in 90 min, 20-38 % in 60 min,
38-90% in 10 min, maintained at 90% for 10 min, then, back to 0% solvent B in
10 min. The mass spectrometer was operated in data-dependent mode. Full-scan
MS spectra from m/z 375–1500 were acquired at a resolution of 120,000 at m/z 400
after accumulation to a target value of 5 × 106. Up to 25 most intense precursor
ions were selected for fragmentation. HCD fragmentation was performed at nor-
malized collision energy of 35% after the accumulation to a target value of 1 × 105.
MS/MS was acquired at a resolution of 30,000. A dynamic exclusion was set at
6 seconds.

Phosphoproteomics—Mass spectrometry searches and data analysis. Raw
mass spectrometry data was searched using MaxQuant software (version 1.6.1.0)
allowing for 3 missed trypsin cleavage sites, a fixed carbamidomethyl modification
on cysteine (C) residues, and variable modifications on specified residues,
including: oxidation (M), phosphorylation (S, T, Y), deamidation (N, Q), acet-
ylation (protein N-terminus). First search peptide tolerance was set at 20 ppm and
main search peptide tolerance was set at 4.5 ppm. Protein identification tolerance
was set at a 1% false discovery calculated based on the search of a reverse sequence
decoy database. Second peptide search and matching between run (0.7 min match
time window, 20 min alignment time window) settings were enabled. Phosphor-
ylation site search results (Phospho(STY)Sites.txt) were processed using Perseus
(version 1.6.0.7). MaxQuant label-free intensities were used for quantification of
phosphorylation site data (based on precursor ion intensity) after first filtering to
remove identifications from the reverse database, phosphorylation sites with
localization probability lower than 0.7, and those sites for which quantitative values
were not found in at least 3 samples from at least one experimental group. The
label-free intensities reflect the sum of all peptide intensities attributed to a specific
protein group. There was no imputation of missing values and data were log2
transformed and normalized by width adjustment in Perseus. For this normal-
ization, the first, second and third quartile (q1, q2, q3) are calculated from the

Fig. 6 Characterization of cardiac ErbB2- and ERRα-dependent multi-omics signatures. a Schematic illustration showing the integration of multi-omics
signatures filtered for prioritizing deregulated DCM-causing molecules that are ErbB2- and/or ERRα-dependent. b IPA canonical pathway activity
relationships with the 3 identified multi-omics signatures identified in (a). Pathways with significantly associated activation (z-score ≥ 2) or inhibition (z-
score ≤ −2) states are shown with the relative contribution of each omics layer (phosphoprotein, gene, metabolite) to the predictions. c IPA identified
doxorubicin as an upstream chemical drug with a significant activation score (z-score ≥ 2) uniquely in the ERRα-driven signature identified in (a).
d Schematic illustration showing the integration of multi-omics signatures from doxorubicin-treated animals using publicly available phosphoproteomics39,
transcriptomics40–45, and metabolomics46–54 datasets. e IPA identified ESRRA (ERRα) as a transcriptional regulator with a significant down-regulated
activation score (z-score ≤−2) in the doxorubicin-driven multi-omics signature identified in (d). f IPA attributed a significant down-regulated activation
score (z-score ≤−2) to ESRRA (ERRα) in 7 of 9 doxorubicin-modulated transcriptomes used to construct the multi-omics signature in (d). g Intersection of
the ERRα KO & KI:KO and doxorubicin cardiac multi-omics signatures identified in (a, d) resulted in 89 commonly deregulated molecules, mainly down-
regulated and most largely associated with lipid metabolism. See also Supplementary Fig. 7.
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distribution of all values. The second quartile (which is the median) is subtracted
from each value to center the distribution. Then we divide by the width in an
asymmetric way. All values that are positive after subtraction of the median are
divided by q3 - q2 while all negative values are divided by q2 - q1. Significant
deregulated phosphopeptides between groups were determined using the limma77

R/bioconductor package (p < 0.05) and 1.5 linear fold changes as the cut-offs. False
discovery rates were estimated for each comparison using Benjamini–Hochberg
adjusted p-values. Volcano plots and heatmap were generated using GraphPad
Prism (version 9) and Morpheus (https://software.broadinstitute.org/morpheus/),
respectively. For the latter, unsupervised hierarchical clustering was performed
using Euclidean distance measure and average linkage. Principal component ana-
lysis (PCA) was performed using Phantasus version 1.11.0 (https://artyomovlab.
wustl.edu/phantasus/) with the total list of 709 differentially expressed phospho-
peptides as input identified across all 3 models relative to WT controls. Normalized
quantitative values and group comparisons of phosphoproteomics data are sum-
marized in Supplementary Data 1. Raw MS phosphoproteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE78 partner repository
with the dataset identifier PXD032766.

Phosphopeptides significantly altered in the genetic mouse models relative to
WT were searched for consensus motifs in 13-mer pSer and pThr sequences
separately using PHOSIDA79, iceLogo80, and MoMo27 algorithms after filtering to
remove duplicates due to multiplicity effect and ambiguous identifications. For
PHOSIDA, the De Novo Motif Finder tool was used with default parameters
(minimum score = 15, which denotes a cutoff p-value 10-15, and minimum
proportion of matching sites = 5%). For iceLogo, a mouse precompiled Swiss-Prot
composition was used as the reference set with a percentage scoring method and
cutoff p-value 0.05. For MoMo (version 5.4.1), the analysis was based on the Motif-
x28 algorithm using a shuffled peptide mix from the foreground sequences as the
background, minimum occurrence threshold of 5%, and cutoff p-value 1−6.
Kinases predicted to target the significantly enriched phosphomotifs were
determined using the PhosphoMotif Finder tool29 (http://www.hprd.org/
PhosphoMotif_finder).

KEA230 (https://www.maayanlab.net/KEA2/) analysis of significant
differentially phosphorylated phosphosites between groups served to identify
enriched biological terms. As this software tool was limited to human phosphosite
data, the altered mouse phosphosites were first mapped to human (Supplementary
Data 1). IPA (Qiagen, Spring release version 2022) analysis using genes mapped to
significant DEPPs between groups was used to identify enriched canonical
pathways. GO Cellular Component (2018) enrichment analysis of genes mapped to
significant DEPPs between groups was performed using the gene set search engine
Enrichr81 (https://maayanlab.cloud/Enrichr/).

RNA isolation, reverse transcription and RT-qPCR. Total RNA was extracted
from mouse hearts using the RNeasy Fibrous Tissue Mini Kit (Qiagen, Cat#
74704). cDNA was made from 1 μg of RNA by reverse transcription with Random
Primer Mix, dNTPs, 5X ProtoScript II RT Reaction buffer, DTT, RNAse inhibitor
and ProtoScript II Reverse Transcriptase (NEB). cDNA was amplified by RT-qPCR
using SYBR Green Master Mix (Roche) and a LightCycler 480 instrument (Roche)
with specific primers listed in Supplementary Data 6. Relative expression was
normalized to Rplp0 levels.

Microarray and transcriptome analysis. Mouse heart microarray analyses were
performed at the McGill University Génome Québec Innovation Centre. Samples
were run on Affymetrix Genechip Mouse gene 2.0 ST arrays following Affymetrix’s
standard procedures (n= 3 per group). Microarray data have been deposited in the
NCBI Gene Expression Omnibus (GEO) under accession number GSE199150. The
data were analyzed using Expression Console (version 1.4.1) and Transcriptome
Analysis Console (TAC, version 3.0) software (Affymetrix, Inc.). Significant DEGs
between groups were determined by one-way ANOVA (p < 0.05) and 1.2 linear
fold changes as the cut-offs (Supplementary Data 2). Unsupervised hierarchical
clustering heatmap of DEGs using RMA expression values was generated using
Morpheus with Euclidean distance measure and average linkage (https://software.
broadinstitute.org/morpheus/). Matrisome genes, encoding ECM and ECM-
associated proteins, were retrieved from the matrisome project82 web platform
(http://matrisomeproject.mit.edu) to generate heatmaps by Morpheus of matri-
some DEGs using RMA expression values.

Functional enrichment analysis of DEGs was performed using Gene Set
Enrichment Analysis (GSEA, https://www.gsea-msigdb.org/gsea/index.jsp) to
identify enriched hallmark signatures within the Molecular Signature Database
(MSigDB, version 5.2), IPA (Qiagen, Spring release version 2022) to identify
enriched cardiac-related toxicological functions, and Enrichr81 (https://maayanlab.
cloud/Enrichr/) to identify enriched GO Cellular Components (2018).

The transcriptome-based metabolic network clustering analysis was done as
described previously34,35. Briefly, similar to GAM metabolic network analysis33, a
metabolic network (graph) of reactions from KEGG database is considered. In the
graph, the method tries to find a set of connected subgraphs (metabolic modules),
with each corresponding well to a certain gene expression pattern. The initial
patterns are defined using k-means clustering on gene expression matrix and then
are refined in an iterative process using the network connections. Each derived
metabolic module is presented as a graph that has vertices corresponding to

metabolites and the edges corresponding to the reactions with the expressed genes.
Edge color represents the correlation score for a given DEG-encoding enzyme
(green – lower correlation, red – higher correlation). Edge label size and width
increase proportionally with the correlation score. Metabolic pathways associated
with DEGs found within each metabolic module were determined by KEGG and
REACTOME pathway enrichment analyses.

Metabolomics—sample preparation. Hearts were isolated from 15-week-old
male WT, ErbB2 KI, ERRα KO, and KI:KO mice, washed in ice-cold PBS, and
quickly flash-frozen in liquid nitrogen. Frozen whole mouse hearts (n= 8 per
group) were submitted to Metabolon Inc. (Durham, NC, USA) for sample pre-
paration and global cardiac metabolomics profiling analysis. Samples were pre-
pared using the automated MicroLab STAR® system from Hamilton Company.
Several recovery standards were added prior to the first step in the extraction
process for QC purposes. To remove protein, dissociate small molecules bound to
protein or trapped in the precipitated protein matrix, and to recover chemically
diverse metabolites, proteins were precipitated with methanol under vigorous
shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation. The
resulting extract was divided into five fractions: two for analysis by two separate
reverse phase (RP)/ultrahigh performance (UP)LC-MS/MS methods with positive
ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with
negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion
mode ESI, and one sample was reserved for backup. Samples were placed briefly on
a TurboVap® (Zymark) to remove the organic solvent and stored overnight under
nitrogen before preparation for analysis.

Metabolomics—quality controls. Several types of controls were analyzed in
concert with the experimental samples: a pooled matrix sample generated by taking
a small volume of each experimental sample (or alternatively, use of a pool of well-
characterized human plasma) served as a technical replicate throughout the dataset;
extracted water samples served as process blanks; and a cocktail of QC standards
that were carefully chosen not to interfere with the measurement of endogenous
compounds were spiked into every analyzed sample, allowed instrument perfor-
mance monitoring and aided chromatographic alignment. Instrument variability
was determined by calculating the median relative standard deviation (RSD) for the
standards that were added to each sample prior to injection into the mass spec-
trometers. Overall process variability was determined by calculating the median
RSD for all endogenous metabolites (i.e., non-instrument standards) present in
100% of the pooled matrix samples. Experimental samples were randomized across
the platform run with QC samples spaced evenly among the injections.

Metabolomics—UPLC-MS/MS. All methods utilized a Waters ACQUITY ultra-
performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive
high resolution/accurate mass spectrometer interfaced with a heated electrospray
ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass
resolution. The sample extract was dried then reconstituted in solvents compatible
to each of the four methods. Each reconstitution solvent contained a series of
standards at fixed concentrations to ensure injection and chromatographic con-
sistency. Method 1/Pos 1: One aliquot was analyzed using acidic positive ion
conditions, chromatographically optimized for more hydrophilic compounds. In
this method, the extract was gradient-eluted from a C18 column (Waters UPLC
BEH C18-2.1×100 mm, 1.7 µm) using water and methanol, containing 0.05%
perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Method 2/Pos 2: A
second aliquot was also analyzed using acidic positive ion conditions; however, it
was chromatographically optimized for more hydrophobic compounds. In this
method, the extract was gradient-eluted from the same aforementioned C18 col-
umn using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA, and was
operated at an overall higher organic content. Method 3/Neg 1: A third aliquot was
analyzed using basic negative ion optimized conditions using a separate dedicated
C18 column. The basic extracts were gradient-eluted from the column using
methanol and water, however with 6.5 mM Ammonium Bicarbonate at pH 8.
Method 4/Neg 2: The fourth aliquot was analyzed via negative ionization following
elution from a HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm)
using a gradient consisting of water and acetonitrile with 10 mM Ammonium
Formate, pH 10.8. The MS analysis alternated between MS and data-dependent
MSn scans using dynamic exclusion. The scan range varied slightly between
methods but covered 70-1000 m/z.

Metabolomics—data extraction and compound identification. Raw data were
extracted, peak-identified, and QC processed using Metabolon’s hardware and
software. These systems are built on a web-service platform utilizing Micro-
soft’s.NET technologies, which run on high-performance application servers and
fiber-channel storage arrays in clusters to provide active failover and load-
balancing. Peaks were quantified using area-under-the-curve. Compounds were
identified by comparison to library entries of purified standards or recurrent
unknown entities. Metabolon maintains a library based on authenticated standards
that contains the retention time/index (RI), mass to charge ratio (m/z), and
chromatographic data (including MS/MS spectral data) on all molecules present in
the library. Furthermore, biochemical identifications are based on three criteria:
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retention index within a narrow RI window of the proposed identification, accurate
mass match to the library ±10 ppm, and the MS/MS forward and reverse scores
between the experimental data and authentic standards. The MS/MS scores are
based on a comparison of the ions present in the experimental spectrum to the ions
present in the library spectrum. While there may be similarities between these
molecules based on one of these factors, the use of all three data points can be
utilized to distinguish and differentiate biochemicals. More than 3300 commer-
cially available purified standard compounds had been acquired and registered into
a Laboratory Information Management System (LIMS) for analysis on all platforms
for determination of their analytical characteristics. Additional mass spectral
entries have been created for structurally unnamed biochemicals, which have been
identified by virtue of their recurrent nature (both chromatographic and mass
spectral). These compounds have the potential to be identified by future acquisition
of a matching purified standard or by classical structural analysis.

A variety of curation procedures were carried out to ensure that a high-quality
dataset was made available for statistical analysis and data interpretation. The QC
and curation processes were designed to ensure accurate and consistent
identification of true chemical entities, and to remove those representing system
artifacts, mis-assignments, and background noise. Metabolon data analysts use
proprietary visualization and interpretation software to confirm the consistency of
peak identification among the various samples. Library matches for each
compound were checked for each sample and corrected if necessary. Raw LC/MS
metabolomics data have been deposited to the EMBL-EBI metabolomics
repository, MetaboLights83, with the dataset identifier MTBLS795.

Metabolomics—data analysis. For each of the 571 biochemicals identified with
known identity across the mouse models, metabolite values expressed as raw area
counts were rescaled to set the median equal to 1 and missing values were imputed
with the minimum. Significant DEMs between groups were determined by one-way
ANOVA contrasts (p < 0.05). False discovery rates were estimated for each com-
parison using the q-value method of Storey and Tibshirani84. Metabolomics data
are summarized in Supplementary Data 3 with metabolites associated to 8 Super
Pathways (amino acid, carbohydrate, cofactors/vitamins, energy, lipid, nucleotide,
peptide, and xenobiotics).

Unsupervised hierarchical clustering heatmap generation using Euclidean
distance and average linkage, supervised clustering using partial least squares-
discriminant analysis (PLS-DA) and Random Forest classification of groups were
performed with the statistical analysis module of MetaboAnalyst (version 5.0)
using DEMs mapped (352 of 383) in the software tool. All other heatmaps of
selected biochemical classes were generated with MetaboAnalyst.

Integrated Omics Analysis. Significant differentially expressed phosphosites,
genes, and metabolites identified in ErbB2 KI, ERRα KO and KI:KO versus WT
controls were first compiled (Supplementary Data 1–3). As loss of ErbB2 and ERRα
independently contributed to the increased severity of DCM in KI:KO mice, bio-
molecules altered in ErbB2 KI and ERRα KO mice and commonly found modu-
lated in KI:KO hearts were considered causal. Accordingly, integrated signatures
from ErbB2 KI or ERRα KO hearts were filtered to contain only deregulated
molecules commonly found in KI:KO hearts. Also, a third integrated signature
found only in KI:KO hearts that necessitated the combined loss of both ErbB2 and
ERRα was created. The ErbB2-, ERRα-, and ErbB2/ERRα-dependent integrated
omics signatures are summarized in Supplementary Data 4. IPA (Qiagen, Spring
release version 2022) analysis of these signatures was used to identify enriched and
predicted activity states of canonical pathways (Supplementary Data 4) and
upstream regulator analysis for doxorubicin activity prediction. Significant activity
scores were considered as follows: activation, z-score ≥ 2; repression, z-score ≤−2.
Identifiers used for IPA analysis of the multi-omics signatures, DEGs identified by
microarray analysis were mapped using Affymetrix IDs, DEMs identified by
metabolomics were mapped using HMBD or CAS IDs, and DEPPs were mapped
using UniProt IDs.

A cardiac doxorubicin multi-omics signature comprised of 724 molecules was
created using available public datasets of differentially expressed phosphosites, genes,
and metabolites limited to in vivo studies meeting specific inclusion criteria and
summarized in Supplementary Data 5. Our search found 1 phosphoproteomics39

investigation in doxorubicin-treated rats, however, due to technical limitations of the
study, only 4 of 27 candidate altered phosphosites (p < 0.05) were included given their
exact identification of the phosphorylated residue by MS or immunoblot validation.
Transcriptomics studies with ≥ 500 identified DEGs (p < 0.05, |FC| ≥ 1.2) were
considered. DEGs identified from 9 transcriptome datasets from 6 independent40–45

studies on doxorubicin-treated animals (studies: rats n= 4; mice n= 5) were
integrated together. DEGs with inconsistent directional changes within or across the
datasets were removed and only filtered DEGs with consistent deregulations in 5 of 9
datasets were retained resulting in 650 genes. Metabolomics studies involving
detection of ≥5 metabolites were considered. DEMs (p < 0.05) identified from 9
independent metabolomics46–54 studies in doxorubicin-treated animals (studies: rats
n= 7; mice n= 2) were integrated together. Non-specific metabolite determinations
(mixtures) were disregarded and a total of 23 metabolites (Alanine, AMP, Arginine,
Fumarate, Hexanolycarnitine, Histidine, Isoleucine, Lactate, Leucine, Lysine, Malate,
N-delta-acetylornithine, Nicotinamide, Ornithine, Palmitate, Phenylalanine, Proline,

Serine, Serotonin, Stearate, Threonine, Tyrosine, and Valine) with inconsistent
directional changes across the datasets were removed resulting in 70 DEMs.
Noteworthy, the number of reliably perturbed metabolites by doxorubicin is likely
higher given that most of the metabolomics studies employed targeted approaches.
IPA (Qiagen, Spring release version 2022) analysis of the doxorubicin multi-omics
signature was used to identify enriched and predicted activity states of canonical
pathways (Supplementary Data 5) and upstream regulators (transcription factors/
nuclear receptors). Significant activity scores were considered as follows: activation,
z-score ≥ 2; repression, z-score ≤−2. Identifiers used for IPA analysis of the multi-
omics signature, DEGs identified by mouse/rat microarray analyses were mapped
using gene symbols, DEMs identified by metabolomics were mapped using HMBD or
CAS IDs, and DEPPs were mapped using UniProt IDs.

Statistics and reproducibility. Data are presented as means ± SEM unless
otherwise stated in the legends. For experimental group comparisons, statistical
analyses were performed using limma or ANOVA with statistical significance
defined as *p < 0.05. The number of biological replicates “n” define the number of
individual mouse samples used per group/genotype for each experiment as indicted
in the legends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
• Phosphoproteomics data have been deposited to the ProteomeXchange Consortium via
the PRIDE78 partner repository with the dataset identifier PXD032766. Microarray data
have been deposited in the NCBI Gene Expression Omnibus (GEO) under accession
number GSE199150. Metabolomics data have been deposited to the EMBL-EBI
metabolomics repository, MetaboLights83, with the dataset identifier MTBLS795. All
omics datasets involving doxorubicin studies in mice or rats analyzed in the current
study are publicly available and summarized in Supplementary Data 5.
• This paper does not report original code.
• Source data underlying the graphs are presented in Supplementary Data 7. Uncropped
immunoblots are shown in Supplementary Fig. 8. Any additional information required to
reanalyze the data reported in this paper is available from the lead contact upon request.
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