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Improved immunoassay sensitivity and spe-
cificity using single-molecule colocalization

Amani A. Hariri1,6, Sharon S. Newman 2,3,6, Steven Tan4,6, Dan Mamerow1,
Alexandra M. Adams4, Nicolò Maganzini3, Brian L. Zhong 4,
Michael Eisenstein1,3, Alexander R. Dunn 4,7 & H. Tom Soh 1,3,5,7

Enzyme-linked immunosorbent assays (ELISAs) are a cornerstone of modern
molecular detection, but the technique still faces notable challenges. One of
the biggest problems is discriminating true signal generated by target mole-
cules versus non-specific background. Here, we developed a Single-Molecule
ColocalizationAssay (SiMCA) that overcomes this problemby employing total
internal reflection fluorescence microscopy to quantify target proteins based
on the colocalization of fluorescent signal from orthogonally labeled capture
and detection antibodies. By specifically counting colocalized signals, we can
eliminate the effects of background produced by non-specific binding of
detection antibodies. Using TNF-α, we show that SiMCA achieves a three-fold
lower limit of detection compared to conventional single-color assays and
exhibits consistent performance for assays performed in complex specimens
such as serum and blood. Our results help define the pernicious effects of non-
specific background in immunoassays and demonstrate the diagnostic gains
that can be achieved by eliminating those effects.

Even after nearly 50 years, the enzyme-linked immunosorbent assay
(ELISA) remains an essential tool for the detection of protein bio-
markers for both basic research and clinical diagnostics1,2. The ELISA
has changed relatively little since its inception in 1971—two different
antibodies are used to capture and label the target in a “sandwich”
format that generates a signal only when both the capture antibody
(cAb) and detection antibody (dAb) are bound to the target1. This dual-
binding requirement confers excellent specificity, but ELISAs remain
vulnerable to background signal arising from non-specific binding of
antibodies or interferent proteins to the assay substrate2. Unwanted
background binding can be mitigated to some extent through the use
of more stringent wash conditions, blocking of exposed assay sub-
strate surfaces, or careful management of the amount of dAb3–5.
However, these solutions entail trade-offs in terms of assay perfor-
mance. For example, overly stringent washing can undermine assay
sensitivity by causing loss of signal, while the use of insufficient dAb

concentrations will undermine the assay’s ability to accurately resolve
target concentrations6,7.

Consequently, ELISA-based molecular detection is limited by the
challenge of discriminating true target-binding events from non-
specific background. Researchers have devised a number of different
strategies to overcome this difficult problem8–13. For example, Cha-
terjee et al. developed a ‘kinetic fingerprinting’ assay for the detection
of individual surface-immobilized proteinmolecules14. Their approach
combines a conventional cAb with a Fab antibody fragment probe for
detection15. In vitro selection is used to isolate probes that exhibit
sufficiently fast dissociation kinetics to achieve rapid, repetitive bind-
ing to their target, enabling discrimination of true target recognition
events from non-specific background. This technique offers excep-
tional sensitivity in serum, but only a limited number of probes are
currently available and the process of generating novel Fab probes
remains challenging and resource-intensive. Zhang et al. reported the
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use of aptamers for the detection of small-molecule analytes16,17. By
splitting an aptamer that binds to ATP and labeling each fragmentwith
differently colored fluorophores, they were able to develop an assay
that reports binding only when the two fluorophores are in proximity
to each other, and thus eliminates background from non-specific
binding events. This method is limited by the need for split-aptamer
probes that can bind to a target analyte with high affinity and specifi-
city. These reagents remain challenging to engineer, and only a small
number of such probes have been described in the literature. Fur-
thermore, this approach has only been applied to small-molecule
detection, and it remains unclear how well such an assay would per-
form with protein targets.

In this work, we describe a two-color sandwich immunoassay
that discriminates between specific and non-specific binding and can
be applied to a wide range of protein analytes. Single-Molecule
ColocalizationAssay (SiMCA) employs cAbs and dAbs that have been
labeled with distinct fluorophores. The sample is imaged with total
internal reflection fluorescence (TIRF) microscopy at sufficiently low
concentrations of cAb and dAb such that single molecules of each
species can be readily imaged (Fig. 1a). By discarding dAb molecules
that are not colocalized with a cAb counterpart, we can greatly
decrease the background signal due to non-specific binding, result-
ing in an improved signal-to-noise ratio, decreased limit of detection
(LOD), and increased accuracy for analyte calibration curves. In
addition to non-specific dAb binding, heterogeneous cAb surface
loading can also contribute substantially to assay variability. Single-
molecule imaging allowed us to normalize dAb counts to the counts
of cAb for every field of view, thus overcoming this heterogeneity
problem. This approach results in far greater sensitivity and con-
sistency of signal across experiments, even in environments with
high background. For example, we demonstrated SiMCA with a pair
of well-characterized tumor necrosis factor α (TNF-α) antibodies and
showed that we could achieve a three-fold lower LOD in serum
relative to a non-colocalization-based assay using the same anti-
bodies (7.6 ± 1.9 pM versus 26 ± 5.8 pM). Furthermore, our measure-
ments remained consistent whether the assay was performed in
buffer, 70% chicken serum, or 70% whole human blood. Collectively,
these results demonstrate that SiMCA can overcome the sensitivity
and reproducibility limitations imposed by non-specific binding,

enabling accurate detection of picomolar concentrations of protein
even in highly complex biological matrices.

Results
Overview of SiMCA
SiMCA is a sandwich-based assay in which cAbs and dAbs are each
conjugated to a distinct fluorophore tag, and true binding events are
indicated only when both fluorescent signals are colocalized (Fig. 1a).
As a demonstration, we employed a pair of antibodies that specifically
recognize the inflammatory cytokine TNF-α. We labeled the cAbwith a
green fluorophore (Alexa-546), and site-specifically tagged the anti-
body with biotin so that it can be immobilized onto a neutravidin-
coated surface while ensuring that the antigen-binding domain is
appropriately oriented for target binding. The dAb was labeled with a
red fluorophore (Alexa-647) (see Methods, Supplementary Fig. 1).

For the assay substrate, we passivated a coverslip with a mixture
of PEG and PEG-biotin18 tominimize non-specific binding events and to
specifically immobilize the biotinylated cAbs via neutravidin-biotin
binding. We then incubated the coverslip with a mixture of TNF-α and
the dAb and employed a custom two-color TIRFmicroscope to acquire
images via sequential excitation of the green and red dyes with 532-
and 635-nm lasers, respectively. Unbound cAbs are detected solely in
the green channel, while dAbs that are non-specifically bound to the
substrate are registered only in the red channel (Fig. 1b). In contrast,
true binding events give rise to a ternary sandwich complex, resulting
in colocalized red and green signals. We used an automated method
for image segmentation and registration to count the single-color dAb
signals and colocalized binding events in a high-throughput manner
across many fields of view (FOVs) per coverslip.

SiMCA mitigates non-specific binding and improves
reproducibility
It is well known that the use of excess concentrations of dAb in an
ELISA can contribute greatly to non-specific binding6,19. Decreasing the
level of dAb employed can mitigate this problem, but at the cost of
reduced sensitivity due to loss of signal. SiMCA provides the oppor-
tunity to measure the extent of non-specific binding and its impact in
terms of background signal, as well as the means to remedy that
problem. We first assessed the extent of non-specific binding that

Fig. 1 | SiMCA platform design. a A glass coverslip is passivated with a mixture of
PEG and PEG-biotin, and then treated with neutravidin and biotinylated, Alexa-546-
tagged capture antibodies (cAbs). The surface is then incubated with a solution of
the target biomolecule and Alexa-647-labeled detection antibody (dAb). The

coverslip is imaged using two-color TIRFmicroscopy. b Images of the cAb and dAb
channels are acquired, registered, and analyzed to discriminate non-specific dAb
binding (1) and unbound cAbs (2) from true binding events (3). Scale bar = 10 µm.
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occurs at various concentrations of dAb in the absence of TNF-α. We
incubated cAb-coated coverslips overnight with either low (50nM) or
high (500 nM) concentrations of dAb, washed the coverslips to
remove any unbound dAb, and then acquired 128 (51.2 µm×25.6 µm)
FOVs for each coverslip.

A randomly selected small section of a single FOV showsminimal
dAb recruited to the coverslip at 50 nM dAb (Fig. 2a, left). In contrast,
at 500nM dAb, we saw a substantial increase in dAb counts. As there
was no TNF-α present, these counts solely represent non-specific
binding events. As expected, when we overlaid the two fluorescence
channels, most dAb spots did not colocalize with a cAb (Fig. 2a, mid-
dle). For visualization, we inverted the color scale, such that over-
lapping cAb and dAb spots appear as black spots (Fig. 2a, bottom). Any
dAb spots that were not spatially overlaid with a cAb are non-specific
binding events that would, with conventional methods, be mistakenly
counted as a binding event (Supplementary Figs. 2–4). Quantifying the
total number of dAbs measured versus the number that colocalized
with a cAb across all 128 FOVs of each coverslip revealed that coloca-
lization could eliminate virtually all of these spurious binding events
(Fig. 2b; Supplementary Fig. 5). Measured using a single color, mean
dAb counts increased from 0.4 ± 0.6 molecules per FOV at 50nM dAb
to 92 ± 23 molecules at 500nM dAb. In contrast, colocalized dAb and
cAb counts were essentially unchanged, increasing only slightly from
0±0.0molecules at low [dAb] to 2 ± 1.3molecules at high [dAb]. These
results demonstrate that the SiMCA two-color localization strategy can
greatly mitigate the effects of non-specific binding.

The vulnerability of single-color methods to non-specific back-
ground is further exacerbated by coverslip heterogeneity, wherein
the stochastic distribution of cAb on the surface may lead to dis-
crepancies in the number of colocalized pairs observed with identi-
cally prepared coverslips and samples. To explore this effect, we
incubated multiple coverslips functionalized with cAb with varying
levels of TNF-α (0, 100, and 300 pM) and 50nM dAb. Quantifying the

absolute numbers of dAb counts per FOV across coverslips resulted
in a high coefficient of variance (CV) at 100 pM TNF-α (Fig. 2c, left),
whereas counting only colocalized events resulted in slightly lower
CVs due to reduced background (Supplementary Fig. 6). This modest
reduction is attributable to the fact that cAb counts varied con-
siderably both across multiple FOVs within a single coverslip as well
as across coverslips (Supplementary Fig. 7). To account for this
heterogeneity, we normalized the colocalized dAb counts by the cAb
counts in each FOV, where a normalized count of 1 is the theoretical
maximum binding and 0 is the theoretical minimum. This normal-
ization greatly decreased the signal variance, with a notable 4.8-fold
reduction in CV for the 100pM coverslips (Fig. 2c, right). At 300pM
TNF-α, the fractional contribution of background dAb signal is
expected to be reduced due to the increased number of true binding
events. As such, absolute dAb counts and colocalized and normalized
counts yielded comparable CVs (Fig. 2c). Since combining colocali-
zation and normalization produces a substantial increase in signal
consistency in high-background conditions as well as across cover-
slips, we have used this analytical approach for the subsequent
SiMCA analyses presented below. To prove the general applicability
of the SiMCA method, we functionalized a cAb/dAb pair targeting
monocyte chemoattractant protein-1 (MCP-1) using the same com-
mercially available fluorophore and biotin kits (See Methods and
Supplementary Fig. 8). As with TNF-α, we again demonstrated the
capability of SiMCA to eliminate the confounding effects of back-
ground produced by non-specific binding of detection antibodies,
and greatly improve the reproducibility of our measurements while
achieving a pM detection limit.

SiMCA lowers quantification errors in buffer and serum
Biological specimens such as serum and blood can generate especially
high levels of non-specific background due to interferent proteins
exhibiting cross-reactivity to dAbs or binding to the assay substrate

Fig. 2 | Colocalization minimizes background from excess detection antibody.
a Single-color fluorescence images of dAb only (top), two-color images of cAb and
dAb (middle), and log-scale inverted composite images of two-color detection
(bottom) in the absence of TNF-α andwith 50nM (left) or 500nM (right) dAb. Dark
spots in the bottompanels represent colocalized signal from the two fluorophores.
b Distributions of absolute single-color and colocalized counts across 16 fields of

view (FOVs). Dashed lines demarcate quartiles of the distribution. c Absolute
number of dAbs per fields of view (left) and normalized, colocalized counts (right)
across different coverslips and TNF-α concentrations. Each violin represents 16
FOVs of a coverslip. Numbers are the coefficients of variance (CV) of themean FOV
counts across coverslips.
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itself. We evaluated how interfering species might impact the quanti-
tative performance and precision of SiMCA versus a conventional
single-color assay by comparing single-color and colocalization
methods when generating calibration curves for 0–20nM TNF-α in
buffer and 70% chicken serum (Fig. 3a). We used chicken serum to
mimic the complexity of human serum without interference from
endogenous human TNF-α20.

In an ELISA, quantification is achieved by fitting a Langmuir iso-
therm to data from samples spiked with known amounts of target
using two fit parameters: an equilibriumdissociation constant (KD) and
the maximum specific binding (Bmax). These parameters and their
associated uncertainties are used to estimate the concentration of an
unknown sample within a certain confidence interval. High confidence
is gained when calibration curves have tight parameter fits that are
unaffected by the sample matrix. Tighter parameter fits and lower
background signal additionally lead to improved ability to resolve
lower analyte concentrations, resulting in a lower LOD.

Using absolute dAb counts in buffer, we derived a KD of
404 ± 35 pM and a Bmax of 645 ± 16 counts (Fig. 3b). In serum, the same
analysis yielded markedly different KD and Bmax values of 649 ± 17 pM
and 446 ± 3.4 counts, respectively. The LOD also increased three-fold,
from 6.6 ± 1.4 pM in buffer to 19.4 ± 4 pM in serum. Surprisingly, the
CVs for these parameters were significantly lower in serum than in
buffer. Consistent with observations from individual FOVs and cover-
slips, normalization to cAb counts rectifies this discrepancy, under-
lining the importance of coverslip-to-coverslip variation as a source of
error if left uncorrected. Combining colocalization and normalization
yielded narrower confidence envelopes as well as parameter fits for KD

and Bmax that were virtually identical in serum and buffer (Fig. 3c). In
addition, we observed CVs that were 2.8–6.3-fold lower for the fitted
parameters relative to values derived from absolute dAb counts, and
these were roughly equivalent for serum and buffer experiments (see
Supplementary Table 1). We also achieved a lower LOD in serum of
7.6 ± 2.0 pM, versus 19.4 ± 4 pM for the single-color measurement.

Buffer, Colocalized fit:

Serum, Colocalized fit:
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Fig. 3 | Quantification of TNF-α via single- and two-color analysis in buffer and
70% chicken serum. a Single-color (top) and colocalized (middle, bottom) signal
for increasing concentrations of TNF-α spiked into 70% chicken serum with 50 nM
dAb. Best-fit TNF-α binding curves for (b) absolute dAb counts and (c) normalized,
colocalized counts in buffer and 70% chicken serum. 2σ confidence curves are

shaded. Summary of primary data represented as vertical bars spanning 1σ from
mean. For primary data, please see Supplementary Fig. 9. d Bootstrapped mean
absolute percent error in TNF-α quantification for buffer and serum for absolute
versus normalized, colocalized dAb counts. All distributions are from 128 FOVs
collected from two coverslips per condition.
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To estimate errors and the associated confidence in the quantifi-
cation of unknown TNF-α concentrations, we implemented a boot-
strapping approach using the above calibration data in buffer and
serum (see Methods). Briefly, we used a subset of the data from each
serum and buffer calibration as a training set, with the remaining data
used as the test set. Using only the training dataset, we calculated new
KD and Bmax parameter fits. We then used these fit parameters to pre-
dict sample concentrations for the test data set. The mean error was
then calculated from the predicted versus true concentrations for the
test set. We then repeated the process of splitting, fitting, testing, and
calculating errors 1000 times to obtain confidence intervals in the
errors (see Methods). As shown in Fig. 3d, normalized and colocalized
dAb data reduced errors relative to single-color dAb counts by 2.5-fold
and 1.5-fold for buffer and serum respectively (see Supplementary
Table 2). Notably, the errors with colocalization remained similar in
buffer and serum.

SiMCA lowers false-positive rates in complex samples
Finally, we set out to quantitively evaluate the diagnostic sensitivity
and specificity of the single-color versus the two-color colocalization
approach in a series of assays performed with low concentrations of
TNF-α (0, 10, and 100 pM) spiked into either 70% chicken serum or
70% human blood. For reference, physiological concentrations of
TNF-α range from 4 pM at baseline21 to a mean of 40 pM and up to
300pM for patients developing septic shock22. In our experiment,
absolute dAb counts varied widely in both serum and blood, with
some distributions heavily skewed with long tails or even bimodal—
this reflects the inherent heterogeneity of the coverslips, as dis-
cussed above. In contrast, normalized, colocalized counts were
markedly more consistent across buffer, serum, and blood (see
Supplementary Fig. 10).

To evaluate the usefulness of colocalization and normalization in
the context of a potential clinical application (i.e., detection of TNF-α),
we conducted separate binary classifications between distributions
withTNF-α and the control distributionwithoutTNF-α. This enabledus
to characterize the trade-off between true positive rates (TPR, or
sensitivity) and false-positive rates (FPR, or 1—specificity) via receiver
operating characteristic (ROC) curves. For reference, an ideal assay
with little to no overlap between the target and control distributions
would achieve high TPR with a low FPR—approaching perfect dis-
crimination in the upper left corner (TPR = 1, FPR =0). An assay with

poor discrimination (i.e., producing similar distributions for both
classes) would have an ROC curve closer to the diagonal (dotted line in
Fig. 4a), equivalent to random guessing.

At 10 pM TNF-α, the ROC curves for the absolute dAb counts and
colocalized, normalizedmethods were similar for samples prepared in
buffer (Fig. 4a).However, the colocalized, normalizeddatawere clearly
superior to those from absolute dAb counts in 70% serum or whole
blood, particularly at lower FPRs, further highlighting the inability of
single-color methods to distinguish false positives resulting from
background dAb binding and coverslip variability (Fig. 4a; Supple-
mentary Fig. 10). In addition, the colocalized, normalized ROC curves
were largely identical across buffer, serum, and whole blood (Fig. 4a).
To quantitatively compare the ROC curves across samplematrices and
TNF-α concentrations, we calculated the area under the curve (AUC)
(Fig. 4b). Increased TNF-α concentrations yielded an appreciable
increase in AUC, as would be expected when distributions are being
pushed further apart by increased numbers of true binding events.
However, AUC values calculated from the single-color dAb counts
were significantly lower than those derived from colocalized, nor-
malized counts in both serum and blood. This difference is particularly
apparent at 10pMTNF-α, where non-specific recruitment of dAb to the
coverslip surface accounts for a considerable fraction of total counts.
In summary, SiMCA achieved consistent and accurate analyte detec-
tion that was robust against background signal arising from complex
biological specimens compared to a conventional single-color
approach.

Discussion
In this work, we demonstrate that SiMCA can overcome the con-
founding effects of non-specific background to enable accurate, sen-
sitive, and reproducible detection of picomolar protein
concentrations even in highly complex samplematrices. We evaluated
SiMCA using well-characterized, commercially available TNF-α anti-
bodies, and found that the use of colocalization and normalization
reduced variability and achieved a more consistent signal across cov-
erslips, yielding CVs that were 2.8–6.3-fold lower than those derived
based on absolute, single-color dAb counts. Our approach also pro-
duced quantification values that remained consistent in different
sample matrices, with narrower confidence envelopes, more con-
sistent parameter fits between serum and buffer, and a consistently
lower LODeven in complex samples suchas chicken serumandhuman

Fig. 4 | DiscriminatingTNF-α concentrations using single-color and colocalized
methods in buffer, 70% chicken serum, and 70% human blood. a Bootstrapped
ROC curves frombinary classification between 10 pMTNF-α distributions and TNF-
α-free negative controls in buffer (left), 70% chicken serum (middle), and 70%
human blood (right). Dotted lines indicate random guess. Raw data in SI Fig. S9.

b Area under the ROC curve values from binary classification for 0, 10, and 100pM
TNF-α with 1000 bootstrapped samples. Dashed lines demarcate quartiles of the
distribution. All distributions are from 128 FOVs collected from two coverslips per
condition.
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blood. Thus, our technique provides a generalizable way to achieve
more robust immunoassay performance.

As with any assay, SiMCA does suffer from some limitations. At
present, SiMCA requires relatively expensive microscopy equipment
that can achieve single-molecule sensitivity. Extending the benefits of
SiMCA to lower-resource environments would require strategies to
boost the fluorescence signal to levels that can be detected by
smartphone cameras23—for example, by using fluorescent nano-
particles that emit a substantially brighter signal, or fluorescence-
enhancing materials24 that maximize the output from individual
fluorophores.

Our focus in this work was to understand and reduce general
sources of error in immunoassays, rather than to demonstrate sensi-
tivity that outperforms existing molecular detection assays. We note
that in theory the sensitivity of SiMCA is limited primarily by the
number of dAbs and cAbs counted, as well as the accuracy with which
colocalization is determined. The former quantity can be addressed
simply by scanning larger FOVs on the coverslip; in the present study,
we examined only 0.5% of the flow cell surface. In our current set-up,
the EMCCD camera’s field of view was adjusted to split the channels to
show parallel images for single-molecule Förster resonance energy
transfer (FRET) experiments (described below). Scanning larger areas
is also possible but may impact the assay’s performance by increasing
imaging time, such that the effects of antibody dissociation will
become more meaningful. Future studies might explore a post-
crosslinking approach, whichwould allow coverslips to be scanned for
tens of minutes and thereby achieve better sensitivity. Increasing
colocalization accuracy helps to eliminate false positives, while also
allowing higher cAb densities (Supplementary Fig. 11). In its current
form (Supplementary Fig. 11, left), the assay’s primary limitation on
sensitivity is its low [cAb] (~2 pM), resulting in low capture efficiency of
target molecules25. This low [cAb] is required in SiMCA’s current for-
mat due to the coating density limitations imposed by diffraction-
based identification and localization of cAbs. Future approaches that
enable higher effective [cAb] levels (Supplementary Fig. 11, right), and
thus higher target capture efficiencies, could be achieved by strategies
including increased surface area-to-chamber volume ratios and super-
resolution imaging techniques that achieve sub-diffraction-limited
molecular localization (e.g., STORM/STED26, DNA-PAINT27,
FRET28, etc.).

As single-molecule fluorescence colocalization canbe determined
with Ångstrom precision, this suggests that the ultimate limit on
colocalization in our assay is the size of the antibodies used (~10 nm).
We note as well that FRET provides an alternate, stringent test of
fluorophore colocalization. Indeed, we observed FRET between colo-
calized dAbs and cAbs (Supplementary Fig. 12), suggesting a promising
means of increasing the sensitivity and specificity of SiMCA. Finally, we
would note that SiMCA, like other immunoassays approaching single-
molecule detection, is limited by molecular shot noise, where the
theoretical sensitivity is statistically dictated by unavoidable Poisson
error29.

Most antibodies with sub-micromolar KD values should be com-
patible with SiMCA. However, with lower-affinity antibodies in the
micromolar-millimolar range, there is a legitimate concern that the low
cAb surface coverage might impede SiMCA performance. This could
be an issue for detecting certain ligands, such as some smallmolecules
and peptides. In order to generalize our assay to low-affinity anti-
bodies, future studies may examine potential solutions including: (1)
increasing cAb density, which will result in higher capture efficiency
(avidity30), (2) decreasing imaging time, and (3) improving assay
kinetics through the use of crowding agents or cross-linking of
antibody-target pairs.

Despite these limitations, SiMCA has multiple advantages in
comparison to other single-molecule imaging-based methods such as
SiMoAs, iSCAT, iSCAMS and other state-of-the-art techniques like SPR

—most notably, its robustness against non-specific binding19,31–33.
SiMoAs immunoassays capture microscopic beads decorated with
specific antibodies and then label the immunocomplexes with an
enzymatic substrate that generates a fluorescent product. Fluores-
cence imaging is then used to image single beads, each confined in
femtoliter-scale reactions chambers, for the purpose of detecting
single protein molecules. This approach can detect as few as ∼10–20
enzyme-labeled complexes in a 100μl sample and allows detection of
clinically relevant proteins in serum at femtomolar concentrations and
less, which is much lower than conventional ELISA. However, unlike
SiMCA, this assay does notprovide the ability to isolate and interrogate
single molecules on individual beads, and thereby distinguish true
antibody-antigen binding events from non-specifically bound
complexes.

Methods such as iSCAT, iSCAMS and SPR offer the powerful
advantage of label-free imaging. iSCAT and iSCAMS can both deliver
real-time imaging of single unlabeled biomolecules. In solution, bio-
molecules scatter and reflect light upon continuous illumination with
coherent light. The contrast resulting from the scattered and reflected
light interference at the detector is leveraged in both iSCAT and
iSCAMS to enable single-particle imaging. While powerful, both
techniques are potentially prone to spurious detection events due to
nonspecifically adsorbed macromolecules, a consideration that may
be particularly important in complexmedia. SPR has been widely used
for the measurement of biomolecular interaction kinetics in real-time.
SPR detects changes in the reflected light when an analyte binds to (or
unbinds from) the sensor surface,making this technique label-free and
direct. Immobilization of the analyte-binding substrate in SPR is
achieved by adsorption onto gold surfaces, in contrast to SiMCA,
which uses PEG passivation and biotin-streptavidin to specifically
immobilize cAbs. Although the techniques differ in their immobiliza-
tion strategies, SPR and SiMCA offer similar sensitivities for detection.
However, because SPR is a label-free method, it cannot confidently
distinguish between specific binding of the analyte versus other bio-
molecules from serum, blood, or other complex media. In con-
trast, SiMCA is well suited for detecting analytes directly from serum
and blood due to the inherent specificity provided by two-color
colocalization.

Methods
Materials and buffers
mAb1 (cAb) and mAb11 (dAb) anti-TNF-α antibodies were purchased
from Biolegend. Human TNF-α protein was purchased from R&D Sys-
tems (210-TA). Human blood was purchased from BioIVT. Unlabeled
mouse anti-human MCP-1 antibody (clone 5D3-F7; BDB551226), unla-
beled mouse anti-human MCP-1 antibody (clone 10F7; BDB555055),
and recombinant humanMCP-1 (BDB554620)were purchased fromBD
Biosciences. The SiteClick biotin antibody labeling kit, Alexa Fluor 546
NHS ester (succinimidyl ester) and Alexa 647 NHS ester (succinimidyl;
ester), and all other chemicals were purchased from Thermo Fisher
Scientific. All chemicals were of analytical grade and used without
further purification. 1% v/v Vectabond was purchased from Vector
Laboratories. PEG succinimidyl valerate MW-5000 (mPEG-SVA) and
biotin-PEG-SVA MW-5000 (Biotin-PEG-SVA) were purchased from
Laysan Bio. Custom imaging chamber components were purchased
from Grace Bio-Labs. Coverslips were purchased from Thermo Fisher
Scientific. The PBST buffer (pH 7.4) used in these experiments con-
tained 137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 1.44mM KH2PO4,
and 0.1% Tween 20. The 1X PBSBT buffer contained 137mM NaCl,
2.7mM KCl, 10mM Na2HPO4, 1.44mM KH2PO4, 0.1% Tween 20,
and 1% BSA.

Sample preparation and imaging
Coverslips were soaked in piranha solution (25% H2O2 and 75% con-
centrated H2SO4) and sonicated for 1 h, followed by multiple rinses in

Article https://doi.org/10.1038/s41467-022-32796-x

Nature Communications |         (2022) 13:5359 6



water (ThermoFisher Scientific,molecular-biology grade) and acetone
(Thermo Fisher Scientific, HPLC grade). Dry and clean coverslips were
then treated with Vectabond/acetone (1% v/v) (Vector Labs) solution
for 5min and then rinsed with water and left in a dried state until used.
In order to prevent non-specific adsorption of biomolecules onto the
glass surface, coverslips were functionalized prior to use with a mix-
ture of poly(ethylene glycol) succinimidyl valerate, MW 5000 (mPEG-
SVA) and biotin-PEG-SVA at a ratio of 99:1 (w/w) (Laysan Bio) in 0.1M
sodium bicarbonate (Thermo Fisher Scientific) for 3 h18. Excess PEG
was rinsedwithwater, and the coverslipsweredried under aN2 stream.
Imaging chambers (~5μL) were constructed by pressing a poly-
carbonate film (Grace Bio-Labs) with an adhesive gasket onto a PEG-
coated coverslip. Two silicone connectors glued onto the pre-drilled
holes of the film served as inlet and outlet ports. The surface was
incubated with 7μL of a 2mg/ml neutravidin solution (Thermo Fisher
Scientific). Excess neutravidin was then washed off with 100μL of 1X
PBS buffer.

TIRF microscopy
Single-molecule fluorescence measurements were performed with
objective-typeTIRFmicroscopyon an invertedmicroscope (NikonTiE)
with an Apo TIRF 100× oil objective lens, NA 1.49 (Nikon) as described
previously34, and controlled using Micro-Manager35. Samples were
excited with a 532 nm (Crystalaser) or 635 nm (Blue Sky Research)
laser. Excitation light was cleaned with a quad-edge laser-flat dichroic
with center/bandwidths of 405/60 nm, 488/100nm, 532/100nm, and
635/100 nm from Semrock (Di01-R405/488/532/635-25×36), and the
emission signalwas passed through the corresponding quad-passfilter
with center/bandwidths of 446/37 nm, 510/20 nm, 581/70 nm, 703/
88 nm (FF01-446/510/581/703-25). The emission signal was then sepa-
rated using a dichroic beam splitter (635 nm), passed through an
additional set of filters (546 channel: 593 nm/40nm (Semrock); 647
channel: 675/30nm (Semrock), and recorded on an EMCCD camera
(Andor iXon), as described previously34. We captured 16-bit 512 × 512
pixel images with an exposure time of 200ms, and a multiplication
gain of 2800–3000. Excitation was carried out at a full power setting
(25mW) with a power output of 2–3.5mW at the objective for the
green (532nm) laser. The excitation power of the red laser ranged
between 2 and 4mW at the objective based on the experiment. We
typically observed 150–300 spots per 35 µm×70 µm field of view.

Weused a custom-made polycarbonate chamberwith dimensions
of 13mm×4mm× 150 µm, which matches the size of the cAb-
functionalized area. The concentration of cAbs on the surface was
estimated to be around 2 pM. We collected assay data by rastering a
400 µm×400 µm area of the pegylated region of the coverslip at 5 µm
intervals, producing 64 images per coverslip per channel. Two sets of
64 imageswere collected for eachTNF-α concentration. The collection
of these images, which each included green (200ms) and red (200ms)
channels (200ms) plus a blank (for oil equilibration, 2.5 s), took ~3min
in total, and provided sufficient precision for all samples tested over
the 0.01–10 nM TNF-α concentration range studied (Supplementary
Fig. 13) shows the calculated CVsof dAb and cAb counts after sampling
3–100 FOVS for eight coverslips (bootstrapped). We can see that a
plateau is reached well before the 64 FOV mark.

We limited the number of FOVs (64 FOVs, 0.5% of the flow cell
surface) scanned to minimize imaging time (~3min)—and thereby
minimize the effects of dissociation on the sensitivity of our assay. We
are aware that scanning larger FOVs on the coverslip would improve
assay sensitivity. One solution would be to switch to a set-up with a
larger FOV; this would be challenging with our current set-up, in which
the EMCCD camera FOV has been adjusted to split the channels to
show parallel images for single-molecule FRET experiments. Scanning
larger areas is also possible, but may impact assay performance by
increasing imaging time to an extent that dissociation/off-rate
becomes a meaningful factor.

Using SPR, flow cytometry, and previously reported data on the
Kd of the antibodies36,37(mAb1 and mAb11) utilized in this study, the
Kd values for mAb11 and mAb1 are in the range of ~1.0—2.0 nM (Sup-
plementary Fig. 14) and the reported average kon for an antibody is
~105M−1s−1. With such high affinities, we expect minimal dissociation
(Kd = koff/kon) within the reported imaging time (~3min).

Antibodies
The anti-human TNF-α cAb (mAb1) was functionalized in house. The
antibody was first biotinylated site-specifically using the SiteClick
biotin antibody labelling kit according to the manufacturer’s instruc-
tions. The SiteClick biotin antibody labeling kit specifically attached
the biotin to the heavy chain of the antibody, targeting the carbohy-
drate domains present on essentially all IgG antibodies and thereby
ensuring that the antigen-binding domains remain available for bind-
ing to the antigen target. The antibody was then labeled with the Alexa
Fluor 546 antibody labeling kit (Thermo Fisher Scientific, A20183)
according to the manufacturer’s instructions (Supplementary Fig. 1).
Anti-human TNF-α dAbs (mAb11) were pre-labelled with Alexa Fluor
647 (67 nM stock solution, pre-concentrated at 800 nM for high con-
centration experiments) and used at the indicated concentrations. The
same labelling protocols were applied to theMCP-1mouse anti-human
antibodies (clone 5D3-F7 was labeled with Alexa 546 fluorophore and
site-specific biotin at 0.31mg/ml, and clone 10F7 with Alexa 647
fluorophore at 0.63mg/ml). Quality control experiments confirmed
that binding affinity of antibodies was not compromised by labelling.
Furthermore, we determined that the degree of labeling (DOL) for all
antibodies was three to five dye molecules per antibody, with an esti-
mated Poisson distribution shown in Supplementary Table 3. This was
calculated according to the following equation: [P(x, DOL) = (e−DOL)
(DOL)x/x!]. Importantly, the probability of having no dye molecules
coupled to a given antibody is close to zero, and the detection of even
single dye labels is well-established using single-molecule fluores-
cence. Non-specific background was caused mainly by dAbs and cAbs
adhering to the coverslip surface, with minimal surface binding by
TNF-α even at very high target concentrations.

Choice of fluorescent labels
We chose Alexa 546 for this assay because it has greatly improved
photostability over Alexa 532 under our experimental conditions,
where rapid photobleaching and/or blinking could compromise data
analysis and event counting. We found that the average survival time
for Alexa 546wasnotably larger than thatofAlexa 532—14 s versus 3 s—
in the assay conditions that we chose to minimize blinking. We thus
concluded that Alexa 546-labeled cAbs will not photobleach within a
time-frame that would interfere with the counting process (Supple-
mentary Fig. 15).

Detection of TNF-α
Neutravidin-coated coverslips were first incubated with 7μL of 0.3 nM
biotinylated Alexa 546-labeled cAb solution for 5min, then washed
using 1X PBSTbuffer to get rid of unboundmaterial (i.e., concentration
of Alexa 546-labeled cAb stock was 2.3μM). Images of coverslips
before and after cAb addition were acquired to account for back-
ground noise, channel leakage, and donor fluorophore intensity (see
Supplementary Fig. 12). Subsequently, we added 7.5μL of 50 nM dAb
solution spiked with recombinant human TNF-α at different con-
centrations (0, 0.01, 0.1, 0.3, 1, and 20nM). The TNF-αwas prepared as
25 µl samples in 1.5mL Protein LoBind tubes (Eppendorf). TNF-α was
thawed on ice and added at 5.9× (for 0.01, 0.1, 0.3, and 1 nM) or 2.95×
(for 20 nM) the final concentration. PBSBTwas added to a final volume
17.5 µl, afterwhich 7.5 µl of dAbwas added for afinaldAb concentration
of 50 nM. The samples were immediately injected into the prepared
coverslips and incubated covered overnight at 4 °C. For chicken serum
and human blood experiments, we replaced the buffer in the above
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protocol with chicken serum or human blood, where the final serum
and blood percentage after mixing with dAb was 70%. The fluorescent
background greatly increased in the presence of serumor blood in the
coverslip due to autofluorescence/quenching effects, but anadditional
washing step restored the initial signal/background ratio. Supple-
mentary Fig. 16 shows that the distribution of cAb intensities and
counts remained constant following overnight incubation with buffer
and serum. This demonstrates the robustness of the surface passiva-
tion layer, avidin linkage, and fluorophore-antibody complex.

We note that because TNFα is a small protein, we could detect
FRET between the donor fluorophore on the cAb and acceptor fluor-
ophore on the dAb upon binding the protein target. Because we were
working with Alexa 546 and Alexa 647, with an Förster radius R0 = 8
nm, we were able to detect energy transfer and compute FRET effi-
ciencies upon protein binding. This was confirmed by the drop in
donor intensity and increase in acceptor intensity upon target binding
(Supplementary Fig. 12).

Image segmentation and registration
We stitched together an image to directlymapcAbs anddAbs from the
green- and red-only excitation images (green left, red right). We
denoised byperforming aGaussian filter using a standarddeviation for
the kernel of 0.8. We then isolated regional maxima. Since the raw
images can be unevenly illuminated, we first subtracted from the
Gaussian-filtered image a background image obtained by morpholo-
gical reconstruction, as described in the scikit-image example38. The
resulting background subtracted image was then mapped to a more
dynamic intensity range by an inverse hyperbolic sine transformation.
Local maxima and their respective x, y coordinates were selected if
their intensity valueswere at least 1.2 times the standarddeviation plus
the median. cAb and dAb spots were differentiated by locations of the
detected local maxima in the left and right halves of the stitched
image, respectively. To determine the colocalized spots, we mapped
the coordinates of the dAb spots to the region of the cAb using a pre-
defined affine transformation (see below). The transformed dAb
coordinates (dAb’) were then matched to the true detected cAb
coordinates. If a pair of coordinates (cAb[i], dAb’[j]) were within a
Euclidean distance of 1.5 pixels, the pair was counted as a
colocalized spot.

The affine transformationmatrix wasmade per experiment day to
account for any misalignment of the microscope setup. First, 100 nm
Tetraspeck beads (Thermo Fisher Scientific T7279) were rastered
across a glass coverslip. Five to ten images were taken, and a trans-
formation matrix was determined for each image and averaged to
produce the final transformation matrix. Capture and detection ima-
ges were stitched and localized as described above. Capture and
detection coordinates were matched up to their closest neighbors
across all coordinates using a KD tree with leaf size of 30 and using the
Euclideandistancemetric. Coordinates in both images were saved as C
and D matrices, respectively, of size n × 3 where n is the number of
beads detected. The coordinates c0, …, cn were projected onto the
corresponding coordinates d0, …, dn using the affine transformation
matrix T:

D

1

� �
=T

C

1

� �
ð1Þ

where

T =
d0 � � �dn

1

� �
c0 � � � cn

1

� ��1

The average of T matrices was calculated for each of the bead
images and provided for transformation of experimental data.

Finally, we applied a quality filtering step. If the spots were not
well-distributed, this could reflect faulty framesof viewdue tobubbles,
large dust particles, etc. Since the dynamics of target and dAb binding
to the coverslip surface could be significantly altered in these frames,
we removed these in this post-processing step. The mean y coordi-
nates of the spots detected in the left half of the image were averaged.
If the averaged coordinatewas notwithin 75 pixels of themiddle of the
image, that frame of view was removed from analysis. Less than 1% of
frames of view were discarded because of this filter.

By implementing tighter colocalization criteria of 10–40 nm,
either statistically and/or with advanced imaging, we would expect
drastically improved sensitivity and a decrease in the number of false-
positive events. This is also influenced by the amount of cAb on the
coverslip surface. Higher cAb density improves assay sensitivity by
providing more binding sites, but will also confound the discrimina-
tion of fluorescent spots and introduce errors in single-molecule
counting in a diffraction limited set-up. To determine the balance of
optimal spatial resolution and capturedensity needed tomaximize the
sensitivity of our assay, we performed simulations for different colo-
calization cutoff distances (10–300nm) to estimate the number of
false colocalization events as the number of non-specific binding
events increases (Supplementary Fig. 17). Shorter distances would
reduce the number of false colocalizations, but also requires higher
spatial resolution. For example, with our current colocalization criteria
(~200 nm), we would expect ~4.5 of every 100 non-specific binding
events to be counted as a binding event.With a distance of 100nm, we
would estimate this number to be ~1— theoretically reaching 0 at a
distance of 10 nm. We also confirmed that increasing the number of
cAbs on the surface would increase the number of false colocaliza-
tions, but could also lower the assay LOD. The smallest simulated
cutoff distance (10 nm) could be achieved through FRET-based
detection or with super-resolution techniques and more sophisti-
cated software and imaging techniques.

Absolute single-color and normalized, colocalized analysis
Absolute single-color dAb spots were simply localized and counted in
the Alexa-647 channel. However, this counting is highly dependent on
the consistency of cAb coverage across coverslips and frames of view.
For SiMCA colocalized spot analysis, we addressed coverslip variability
by normalizing spot counts relative to the cAb signal in the Alexa-546
channel:

Normalized colocalized counts = ½absolute colocalized counts�=
½cAb counts�:

For comparison of just normalizationmethods to absolute single-
color dAb spots in our SI, we also normalized single-color counts
as such:

Normalized single-color counts = ½absolute dAb counts�=½cAb
counts�:

We found normalization lowers quantification error, and thereby
enable us to exploit colocalization to reduce the effects of non-specific
binding.

Fitting to binding curve
To create a calibration curve, we fitted our data to the Langmuir
binding isotherm:

Counts =
Bmax*½TNFα�
Kd + ½TNFα�

ð2Þ

where counts can be single-color unnormalized counts, normalized
two-color counts, or normalized, colocalized counts, and [TNFα] is the
concentrations used in the binding curves (10 pM, 100pM, 300pM,
1 nM, and 20 nM). Kd (equilibrium dissociation constant) and Bmax

(maximum signal possible) were determined by the curve-fitting
function in python using Scipy’s ‘optimize curve fit’ function, which
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uses non-linear least squares to fit a function. To calculate the
concentration given a signal, we then used the inverse functionwith fit
parameters Kd and Bmax as follows:

TNFα½ �= counts � Kd

Bmax � counts
ð3Þ

Calculation of LOD
As per convention, we defined LOD as the signal that is three standard
deviations (σy) above the mean signal (�y) obtained without analyte:
LOD= �y +3*σy. We then converted this value to its associated con-
centration using the fits from the binding curve and the inverse
binding curve function (Eq. 3). The corresponding error in LOD is
determined by propagation of errors of the inverse function (f) and
errors associated with the binding curve fits:

σLOD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
df

dBmax
σBmax

� �2

+
df
dKd

σKd

� �2

+
df
dy

σy

� �2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kd*y

Bmax � y
� �2 σBmax

 !2

+
y

Bmax � y
σKd

� �2

+
Kd*Bmax

Bmax � y
� �2 σy

 !2
vuut

ð4Þ

Quantification with bootstrapping
We bootstrapped our data 1000 times to properly characterize mean
errors and confidence in quantification of new unknown targets. For
each bootstrap iteration, we sampled with replacement from our
dataset of 128 FOVs, fit to the binding curve in Eq. 2, then used the
remaining unsampled data to predict the TNF-α concentration for
each FOV (Eq. 3). We calculated the error between the predicted and
true concentration of these test samples using Mean-Absolute-Per-
centage-Log-Error (MAPLE):

MAPLE =
100%

# test samples
∑∣

logðTrue TNF½ �Þ � logðpredicted TNF½ �Þ
logðTrue½TNF�Þ ∣

ð5Þ

Finally, after all bootstrap iterations, we calculated the standard
deviation of MAPLE.

Bootstrapped binary classification, ROC, and AUC calculations
We conducted binary classification given two distributions to quanti-
tively evaluate diagnostic sensitivity and specificity. First, we com-
bined the twodistributions into one dataset withN frames of view: {(x1,
y1),…,(xN, yN)} (typically N = 128). A given single-color or colocalized
count, xi, is assigned to a label, yi, where yi is 0 if it is the 0 pM control
or 1 if it is a sample with TNF-α. We then split the dataset into training
and test datasets, Ttrain and Ttest. Using the sklearn python library39, we
fitted our training data to a binary logistic regression classifier without
regularization, such that weminimize the following cost function with
respect to the parameters w and c:

Loss = ∑
n

i= 1
log exp �yi xi*w+ c

� �
+ 1

� �� � ð6Þ

Using theTtest dataset and sklearn libraries,we then calculated the
probability estimates and respective ROC curve and AUC values. To
estimate confidence in the ROC and AUC values, we bootstrapped the
above binary classification 1000 times. For each bootstrap iteration,
we sampled each distribution with replacement for the training set.
The remaining unsampled data were then used as the test set. The
above classification and ROC/AUC metrics were then calculated.

Statistics and reproducibility
We determined that 16 frame of views (FOVs) provided minimum
sufficiency for each channel/coverslip by analyzing bootstrapped
variance of a range of FOVs from three coverslips from our initial
experiment. We calculated that variance of the mean spot counts
across FOVs dropped significantly beyond using 16 FOVs, and con-
sistently plateaued before 64 FOVs.We chose 64 as a safe cut offmuch
beyond the inflection point as shown in Supplementary Fig. 13.

Coverslips were excluded from analysis when impurities/con-
tamination were present in the sample, which was indicated by the
presence ofmicron size brightfluorescent spots covering large areas of
coverslips surface. This could be due to buffer or Ab sample con-
tamination. FOVs were removed due to bubbles or large dust particles
being introduced at the FOV. Since the dynamics of target and dAb
binding to the coverslip surface could be significantly altered in these
frames, we removed these in an automated post-imaging step descri-
bed in the Image segmentation and registration section in themethods.

Replication. Aminimumof two coverslips were prepared, imaged and
analyzed for each condition. A total of 16 or 64, FOVs were acquired
and analyzed for each coverslip. More replicates were performed for
the study, but due to laser damage/change andmicroscope/camera re-
alignment issues, they were dismissed from the study for consistency.
All duplicates presented in this work were done using the same laser/
power, exposure time / Gain and samemicroscope/camera alignment.
All attempt at replications were successful.

Randomization. Coverslips were randomly allocated for TNF-alpha/
dAb and MCP-1/dAb samples of different concentrations.

Data collection. Blinded. Samples were prepared in the Soh lab
(numbered, and each number was associated to a concentration
written in notebook in Soh lab) and imaged afterwards in Dunn lab.
Concentrations were revealed after imaging.

Data analysis. Blinded. FOVs per coverslip were analyzed auto-
matically using custom image analysis software without bias from
investigator. Only after spot counting was done, were concentrations
revealed.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this work are available in the Stanford Digital
Repository (https://purl.stanford.edu/bc494tq1762). A subset of data
for demonstration purposes are available at https://github.com/
newmanst/simca-pub. The source data underlying Figs. 2b, d, 3b, c,
d, 4a and Supplementary Figs 5, 6, 7, 8, 9, 10, 13, 14, 15b, c, and 16 are
provided as a Source Data file. Source data are provided with
this paper.

Code availability
Code is available here: https://github.com/newmanst/simca-pub
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