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Basal ganglia engagement during REM sleep movements
in Parkinson’s disease
Ajay K. Verma1,4, Sergio Francisco Acosta Lenis1,4, Joshua E. Aman1, David Escobar Sanabria1, Jing Wang1, Amy Pearson1, Meghan Hill1,
Remi Patriat 2, Lauren E. Schrock1, Scott E. Cooper1, Michael C. Park1,3, Noam Harel2,3, Michael J. Howell1, Colum D. MacKinnon1,
Jerrold L. Vitek1 and Luke A. Johnson 1✉

To elucidate the role of the basal ganglia during REM sleep movements in Parkinson’s disease (PD) we recorded pallidal neural
activity from four PD patients. Unlike desynchronization commonly observed during wakeful movements, beta oscillations
(13–35 Hz) synchronized during REM sleep movements; furthermore, high-frequency oscillations (150–350 Hz) synchronized during
movement irrespective of sleep-wake states. Our results demonstrate differential engagement of the basal ganglia during REM
sleep and awake movements.
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INTRODUCTION
The basal ganglia play a critical role in the control of motor
function during wakefulness1,2. Voluntary movements are pre-
ceded by desynchronization (reducing in power) of beta oscilla-
tions (13–35 Hz) in the globus pallidus internus (GPi)3,4. Excessive
spontaneous synchronization of beta oscillations (increasing in
power) in the GPi in people with Parkinson’s disease (PD) is
thought to contribute to akinesia and bradykinesia since the
suppression of beta power by dopamine replacement therapy or
deep brain stimulation (DBS) improves motor behavior4–6. High-
frequency oscillations (HFOs, >100 Hz) in the GPi have been
observed to synchronize during wakeful movement in unmedi-
cated PD patients4,7. Furthermore, a recent study in PD patients on
and off medication, and in naïve and parkinsonian non-human
primates suggests that exaggerated HFOs have pathophysiologi-
cal relevance in PD4. Our understanding regarding the modulation
of beta oscillations in the basal ganglia during REM sleep
movements is limited8, however, and HFOs in such context have
not been investigated.
In contrast to wakefulness, people with PD can demonstrate

improved motor activity during rapid eye movement (REM) sleep9.
In particular, a high percentage of individuals with PD have REM
sleep behavior disorder (RBD), a parasomnia characterized by the
loss of muscle atonia and a dramatic increase in motor activity,
often with punching and kicking behavior suggestive of dream
enactment10. People with PD without a clinical diagnosis of RBD
may also demonstrate motor activity during REM sleep9,11.
Currently, little is known about the role of the basal ganglia in
the control of movements that occur during REM sleep.
Recordings from the subthalamic nucleus have provided initial
evidence of marked differences in the dynamics of movement-
related oscillations between wake and sleep states8. To further
explore the role of the basal ganglia in movement control during
REM sleep, we recorded local field potentials (LFPs) from four PD
patients via externalized directional deep brain stimulation (DBS)
leads implanted in the GPi (the principal output nucleus of the
basal ganglia). We characterized the dynamics of beta and HFOs in
the GPi during REM sleep and wake movements in an effort to

improve our understanding of the functional role of the basal
ganglia oscillations underlying movement across sleep-wake
states.
All subjects were noted to display body movements during REM

sleep as identified by video-polysomnography. The number of
movements identified during REM sleep, predominant motor
phenomena observed, and other demographic information for
each subject are reported in Table 1. One subject (#2) had a
documented history of sleep dysfunction and displayed complex
movements suggestive of dream enactment.
The contact pair on the directional DBS lead exhibiting the

highest modulation of beta oscillations for each patient during
awake voluntary movements was chosen for analysis and reported
in Fig. 1. Additional details regarding beta and HFO modulation
associated with REM sleep and awake movements for other
contact pairs on the directional DBS lead, and lead location in the
GPi, are summarized in Supplementary Fig. 1.
Trial-averaged spectrograms depicting oscillatory power

changes in the beta band (13–35 Hz) during awake voluntary
movements (reaching task, see Methods for details) and REM
sleep movements are shown in Fig. 1a, b, respectively. In the
awake condition, beta oscillations significantly desynchronized
during movement execution in all subjects compared to a pre-
movement period (Wilcoxon signed rank (WSR) test, p < 0.05,
Fig. 1c, blue boxplots). Conversely, all participants exhibited strong
synchronization of beta oscillations during REM sleep movements
compared to baseline (WSR test, p < 0.05 Fig. 1c, red boxplots). In
contrast to the beta band, which showed opposite polarity of
modulation during wake and REM sleep movements, HFOs
(150–350 Hz) showed movement-related synchronization during
both wake and REM sleep (Fig. 1d, e).
The primary finding of this study was that, in people with PD,

movement-related beta oscillations in the GPi synchronized
during REM sleep but desynchronized during wakefulness. In
contrast, HFOs in the GPi synchronized during movement
regardless of sleep-wake state. Taken together, our results
demonstrate that GPi is engaged during REM sleep movements
and question the hypothesis that the basal ganglia is not involved
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in the generation of movements during REM sleep in people with
PD9.
Previous studies have reported improved motor behavior

during REM sleep in PD patients with RBD9,12. Furthermore, motor
events generated during REM sleep in PD patients with RBD and
idiopathic RBD patients were observed to be qualitatively
similar13. These observations led to a hypothesis that the
dopamine deficient basal ganglia may not be involved in the
movements generated during REM sleep in people with PD9,12.
Potential electrophysiological support for this idea comes from a
study in four PD patients with RBD showing movement-related
synchronization of the subthalamic nucleus (STN) beta oscillations
during REM sleep8. Since STN beta oscillations in the basal ganglia
desynchronize during wakeful movements, which is thought to be
permissive to the movement3,8,14, the authors interpreted their
data as supportive of the hypothesis that pathological basal
ganglia signaling is bypassed and the movements during REM
sleep are mediated by pathways alternate to the cortico-basal
ganglia network in people with PD.
We observed significant synchronization of beta oscillations in

the GPi during REM sleep movements in all four subjects, which
could be viewed as providing additional support for the
hypothesis that basal ganglia is not involved in the generation
of movements during REM sleep. Our findings of movement-
related HFO synchronization in the GPi during both wake and REM
sleep, however, complicate this interpretation. Elevated HFO
power has been shown to be a characteristic feature of move-
ments during wakefulness in PD4,7,15. If movements during REM
sleep are not mediated by the basal ganglia, then the polarity of
movement-related modulation of HFOs during REM sleep might
be expected to be opposite to wakefulness as was observed with
beta oscillations. However, the polarity of movement-related
modulation of HFOs in the GPi during REM sleep was similar to
that during wakefulness i.e., synchronizing during movement
irrespective of sleep-wake states. We interpret these findings as
demonstrating that the basal ganglia is likely engaged during REM
sleep movements, but its role in movement control differs greatly
during wakefulness and REM sleep.
Furthermore, we observed that the polarity of modulation in

beta and HFOs between PD patients with (n= 1) and without
(n= 3) RBD were qualitatively similar. This leads us to speculate
that synchronization of beta oscillations and HFOs in response to
movements generated during REM sleep are characteristic of REM
sleep in PD and may not be unique to PD patients diagnosed with
RBD. A future study with a higher sample size of PD patients with
and without RBD will be required to confirm this observation.
Despite our understanding of skeletal muscle atonia during

REM sleep, small movements during REM sleep is possible in
healthy individuals16,17. Whether the movement-related changes
in beta oscillations and HFOs we observed during REM sleep are
specific to PD or more generally applicable remains unclear.
Identification of these events with concomitant recordings across
the basal ganglia-cortical motor network can shed further light on
the neural mechanisms of movement control during REM sleep
and enhance our understanding of physiological and pathological
movements generated during sleep. While it is not feasible to
perform such electrophysiological recordings in healthy controls,
data collection may be feasible from patients with non-PD
neurological disorders such as dystonia and Tourette syndrome,
where the STN and GPi are common DBS targets5,18–20, to
understand if movement-related dynamics of beta oscillations and
HFOs during REM sleep is unique to PD.
In summary, we showed that, contrary to the stereotypical

pattern of movement-related beta desynchronization in the GPi
during voluntary wakeful movements, beta oscillations in the GPi
are synchronized during REM sleep movements. Furthermore,
HFOs are synchronized during movement irrespective of sleep-
wake state. Together, our results demonstrate differentialTa
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engagement of pallidum during wake and REM sleep movements
and these findings may inform the development of DBS
approaches tailored to suppress excessive movements generated
during REM sleep in people with PD.

METHODS
This study was approved by the University of Minnesota
Institutional Review Board (#1701M04144) and informed consent
was obtained according to the Declaration of Helsinki. Four
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Fig. 1 Movement-related beta and high-frequency oscillations recorded from DBS leads in the GPi of PD patients in awake and REM
sleep states. a Trial-averaged spectrograms aligned to movement onset showing beta (13–35 Hz) desynchronization in the GPi during wakeful
volitional movement (reaching task, see Methods). b Spectrograms showing beta synchronization in the GPi during REM sleep movements.
c Distributions of beta band power modulation (relative to pre movement baseline) during wake movements (blue) and REM sleep
movements (red). All data distributions were significantly different from zero (Wilcoxon signed rank (WSR) test, p < 0.05). d, e Trial-averaged
spectrograms aligned to movement onset show synchronization of high-frequency oscillations (HFO, 150–350 Hz) in the GPi during wakeful
and REM sleep movements, respectively. f Distributions of HFO band power modulation (relative to pre movement baseline) during wake
movements (blue) and REM sleep movements (red). All data distributions were significantly different from zero (WSR test, p < 0.05). Boxplot
elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile range; +sign, outliers.
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participants (two female) with idiopathic PD consented to
externalization of their DBS lead. All subjects were implanted
unilaterally with a directional DBS lead targeting the GPi. The
demographic information for each subject are reported in Table 1.

Data collection
Surgical Procedure. Details of the surgical procedures for GPi DBS
implantation and lead externalization are described in detail in
previous publications4,21. Briefly, subjects underwent standard 3 T
MRI (all subjects) and a high resolution 7 T MRI (excluding Subject
3) for direct targeting and postoperative lead localization22,23.
Intraoperative electrophysiological mapping techniques were
used to identify the sensorimotor region of GPi for implantation24.
In all subjects a directional “1-3-3-1” electrode was used (Subjects
1,2,4: Abbott Infinity model 6172, illustrated in Supplementary Fig.
1a; Subject 3: Boston Scientific Vercise Cartesia model DB-2202-45;
all leads had 1.5 mm contact height with 0.5 mm vertical spacing).
After implantation, the lead was connected to an extension wire
which was tunneled to a subcutaneous pocket in the chest and
then connected to another extension wire which was externalized
at the abdomen (“percutaneous extension”)21. Externalized
components were secured and protected with a water-proof
barrier dressing and subjects were discharged to home to recover.
Externalization recordings occurred 4–8 days later, allowing some
time for reduction of microlesion effects that can occur following
lead placement25,26. After the study, subjects returned to the
hospital for removal of the percutaneous or externalized extension
wire and placement of the implantable pulse generator (IPG). A
movement disorders clinician performed DBS programming
approximately 4-6 weeks after IPG placement per standard
clinical care.

Sleep recording and staging. LFP activity from the DBS lead and
scalp electroencephalography (EEG, 10–20 montage, modified as
needed to accommodate scalp incision) were collected over the
course of two days while residing in the University of Minnesota
Health Clinical Research Unit. Signals were recorded on an Xltek
NeuroWorks Workstation (Quantum amplifier, 4096 Hz sampling
rate, Natus) to enable post-hoc video-polysomnography (v-PSG)
and analysis of time-synchronized pallidal oscillatory activity.
v-PSG data (including EEG, electrooculogram (EOG), electromyo-
gram (EMG), video) were imported into Natus SleepWorks
software. Sleep staging was performed according to the American
Academy of Sleep Medicine (AASM) Manual for the Scoring of
Sleep and Associated Events Version 2.6 by a registered
polysomnographic technician (A.P.) using the standard EEG,
EOG, and chin EMG montage27. Sleep stages (Wake, NREM 1
(N1), NREM 2 (N2), NREM 3 (N3), and REM) were first determined in
standard 30-s epochs (consistent with AASM scoring guidelines).
Subsequently, 10-s mini-epochs were subdivided to better identify
brief sleep phenomena including K complexes, sleep spindles,
slow-wave activity, phasic REM, and tonic REM. Neural data and
sleep stages and sleep phenomena annotations were then
exported in EDF format for subsequent analysis.

REM sleep movement and reaching task. v-PSG recordings were
reviewed by experienced sleep specialists (M.H. and A.P.). Move-
ments occurring during REM sleep epochs were visually identified
and characterized (twitches, periodic limb movements, complex
dream enactment, limb adjustment, or body position change) and
timestamps of movement onset were saved for further analysis of
event-related potentials. Predominant motor phenomena for each
subject are described in Table 1. As a comparison condition, GPi
LFP data collected during a daytime motor task were also
analyzed. LFP data were collected while patients performed a
simple touchscreen reaching task using the arm contralateral to
the implanted DBS lead. Trials began with the hand on a digitized

home button located 45 cm from a touchscreen monitor. After a
randomized variable 3–4 s delay following the start of a trial, a
1.27 cm hollow circle (target) appeared on the center of the
touchscreen along with a 5 cm square box directly to the left of
the circle (10 cm). The appearance of the circle and square was the
patient’s “go cue”. Subjects were instructed to touch and drag the
circle into the square box as quickly and accurately as possible and
then return to the home button. The number of reach trials
included in the analysis were matched to the number of REM
movements detected in each patient and are reported in the
figures (see Data analysis and statistics section below for
additional details). Wake task-related data were included in
previous publications but analyzed differently in the present
study4,21.

Data analysis and statistics
All analyses were performed using customized scripts in MATLAB
(MathWorks). LFP activity was extracted via bipolar montage (i.e.
signal subtraction) of vertically adjacent DBS contacts within the
GPi (see Supplementary Fig. 1a); the segmented contacts of the 1-
3-3-1 directional lead were used in this study, resulting in three
bipolar pairs that were analyzed.
A multimodal exploration of video, EEG (including EOG and

EMG), and LFP signals (in time and frequency domain) was done
to identify artifact-free movement events during REM. Timestamps
of movement initiation during the reaching task were similarly
identified. In all subjects, the number of reach trials (n= 50)
surpassed the number of identified REM sleep movements. The
same number of artifact-free samples were collected in chron-
ological order from the data associated with the reaching task (i.e.
if 40 REM sleep movements were detected, the first 40 reach
movements were analyzed).
LFP signals were filtered between 13 and 35 Hz for the beta

oscillations, and between 150 and 350 Hz for the HFOs. Perievent
spectrograms aligned to movement onset were computed via the
multi-taper method and Chronux toolbox using a moving
window of 1 s, 10 ms steps, with three tapers resulting in a
frequency resolution of 0.5 Hz28. For each subject and frequency
band (i.e. beta, HFO) the spectrogram was normalized to the total
power in the target frequency band during the 1st s of baseline
period and reported in units of dB relative to the baseline8,29. To
quantify movement-related changes in the normalized spectro-
gram, for each trial the mean band power in a pre-movement
period 2 s before movement onset (AvgPowerPre-move) and in a
movement period 2-s duration beginning with movement onset
(AvgPowerMove) were calculated. Boxplots display distributions of
normalized trial-by-trial movement-related band power modula-
tion (AvgPowerMove – AvgPowerPre-move). Non-parametric statis-
tical tests were performed because of the relatively small sample
size and the non-normality of the data. To determine whether a
subject’s median movement-related modulation was significantly
different from zero, reflecting significant synchronization (positive
value) or desynchronization (negative value) in the frequency
band of interest, the Wilcoxon signed-rank test was performed
(p < 0.05). The segment pair in each subject with the greatest
movement-related modulation in the beta band is presented in
the main results section and Fig. 1. Movement-related modulation
from all three segment pairs for each subject is presented in
Supplementary Fig. 1. To test whether there is some spatial
specificity between recording directions in the GPi, the sleep and
wake movement power modulations from the three directions
were compared using the Kruskal–Wallis test (p < 0.05), testing
the null hypothesis that all three distributions come from the
same distribution, with post-hoc pairwise comparisons between
directions made with Bonferroni correction for multiple
comparisons.
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Determining DBS lead orientation
DBS lead locations in the GPi were estimated based on
information obtained during intraoperative electrophysiologi-
cal mapping as well as co-registered preoperative MRI and
postoperative CT scans (see ref. 23 for details). The orientation of
the DBS lead and relative direction of individual segments for
each patient were derived from the fiducial marker on the lead,
in combination with the unique artifact characteristics of the
segments, using a modified version of the DiODe algorithm30.
The original DiODe algorithm was designed and validated for
the Boston Scientific Cartesia electrodes; since most of our
patients were implanted with the Abbott Infinity electrodes, the
MATLAB code was modified to be compatible with the new
electrode characteristics (e.g., smaller marker and slight
changes in the intensity profiles of the segments artifacts) in
collaboration with Dr. Dembek, the lead author of the DiODe
algorithm (personal communications, R.P.). Additional details
can be found in ref. 4.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

CODE AVAILABILITY
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