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Abstract Isocitrate dehydrogenase (IDH) is an essential

metabolic enzyme in the tricarboxylic acid cycle (TAC).

The high mutation frequency of the IDH gene plays a

complicated role in gliomas. In addition to affecting

gliomas directly, mutations in IDH can also alter their

immune microenvironment and can change immune-cell

function in direct and indirect ways. IDH mutations

mediate immune-cell infiltration and function by modulat-

ing immune-checkpoint gene expression and chemokine

secretion. In addition, IDH mutation-derived D2-hydrox-

yglutarate can be absorbed by surrounding immune cells,

also affecting their functioning. In this review, we sum-

marize current knowledge about the effects of IDH

mutations as well as other gene mutations on the immune

microenvironment of gliomas. We also describe recent

preclinical and clinical data related to IDH-mutant

inhibitors for the treatment of gliomas. Finally, we discuss

different types of immunotherapy and the immunothera-

peutic potential of IDH mutations in gliomas.

Keywords IDH mutation � Tumor immune microenviron-
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Introduction

Gliomas are the most common and most lethal primary

tumors of the central nervous system (CNS) [1]. The 2007

World Health Organization (WHO) classification system

for CNS tumors categorizes gliomas from grade I to grade

IV (glioblastomas, GBMs). Typically, patients with grade

II or III gliomas (also known as lower-grade gliomas, or

LGGs) survive from 2 to 3 years to more than 5 years,

while those with GBMs generally survive no more than

1 year [2]. According to the data from the cancer genome

atlas (TCGA)-LGG and TCGA-GBM cohorts, there are

high frequencies of genetic alteration in gliomas [3].

Among these genes, mutation frequencies of gene isocitrate

dehydrogenase (IDH), tumor protein P53 (TP53), phos-

phatase and tensin homolog (PTEN), ATRX chromatin

remodeler (ATRX), titin (TTN), epidermal growth factor

receptor (EGFR), and capicua transcriptional repressor

(CIC) are each[ 20% in LGGs or GBMs (Table 1). These

mutations generate glioma heterogeneity and regulate the

development, evolution, immune evasion, and therapeutic

response of gliomas [4–9]. A better understanding of gene

mutations in gliomas is crucial for tumor classification and

therapy.

In 2016, the WHO classification system for CNS tumors

incorporated molecular parameters into the definitions of

tumor entities, with gliomas classified as IDH-mutant or

wild-type [10]. Most LGGs and almost all secondary

GBMs exhibit IDH mutations [11]. Due to the high

frequency of IDH mutations and because they exhibit

different biological characteristics, the new 2021 WHO

classification of CNS tumors divides adult diffuse gliomas

into IDH-mutant; IDH-mutant and 1p/19q-codeleted; and

IDH-wild type [12]. In this classification, all IDH-mutant

diffuse astrocytic tumors are considered a single type
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(astrocytoma) and are then graded as CNS WHO grade 2,

3, or 4. IDH-mutant and 1p/19q-co-deleted gliomas are

regarded as oligodendroglioma (grade 2, 3). GBMs or IDH-

wildtype LGGs in the presence of microvascular prolifer-

ation or necrosis or TERT promoter mutation or EGFR

gene amplification or ?7/-10 chromosome copy number

changes are also diagnosed as IDH-wild type (GBMs,

grade 4) [12]. Although glioma patients harboring IDH

mutations have longer survival times than those without

IDH mutations, these mutations are also believed to be an

early event during the progression of LGGs to higher-grade

gliomas [13, 14]. Hence, it is vital to explore the role of

IDH mutations in the development and progression of

glioma.

IDHs, including IDH1, IDH2, and IDH3, are essential

metabolic enzymes in the tricarboxylic acid cycle (TAC),

which converts isocitrate into a-ketoglutarate (a-KG),

NAPDH, and CO2 [15]. IDH1 is localized to the cytoplasm

and peroxisomes, while IDH2 and IDH3 are localized to

the mitochondria [16]. Among these three IDHs, mutations

in IDH1 and IDH2 have been found in gliomas, IDH1

being the most frequently mutated metabolic gene [17].

IDH mutations involve the replacement of a single amino-

acid in IDH1 (arginine 132 residue, R132) and IDH2

(analogous residue arginine 172, R172; or arginine 140,

R140) [18]. These are gain-of-function mutations, mediat-

ing the transformation of a-KG into D2-hydroxyglutarate

(D2-HG) [19]. D2-HG is a homolog of a-KG, and

functions as a competitive inhibitor of a-KG-dependent
dioxygenases [5, 20].

It is known that D2-HG regulates gene expression via

three mechanisms: transcriptional, post-transcriptional (in-

cluding translation), and post-translational modifications

(Fig. 1). First, D2-HG can inhibit the activity of the ten-

Table 1 Top-30 Mutated Genes

in LGGs and GBMs
LGGs GBMs

Gene names Mutation frequency (%) Gene names Mutation frequency (%)

IDH1 76.80 PTEN 33.50

TP53 48.40 TP53 31.50

ATRX 37.70 TTN 25.70

CIC 21.00 EGFR 23.70

TTN 12.30 MUC16 15.40

FUBP1 9.30 FLG 13.60

PIK3CA 8.20 NF1 11.60

NOTCH1 7.40 RYR2 10.80

MUC16 7.00 PIK3R1 9.80

EGFR 6.80 PIK3CA 9.60

NF1 6.00 SPTA1 9.60

SMARCA4 4.90 RB1 9.60

PTEN 4.70 ATRX 9.30

FLG 4.50 SYNE1 8.60

PIK3R1 4.30 OBSCN 7.60

RYR2 4.10 MUC17 7.30

IDH2 4.10 LRP2 7.30

OBSCN 3.90 PCLO 7.10

ZBTB20 3.90 HMCN1 6.80

ARID1A 3.70 PKHD1 6.80

NIPBL 3.50 COL6A3 6.50

PCLO 3.50 AHNAK2 6.30

HMCN1 3.30 IDH1 6.30

MUC17 3.10 DNAH5 6.00

APOB 2.90 DNAH2 6.00

BCOR 2.90 USH2A 5.50

LRP2 2.90 FLG2 5.50

ADGRV1 2.70 FAT2 5.50

TCF12 2.70 LAMA1 5.30

ZNF292 2.50 CFAP47 5.30
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eleven translocation (TET) family of methylcytosine

hydroxylases, which mediates DNA demethylation by

transforming 5-methylcytosine to 5-hydroxymethylcy-

tosine [5]. Inhibition of the TET family of methylcytosine

hydroxylases remodels the methylome to establish a CpG-

island hypermethylated phenotype, which results in a

reorganization of the methylome and transcriptome

[21, 22]. Similarly, D2-HG can impair the activity of

histone demethylases, thereby inhibiting histone demethy-

lation, which, in turn, modulates gene transcription [5, 23].

Abnormalities in DNA and histone methylation regulate

gene expression in a transcriptional manner. Messenger

RNA N6-methyladenosine (m6A) methylation is the most

common RNA modification [24]. N6-methyladenosine

methylation is generally mediated by ‘‘writers’’ (methyl-

transferases, such as METTL3), ‘‘readers’’ (binding pro-

teins, such as IGF2BP3), and ‘‘erasers’’ [demethylases,

such as fat mass and obesity-associated protein (FTO)]

[25]. D2-HG has been shown to increase the methylation

levels of m6A by inhibiting the activity of demethylases

like FTO, which eventually regulates gene expression in a

post-transcriptional manner [26–28]. Our previous study

found that mutations in IDH1 significantly upregulates the

protein level of the transcription factor, hypoxia-inducible

factor 1-alpha (HIF-1a) [29]. A subsequent study showed

that D2-HG maintains HIF-1a protein stability by inhibit-

ing its ubiquitination, which is mediated by the a-KG-
dependent dioxygenase, EGLN, indicating that D2-HG can

also regulate gene expression in a post-translational

manner [30].

In the immune microenvironment of gliomas, myeloid

cells, including tumor-associated macrophages (TAMs),

myeloid-derived suppressor cells, neutrophils, and den-

dritic cells, represent the largest immune subset [31].

Infiltration by these myeloid cells favors glioma progres-

sion and induces resistance to glioma treatment [32].

Although immunotherapies targeting inhibitory checkpoint

molecules have been revolutionary for the treatment of

Fig. 1 A model for the influence of IDH mutations on glioma cells

and their surrounding immune microenvironment. In glioma cells,

IDH mutations regulate gene expression via three mechanisms:

transcriptional (via inhibition of DNA and histone demethylases),

post-transcriptional (via inhibition of m6A demethylases), and post-

translational (via inhibition of EGLN) modifications. In addition, IDH
mutations affect the immune microenvironment of gliomas, modify-

ing immune cell infiltration and functioning in direct (via regulating

immune-related gene expression) and indirect ways (via IDH

mutation-derived D2-HG).
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solid tumors, the high infiltration of monocytes and low

infiltration of lymphocytes induced by glioblastoma

(GBM) cells establishes an immunosuppressive microen-

vironment that is responsible for resistance to immunother-

apy [32–35]. Recent glioma studies have indicated that

mutations in IDH also affect immune-cell infiltration,

which, in turn, mediates the distinctive immune responses

of IDH-mutant versus wild-type gliomas. Here, we sum-

marize advances in our knowledge of the immune

microenvironment and immunotherapy for IDH-mutant

gliomas.

Alterations in Immune Cell Infiltration in IDH-
mutant Gliomas

Tumor-associated Macrophages

TAMs are the most common immune cells in the CNS,

accounting for 30%–50% of all immune cells [36].

Originally, TAMs were subdivided into microglia (resident

macrophages of the CNS) and peripheral blood-derived

macrophages [37]. However, it was difficult to distinguish

between these two subpopulations because of a lack of

unique markers. In 2016, TMEM119 and CD49D/ITGA4

were identified as specific markers for microglia and

peripheral blood-derived macrophages, respectively

[38, 39]. TAMs play a critical role in both innate and

adaptive immunity and have both pro- and anti-glioma

functions. Traditionally, TAMs are divided into pro-

inflammatory M1 signature and anti-inflammatory M2

signature. M1 signature TAMs are activated by IFN-c,
TNF-a, and TLR and contribute to inflammation [40]. In

contrast, M2 signature TAMs occur after exposure to IL-4,

IL-10, and IL-13 and promote an anti-inflammatory

response, tissue repair, and tumor progression [36, 41].

Recently, results of single-cell RNA-sequencing of the

TAMs have shown that both M1 and M2 signature genes

are frequently co-expressed in individual cells [42].

Despite the fact that M2 signature TAMs secret TGF-b
and IL-10 to promote glioma tumorigenesis and establish

an immunosuppressive microenvironment, IL-1b and IL-6

derived from M1 signature TAMs have also been found to

facilitate glioma cell growth and invasion [43–48]. In

addition, high levels of TAM infiltration are indeed

associated with an aggressive tumor subtype and predict

a poor prognosis in glioma patients [49]. Hence, targeting

TAMs may be a promising approach to the treatment of

gliomas.

Mutant IDH1 has been shown to suppress immune-

response-related pathways in an unbiased RNA-sequencing

study, indicating that IDH1-mutant and wild-type gliomas

exhibit different patterns of immune-cell infiltration and

responses to immunotherapy [50, 51]. In both IDH1-mutant

human and mouse glioma tissues, it has been reported that

the infiltration of TAMs is lower than in IDH1-wild-type

gliomas [52]. Another study found that, although the total

number of TAMs is lower in IDH1-mutant GBM samples,

the remaining TAMs are more pro-inflammatory [53]. In

contrast, longitudinal single-cell profiling and mass cytom-

etry studies have reported that TAMs from patients with

IDH-mutant gliomas exhibit a more immunosuppressive

phenotype than IDH-wild-type samples [54]. Apart from

that, the microenvironment is also significantly different

between IDH-mutant-1p/19q-co-deleted and IDH-mutant

gliomas, and in particular in the abundance of TAMs.

Gliomas harboring IDH-mutant-1p/19q-co-deleted present

lower TAM infiltration with respect to the IDH-mutant

[55–57].

Mutation in IDH1 not only alters the ratio of M1 and M2

signatures in TAMs, but also promotes TAM migration

in vitro and in vivo. When glioma cells are co-cultured with

human primary TAMs for 24 h, in vitro assays have

showed that the IDH1 mutation increases the expression of

M1 signature markers (CD40, CD80, TNF-a, and IL-12)

and downregulates the expression of M2 signature markers

(CD206, CD163, and IL10) in TAMs. Moreover, a

conditioned medium derived from IDH1-mutant glioma

cells significantly promotes TAM migration compared with

that from IDH1-wild-type glioma cells. In orthotopic

xenografts, isogenic human U87 IDH1-wild-type and -

mutant glioma cells have been transplanted into BALB/c

immunodeficient (SCID) mice and retain innate immune

functions. Similar to the in vitro results, the IDH1-mutant

glioma cells have increased TAM recruitment, which

promotes the anti-tumor functions of TAMs in vivo [50].

Further results have suggested that IDH1 mutations

increase TAM recruitment and the expression of phagocy-

tosis markers through the inhibition of ICAM-1 expression

by mediating hypermethylation in its promoter [50].

The oncometabolite D2-HG also plays an important role

in mutant IDH1-mediated TAM activation. In human

primary TAMs, D2-HG selectively increases the expres-

sion of IL-12, but not other markers, and also activates M1-

type TAMs [50]. In murine BV2 microglial cells, co-

culturing with conditioned media from IDH-wild-type

GL261 glioma cells increases the expression of pro-

inflammatory genes (IL-6, IL-1b, TNF-a, CCL2, and

CXCL10) as well as anti-inflammatory markers, indicating

activation of BV2 cells. D2-HG treatment abolishes this

conditioned media-mediated pro-inflammatory response in

activated BV-2 microglial cells by suppressing the AMPK/

mTOR/NF-jB signaling pathway [58]. However, this study

did not assess the effects of D2-HG on the anti-inflamma-

tory response. Further studies have shown that D2-HG is

taken up by TAMs through solute carrier 13A3
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(SLC13A3). When taken up by TAMs, D2-HG acts as an

allosteric activator of tryptophan-2,3-dioxygenase 2, which

promotes the conversion of L-tryptophan into L-kynur-

enine (L-Kyn), a ligand of the aryl hydrocarbon receptor

(AHR). Increased AHR activity then induces secretion of

the immunosuppressive factors IL-10 and TGF-b in TAMs.

Interestingly, co-culture of D2-HG-pretreated macrophages

with T cells has been shown to promote L-Kyn accumu-

lation and AHR activity in TAMs, resulting in a dose-

dependent suppression of T-cell proliferation [54, 59].

CD81 Cytotoxic T Lymphocytes

CD8? T cells are one of the most vital immune cells in the

adaptive immune response. CD8? T cells can be classified

into three types according to their state of differentiation:

naı̈ve, effector, and memory T cells [60]. Naı̈ve CD8? T

cells have not yet received an antigen presentation signal,

whereas effector and memory CD8? T cells have been

activated by antigens. During antigen presentation, CD8?

T cells carrying an antigen-specific T-cell receptor (TCR)

specifically recognize tumor antigenic peptides on the cell

surface, a process that is mediated by MHC class I

molecules [61, 62]. Once activated, CD8? T cells mainly

function by secreting pro-inflammatory cytokines, binding

to the Fas receptor on target cells via the Fas ligand, and

releasing granzymes, thus causing the lysis of target cells

[63]. CD8? T cells obtained from glioma tissue have been

shown to be phenotypically CD8? CD25-, indicating a

lack of T-cell activation. In addition, GBM patients with

high CD8? T-cell infiltration at the time of diagnosis are

more likely to have a better overall survival than patients

with focal CD8? T-cell infiltration [64]. Therefore,

triggering T-cell activation is a promising strategy for

glioma treatment.

Decreased CD8? T-cell numbers have been identified

using immunofluorescence assays in IDH-mutant, lower-

grade gliomas than in IDH-wild-type gliomas. Sequence

data from the TCGA database has demonstrated that LGG

tissue harboring IDH mutations has fewer infiltrated CD8?

T cells and lower IFN-c–induced chemokine gene expres-

sion than IDH-wild-type tissue [6, 65]. In a murine glioma

model, IDH-mutant gliomas also show lower infiltration of

CD8? cytotoxic T cells than IDH-wild-type gliomas [66].

An in vitro study found that co-culture with conditioned

medium from IDHR132H gliomas reduces the migration of

CD8? T cells by inhibiting chemokine secretion mediated

by signal transducer and activator of transcription 1

(STAT1) signaling [65].

There are two enantiomers of the metabolite 2-HG,

named D2-HG and L2-HG. Unlike D2-HG driven by

IDH1/2 mutations, L2-HG accumulation occurs in the

context of hypoxia and mitochondrial dysfunction [67, 68].

Several studies have found that the two enantiomers play

crucial roles in mediating the infiltration and function of

CD8? T cells. The D2-HG produced by IDH-mutant

glioma cells can also be taken up by CD8? T cells. The

imported D2-HG impairs only the activation of these T

cells but has no effects on T-cell apoptosis or proliferation

[6]. When taken up by T cells, D2-HG interferes with

Ca2?-dependent transcriptional activity of nuclear factor of

activated T cells and inhibits ATP-dependent TCR signal-

ing and polyamine biosynthesis in T cells, which results in

a suppression of T-cell antitumor immunity. Similar results

have also been reported in tumor models. L2-HG can be

produced by CD8? T cells in response to TCR triggering

and environmental hypoxia. Adoptively transferred CD8?

T cells treated with L2-HG exhibit an increased capacity to

proliferate in vitro and persistence in vivo, indicating

enhanced anti-tumor efficacy [69]. In gliomas, D2-HG

maintains HIF-1a protein stability by inhibiting EGLN

[30]. In CD8? T cells, HIF-1a activation increases their

production of L2-HG. Autocrine L2-HG alters CD8?

T-cell differentiation by mediating hypermethylation [69].

Tumor-infiltrating CD41 T Cells

CD4? T cells represent a diverse cell population expressing

CD4 cell surface markers that are associated with both innate

and adaptive immune responses to pathogens and tumors

[70]. CD4? T cells are classified into Th1, Th2, Treg, Th17,

and natural killer (NK) T cells based on their functions and

cytokine secretion patterns [71]. Similar to TAMs, CD4? T

cells play both anti-tumor and pro-tumor roles depending on

the cell subtype [72]. For example, CD4? Th cells directly

recognize antigens on MHC-II-expressing tumor cells and

produce lymphokines that impair tumor growth and induce

cell death. However, CD4? Tregs function without this

antigenic stimulation and mediate immune suppression by

directly producing inhibitory cytokines or by influencing the

state and function of dendritic cells (DCs) and other immune-

cell subtypes [71]. During glioma progression and growth,

CD4? Tregs have been found to accumulate in both murine

and human tumor tissues and to act as potent suppressors of

anti-glioma immunity [73]. Targeting CD4? T cells in

combination with DC vaccination can lead to long-term

immunity against experimental gliomas [74].

In both human and mouse glioma tissues, fewer CD4?

T cells, including Tregs, are found in IDH-mutant samples

than in IDH-wild-type samples [52, 66, 75]. A study

reported that the migration, proliferation, differentiation,

and cytokine secretion of Th1, Th17, and Treg cells are

significantly inhibited by D2-HG [75]. In that study, CD4?

T cells from IDH-wild-type glioma mice were isolated,

activated by monoclonal CD3 and CD28 antibodies, and

then treated with or without D2-HG. It was found that the
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proliferation of polarized Th1s, Th17s, and Tregs was

significantly inhibited in cells treated with D2-HG. D2-HG

promoted the differentiation of these cells at a concentra-

tion of 30 mmol/L. In addition, D2-HG suppressed T-cell

migration by downregulating CCL19 secretion [75]. Inter-

estingly, the IDH1-mutant protein contains an immuno-

genic peptide, which has been shown to be suitable for

mutation-specific vaccination. MHC-II molecules are

responsible for presenting this specific immunogenic

epitope to Th1 cells and inducing the Th1 cell response

[76]. Since IDH mutations occur in the majority of LGGs

and secondary GBMs, a mutation-specific anti-IDH vac-

cine may be a promising immunotherapeutic strategy for

IDH-mutant gliomas.

Natural Killer Cells

NK cells are effective cytotoxic lymphocytes that fight

various virus-infected and cancer cells [77]. NK cells are

divided into five groups based on their migratory behavior

and cytotoxic responses: i. NK cells that kill all target cells;

ii. NK cells that do not kill target cells, iii. NK cells that

interact with target cells; iv. NK cells that randomly kill

target cells based on the net balance of stimuli detected by

activating and inhibitory receptors, and v. exhausted NK

cells [78]. The functioning of NK cells is modulated by an

array of activating (NKp30, NKp44, NKp46, NKp80,

NKG2D, CD2, and DNAM-1) and inhibitory (KIRs and

NKG2A) receptors. Among these receptors, inhibitory

receptors specifically bind to MHC-I molecules to inhibit

NK cell cytotoxicity [79].

Unlike TAMs and T cells, a higher infiltration of NK

cells has been reported in IDH-mutant gliomas, in which,

D2-HG upregulates CX3CL1 expression, with a high

expression level of this chemokine inducing NK-cell

recruitment by targeting the CX3CL1 receptor. In addition,

the higher infiltration of NK cells in IDH1-mutant gliomas

is associated with a better prognosis [80]. Interestingly,

IDH-mutant glioma cells and astrocytes are resistant to

NK-cell-mediated cytolysis. Furthermore, IDH-mutant

glioma cells escape NK-cell immune surveillance by

downregulating NKG2D ligand expression. The inhibition

of DNA methyltransferases increases NKG2D ligand

expression in IDH-mutant glioma cells and restores the

NK-mediated lysis of IDH-mutant glioma cells in an

NKG2D-dependent manner [81]. Hence, targeting DNA

methylation may represent a novel strategy to sensitize

IDH-mutant gliomas to NK-cell-mediated immune lysis.

Demethylation and epigenetic modifications via DNA

methyltransferase has been shown to suppress IDH1-

mutant glioma growth in combination with temozolomide

in a mouse model [82].

Immune Checkpoint Alterations in IDH Mutant
Gliomas

PD-1/PD-L1

Programmed cell death 1 (PD-1) is a receptor expressed in

activated T cells. This immune inhibitory receptor is

involved in regulating T-cell function and differentiation

[83, 84]. Similarly, programmed cell death 1 ligand 1(PD-

L1) is an immune receptor expressed in both hematopoietic

and non-hematopoietic cells, including various tumors

[85]. When PD-L1 interacts with its receptor, PD-1, T-cell

activation is abolished [86, 87]. In tumors, this interaction

provides a means for tumor cell immune escape via

cytotoxic T-cell inactivation [88, 89]. Hence, targeting the

PD-1/PD-L1 pathway is another potential treatment strat-

egy for gliomas [90].

Anti-PD-1/PD-L1 immunotherapy has been a break-

through that has prolonged survival times for patients with

a variety of cancers [91]. However, patients with GBMs

have had limited efficacy with anti-PD-1 therapy, except

for in isolated case reports [92]. The low efficacy of

immunotherapy for gliomas is likely due to multiple

reasons, including the unique immune environment of the

brain [91]. However, patients with recurrent GBMs have

been shown to benefit from neoadjuvant anti-PD-1

immunotherapy, with intratumoral and systemic immune

responses [92]. In IDH-mutant gliomas, the expression

levels of PD-L1 and PD-1 are lower than in IDH-wild-type

gliomas due to promoter methylation [93–96]. Whether this

low PD-L1/PD-1 expression can alter the immune response

to immunotherapy remains to be elucidated. Three clinical-

phase studies (NCT03557359, NCT03718767, and

NCT03925246) related to nivolumab (anti-PD-1) treatment

for IDH-mutant, recurrent, or progressive gliomas and

IDH-mutant gliomas with or without hypermutator pheno-

types are ongoing.

CD47

Cluster of differentiation 47 (CD47), also known as

integrin-associated protein, is a ubiquitously-expressed

receptor belonging to the immunoglobulin (Ig) superfam-

ily. CD47 possesses a single extracellular V-set IgSF

domain, a five transmembrane domain, and a short

cytoplasmic domain [97, 98]. Through interactions with

its ligand, signal regulatory protein alpha (SIRPa), CD47
alters the phagocytosis of TAMs via the ‘‘don’t eat me’’

signal. In addition, CD47 regulates the activation of T

cells, B cells, and dendritic cells by binding with other

ligands, such as thrombospondin-1 and integrins [98–100].

In gliomas, CD47 is abnormally upregulated in tumor
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tissue and cell lines [101]. Disrupting the CD47/SIRPa axis

has been shown to induce tumor phagocytosis and to elicit

a potent anti-glioblastoma effect [102, 103]. Moreover,

treatment with anti-CD47 antibody also has antitumor

effects in gliomas and glioma stem cells, indicating that

CD47 may be a target for tumor therapy [104].

Compared with IDH1-wild-type glioma cells, CD47

expression is decreased in IDH-mutant cell lines. In IDH1-

wild-type glioma cells, the PKM2/b-catenin/BRG1/TCF4
co-factors bind to the CD47 promoter and modulate CD47

transcription. However, when IDH1 is mutated, recruit-

ment of PKM2 and b-catenin to the TCF4 site is

diminished, resulting in low CD47 expression. In addition,

microglia co-cultured with IDH1-mutant glioma cells

exhibit increased phagocytosis [105]. These findings reveal

that mutations in IDH1 not only affect the microglial

signature and infiltration but also alter microglial

phagocytosis.

CTLA-4

Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is

a member of the Ig superfamily and transmits an inhibitory

signal to T cells [106]. In an orthotopic glioma model,

CTLA-4 blockade has been shown to eradicate glioma cells

by reshaping oligoclonal T-cell infiltration [107]. Further-

more, systemic CTLA-4 blockade ameliorates glioma-

induced changes in the CD4? T-cell compartment without

affecting regulatory T-cell function [108]. In gliomas,

lower CTLA-4 expression and higher methylation of the

CTLA-4 promoter have been found in patients with IDH

mutations [94, 109]. Whether lower expression of CTLA-4

affects the efficacy of anti-CTLA-4 immunotherapy in

IDH-mutant gliomas requires further exploration.

Alterations in Immune Cell Infiltration
and Immune Checkpoint in Other Gene-mutant
Gliomas

TP53 Mutant Gliomas

The protein TP53 is known as a tumor suppressor and acts

as a transcriptional regulator to regulate the tumor cell

cycle, apoptosis, and autophagy [110, 111]. Somatic

alterations in the TP53 gene in gliomas are of two types:

loss-of-function (common) and gain-of-function (rare)

[112, 113]. In TP53-mutant GBM pathologic specimens,

immune checkpoint CTLA4 presents higher levels than in

TP53-wild-type GBMs, indicating a correlation between

TP53 mutation and immunologic markers [114]. Further

research found that loss of TP53 by mutation might

cooperate with the induction of SPARC to promote tumor

cell escape from immune surveillance through modulating

TAM recruitment and activation [115]. In contrast, gain-of-

function mutation of TP53 is positively correlated with the

tumor-associated myeloid signature via upregulating

cytokines ccl2 and TNFa to promote TAM and other

myeloid-derived immune cell infiltration [112].

PTEN Mutant Gliomas

PTEN protein acts as a tumor suppressor in gliomas, and

suppressed expression of PTEN is prevalently found in

PTEN-mutant gliomas [116]. Mutation in PTEN not only

increases expression of the PD-L1 protein in gliomas, but

also induces T-cell apoptosis [117, 118]. Subsequent

results of a PD-1 immune checkpoint clinical trial have

demonstrated that PTEN mutation promotes resistance to

GBM immunotherapy via altering the immunosuppressive

environment in GBM patients [119].

EGFR Mutant Gliomas

EGFR is a prominent driver in a variety of tumors as well

as GBMs, and it has been reported that amplification and

over-expression of EGFR is[ 50% in GBMs [120].

Activated EGFR induced by EGF stimulates cell prolifer-

ation and migration, and inhibits apoptosis via various key

signaling pathways such as the JAK/STAT3 and PI3K/

AKT pathways [121]. Among EGFR amplifications,

EGFRvIII (deletion of exons 2–7) mutation is the most

prevalent and accounts for *66% [122, 123]. Mutations in

EGFR can remodel vessel walls and govern the recruitment

of leukocytes, myeloid cells, and lymphocytes [124]. In

addition, mutant EGFR protein also has immunogenic

activity, and vaccines targeting EGFRvIII indeed induce

potent T- and B-cell immunity in GBMs to eliminate tumor

cells [121, 125].

Ongoing Clinical Trials of IDH Mutant Inhibitors

Considering the crucial role of IDH mutations in both

glioma cells and the tumor microenvironment, targeting

mutant IDH protein is also a promising strategy for glioma

therapy. In this section, we summarize the IDH-mutant

inhibitors that are being tested in ongoing clinical trials of

patients with gliomas. Other IDH-mutant inhibitors are

listed in Table 2 [126–131].

IDH-305

IDH-305 is an oral, selective, brain-penetrating IDH1

inhibitor. The IC50 values of IDH-305 for IDH1R132H,

IDH1R132C, and IDH1-wild-type gliomas are 27, 28, and
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Table 2 Mutant IDH Inhibitors

Drug names Structure Introductions

AGI-5198 AGI-5198 (IDH-C35) is the first highly effective

and selective mutant IDH1 inhibitor, with an

IC50 = 0.07 and 0.16 lmol/L for IDH1R132H

and IDH1R132C, respectively.

IDH1 Inhibitor 3 IDH1 Inhibitor 3 is a mutant IDH1 inhibitor, with

an IC50 of 45 nmol/L for IDH1R132H.

IDH-889 IDH-305 is an oral and brain-penetrating inhi-

bitor of mutant IDH1, with an IC50 = 0.02,

0.072, and 1.38 mol/L for recombinant

IDH1R132H, IDH1R132C, and wild-type IDH1,

respectively.

Mutant IDH1-IN-1 Mutant IDH1-IN-1 is a selective inhibitor of

mutant IDH1R132H, with IC50 = 81.5 nmol/L.

a-Mangostin a-Mangostin is an inhibitor of mutant IDH1R132H

with a Ki of 2.85 lmol/L; IC50 = 2.85 lmol/L.

FT-2102 FT-2102 is a mutant IDH1 inhibitor, with an

IC50 = 9 and 39 nmol/L for IDH1R132H and

IDH1R132C, respectively, in U87 glioma cells.

AGI-6780 IDH2/R140Q mutation inhibitor
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Table 2 continued

Drug names Structure Introductions

IDH-305 IDH-305 is an oral and brain-penetrating inhi-

bitor of mutant IDH1, with an IC50 = 27, 28,

and 6,140 nmol/L for recombinant IDH1R132H,

IDH1R132C, and wild-type IDH1, respectively.

DS-1001b Seen in the main manuscript

BAY-1436032 Seen in the main manuscript

AG-120 Seen in the main manuscript
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6.14 lmol/L, respectively [132]. IDH-305 decreases D2-

HG production and inhibits MCF-10A-IDH1R132H cell

growth in a concentration-dependent manner. IDH305 has

been shown to suppress D2-HG production in an HCT116-

IDH1R132H mouse xenograft model at a dose of 200 mg/kg.

Moreover, at 300 mg/kg, it reduces the concentration of

D2-HG and inhibits tumor progression in an HMEX2838-

IDH1R132C patient-derived melanoma mouse xenograft

model [132]. These results indicate that IDH-305 may be

a candidate for IDH1-mutant glioma treatment. A Phase I

trial of IDH305 in patients with advanced malignancies

harboring IDH1R132 mutations is currently ongoing

(NCT02381886).

DS-1001b

DS-1001b is an oral selective inhibitor of mutant IDH1R132

that is designed to penetrate the blood-brain barrier and has

potential anti-tumor activity. DS-1001b inhibits the

proliferation of IDH1-mutant chondrosarcoma cell lines

via demethylation of H3K9me3 and decreased D2-HG

levels. Continuous administration of DS-1001b impairs

tumor growth in xenograft mice [133, 134]. There have

been two clinical trials of DS-1001b (NCT03030066 and

NCT04458272) related to the treatment of IDH1-mutated

gliomas. A first-in-human, multicenter, Phase I study

(NCT03030066) included 45 eligible patients with recur-

rent/progressive IDH1-mutant gliomas who received DS-

1001b twice daily (bid), continuously. Recurrent/progres-

sive IDH1-mutant glioma patients responded to this

treatment. During treatment, DS-1001b was well tolerated

at dosages up to 1400 mg bid with a favorable brain

distribution, and the maximum tolerated dose was not

reached. Most adverse events (AEs) were grade 1 to 2 and

no grade 4 or 5 AEs or serious drug-related AEs were

reported [134]. A Phase II study of DS-1001b in patients

with IDH1-mutated, WHO grade II gliomas is currently

ongoing (NCT04458272). This study is being conducted to

Table 2 continued

Drug names Structure Introductions

(R,S)-AG-120 Seen in the main manuscript

AG-221 Seen in the main manuscript

AG-881 Seen in the main manuscript
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assess the efficacy and safety of DS-1001b in patients with

chemotherapy- and radiotherapy-naı̈ve, IDH1-mutated,

WHO grade II gliomas.

AG881

AG-881 is an orally available, brain-penetrating, second-

generation dual mutant IDH1/2 inhibitor. The IC50 of AG-

881 ranges from 0.04 to 22 nmol/L against IDH1R132, 7 to

14 nmol/L against IDH2R140Q, and 130 nmol/L against

IDH2R172K [135, 136]. AG-881 inhibits the transformation

of a-KG into D2-HG, resulting in a reduction in D2-HG

production. In vitro and in vivo studies have found that AG-

881 readily crosses the blood-brain barrier, induces cell

differentiation, and suppresses tumor growth via inhibition

of D2-HG-mediated signals [136, 137]. At present, a

clinical-phase study (NCT02481154) of orally adminis-

tered AG-881 is being performed in patients with advanced

solid tumors, including gliomas, with IDH1 and/or IDH2

mutations. The purpose of this Phase I, multicenter study is

to evaluate the safety, pharmacokinetics, pharmacodynam-

ics, and clinical activity of AG-881 in gliomas harboring an

IDH1 and/or IDH2 mutation.

AG-120

AG-120 is an orally active IDH1 inhibitor with potential anti-

tumor activity, while (R, S)-AG-120 is an enantiomer of AG-

120 with less activity [138]. In IDH1-mutant TF-1 cells and

ex vivo cultures of samples fromprimary human acutemyeloid

leukemia (AML) patients with mutant IDH1, AG-120 reduces

intracellular D2-HG, inhibits growth factor-independent cell

proliferation, and restores cell differentiation induced by

erythropoietin [139]. In 2018, AG-120 was approved by the

U.S. Food and Drug Administration for the treatment of

patients with relapsed or refractory AML who have a

susceptible IDH1 mutation. Meanwhile, clinical development

for the treatment of AML, cholangiocarcinoma, glioma,

myelodysplastic syndromes, and solid tumors is ongoing

worldwide [140]. For gliomas, a multicenter, open-label,

Phase I, dose-escalation and expansion study of AG-120 has

been completed. In this study of 66 patients with advanced

mutant-IDH1 gliomas, AG-120 was well tolerated at 500 mg

once per day orally in 28-day cycles. The grade 3 and 4 AE

rates were no more than 20%, and only two patients

experienced AEs that were considered treatment-related.

Among these AG-120-treated patients, stable disease was

achieved in 85.7%, and the median progression-free survival

was 13.6 months for non-enhancing gliomas. Furthermore,

AG-120 reduced the volume and growth rates of non-

enhancing tumors in an exploratory analysis. Hence, AG-120

has a favorable safety profile for IDH1-mutant advanced

glioma patients [141]. Two Phase I clinical trials

(NCT03343197 and NCT02073994) have been performed to

further evaluate the safety and effectiveness of AG-120 in

IDH-mutant glioma patients. Moreover, a Phase II study

(NCT04056910) focused on the combination of the IDH1

inhibitor, AG-120, and the PD-1 inhibitor, nivolumab, in

IDH1-mutant gliomas and advanced solid tumors is ongoing.

AG-221

AG-221 is a mutant IDH2 inhibitor with an IC50 of * 16

nmol/L. AG-221 reduces D2-HG by[ 90%, reverses

in vitro histone and DNA hypermethylation, and induces

the differentiation of leukemia cells. In addition, human-

specific CD45? blast cells proliferate in a dose-dependent

manner following treatment with AG-221 [142, 143]. The

efficacy of AG-221 has been well studied in a primary

human AML xenograft model with an IDH2 mutation. AG-

221 potently reduces D2-HG levels in the plasma, bone

marrow, and urine of engrafted mice. Moreover, treatment

with AG-221 has a significant and dose-dependent survival

benefit [143]. A Phase I/II, multicenter, open-label, dose-

escalation study (NCT02273739) of AG-221 in patients

with advanced solid tumors, including gliomas and

angioimmunoblastic T-cell lymphomas who harbor an

IDH2 mutation, was completed on February 23, 2021. The

results of this multicenter study have not yet been

published.

Conclusion and Perspectives

Mutations in IDH frequently occur in gliomas and can

affect both glioma cells and the immune microenviron-

ment. In glioma cells, IDH mutations alter cell prolifera-

tion, apoptosis, autophagy, and temozolomide sensitivity

via transcriptional, post-transcriptional, and translational

modifications. IDH mutations also affect the immune

microenvironment of gliomas, modifying immune cell

infiltration and functioning in direct and indirect ways.

These IDH mutations affect immune cell migration and

function via regulating the secretion of related chemokines

and the expression of vital immune checkpoints in glioma

cells, respectively. In contrast, IDH mutation-derived D2-

HG can be taken up by immune cells, which, in turn, alters

their functioning (Fig. 1).

Although mutant IDH affects the immune microenvi-

ronment of gliomas, its role in immune cells is compli-

cated. The interaction of PD-L1 with its receptor, PD-1,

inhibits CD8? T-cell activation and cytokine production,

with PD-L1 expression decreased in IDH-mutant gliomas.

Though IDH-mutant glioma samples with lower PD-L1

expression should have higher levels of activated CD8? T

cells, other studies have found that exogenous D2-HG
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taken up by CD8? T cells impairs T-cell activation and

antitumor immunity. Interestingly, apart from IDH-mutant

gliomas, activated CD8? T cells also auto-secrete D2-HG

to regulate CD8? T cells differentiation.

Similar to CD8? T cells, the role of IDH mutations in

TAMs is also controversial. Several studies have found that

mutations in IDH decrease TAM infiltration, while the

remaining cells are more commonly of the M1 type and

express higher levels of phagocytosis markers. In addition,

mutations in IDH also decrease TAM-inhibitory molecular

CD47 expression, and microglia co-cultured with IDH1-

mutant glioma cells exhibit increased phagocytosis. In

contrast, D2-HG can also be taken up by TAMs via

SLC13A3. In TAMs, D2-HG induces the secretion of the

immunosuppressive factors IL-10 and TGF-b to establish

an immunosuppressive environment, which results in

resistance to immunotherapy. Moreover, co-culture of

D2-HG-pretreated TAMs with T cells suppresses T-cell

proliferation in a dose-dependent manner. It seems that

blockade of D2-HG secretion by IDH-mutant glioma cells

is a promising immunotherapy target. Despite the fact that

IDH-mutant inhibitors, which decrease D2-HG secretion,

have been designed to suppress glioma growth in vitro and

in vivo, the role of these inhibitors in influencing the

immune environment of gliomas requires further

exploration.

Current immunotherapeutic strategies for glioma can be

divided into four types: vaccination, immune checkpoint

blockade, chimeric antigen receptor (CAR)-T cell therapy,

and oncolytic viral therapy [33]. Vaccine therapy depends

on dendritic cell-mediated presentation of the released

lysate such as peptides and antigens derived from tumors to

induce the activation of CD8? cytotoxic T cells, which

eventually kills glioma cells [144]. It has been reported that

the IDH1-mutant protein contains an immunogenic pep-

tide, which has been shown to be suitable for mutation-

specific vaccination [76]. Results of a multicenter, single-

arm, open-label, first-in-humans phase I trial demonstrated

that IDH1R132H vaccine indeed induces immune responses

and improves the two-year progression-free rate in most

IDH1-mutant glioma patients [145]. A mutation-specific

anti-IDH vaccine is a feasible immunotherapeutic approach

for IDH-mutant gliomas. Furthermore, mutations in IDH

also alters immune checkpoint molecular expression and

immune-cell infiltration, and combination of IDH inhibi-

tors with immune checkpoint inhibitors is also promising

for IDH-mutant glioma immunotherapy. Apart from vac-

cines and immune checkpoint inhibitors, genetically-mod-

ified T cells is another interesting immunotherapeutic

strategy for gliomas. Briefly, T cells are engineered to

express CARs, which recognize domains of antibodies

linked to the T cell receptor CD3 f-chain and co-

stimulatory receptors (such as CD28 and/or TNFRSF9).

The engineered CAR T cells also possess antigen recog-

nition domains that are specific for tumor-associated

antigens [33]. As previously described, IDH-mutant protein

harbors an immunogenic peptide, and CAR T cells

targeting IDH-mutant also have potential for glioma

immunotherapy. Hence, further exploration of the roles

of IDH mutations in glioma cells and in the immune

environment of gliomas are vital for future IDH-mutant

glioma therapy.
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