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GCAF(TMEM251) regulates lysosome
biogenesis by activating the mannose-6
-phosphate pathway

Weichao Zhang 1,4, Xi Yang 1,4, Yingxiang Li1, Linchen Yu1, Bokai Zhang1,
Jianchao Zhang 1, Woo Jung Cho2, Varsha Venkatarangan1, Liang Chen1,
Bala Bharathi Burugula 3, Sarah Bui1, Yanzhuang Wang 1, Cunming Duan 1,
Jacob O. Kitzman 3 & Ming Li 1

The mannose-6-phosphate (M6P) biosynthetic pathway for lysosome biogen-
esis has been studied for decades and is considered a well-understood topic.
However, whether this pathway is regulated remains an open question. In a
genome-wideCRISPR/Cas9 knockout screen, we discover TMEM251 as the first
regulator of the M6P modification. Deleting TMEM251 causes mistargeting of
most lysosomal enzymes due to their loss of M6P modification and accumu-
lation of numerous undigested materials. We further demonstrate that
TMEM251 localizes to the Golgi and is required for the cleavage and activity of
GNPT, the enzyme that catalyzes M6P modification. In zebrafish, TMEM251
deletion leads to severe developmental defects including heart edema and
skeletal dysplasia, which phenocopies Mucolipidosis Type II. Our discovery
provides a mechanism for the newly discovered human disease caused by
TMEM251 mutations. We name TMEM251 as GNPTAB cleavage and activity
factor (GCAF) and its related disease as Mucolipidosis Type V.

The lysosome is an essential organelle responsible for the digestion
and recycling of numerous cellular materials. It contains over 50
lumenal enzymes to carry out its hydrolysis function. Most enzymes
utilize themannose-6-phosphate (M6P) residues as a sorting signal for
proper trafficking to the lysosome1,2.

Because of its importance, the M6P biosynthetic pathway and its
sortingmechanismhavebeen studied extensively and consideredwell-
understood subjects. At the cis-Golgi, GlcNAc-1-phosphate transferase
(GNPT) utilizes UDP-GlcNAc as the substrate to transfer GlcNAc-1-
phosphate to specific mannose residues of lysosomal enzymes. The
GlcNAc molecule is then removed by an uncovering enzyme (UCE) to
generate the M6P monoester. Then, lysosomal enzymes are sorted at
the trans-Golgi network (TGN) by mannose-6-phosphate receptors
(MPRs). MPRs traffic between the TGN, where they bind lysosomal
enzymes, and endosomes, where they discharge the enzymes due to a

low lumenal pH1,3. After releasing the substrates, MPRs are recycled
back to TGNby the retromermachinery at the early endosome4,5 or the
Rab9-Tip47 machinery at the late endosome6,7. The discharged lume-
nal enzymes in endosomes are delivered to the lysosome through
endomembrane trafficking.

Disruption of M6P biogenesis or its sorting results in the mis-
targeting of most lysosomal enzymes8. Mutations in GNPT cause two
distinct lysosome storage diseases (LSDs)8,9. Mucolipidosis type II
(MLII), also known as I-cell disease, is characterized by the total loss of
the GNPT enzyme, whereas MLIII manifests a partial loss of enzymatic
activity. MLII patients develop severe skeletal dysplasia, short stature,
cardiomegaly, mental retardation, and usually die within the first
decade. In contrast, MLIII patients show a later onset of similar clinical
symptoms. In early 2021, a new type of LSD similar to MLII was
reported10. However, this disease is caused by mutations in TMEM251,
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a gene of unknown function, indicating that our knowledge of M6P
biogenesis is incomplete.

In this study, we conducted a genome-wide CRISPR/Cas9 knock-
out (KO) screen to identify genes essential for lysosome function.
Independently, we discover TMEM251 as a critical regulator of M6P
modification and lysosome biogenesis. Deleting TMEM251 causes
hypersecretion of most lysosomal enzymes due to their loss of M6P
and accumulation of undigestedmaterials. To compensate for the loss
of lysosome function, the cell drastically upregulates lysosome num-
bers (up to 5–6-fold). We further demonstrate that TMEM251 localizes
to the Golgi and is required for the selective cleavage of GNPTAB by
the site-1-protease (S1P), a step necessary for catalytic activation. In
zebrafish, TMEM251 deletion leads to severe developmental defects in
zebrafish embryos, including heart edema, insufficient cartilage, and
skeletal dysplasia, which phenocopies the GNPTAB knockout. Thus,
our studyuncovers a novel regulator of theM6Ppathway andprovided
the mechanism for a new human disease. We name TMEM251 as
GNPTAB cleavage and activity factor (GCAF, implying that GNPT needs
to be “caffeinated/activated”) and its related LSD as Mucolipi-
dosis type V.

Results
A genome-wide CRISPR/Cas9 screen reveals essential compo-
nents for lysosome function
Previously, we and others have identified a conserved ubiquitin- and
ESCRT-dependent pathway that controls the turnover of lysosome
membrane proteins (LMP)11–21. In a recent study, we discovered two
fast-degrading human LMPs, RNF152 and LAPTM4A, that are con-
stitutively ubiquitinated and internalized into the lysosome lumen by
the ESCRT machinery for degradation17.

To identify new factors that are critical for lysosome function, we
designed a genome-wide CRISPR/Cas9 KO screen in HEK293 cells.
First, we generated a reporter cell line stably expressing both GFP-
RNF152 and cytosolic mCherry using the internal ribosome entry site
(IRES, Fig. 1a). Because GFP-RNF152 is constitutively degraded, stop-
ping protein synthesis with cycloheximide (CHX) leads to a rapid
reduction of the GFP signal. In contrast, mCherry remains stable
(Fig. 1b, c). Then, we sequentially transduced the reporter line with
Lenti-Cas9 and the Brunello human CRISPR library (Fig. 1d)22. Disrup-
tion of genes essential for lysosome function should stabilize GFP-
RNF152 by blocking its degradation, leading to an elevated GFP/
mCherry ratio. We performed two rounds of fluorescence-activated
cell sorting (FACS) to enrich this population. After the second round,
over 90% of the cell population had a stably high GFP/mCherry ratio at
steady-state, and the GFP signal no longer decreased after the CHX
treatment (Fig. 1e). By sequencing sgRNAs at baseline and after each
round of sorting for elevated GFP/mCherry ratio, we identified 196
enriched genes from the first-round sorting and 27 genes from the
second-round sorting with FDR < 10−5 and log2|FC| > 1 (Fig. 1f, Supple-
mentary Data 1).

Our screen results highlighted the importance of the following
functional groups: (1) M6P modification at the Golgi apparatus
(GNPTAB, GNPTG, and MBTPS1), (2) endosomal trafficking, regula-
tion, and fusionmachinery (HOPS & CORVET components including
VPS11/16/18/33A/39/41, LRRK2, and PIKFYVE), and (3) v-ATPase
components on the lysosomes and its assembly factors (ATP6V0B/
C/D1, ATP6V1A/B2/C1/D/G1, ATP6AP1/2, WDR7, and VMA21)
(Fig. 1f)17. Among the top 10 hits from the second round sorting,
TMEM251, a gene of unknown function, stood out as the highest hit
after RNF152, the reporter of the assay (Fig. 1g). Besides this study,
TMEM251 has recently been identified by other high throughput
screens designed to study autophagy, cholesterol metabolism, and
lipid transport23–25. We decided to further characterize TMEM251
because of its implication in various biological processes and dis-
ease connection.

TMEM251 is essential for general lysosome functions
To verify the importance of TMEM251 in LMPdegradation, we knocked
out the gene using two independent sgRNAs (Fig. 2a). Consistent with
the screen results, both KOs significantly delayed the degradation of
GFP-RNF152, and its steady-state protein level increased two-fold
(Fig. 2a–c). Besides RNF152, we also tested another fast-degrading
LMP, LAPTM4A17. As shown in Fig. 2d–f, TMEM251 deficiency led to a
drastic increase in the endogenous LAPTM4A protein level (8–10-fold)
and much slower degradation kinetics.

We then asked if TMEM251 is also involved in other lysosome-
dependent processes, such as the degradation of cell surface
receptors via endocytosis. Since the expression level of epidermal
growth factor receptor (EGFR) in HEK293 cells is low26,27, we gen-
erated two independent HeLa KO cell lines to evaluate its degra-
dation induced by EGF28. Our data showed that TMEM251 KO leads
to a significant delay in EGFR turnover (Fig. 2g, h). Besides endo-
cytosis, TMEM251 KO cells also have defects in autophagy. As shown
in Fig. 2i–k, TMEM251 deficiency led to a two-fold increase in p62/
SQSTM1 protein level and a 6-fold increase in the lipidated LC3B-II
level under normal growth conditions.

In human cells, TMEM251 encodes two transcriptional variants
through alternative splicing: a long isoform (18.7 kDa) and a short
isoform (15.2 kDa) (Supplementary Fig. 1a). Using an antibody that
recognizes the C-terminus of TMEM251, we verified that the short
isoform is the predominant variant (Supplementary Fig. 1b).
Importantly, both long and short isoforms can rescue the degra-
dation of LAPTM4A and LC3-II, indicating that they are functionally
redundant in lysosome biogenesis (Supplementary Fig. 1c–e). For
the rest of the study, we focused on the short isoform unless
mentioned otherwise.

As TMEM251 deficiency impairs various lysosome-dependent
pathways, including LMP degradation, EGFR endocytosis, and autop-
hagy, we concluded that TMEM251 is a critical factor in regulating
general lysosome function.

Ablation of TMEM251 upregulates lysosome biogenesis
How does TMEM251 deficiency lead to a general lysosome defect? We
envisioned that two scenarios might explain this observation: (1)
lysosomes might have an acidification defect, which inactivates
lumenal hydrolases that depend on the low pH to be functional, or (2)
the lumenal hydrolases might be absent from lysosomes. To test the
first hypothesis, we stained cells with LysoTracker Red DND-99 that
labeled the acidic endo-lysosomes and analyzed them by flow cyto-
metry. Instead of lowering the fluorescent intensity, TMEM251 KO led
to a drastic increase in the lysotracker signal in both HeLa and HEK293
cells (4–6-fold, Fig. 3a, b, Supplementary Fig. 2), indicating that the
v-ATPase function is not impaired. Using transmission electron
microscopy, we observed a massive increase of electron-dense lyso-
somes with undigested materials accumulating inside (Fig. 3c, d). The
average lysosome radius also increases by 10%, corresponding to a
~30% increase in volume (Fig. 3d, e).

Intrigued by the increase in lysosome numbers, we analyzed
the KO cells with RNA sequencing (Supplementary Fig. 3a). Tran-
scriptome analysis reveals 211 differentially expressed genes (DEGs)
with p < 0.05 and log2|FC| > 0.263 (Supplementary Fig. 3b). The gene
ontology (GO) analysis confirmed the upregulation of lysosome
pathways at the transcriptional level (Fig. 3f–h). When categorizing
these DEGs into biological processes, we noticed that genes
involved in lipid metabolism, autophagy, and UDP-GlcNAc bio-
synthesis were also upregulated (Supplementary Fig. 3c, d). These
findings are consistent with the recent CRISPR/Cas9 KO screens
suggesting that TMEM251 KO leads to increased lipid/cholesterol
biosynthesis23,25. As the lysosome plays a critical role in regulating
lipid/cholesterol homeostasis, the upregulation may be due to the
feedback responses for lysosome dysfunction.
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b CHX chase assay of stably expressed GFP-RNF152 and mCherry in HEK293 cells.
c Quantification of the protein levels in b. Mean of 3 independent replicates is
shown. Error bars represent standard deviation. d A schematic representation of
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TMEM251 deficiency leads to the secretion of many lysosomal
hydrolases
After ruling out the acidification defect, we tested if the lumenal
hydrolases can properly target to the lysosome using Cathepsin C and
D (CTSC and CTSD) as proxies. Both enzymes are sorted at TGN by
M6PR and undergo sequential cleavage into mature forms when traf-
ficking to the lysosome. Strikingly, TMEM251 deletion abolished the
mature forms of both enzymes, and only the accumulated pro-
enzymes were detected (Fig. 4a–c). Furthermore, analyzing the con-
ditioned culturemedia indicated that a significant portion of ProCTSC
and ProCTSD were secreted into the media (Fig. 4a–c) in TMEM251
deficiency cells.

To obtain a holistic view of how many lysosomal enzymes are
secreted, we compared the conditioned media from TMEM251 KO to
WTcells usingquantitativemass spectrometry.Our analysis uncovered
39 lumenal proteins exhibiting a significant increase in secretion (log2|
FC| > 1 and p <0.05) (Fig. 4d, e, Supplementary Table 1), indicating that
most lumenal proteins are mistargeted in TMEM251 KO cells. This
result explained why lysosomes are defective after deleting TMEM251.

TMEM251 is essential for the M6P biogenesis of lysosomal
enzymes
Howdoes TMEM251deficiency lead to thehypersecretion of lysosomal
enzymes? We first determined its subcellular localization. Using its
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endogenous antibody, we observed that both long and short isoforms
of TMEM251 colocalized with the cis-Golgi marker GM130 (Supple-
mentary Fig. 4a, b), which is consistent with the previous report that
TMEM251-GFP is localized to Golgi10. A small fraction of TMEM251 also
colocalized with the early endosome marker EEA1 and the lysosome
marker LAMP2 (Supplementary Fig. 4a, b). Consistent results were
obtained using biochemically purified organelles. As shown in Sup-
plementary Fig. 4c, d, endogenous TMEM251 is highly enriched in
purified rat liver Golgi membranes and slightly enriched in immuno-
isolated lysosomes.

Besides TMEM251, our CRISPR screen also identified three other
Golgi factors, including GNPTAB, GNPTG, and MBTPS1 (Fig. 1f, g).
MBTPS1 encodes site-1 protease (S1P), a Golgi-resident serine protease
that is responsible for the proteolytic cleavage of multiple substrates,
including GNPTAB, SREBP1/2, and ATF629,30. GNPTAB and GNPTG
encode the three subunits of the GNPT enzyme31, which requires S1P
cleavage for its activation and is responsible for adding M6P to the

lysosomal enzymes (Fig. 5a). Then the lysosome enzymes are sorted at
TGN by two types of M6P receptors (MPRs), the ~46-kDa cation-
dependentMPR (CD-MPR) and the ~300-kDa cation-independentMPR
(CI-MPR), for their lysosomal delivery1,3. Therefore, mutations in either
GNPT, S1P, or MPRs will result in M6P biogenesis/sorting defects and
the secretion of most lysosomal enzymes. Interestingly, published
bioinformatic analysis indicated a co-dependency (Pearson correlation
0.26, https://www.depmap.org) between TMEM251 and GNPTAB from
large-scale CRISPR KO screen datasets, suggesting a genetic correla-
tion between the two genes. Because of similar localization, consistent
enzyme secretion phenotypes, and genetic correlation, we hypothe-
sized that TMEM251 is a critical factor in the M6P biogenesis pathway.

To test thehypothesis,we compared theprocessing and secretion
of proCTSD in TMEM251KO,GNPTABKO, andCI-MPRKOcells (Fig. 5a,
b, Supplementary Fig. 5a). TMEM251 KO phenocopied GNPTAB defi-
ciency as evidenced by the absenceofmCTSD and the accumulation of
ProCTSD32. CI-MPR KO cells showed a mild phenotype with a small
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amount of proCTSD processed to the mature form, likely due to the
presence of CD-MPR (Fig. 5b). Importantly, all three KO lines exhibited
strong secretion of ProCTSD (Fig. 5b). To directly evaluate the M6P
modification state of secreted enzymes, we used purified CI-MPR to
detect the presence of M6P in the conditioned media33,34. Our results
indicated that only the conditioned media from CI-MPR KO cells
contained M6P-tagged glycoproteins (Fig. 5c). Furthermore, knocking
out TMEM251 in CI-MPR KO cells abolished the M6P modification,
suggesting that TMEM251 functions upstream of the M6P sorting step
and is likely involved in theM6Pmodification (Fig. 5c).We also verified
our results by examining individual enzymes, including Lipase A
(LIPA), CTSD, and cathepsin Z (CTSZ). After immunoprecipitation,
we used a single-chain antibody against M6P to detect the
modification35,36. As shown in Fig. 5d–f, TMEM251 deficiency abolished
the M6P modification of all three enzymes.

Next, we took advantage of the fact that ~10% CI-MPR localizes to
the cell surface to endocytose secreted lysosomal enzymes (Fig. 5g)3,
and tested if enzyme replacement therapy (ERT) can be used to treat
TMEM251 deficiency37,38. To this end, we collected conditioned media
from CI-MPR KO cells that contain M6P-tagged lysosomal enzymes to
feed the TMEM251 KO cells37,39. Indeed, conditioned media from CI-
MPR KO, but not GNPTAB KO cells, partially rescued lysosome defects
in TMEM251 KO cells, as evidenced by the reduction of full-length
LAPTM4A and LC3B-II (Fig. 5h–j). We also observed a significant
increase of mature enzymes such as mCTSC and mCTSD in cells
(Fig. 5h, k, l), indicating that endocytosed enzymes have reached the
lysosome. These rescue phenotypes were abolished by adding exces-
sive free M6P, which saturated the surface M6P receptors (Fig. 5g–i).
Collectively, these results demonstrated that ERT could be used to
treat TMEM251 deficiency. They also confirmed that the lysosome
defects in TMEM251 KO cells are due to the lack of M6P on its lumenal
enzymes.

TMEM251 is required for the efficient processing of the GNPT α/
β precursor
The complete GNPT enzyme is an α2β2γ2 hexamer. It is assembled at
the endoplasmic reticulum (ER) before its trafficking to the Golgi.
Upon arrival at the Golgi, GNPT is cleaved between the α/β precursor
by S1P and activated (Fig. 6a)30,40. Since our data so far suggested that
TMEM251 is also a critical factor for M6P biogenesis, we decided to
resolve the relationship between TMEM251, GNPT, and S1P. Due to the
lack of endogenous antibodies, we used CRISPR/Cas9 technique to
knock in a 3xHA tag at the C-terminus of the GNPTAB in HEK293T cells
(Supplementary Fig. 5b). After knocking in, the levels of CTSD,
LAPTM4A, and LC3B-II were largely unchanged, suggesting that HA
taggingdidnot affect theGNPTAB function (Supplementary Fig. 5c). At
the endogenous level, most GNPT α/β precursor is processed into the
active form, as indicated by the strong signal of the β subunit at
~48 kDa. The processed β subunit was abolished in TMEM251 KO cells,
andwas further rescued by reintroducing TMEM251, ruling out the off-
target effect of the CRISPR technique (Fig. 6a–c). These results indi-
cated that TMEM251 is required for the cleavage and activity of GNPT
by S1P, which explained why knocking out TMEM251 abolished the
M6P modification. Interestingly, overexpression of TMEM251 can
slightly stimulate the processing of endogenous GNPTAB (Fig. 6b,
compare lanes 2 to 4). This stimulation became evident when GNPTAB
was overexpressed (Supplementary Fig. 5d, e).

We then asked if the GNPT processing defect was due to a
deficiency in S1P by testing other substrates of S1P. As shown in
Fig. 6d–i, TMEM251 KO did not affect the processing of SREBP2
triggered by sterol depletion (Fig. 6d–f)41,42, nor did it affect the
cleavage of ATF6 triggered by DTT treatment that induces ER stress
(Fig. 6g–i)43, suggesting that only the GNPTAB cleavage is affected
by TMEM251 deletion. Furthermore, GNPTAB largely colocalized
with cis-Golgi Glycoprotein GPP130 in both WT and TMEM251 KO

cells (Supplementary Fig. 5f, g), suggesting TMEM251 is not
required for its ER exit.

We further assessed the physical interactions among the three
proteins. As shown in Fig. 6j–m, reciprocal IP experiments demon-
strated that TMEM251 interactswith bothGNPTAB andS1P, supporting
its role in facilitating GNPTAB cleavage by S1P.

Altogether, we concluded that TMEM251 is a specific factor
required for GNPTAB processing. Thus, we named TMEM251 the
GNPTAB cleavage and activity factor (GCAF).

GCAF deficiency phenocopies MLII in vivo
Bioinformatic analysis indicated that GCAF is highly conserved within
vertebrate animals but not detected outside the vertebrates. The
amino acid sequence of zebrafish (Danio rerio) GCAF shares a 69.7%
identity with human GCAF (Fig. 7a) even though the two species are
separated by 450 million years44. Importantly, overexpression of
DrGCAF rescued the KO phenotypes in human cells (Fig. 7b, c), indi-
cating an evolutionarily conserved role in M6P biogenesis.

Previous studies have successfully established zebrafish models
to study LSDs, including mucolipidosis type II45–48. Since our data
indicated that GCAF is required for the cleavage and activation of
GNPT α/β precursor, we asked if their knockouts share similar devel-
opmental defects in zebrafish. To this end, we knocked out GNPTAB
and GCAF using the newly developed F0 knockout technique49. In this
method, a mixture of 4 sgRNAs targeting different locations of the
GCAF (or GNPTAB) gene, along with the Cas9 mRNA, was injected into
fertilized eggs at the one-cell stage. The sgRNAs will convert many
injected embryos into biallelic knockouts and allow us to examine
developmental defects.

Both mutants displayed similar defects, with over 50% of the
population showing severe edema (enlarged heart and other internal
organs) and skeletal dysplasia at 5–7 dpf (day post-fertilization,
Fig. 7d–f). We further categorized these defects into three groups: (1)
severe edema only (22.9 ± 0.8% for GCAF and 20.4 ± 5.7% for GNPTAB),
(2) severe edema with curly tail or no tail (29.5 ± 11.0% for GCAF and
25.5 ± 8.7% for GNPTAB), (3) curly tail or no tail only (4.8 ± 1.0% for
GCAF and 3.7 ± 1.9% for GNPTAB, Fig. 7d–f). We also examined carti-
lage and calcified bone structures using Alcian blue and Alizarin red
staining50,51. As shown in Fig. 7g, h, both knockout embryos lost the
majority of the cartilage and calcified structures such as bones and ear
stones. These defects were consistent with the clinical observations
thatML-IIwas commonly associatedwith cardiovascular abnormalities
and defects in skeletal development8,52–54.

Altogether, our in vivo study indicated that GCAF deletion phe-
nocopies the GNPTAB KO during early embryo development, strongly
supporting thatbothproteins function in theM6Pbiogenesis pathway.

Discussion
In this study, we performed a genome-wide CRISPR KO screen to
identify new factors essential for lysosome function. We discovered
TMEM251/GCAF as a critical protein for lysosome biogenesis by reg-
ulating the cleavage of GNPT α/β precursor. GCAF physically interacts
with both GNPTAB and S1P to facilitate protein cleavage. Ablation of
GCAF results in M6P modification defects. Consequently, most lume-
nal enzymes cannot be sorted appropriately, leading to severe lyso-
some defects (Fig. 8). In zebrafish, knocking out GCAF led to severe
cardiac and skeletal abnormalities that resembled MLII phenotypes.
Excitingly, in cultured cells, the lysosome defects can be rescued by
conditioned media containing normal M6P-labeled enzymes, which
could form the basis for developing ERT to treat patients.

Mucolipidosis is classified into four subtypes according to the
genes/enzymes that are affected. ML-I (sialidosis) results from the
deficiency of lysosomal sialidase, which removes sialic acid from gly-
coproteins, leading to the accumulation of toxic carbohydrates in the
cell55. MLII and MLIII are both associated with GNPT. MLII is
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characterized by the build-up of waste products called inclusion
bodies, and patients often die in early childhood due to heart failure or
respiratory tract infection52,56,57. In contrast, MLIII manifests less severe
symptoms and progresses slower58. Last, pathogenic mutations of

MCOLN1 causeML-IV, which is characterized by delayed psychomotor
development and progressive visual impairment59. MCOLN1 encodes a
cation channel that releases Ca2+ from endolysosomal compartments,
which regulates lysosome-related events such as fusion, positioning,
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Fig. 6 | TMEM251 is required for the efficient processing of GNPTα/β precursor
by S1P. a A schematic representation of GNPTAB processing by S1P. b The pro-
cessing of the endogenously tagged GNPTAB in TMEM251 KO and TMEM251
overexpression (OE) cells. c Quantification of the GNPTAB processing efficiency in
b. Mean of 3 independent replicates is shown. Error bars represent standard
deviation. ****p ≤0.0001. d A schematic representation of SREBP2 processing by
S1P and S2P. e The processing of SREBP2 in HEK293T WT and TMEM251 KO cells.
f Quantification of the SREBP2 processing efficiency in e. Mean of 3 independent

replicates is shown. Error bars represent standarddeviation. **p ≤0.01, ***p ≤0.001.
g A schematic representation of ATF6 processing by S1P and S2P. h ATF6 proces-
sing in HEK293T WT and TMEM251 KO cells after 1 h of CHX and DTT treatment.
i Quantification of the ATF6 processing efficiency in (h). Mean of 3 independent
replicates is shown. Error bars represent standard deviation. **p ≤0.01. See source
data file for exact P values. j, kReciprocal IP (n = 2 independent replicates) showing
interactions between GNPTAB and TMEM251. l,m Reciprocal IP (n = 2 independent
replicates) showing interactions between S1P (S414A) and TMEM251.
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Fig. 7 | GCAF deficiency phenocopies ML-II in vivo. a Sequence alignments of
human GCAF short isoform and zebrafish GCAF. b Zebrafish GCAF rescued the
GNPTAB processing defects in GCAF KO HEK293T cells (n = 3 independent repli-
cates). c Zebrafish GCAF rescued the lysosome function in GCAF KOHEK293T cells
(n = 3 independent replicates). d Morphology of the F0 GCAF and GNPTAB defi-
cient fish at 5 and 7 dpf. Arrowheads point to heart edema. e Quantification of
morphological phenotypes observed in d. Mean of 3 independent replicates is

shown. Error bars represent standard deviation. *p ≤0.05, **p ≤0.01, ***p ≤0.001.
See source data file for exact P values. f χ2 test to compare control, sgGCAF, and
sgGNPTAB embryos. ****p ≤0.0001. The numbers in x-axis represent the fishes
included in the quantification. g Ventral view of alcian blue stained zebrafish larvae
at 4 dpf. ch: ceratohyal, m: Meckel’s cartilage; cb: ceratobranchials. h Alizarin red
staining of zebrafish embryos at 7 dpf. Arrowheads: ear stones. Arrows: vertebrate
columns.
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and lysosome exocytosis60–63. This study characterized a new type of
LSD associated with GCAF. Mechanistically, GCAF is essential for the
processing and activity of GNPT. Symptomatically, individuals who
carried the pathogenic GCAF mutation displayed severe symptoms
reminiscent of MLII10. Therefore, we propose classifying this MLII-like
inherited metabolic disorder as Mucolipidosis type V.

Mounting evidence has indicated that S1P can cleave multiple
diverse Golgi substrates, including SREBP1/2, GNPTAB, activating
transcription factor 6 (ATF6), the secreted kinase Fam20C, and many
viral glycoproteins30,64,65. Therefore, it is important to regulate S1P
activities on different substrates. One mechanism is to modulate S1P
activity directly. Recently, several independent studies have uncov-
ered a new factor, C12orf49, that positively regulates SREBPs signaling
by promoting S1P proteolytic activities66–69. C12orf49 is required for
the maturation of S1P69. However, it does not provide substrate
specificity67,69.

Another elegant mechanism is modulating substrates’ subcellular
localization in response to specific environmental cues. For example,
the localization and processing of SREBP1/2 are regulated by choles-
terol levels. When cholesterol is abundant in the ER, the SREBPs/SCAP
complex interacts with INSIG1/2, causing ER retention70. Cholesterol
depletion leads to dissociation of SREBPs/SCAP from INSIGs and
transport to the Golgi via COP-II vesicles71. At Golgi, SREBPs are
sequentially cleaved by S1P and S2P, releasing the N-terminal bHLH
transcription factor domain, which enters the nucleus to activate the
cholesterol and lipid biosynthesis pathways72,73.

Our study unveiled a new mechanism that regulates S1P selectiv-
ity. GCAF acts as an adapter for GNPTAB, which breaks the long-
standing view that GNPTAB is constitutively cleaved and activated by
S1P. It localizes toGolgi andphysically interactswith bothGNPTAB and
S1P to modulate the cleavage. Deletion of GCAF abolished GNPTAB
processing, and most lysosomal enzymes lose the M6P modification.
To date, it is unclear how GCAF engages S1P and GNPTAB to activate
cleavage. A careful study to map the interacting domains among the
three partners would be an important future direction.

Methods
Ethics statement
All experiments were conducted in accordance with the guidelines
approved by the Institutional Committee on the Use and Care of Ani-
mals, University of Michigan.

Zebrafish husbandry
Zebrafish were raised following standard zebrafish husbandry
guidelines74. Embryos were obtained by natural crosses and raised in a
standard E3 embryo medium74. Embryos were staged as described
previously75. To inhibit pigmentation, 0.003% (w/v) N-phenylthiourea
(PTU) was added. All experiments were conducted in accordance with
the guidelines approved by the University of Michigan Institutional
Committee on the Use and Care of Animals.

Preparation of Golgi membranes from rat liver
Golgi membranes were prepared from fresh liver tissues of female
Sprague–Dawley rats as described previously76. Briefly, rats were
euthanized by carbon dioxide (CO2) inhalation followed by cervical
dislocation after 24-h food starvation. Liver tissues were rapidly
washed in PBS and transferred into ice-cold buffer C (0.5M sucrose,
5mMMgCl2, 0.1M phosphate buffer pH 6.7) with EDTA-free protease
inhibitors and pepstatin A. Liver tissues were cut by a pair of surgical
scissors into 1–2mm pieces and homogenized by gentle pressing
through a 150-µm mesh stainless-steel sieve with the bottom of a
250ml conical flask in a rolling action. To prepare the sucrose gra-
dients, place 6ml of buffer D (0.86M sucrose, 5mM MgCl2, 0.1M
phosphate buffer pH 6.7) in Beckman SW-41 Ultraclear tubes and
overlay 5ml of homogenate and 1ml of buffer B (0.25M sucrose, 5mM
MgCl2, 0.1M phosphate buffer pH 6.7). After centrifugation at
103,800 × g (29,000 rpm) in anSW-41 rotor for 60min at 4 °C, the lipid
at the topwasaspirated and theGolgi fractions accumulated at the0.5/
0.86M sucrose interfaces were collected. The Golgi fractions were
adjusted to 0.25M sucrose concentration (refractive index, 1.3456)
using buffer A (5mM MgCl2, 0.1M phosphate buffer pH 6.7). Pooled
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Golgi fractions were loaded onto the second gradient in the same
centrifuge tube by adding 1ml buffer E (1.3M sucrose, 5mM MgCl2,
0.1M phosphate buffer pH 6.7), 2ml buffer C, and 9ml diluted Golgi
fractions. After centrifugation at 7900 × g (8000 rpm) in an SW-41
rotor for 30min, Golgi membranes concentrated at the 0.5M/1.3M
sucrose interface were collected and gently mixed with 1 volume
buffer A. Purified Golgi membranes were aliquoted and snap-frozen in
liquid nitrogen and stored at −80 °C.

Mammalian cell culture
Cell lines used in this study are listed in Supplementary Table 2.
HEK293 (CRL-1573), HEK293T (CRL-3216), and HeLa (CCL-2) were
purchased from ATCC. Cells were cultured in DMEM (Invitrogen)
containing 10% Super Calf Serum (Gemini), 1% penicillin and strepto-
mycin (Invitrogen), and 1 µg/mlplasmocin (Invivogen) at 37 °C, 5%CO2.
All cells were tested negative for mycoplasma.

Plasmids
Plasmidsused in this studyare listed in SupplementaryTable 3. TheCDS
of TMEM251 was purchased from DNASU plasmid Repository (Arizona
State University). The CDS of GNPTAB is a generous gift fromDr. Stuart
Kornfeld at theWashingtonUniversity in St. Louis. The LIPAplasmid is a
generous gift from Dr. Morihisa Fujita at Jiangnan University, China.

Transfection
HEK293 cells were cultured in DMEM containing 10% serum-only
media for at least 4 days before transfection. Cells were transfected
with individual overexpression plasmids (2.4 µg DNA for a 3.5 cm dish)
using Lipofectamine 2000 (Invitrogen) according to the manu-
facturer’s instructions.

Generation of lentiviral stable cell lines
Stable cell lines were generated as described in Zhang et al.17. In Brief,
HEK293T cells were transfected with transfer plasmid, psPAX2
(Addgene 12260), and pMD2.G (Addgene 12259) at a 3.5:3.5:1 ratio
using Lipofectamine 2000 according to the manufacturer’s instruc-
tion. 72 h after transfection, the supernatant was collected and applied
through a 0.45 µm filter. To generate stable cell lines, HEK293,
HEK293T, or HeLa cells were seeded in 3.5 or 6 cm dishes and infected
with the infectious media (DMEM containing 10% super calf serum,
10 µg/ml polybrene,MOI between 0.3 to 0.5). The puromycin selection
was used at 1 µg/ml, and the blasticidin selection was used at 10 µg/ml.
The selection lasted for at least 10 days before subsequent analysis.

Generation of CRISPR-Cas9 KO and KI cell lines
TMEM251, GNPTAB, and CI-MPR knockout HEK293 or HeLa cells were
generated as described in Ran et al.77. In brief, sgRNA guides were
ligated into pspCas9(BB)−2A-Puro (Addgene, 48139) or Lenti-multi-
CRISPR (Addgene 85402) plasmids. For single colonies, cells were
transfectedwith CRISPR-Cas9 knockout plasmids using Lipofectamine
2000 according to the manufacturer’s instruction. After 24 h of
transfection, cellswere treatedwith 1 µg/ml puromycin (Invitrogen) for
48 h. Single cellswere isolated into96-well plates using limiteddilution
to afinal concentration of 0.5 cell perwell. The knockout colonieswere
screened by western blot analysis. The KO cell lines were verified by
sequencing analysis to confirm the indels at target sites. For polyclonal
KO cell lines, cells were transducedwith Lentivirus-based CRISPR-Cas9
plasmids. After 24 h, cells were treated with 1 µg/ml puromycin
for 7 days.

To generate the template for GNPTAB knock-in (KI), 300 bp
homology arms (upstream and downstream from the stop codon)
were amplified from the genomic DNA. The 3HA coding sequence was
inserted in between the homology arms by overlapping extension. The
resulted DNA fragment was ligated into the pGEM-T Easy vector. To
generate GNPTAB-3HA KI cells, HEK293T cells from a 6 cm dish were

transfected with 4 µg of template plasmid and 2 µg CRISPR-Cas9 plas-
mid using Lipofectamine 2000 according to the manufacturer’s
instruction. After 24 h of transfection, cells were treated with 1 µg/ml
puromycin (Invitrogen) for 48 h. Single cells were isolated into 96-well
plates using limited dilution to a final concentration of 0.5 cell perwell.
The knockin colonies were screened by PCR using a 3HA internal for-
ward primer and a reverse primer located 600bp downstream of the
stop codon. The KI colonies were further verified by western blot and
sequencing analysis.

The following reported sgRNAs were used in this study22:
TMEM251 sgRNA1: 5′-ATGAACTTCCGTCAGCGGAT-3′,
TMEM251 sgRNA2: 5′-TGTCCACACCCAAAAAGGCA-3′,
TMEM251 sgRNA3: 5’-ATAGTAAAATGCTGCTGCAC-3′,
GNPTAB sgRNA1: 5′-ACTCATTGCGATCTATCGAG-3′,
GNPTAB sgRNA2 (KI): 5′-CTTCTATACTCTGATTCGAT-3′,
CI-MPR sgRNA: 5′-GCTCAAAGATCCATTCGCCG-3′

CRISPR-Cas9 knockout screen
The FACS-based CRISPR-Cas9 knockout screen was performed
according to Joung et al. and Lenk et al.78,79. The human Brunello
CRISPR knockout pooled library was purchased fromAddgene (73178)
and amplified according to manufactory instructions22. Lentiviral par-
ticles were produced by the Vector Core at the University ofMichigan.

HEK293 cells that stably express GFP-RNF152-IRES-mCherry and
Cas9 were cultured in twenty 15 cm dishes to reach 50% confluency.
Viruses containing DMEM were added to reach MOI =0.25. After 24 h,
cells were treated with 1 µg/ml puromycin for 7 days.

About 1.5 × 108 Transduced cells were subjected to FACS using
FACSAria III cell sorter (BDBiosciences). The top 1–1.5% cellswith a high
GFP/mCherry ratio were collected. About 6 × 105 of such events/cells
were captured, plated, and expanded for 18 days. About 108 cells were
subjected to a second round of FACS, and 3.2 × 105 events/cells were
captured, plated, and expanded for 7 days. Genomic DNA was purified
from the expanded population after each round of sorting as well as
from the initial transduced population, using the Gentra Purogene kit
(Qiagen). Integrated sgRNAs were enriched by PCR amplification, with
eight replicate PCR reactions each with 1 µg template per reaction, in
order maintain a complex sampling of the cellular population. Adapter
sequences and per-sample barcodes were added to libraries by a sec-
ond round of PCR. The libraries were pooled and sequenced on an
Illumina MiSeq instrument using 150-bp single-end reads. Constant
adapter sequences were trimmed from the resulting reads with
Cutadapt80, and gene-level enrichment scores and false discovery rate
(FDR) estimates were calculated using the CB2 package in R81.

Sample preparation and western blotting
Cells were collected in ice-cold 1X PBS, pelleted at 2700× g for 2min,
and lysed in lysis buffer (20mMTris pH= 8.0, 150mMNaCl, 1% Triton)
containing protease inhibitor cocktail (Bimake) at 4 °C for 20min. Cell
lysates were centrifuged at 18,000× g for 15min at 4 °C. The protein
concentration of the supernatant was measured by Bradford assay
(Bio-rad) and normalized. After adding 2X urea sample buffer (150mM
Tris pH 6.8, 6M Urea, 6% SDS, 40% glycerol, 100mM DTT, 0.1% Bro-
mophenol blue), samples were heated at 65 °C for 10min. 30 µg of
each lysate was loaded and separated on SDS-PAGE gels. Note that for
the TMEM251 (GCAF) blot in Figs. 6b, 7b, c, and Supplementary Fig. 5d,
only 1/20 of the samples were loaded in the GCAF overexpression
lanes. Protein samples were transferred to a nitrocellulose membrane
for western blot analysis. After incubated with primary and secondary
antibodies, membranes were scanned using the Odyssey CLx imaging
system (LI-COR) or developed with CL-XPosure film (Thermo
Scientific).

The following primary antibodies were used for western blotting
in this study: rabbit anti-GFP (1:3000, TP401, Torrey Pines Biolabs),
mouseanti-actin (1:5000, 66009-1-lg, Proteintech),mouseanti-GAPDH
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(1:2000, 60004-1-1g, Proteintech), rabbit anti-CTSD (1:1000, 21327-1-
AP, Proteintech), rabbit anti-Golgin160 (1:1000, 21193-1-AP, Pro-
teintech), rabbit anti-p62 (1:2000, 18420-1-AP, Proteintech), rabbit
anti-LC3 (1:2000, 14600-1-AP, Proteintech), rabbit anti-IGF2R (CI-MPR)
(1:2000, 20253-1-AP, Proteintech), mouse anti-HA (1:500, 16B12, Bio-
Legend), mouse anti-CTSC (1:500, D-6, Santa Cruz Biotechnology),
mouse anti- SREBF2/SREBP2 (1:500, 1C6, Santa Cruz Biotechnology),
rabbit anti-FLAG (1:2000, H6908, Millipore-Sigma), rabbit anti-
LAPTM4A (1:1000, HPA068554-1, Millipore-Sigma), rabbit anti-
TMEM251 (1:1000, HPA-48559, Millipore-Sigma), mouse anti-V5
(1:3000, 46-0705, Invitrogen), rabbit anti-ATF6 (1:1000, 24169-1-AP,
Proteintech), rabbit anti-EGFR (1:2000, a generous gift from Dr. Stuart
Decker at the University of Michigan).

Theplasmid for single-chain antibody againstM6P (scFvM6P)was
purchased from the Geneva Antibody Facility (AG949, University of
Geneva). The full construct contains anN-terminal IL-2 signal sequence
and a C-terminal Fc region from the rabbit IgG. To produce scFv
against M6P, HEK293T cells were transfected with AG949 plasmid.
After 48 h, cells were washed with serum-free DMEM and incubated
with serum-free DMEM for 24 h. The supernatant is filtered with a
0.45 µm filter. This filtered supernatant is directly used as a primary
antibody (without dilution) to detect M6P.

The following secondary antibodies were used in this study: goat
anti-mouse IRDye 680LT (926-68020), goat anti-mouse IRDye 800CW
(926-32210), goat anti-rabbit IRDye 680LT (926-68021), goat anti-
rabbit IRDye 800CW (926-32211). These secondary antibodies were
purchased from LI-COR Biosciences and used at 1:10,000 dilution.

To detect TMEM251, M6P (scFv M6P), or GNPTAB-3xHA KI, the
anti-protein A HRP (PA00-03, Rockland, for TMEM251 and M6P) or
mouse HRP (115-035-046, Jackson labs, for GNPTAB-3xHA KI) sec-
ondary antibodies were used at 1:10,000 dilution. The signal was
detected with the Pierce ECL kit (Thermo Scientific).

EGFR degradation assay
HeLa cells were cultured to 70–80% confluency in 6 cm dishes. Cells
were washed with serum-free DMEM twice and incubated with serum-
free DMEM. After 14 h, 100 ng/ml of EGF (Invitrogen) was added to
cells. Cells were collected in ice-coldPBS at the indicated time, pelleted
at 2700× g for 2min, and stored at −80 °C before subsequent western
blot analysis.

Membrane isolation
The membrane isolation protocol was adapted from Shao and
Espenshade82, with somemodifications. Cells with 70–80% confluency
from a 10 cm dish were collected in ice-cold 1X PBS, pelleted at
2700 × g for 2min. The pelleted cells were resuspended in 1ml ice-cold
membrane isolation buffer (1mMEDTA and 1mMEGTA in 1X PBS, with
protease inhibitor) and homogenized. The homogenate was cen-
trifuged at 900× g for 5min at 4 °C, and the supernatant was trans-
ferred to a new tube and centrifuged at 20,000× g for 20min at 4 °C to
collect membranes. After centrifugation, the membrane pellet was
further dissolved in lysis buffer (20mM Tris pH = 8.0, 150mM NaCl,
and 1% Triton) containing 1X protease inhibitor cocktail (Biomake) at
4 °C for 20min. The undissolved membranes were removed by
another round of centrifugation at 20,000× g for 15min at 4 °C, and
the protein concentration from the supernatant was measured by
Bradford assay and normalized. Samples were incubated with 2X
urea sample buffer samples at 65 °C for 8min before western blot
analysis.

SREBF2/SREBP2 processing assay
The SREBF2/SREBP2 processing assay was adapted from Shao and
Espenshade82, with some modifications. Cells were cultured to 50%
confluency, treated with 50 µM sodium compactin (Millipore-Sigma)

and 50 µM sodium mevalonate (Millipore-Sigma) in the presence or
absence of sterols (1 µg/ml 25-Hydroxycholesterol [25-HC], Millipore-
Sigma), 10 µg/ml cholesterol (Millipore-Sigma). After 16 h, N-acetyl-
leucinyl-leucinyl-norleucinal (ALLN, Millipore-Sigma) was added to a
final concentration of 25 µg/ml, and cells were harvested 1 h later for
membrane isolation and western blot analysis.

CI-MPR binding assay
Cells with 70–80% confluency in a 10 cm dish were washed twice with
serum-free DMEM and then incubated with serum-free DMEM for
secretion. After 16 h, conditionedmedia was collected and transferred
to a 50ml conical tube. Themediawas centrifuged at 500 × g for 5min
to remove cell debris,filteredwith a0.45 µmfilter, and concentrated to
~200 µl using 10 kDa cutoff Amicon Centrifugal filters (Millipore-
Sigma). The protein concentration from the concentrated media was
measured by Bradford assay and normalized. After adding 2X urea
sample buffer, sampleswere heated at 65 °C for 8min and loaded onto
SDS-PAGE gel for western blot analysis. After transfer, the nitrocellu-
lose membrane was blocked with 3% BSA, and incubated with bioti-
nylated CIMPR protein (0.25 µg/ml in 3% BSA, a generous gift from Dr.
Peter Lobel, Rutgers University) as the primary binder at 4 °C. After
14 h incubation, the membrane was further incubated with Streptavi-
din secondary antibodies (IRDye® 800CWStreptavidin, 926322230, LI-
COR Biosciences) and scanned using theOdyssey CLx imaging system.

Rescue of TMEM251 KO cells with conditioned media
CI-MPR KO and GNPTAB KO cells were cultured to reach 70–80%
confluency. Cells were washed twice with serum-free DMEM and then
incubated with serum-free DMEM for secretion. After 16 h, the condi-
tionedmedia fromdifferent cell lineswerecollected and transferred to
a 50ml conical tube. The media was centrifuged at 500 × g for 5min
to remove cell debris,filteredwith a0.45 µmfilter, and concentrated to
~500 µl using 10 kDa cutoff Amicon Centrifugal filters (Millipore-
Sigma). The concentrated media were added to TMEM251KO cells
(~5% confluency, 4ml complete media in 6 cm dishes). For the
mannose-6-phosphate (M6P) competition experiment, 10mM of M6P
(Millipore-Sigma) was added to the TMEM251KO cells 3 h before the
additionof concentrated conditionedmedia from theCI-MPRKOcells.

During cell growth, new conditionedmedia from fresh CI-MPRKO
and GNPTAB KO cells were concentrated every the other day and fed
to TMEM251 KO cells. For the M6P competition dish, TMEM251 cells
were always pre-treatedwith 10mMM6P for 3 hbefore adding the new
conditioned media. After 7 days, cells were harvested for analysis.

Secretome analysis
HEK293 WT and sgTMEM251 cells were cultured in 15 cm dishes to
reach 70–80% confluency. Cells were washed with serum-free DMEM
three times and incubated with 20ml serum-free DMEM for 14 h. The
conditioned media were collected and transferred to a 50ml conical
tube. The media was centrifuged at 500 × g for 5min to remove cell
debris, filtered with a 0.45 µm filter, and concentrated to ~200 µl using
3 kDa cutoff Amicon Centrifugal filters (Millipore-Sigma). The protein
concentration from the concentrated media was measured by Brad-
ford assay and normalized. Samples were mixed with 2XUrea buffer
and heated at 65 °C for 8min.

About ~70 µg of protein samples were loaded onto an SDS-PAGE
gel and run for 4.5 cm into the gel. Samples were stained with Sypro
Ruby gel stain (Invitrogen) and excised for MS analysis. The Mass
spectrometry (MS) analysis was performed by the Taplin Mass Spec-
trometry Facility at the Harvard Medical School.

Statistically significant proteins were determined as having
absolute log-fold change larger than 2 and a p-value < 0.05. Gene
ontology enrichment analyses were performed using Metascape, a
web-based biological annotation database83.
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Immunostaining, microscopy, and image processing
Immunostaining was performed as described17, with some modifica-
tions. Cells grownon 1.5 circular glass coverslips werewashedwith ice-
cold 1X PBS and fixed in 4% paraformaldehyde for 10min at room
temperature. Cells were permeabilized with 0.3% Triton in PBS for
15min. For immunostaining of LAMP2, cells were fixed and permea-
bilized in cold 100% methanol for 8min at −20 °C. The samples were
blocked in 3% BSA (in 1XPBS) for 30min at room temperature, fol-
lowed by incubating with primary and secondary antibodies. The cell
nucleus was stained using Hoechst (1:8000, Invitrogen). Coverslips
were mounted in Fluoromount-G (SouthernBiotech) and cured for
24 h before imaging.

The following primary antibodies were used for immunostaining
in this study: mouse anti-LAMP2 (1:100, H4B4, DHSB), rabbit anti-
TMEM251 (1:100, HPA-48559, Millipore-Sigma), anti-EEA1 (1:50, sc-
137130, Santa Cruz Biotechnology), mouse anti-GM130 (1:200, 610822,
BD Biosciences), mouse anti-HA (1:50, 16B12, BioLegend), rabbit anti-
GPP130 (1:100, PRB-144C, BioLegend).

The following secondary antibodies were used at 1:100: FITC goat
anti-rabbit (111-095-003, Jackson ImmunoReseach) and TRITC goat
anti-mouse (115-025-003, Jackson ImmunoReseach).

Microscopy was performed with a DeltaVision system (GE Health-
care Life Sciences). The DeltaVision microscope was equipped with a
scientific CMOS camera and an Olympus UPLXAP0100X objective. The
following filter sets were used: FITC (excitation, 475/28; emission, 525/
48), TRITC (excitation 542/27; emission 594/45), and DAPI (excitation
390/18; emission 435/48). Image acquisition and deconvolution were
performedwith the SOFTWORXprogram. Imageswere further cropped
or adjusted using ImageJ (National Institutes of Health).

Immunoprecipitation
Immunoprecipitationwas performed 48 h post-transfection according
to the manufacturer’s instruction with some modifications. In brief,
cells (one 15 cm dish of near-confluent cells per IP group) were col-
lected in ice-cold 1XPBS, pelleted at 2700× g for 2min, and lysed in
1ml of lysis buffer (20mM Tris pH = 8.0, 150mM NaCl, 1% Triton)
containing protease inhibitor cocktail (Biomake) at 4 °C for 20min.
Cell lysates were centrifuged at 18,000× g for 15min at 4 °C. The
concentration of the supernatant was measured by Bradford assay
(Bio-rad) and normalized. 30 µl beads (pre-equilibrated with lysis buf-
fer, anti-FLAG M2 beads, Millipore-Sigma; anti-V5 beads, Invitrogen;
anti-HAbeads, ThermoFisher)were added to the normalized cell lysate
and incubated at 4 °C overnight (2 hrs for FLAGM2 beads) with gentle
rocking. The resin was then washed 4 times with lysis buffer. For FLAG
IP, the bound proteins on the anti-FLAG M2 beads were eluted with
3xFLAG peptides and precipitated by 10% TCA precipitation for 1 h.
The pellet was washed with 0.1% TCA, resuspended with 2X Urea
sample buffer (150mM Tris pH 6.8, 6M Urea, 6% SDS, 40% glycerol,
100mM DTT, 0.1% Bromophenol blue). The sample was treated with
bead beating for 10min and heated at 65 °C for 10min. For V5 and HA
IP, after washing, 2XUrea sample bufferwas directly added to the resin
and heated at 65 °C for 10min. The resulting eluates were analyzed by
western blot.

Lyso-IP
Lyso-IP was conducted as described before17,84. Briefly, ~8 × 106

HEK293T cells that stably expressed TMEM192-3HA or TMEM192-
2FLAG were collected in ice-cold PBS. ~2.5% of the cells were used as
input and further processed for western blot. The rest of the cells were
spun down at 1000× g for 2min, resuspended with ice-cold PBS con-
taining protease inhibitor cocktail, and homogenized. The samples
were then centrifuged at 1000× g for 2min. The supernatant was
incubated with 20 µl of anti-HAmagnetic beads for 20min at 4 °C. The
beads were washed with PBS five times and then heated at 65 °C for
10min in a 2xUrea sample buffer (150mM Tris pH 6.8, 6M Urea, 6%

SDS, 40% glycerol, 100mM DTT, 0.1% Bromophenol blue). Samples
were further analyzed by western blot.

RNA-sequencing
Total RNA samples were extracted from either WT or 251 KO HEK293
cells using TRIzol (Thermo Fisher Scientific) and the PureLink RNA
Mini Kit (Invitrogen). For each sample (three WT and three TMEM251
KOusing different sgRNAs), around 3 µg of total RNAwas submitted to
the Advanced Genomics Core at the University of Michigan. After
quality control, themRNAs from total RNAs were enriched with a poly-
A based selectionmethod prior to cDNA synthesis, and the sequencing
was then performed on the NovaSeq with 150bp paired end reads
(PE150) to target 30–40 million reads/sample.

The raw reads were filtered using RSeQC with default parameters
by removing low-quality bases (>Q30) and adapter-contaminated
reads. The resulting high-quality clean reads in fastq format were
trimmedusing TrimGalore (v 0.5.0) and aligned to the humangenome
(Sequence: ENSEMBL-GRCh38) using STAR (v 2.6.0)85 After mapping,
read counts were generated by HTSeq-count (v.0.11.3)86. The read
counts were used for a differential expression analysis between wild-
type control cells and TMEM251 knockout cells using R package
DESeq2 (v.1.28.1)87. Statistically significantly expressed genes were
determined as having absolute log-fold change larger than 1.2 and a p-
value < 0.05 based on the Benjamini-Hochberg procedure, which
controls the false discovery rate (FDR). Principal component analysis
(PCA) and heatmaps of differentially expressed genes (DEGs) were
generated using ClustVis (https://biit.cs.ut.ee/clustvis/). DEGs were
processed for gene ontology enrichment analyses using Metascape.

Lysotracker staining and flow cytometry analysis
Cells were treated with 50 nM lysotracker Red DND-99 (Thermo Fisher
Scientific) for 30min. Cells were washed with 1XPBS and trypsinized
until all cells were dissociated from the dishes. Dissociated cells were
neutralized with DMEM containing 10% serum media and pelleted at
300 × g for 3min. Cells were resuspended in ice-cold 1XPBS and ana-
lyzed by a Ze5 (Bio-rad) flow cytometer. The data were analyzed using
FlowJo software.

Transmission electron microscopy
HeLa cells were cultured on an 8mm (diameter) Thermanox coverslip
to 80–90% confluency and processed as cell monolayer without any
modifications. The cells were pre-fixed in 1.25% glutaraldehyde in
0.05M cacodylate buffer at 37 °C for 5min and further at 4 °C over-
night, followed by post-fixed in a mixture of 1% osmium tetroxide
(OsO4) plus 1% potassium ferrocyanide [K4Fe(CN)6] in 0.1M cacody-
late buffer. To better contrast the cell and subcellular membranes, the
pre- and post-fixed cells were stained with 1% thiocarbohydrazide, 1%
OsO4, 1% uranyl acetate, and Walton’s lead aspartate. The cells were
dehydrated in ascending ethanol series (10, 30, 50, 70, 80, 90, 95,
100%) and infiltrated in Durcupan resin. The resin infiltrated cells were
thermally polymerized at 70 °C for 48 h. 70 nm ultrathin sections were
cut by a Leica EMUC7ultramicrotome and the sectionswere placed on
a 300meshCu bare grid. The ultrathin sections were coatedwith 4 nm
carbon by a Leica EM ACE600 high vacuum coater. The ultrathin sec-
tions were observed under a JEOL JEM-1400 Plus LaB6 transmission
electron microscope at 60 keV high tension and imaged by an AMT
NanoSprint 12 megapixel CMOS camera.

Alcian blue and Alizarin red staining
Alizarin red staining was performed following a published protocol88.
Briefly, 7 dpf fish embryos were fixed by 4% PFA overnight at 4 °C.
Embryos were then dehydrated in 50% ethanol for 10min and
bleached by 1% H2O2/0.5% KOH for 10min. Embryos were stained with
0.04mg/ml Alizarin Red in 1% KOH for 30min and stored in 50% gly-
cerol/0.25% KOH until imaging.
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Alcian blue staining was previously described50. Briefly, 4 dpf fish
embryos were fixed by 4% PFA overnight at 4 °C. Embryos were then
dehydrated in 50% ethanol for 10min and stained with 0.02% Alcian
blue, 200mMMgCl2 in 70% ethanol for 3 h. Embryos were bleached in
1.5% H2O2/1% KOH for 30min, cleaned in 20% glycerol/0.25% KOH
overnight, and stored in 50% glycerol/0.25% KOH until imaging.

Images were captured with a stereomicroscope (Leica MZ16F)
equipped with a QImaging QICAM camera.

The F0 knockout of TMEM251 and GNPTAB in zebrafish
Cas9 mRNA was synthesized by in vitro transcription using the
pT3.Cas9-UTRglobin plasmid (a kind gift fromProf. Yonghua Sun from
the Institute of Hydrobiology, Chinese Academy of Sciences) as the
template. Four sgRNAs targeting TMEM251 were designed using
CHOPCHOP89. The primers used to synthesize gRNAs that target
TMEM251 and GNPTAB are listed in Supplementary Table 4. The
sgRNAs were synthesized by in vitro transcription following a pub-
lished method51. Once synthesized, the sgRNAs (40 ng/μl) were mixed
with Cas9 mRNA (400ng/μl) and co-injected into WT embryos at the
one-cell stage. The injected embryos were raised in E3 embryo med-
ium, with PTU added at 1 dpf.

Quantification and statistical analysis
The band intensity for western blot was quantified using Image Studio
software (LI-COR). The rate constants (k) ofGFP-RNF152, LAPTM4Aand
EGFRwere calculated byfitting the data to thefirst-order decay and the
rate constant in Excel. The half-lives were calculated by t(1/2) = ln2/k.
Graphs were generated using Prism (GraphPad). Statistical analysis was
performed with the two-tailed unpaired t-test (Figs. 2j–k; 3e; 4b, c) or
one-way ANOVA (Figs. 2b, c, e, f, h; 3f, g; 5i–l; 6c, f, i; 7e, f; Supple-
mentary Figs. 1d, e; 3c, d; 5e; Supplementary Table 1; Supplementary
Data 1–3). Error bars represent the standard deviation. *≤0.05, **≤0.01,
***≤0.001, ****≤0.0001.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting this study are provided within the paper and sup-
plementary files. The RNA-seq data generated from this study has been
uploaded to NCBI with accession code GSE209652. The processed raw
data is attached as Supplementary Data 2. The secretome data gener-
ated from this data is attached as Supplementary Data 3. Source data
are provided with this paper.
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