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Summary
Background Clinical application of artificial intelligence is limited due to the lack of interpretability and expandability
in complex clinical settings. We aimed to develop an eye diseases screening system with improved interpretability and
expandability based on a lesion-level dissection and tested the clinical expandability and auxiliary ability of the system.

Methods The four-hierarchical interpretable eye diseases screening system (IEDSS) based on a novel structural pat-
tern named lesion atlas was developed to identify 30 eye diseases and conditions using a total of 32,026 ultra-wide
field images collected from the Second Affiliated Hospital of Zhejiang University, School of Medicine (SAHZU), the
First Affiliated Hospital of University of Science and Technology of China (FAHUSTC), and the Affiliated People’s
Hospital of Ningbo University (APHNU) in China between November 1, 2016 to February 28, 2022. The perfor-
mance of IEDSS was compared with ophthalmologists and classic models trained with image-level labels. We fur-
ther evaluated IEDSS in two external datasets, and tested it in a real-world scenario and an extended dataset with
new phenotypes beyond the training categories. The accuracy (ACC), F1 score and confusion matrix were calculated
to assess the performance of IEDSS.

Findings IEDSS reached average ACCs (aACC) of 0¢9781 (95%CI 0¢9739-0¢9824), 0¢9660 (95%CI 0¢9591-0¢9730)
and 0¢9709 (95%CI 0¢9655-0¢9763), frequency-weighted average F1 scores of 0¢9042 (95%CI 0¢8957-0¢9127),
0¢8837 (95%CI 0¢8714-0¢8960) and 0¢8874 (95%CI 0¢8772-0¢8972) in datasets of SAHZU, APHNU and
FAHUSTC, respectively. IEDSS reached a higher aACC (0¢9781, 95%CI 0¢9739-0¢9824) compared with a multi-
class image-level model (0¢9398, 95%CI 0¢9329-0¢9467), a classic multi-label image-level model (0¢9278, 95%CI
0¢9189-0¢9366), a novel multi-label image-level model (0¢9241, 95%CI 0¢9151-0¢9331) and a lesion-level model with-
out Adaboost (0¢9381, 95%CI 0¢9299-0¢9463). In the real-world scenario, the aACC of IEDSS (0¢9872, 95%CI
0¢9828-0¢9915) was higher than that of the senior ophthalmologist (SO) (0¢9413, 95%CI 0¢9321-0¢9504, p = 0¢000)
and the junior ophthalmologist (JO) (0¢8846, 95%CI 0¢8722-0¢8971, p = 0¢000). IEDSS remained strong perfor-
mance (ACC = 0¢8560, 95%CI 0¢8252-0¢8868) compared with JO (ACC = 0¢784, 95%CI 0¢7479-0¢8201, p= 0¢003)
and SO (ACC = 0¢8500, 95%CI 0¢8187-0¢8813, p = 0¢789) in the extended dataset.

Interpretation IEDSS showed excellent and stable performance in identifying common eye conditions and condi-
tions beyond the training categories. The transparency and expandability of IEDSS could tremendously increase the
clinical application range and the practical clinical value of it. It would enhance the efficiency and reliability of clini-
cal practice, especially in remote areas with a lack of experienced specialists.
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Research in context

Evidence before this study

Pubmed was searched on May 30, 2022, with the terms
of “artificial intelligence” OR “deep learning” OR “convo-
lutional neural network” AND “eye diseases” OR “retina”
AND “screen” for the papers describing deep-learning
based eye diseases screening system, without date and
language restrictions. Most of previous studies focused
on developing screening systems using image-level
labels. They recognised specific diseases restricted to
limited training categories and visualised the algorithms
using heatmaps that could be hard to explain clinically.
The search results revealed that no eye disease screen-
ing system could directly output pathological and ana-
tomical information and apply to new categories
beyond the training samples.

Added value of this study

The system was embedded with lesion atlas, a structural
pattern that could extract and visualize pathological
features and their anatomical locations to improve the
efficiency, interpretability and applicability of the sys-
tem. In the multicentre datasets, it showed excellent
and stable performance in diagnosing 30 eye conditions
and new phenotypes beyond the 30 conditions. The
system showed better performance than traditional
models trained with image-level labels. A website tool
was constructed for real-world clinical interaction. In the
real-world scenario, the performance of the system was
better than that of a senior ophthalmologist and a
junior ophthalmologist. And it could significantly
improve the performance of the junior ophthalmologist.

Implications of all the available evidence

The transparency and expandability of the system could
tremendously increase the practical clinical value and
the application range of it in complex clinical settings
where only limited diseases classes could be available
in the training data. It would enhance the efficiency and
reliability of deep−learning−based screening system in
clinical practice, especially in remote areas with a lack of
experienced specialists.
Introduction
Vision impairment is a major health issue worldwide
with over 2¢2 billion of people suffering from vision
impairments and ophthalmic conditions resulting in
loss of sight,1,2 including cataracts,3 diabetic retinopathy
(DR)4, age-related macular degeneration (AMD).5 glau-
coma,6 among others. It not only affects life quality but
also increases the socioeconomic burden and even the
risk of death without accurate diagnosis and timely
interventions.7,8 Therefore, it is essential to implement
timely detection to prevent vision damage.

The new ultra-wide field (UWF) fundus images
could provide a panoramic image of retina with 200°
views using a red laser (532 nm) and a green laser
(633 nm). Compared with traditional colorful fundus
images with 30° to 60° views of the posterior pole using
white light, more detailed retinal substructures could be
observed in their individual laser separations from
UWF images. UWF images were evaluated to be more
likely to become the standard-of-care for screening,
diagnosis, telemedicine and even treatment.9,10 It pro-
vides a new perspective on screening eye diseases. How-
ever, clinical application of UWF images could be
limited owing to the insufficiency of well-trained retinal
specialists, particularly in developing countries where
there is a shortage of ophthalmic service.

In recent years, artificial intelligence (AI), especially
deep learning (DL) has been effectively applied to detect
vision-threatening diseases, including DR,11,12 AMD,13

glaucoma,14 etc. The improvement of diagnosis effi-
ciency, and the expanded coverage of screening pro-
grams furthered the integration between AI and
medical. However, there were still several challenges
that needed to be considered since image-level DL-based
methods generated fixed outputs directly from an input
image in the manner of end-to-end. On the one hand,
models would collapse when facing classes that were
not available during training. A lot of studies have
attempted to add more target classes in the training
dataset to prevent this,15−17 but it was still difficult to
train one model that could be applied to almost all clini-
cal diseases. On the other hand, the limited interpreta-
tion of DL-based models discouraged clinical
applications. Several studies tried to visualize the algo-
rithms using heatmaps.18−20 But it was difficult to
explain whether the highlight region was a new finding
or a model error.21,22 And highlighted regions were not
precise enough to locate small abnormalities in retina.

To address these limitations, an eye diseases screen-
ing system with improved interpretability and expand-
ability was proposed in this study to facilitate AI-based
diagnosis in complex clinical settings more accurately
and reasonably. The system aimed to mimic clinical
diagnosis process by analyzing the fine-grained
www.thelancet.com Vol 53 Month , 2022
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Figure 1. The clinical logical relation of lesion atlas. The lesion atlas integrated the pathological and anatomical information (a).
The anatomical location was determined by dividing the retina into 21 regions as the prototype (b) and the overlaid image (c) dis-
played. DR, diabetic retinopathy; AMD, age-related macular degeneration; CRVO, central retinal vein occlusion; BRVO, branch retinal
vein occlusion; CSCR, central serous chorioretinopathy; RT, retinal tears; EMM, epimacular membrane; MH, macular Hole; MHE, macu-
lar hemorrhage; ODE, optic disc edema; OA, optic atrophy; OPN, optic perineuritis; SG, suspected glaucoma; CNV, choroidal neovas-
cularization; HE, hard exudates; CWS, cotton wool spots; MA, microaneurysm; IRH, intraretinal hemorrhage; SRH, subretinal
hemorrhage; PRH, preretinal hemorrhage; SRD, serous retinal detachment; ERM, epiretinal membrane; ICDR increased cup-to-disc
ratio; ODP, optic disc pallor.
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pathological changes and their distribution, and pre-
cisely provide the logic evidence of algorithms’ outputs.
Methods

Datasets and annotation
This study was approved by the human research ethics
committee of (HREC) the Second Affiliated Hospital of
Zhejiang University, School of Medicine (SAHZU), the
First Affiliated Hospital of University of Science and
Technology of China (FAHUSTC), and the Affiliated
People’s Hospital of Ningbo University (APHNU). All
procedures adhered to the principles of the Declaration
of Helsinki. Informed consent was exempted by the
HREC of SAHZU, FAHUSTC and APHNU in the ret-
rospective sets. Written informed consent was obtained
in the prospective sets.

We tried to identify 15 common retinal lesions
according to The Wills Eye manual,23 EyeWiki24 and
the Digital Reference of Ophthalmology.25 The retinal
lesions including choroidal neovascularization (CNV),
hard exudates (HE), cotton wool spots (CWS), microa-
neurysm (MA), intraretinal hemorrhage (IRH), subreti-
nal hemorrhage (SRH), preretinal hemorrhage (PRH),
serous retinal detachment (SRD), epiretinal membrane
(ERM), macular holes (MH), retinal tears (RT), optic
www.thelancet.com Vol 53 Month , 2022
disc edema (ODE), optic disc pallor (ODP), and
increased cup-to-disc ratio (ICDR). On the basis of reti-
nal signs and their position, 15 common eye diseases
including DR, wet-AMD, ODE, MH, RT, refractive
media opacity (RMO), retinal detachment (RD), vitreous
hemorrhage (VH), central serous chorioretinopathy
(CSCR), epimacular membrane (EMM), central retinal
vein occlusion (CRVO), branch retinal vein occlusion
(BRVO), optic atrophy (OA), suspected glaucoma (SG),
and macula hemorrhage (MHE), and numerous multi-
morbidity were further recognized. A behavioral health
urgency determination status of observation, routine
and urgent was given after diagnosis (Figure 1a). Some
diseases presented with same abnormalities were clus-
tered into a broad category: diseases with optic disc
swelling were classified into ODE, including papille-
dema, optic perineuritis, pseudopapilloedema, etc; dis-
eases with ODP were classified as OA; diseases with
ICDR were classified as SG; diseases with IRH, SRH,
PRH in macular region were classified as MHE. The
definitions and basis of judgement of retinal signs and
eye diseases were provided in Supplementary Text S1.

The patients with target diseases were recruited in
this study. We excluded images of poor quality due to
non-pathological factors including: (1) Poor-location
images, referring to images of which the optic nerve
head and macula were off centre owing to the patient
3



Total SAHZU External datasets Real-world test

APHNU FAHUSTC

Total no. of UWF images 36,861 26,286 3,414 4,626 2,535

Total no. of gradable images (%) 31,526

(85¢53)
22,700

(86¢36)
2,597

(76¢06)
3,694 (79¢85) 2,535

(100)

Total no. of right eyes 16,236 11,831 1,288 1,932 1,185

Total no. of left eyes 15,290 10,869 1,309 1,762 1,350

No. of patients 24,249 17,389 1,853 3,021 1,986

Age, mean § SD 63 § 11¢71 66 § 13¢95 61 § 12¢18 65 § 10¢92 60 § 12¢45
No. of women (%) 13,615

(56¢15)
10,095

(58¢05)
872 (47¢06) 1652 (54¢68) 996 (50¢15)

Training set Validation set Test set Total

DR 3449 1150 1150 5749 840 1027 336

wet-AMD 864 288 288 1440 73 215 138

CRVO 484 161 161 806 136 162 104

BRVO 689 229 229 1147 120 237 186

CSCR 585 195 195 975 49 93 86

RT 1286 429 429 2144 215 241 235

EMM 914 305 305 1524 106 146 132

MH 434 145 144 723 48 58 58

ODE 315 105 105 525 39 61 38

OA 198 99 99 396 68 76 85

Glaucoma 607 202 202 1011 229 419 234

RD 2531 844 843 4218 364 532 422

VH 606 202 202 1010 208 313 251

RMO 620 206 206 1032 102 124 230

Total 13582 4560 4558 22700 2597 3694 2535

Table 1: Demographic statistics of the Second Affiliated Hospital of Zhejiang University (SAHZU) datasets and two external datasets.
APHNU, the Affiliated People’s Hospital of Ningbo University; FAHUSTC, the First Affiliated Hospital of University of Science and Technology of China; DR,

diabetic retinopathy; wet-AMD, wet age-related macular degeneration; CRVO, central retinal vein occlusion; BRVO, branch retinal vein occlusion; CSCR, cen-

tral serous chorioretinopathy; RT, retinal tears; EMM, epimacular membrane; MH, macular Hole; ODE, optic disc edema; OA, optic atrophy; RD, retinal

detachment; VH, vitreous hemorrhage; RMO, refractive media opacity.
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was not straight ahead. (2) Poor-field images, referring
to images of which over one-third of the field was
obscured by the eyelids. Besides, images with laser scars
were excluded. A total of 26, 286 UWF images from 17,
389 subjects were obtained at the Eye Centre of SAHZU
in China between November 1, 2016 to October 31, 2021
for training, validation and internal testing. We col-
lected 3,414 images from FAHUSTC and 4,626 images
from APHNU in China between October 1, 2021 to Jan-
uary 31, 2022 for external validation. Besides, 2,535
images of patients with target simple disease from
SAHZU between November 1, 2021 to February 28,
2022 were prospectively collected for a real-world test.
And 500 images of patients with multimorbidity con-
sisting of target diseases were collected from SAHZU
between June 1, 2021 to February 28, 2022 for an
extended multimorbidity test. The patients with dis-
eases beyond the type of target diseases or satisfied the
exclusion criteria were excluded in the prospective col-
lection process. The number of images in the internal
dataset and two external datasets used for the training,
validation and test was described in Table 1 and
Supplementary Table S1. The images were acquired
using a Daytona ultra-wide-field retinal camera (OPTOS
Daytona, Dunefermline, UK) without mydriasis in
SAHZU, FAHUSTC and APHNU.

We recruited a professional labelling team (team 1)
to generate the ground truth of annotations. The team
consisted of two junior ophthalmologists (JO) with
more than three years of clinical experience, two senior
ophthalmologists (SO) with more than six years of clini-
cal experience and one specialized ophthalmologist
with more than 20 years of clinical experience. The
team was divided into two groups which consisted of
one JO and one SO, and the datasets were divided into
two labelling quarters randomly and equally. Each quar-
ter was firstly labelled by the JO and then checked by
the SO. The divergences were finally confirmed by the
specialized ophthalmologist.

The UWF images were annotated with image-level
and lesion-level labels. The ground truth of images was
identified based on clinical diagnosis and records
including fundus fluorescein angiography, optical
coherence tomography, optical coherence tomography
www.thelancet.com Vol 53 Month , 2022



Figure 2. The workflow of overall study. Images were collected from three clinical centres and filtered by quality assessment. The
preliminary screening module was constructed to provide automatic referral for patients with retinal detachment and vitreous hem-
orrhage, with the rest followed by preprocessing and lesion-level annotation. The dominant screening module consisted of three
parts: (1) the location algorithm locating the optic disc region and macula region, and dividing the retina into 21 regions; (2) the
lesion atlas mapping algorithm extracting the pathological and anatomical information of lesions automatically; (3) the mass screen-
ing algorithm integrating extracted features and making a final decision. The performance of the system was compared with image-
level models and evaluated in a multicentric scenario, a real-world scenario and an expanded scenario in multimorbidity dataset.

Articles
angiography, visual field reports, etc. The detailed anno-
tation process was provided in Supplementary Text S2.
Development of Interpretable eye diseases screening
system (IEDSS)
Clinically, diagnosis and treatment fundamentally
depended on the lesions’ symptoms and distribution.
Different diseases could share similar lesions but their
distribution pattern could be different. Therefore, the
lesion atlas was designed to construct a structured
description of lesion distribution in UWF images. It
divided images into 21 anatomy regions based on ana-
tomical location of optic nerve head and macula fovea
as illustrated in 2.2 below, and counted the number of
15 types of lesions mentioned in Datasets and
www.thelancet.com Vol 53 Month , 2022
annotation section in each region. It was a process
including lesion-level annotation, anatomical localiza-
tion, distribution calculation and generalization, etc.
The lesion atlas transformed qualitative definitions into
computerized parametric information. Thus, the vari-
ability between different diseases were magnified and
disease-to-disease interference in multimorbidity was
weaken. It led classifiers to stay efficient in comorbidity
diagnosis even if such samples were absent during
training.

IEDSS was built based on the lesion atlas and con-
sisted of four modules. Figure 2 depicted the workflow
of the study. Firstly, the preliminary screening module
was constructed to identify the diseases disturbing the
image quality. A ResNetXt-50 was constructed for classi-
fying diseases reducing image quality before lesions
5



Figure 3. Overview pipeline of Interpretable eye diseases screening system (IEDSS). There were two paths in the lesion atlas
mapping module. In the upper path, geometric regions were generated after ONH segmentation and macula localization. In the
lower path, multi-scale patches were cropped from a CLAHE-ed UWF image, and sent into the CAFPN. Results of the lesion detection
were output from the CAPFN, and summarized into the lesion atlas with geometric regions (a). The lesion geostatisitcs showed the
lesion distribution in the lesion atlas and was flatten to get the DFV. The input feature was generated by DFV dimensionality reduc-
tion through PCA and input into the AdaBoost-SVM to get multi-label probabilities in the mass screening system (b). In the training
process of the AdaBoost-SVM, Weak classifiers were trained iteratively, and assembled to the strong classifier (c). ONH, optic nerve
head; HE, hard exudates; MA, microaneurysm; IRH, intraretinal hemorrhage; CAFPN, channel-attention feature pyramid network;
CLAHE, contrast limited adaptive histogram equalization; AdaBoost-SVM, AdaBoost-support vector machine; DFV, discrimination
feature vectors; PCA, principal components analysis; ROI, region of interest.
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detection, including VH, RMO and RD. The aggregated
transformation named bottleneck in ResNetXt-50 made
it outperform ResNet-50 with the same model capac-
ity.26 The ResNetXt-50 takes UWF images as input and
outputs the probabilities of four classes (VH, RMO, RD
and others).

Secondly, a localization module was built to locate
optic nerve head (ONH) and macular fovea. In order to
divide the retina into 21 anatomical zones, the ONH
was segmented by an UNet27 and the region of interest
(ROI) of macular was found at 2¢5 optic disc diameter
(r) from the ONH centre.28 Grayscale contour maps
(GCMs) of the macular ROI’s green and red channels
were generated by multi-thresholds and morphological
opening. The centre point of the intersection of the
darkest regions in these two GCMs was regarded as the
macular fovea (Figure 3a). Taking the ONH and the
macular fovea as references, and r as the unit of dis-
tance, the retina was divided into 21 geometric regions.
The retina was firstly divided into six areas by five circles
of radius with r, 2r, 3.5r, 5.5r and 7.5r surrounding the
fovea. The areas were then separated into four sections
(A, B, C, D) according to the line connecting ONH cen-
tre and macular fovea and the perpendicular passing
through the ONH centre. The retina was finally divided
into macular quadrant (B1 and D1), superotemporal
quadrant (B2 to B6), inferotemporal quadrant (D2 to
D6), superonasal quadrants (A1 to A4), and inferonasal
quadrants (C1 to C4) (Figure 1b and 1c).

Thirdly, a lesion atlas mapping module was con-
structed to differentiate the abnormal findings and
locate their anatomical positions. In this paper, a chan-
nel-attention feature pyramid network (CAFPN) was
designed to detect ONH-excluded lesions in UWF
images (Figure 3a). It adopted feature pyramid network
backbone to emphasize small lesions in UWF.29 The
UWF images were preprocessed using contrast limited
adaptive histogram equalization (CLAHE) before being
fed into CAFPN (Supplementary Text S3). Since the
information was in green and red channels, features in
these channels were firstly extracted by two bottom-up
pathways. Each pathway contained four downsampling
modules. Then, final feature maps from bottom-up
pathways were merged and sent into the top-down path-
way. The top-down pathway combined information
from green and red channels, and generated the chan-
nel-fusion feature map by attention gated modules30

and lateral connections. The following class and box
subnets mapped the channel-fusion feature map to
lesion detection results. Lastly, the lesion atlas was pro-
duced by uniting detection results and geometric
regions. And the lesion atlas was transformed to a table
named lesion geostatistics.

Finally, a mass screening system was developed to
classify diseases and further recognize multimorbidity.
Since different diseases could coexist in the same UWF
image (except CRVO and BRVO), the diagnosis
www.thelancet.com Vol 53 Month , 2022
problem was regarded as a multilabel classification
problem in this paper. AdaBoost-support vector
machine (SVM)31 was constructed for multi-label classi-
fication of DR, AMD, CRVO, BRVO, CSCR, MH, EMM
and RT in the mass screening system. It integrated the
advantages of weak classifiers and achieve a better accu-
racy for multiple categories (Figure 3b and 3c). Since
CRVO and BRVO could not coexist, a penalty term was
added to the loss function (Supplementary Text S4). We
took discrimination feature vectors (DFVs) from lesion
geostatistics in lesion atlas as features and the diagnosis
annotations as labels to optimize the AdaBoost-SVM.
The detailed training process was shown in Supplemen-
tary Text S4. We applied principal components analysis
(PCA) to reduce the dimensionality of DFVs and chose
variables with a cumulative variance contribution rate of
90% before sending them into the AdaBoost-SVM.
Besides, a ResNetXt-50 was built to classify patterns of
normal, ODE, OA and SG. The bounding box area
based on the ONH contour was cropped and sent into
the model. The ONH classifier output probabilities of
four class, and chose the one with the highest probabili-
ties as the prediction.

Evaluation in two external datasets
An external test in datasets from APHNU and FAHUSTC
was conducted to validate the generalization performance
of IEDSS. A total of 2,597 gradable images from 1,853
patients of APHNU and 3,694 gradable images from
3,021 patients in FAHUSTC were included for the test
(Table 1). The annotations and the ground truth were gen-
erated by the procedures mentioned above.

Comparison with image-level identification models
To evaluate the effect of lesion atlas, the performance of
IEDSS was compared with traditional models that took
images as input, including a multi-class ResNetXt-50, a
multi-label ResNetXt-50 and a novel multi-label vision
transformer (ViT).32 Besides, to validate the function of
AdaBoost-SVM, we compared IEDSS with a multi-label
SVM without AdaBoost (CAFPN+SVM). All the models
were trained and tested in the SAHZU dataset.
Development of a cloud platform and evaluation in a
prospective real-world scenario
The system was integrated into a cloud platform to
improve the auxiliary diagnostic practicability. The plat-
form was constructed using Python 3¢7 and vue¢js 2¢9¢
6. The UWF image could be uploaded and the patholog-
ical features could be automated analysed by the back-
end server. The detected lesions, their anatomy loca-
tions, the lesion distribution diagram, the predicted
probabilities for candidate diseases, the dominant pre-
dicted diagnosis of IEDSS and the referral advance were
presented to the clinicians to assist them make deci-
sions.
7
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To investigate the practicability of IEDSS in assisting
clinical decision making, a JO and a SO outside the
labelling team (team 2) were invited to perform the
comparison task using the web interface. We prospec-
tively collected 2,535 images from patients with only one
kind of disease from SAHZU for the real-world test
(Table 1). They were required to read the images without
the assistance of IEDSS and read the images with the
assistance of IEDSS in a reverse order after a washout
period of one month.33

Evaluation of expandability of IEDSS in a
multimorbidity scenario
Theoretically, IEDSS was applicable to identify not only a
single disease but also the multimorbidity based on lesion
atlas. Thus, the expandability of IEDSS was evaluated in a
dataset containing challenging images of multimorbidity
that the system had not encountered during training (Sup-
plementary Table S1). Team 2 was invited to give a diagno-
sis without (with) the assistance of IEDSS to test the
assistance capability of IEDSS. There was a washout time
of one month between the two judgements.

Statistical analysis
The precision-recall curve and the average precision were
generated to quantize the performance of the lesion atlas
mapping module. The diagnostic accuracy (ACC), confu-
sion matrix, sensitivity, specificity, receiver operating char-
acteristics curve (ROC) and the area under the ROC curve
(AUROC) were calculated for assessing the rest of IEDSS
modules. Considering of imbalanced datasets, F1 scores
and frequency-weighted average F1 was also introduced to
evaluate IEDSS. The comparison test with human was
evaluated by sensitivity, specificity and ACC in the multi-
morbidity scenario and the real-world scenario. We
applied Chi-Squared Test to assess the performance
between the system, clinicians with and without IEDSS in
the diagnosis task. A p-value of 0¢05 was considered sig-
nificant. All statistical analyses for the study were con-
ducted using STATISTICAL PACKAGE FOR THE
SOCIAL SCIENCES Version 22¢0 (SPSS, Inc., Chicago,
IL, USA) and Python 3¢7.

Role of the funding source
The funder played no role in the study design, data col-
lection and analysis, decision to publish, or preparation
of the manuscript. All authors had full access to all the
data in the study and accept responsibility to submit for
publication.
Results

Data characteristics
In total, 26,286 images were obtained from SAHZU
and 22,700 images were gradable and annotated for
preliminary algorithm development and validation. The
dataset was divided into the training, validation and
internal test set in a 3:1:1 ratio. A total of 8,040 UWF
images from two other clinical centres, APHNU and
FAHUSTC, were collected and annotated for external
validation and 2,535 prospective collected images from
SAHZU were used for evaluation in a real-world sce-
nario. An extra dataset with 500 images was built for
extended algorithm validation in competence of recog-
nizing multimorbidity. The characteristics of patients
and the distribution of collected images were summa-
rized in Table 1.

Evaluation of the performance and interpretability of
IEDSS in the internal dataset
It’s showed that based on a four-hierarchical frame-
work, IEDSS achieved an average ACC of 0¢9781
(95%CI 0¢9739−0¢9824), sensitivity of 0¢9635 (95%CI
0¢9580-0¢9689), specificity of 0¢9792 (95%CI 0¢9751-
0¢9833) and AUROC of 0¢9904 (95%CI 0¢9876-
0¢9932) (Table 2, Supplementary Figure S1). It showed
better performance than JO and SO, with a higher aver-
age ACC (0¢9781, 95%CI 0¢9739-0¢9824 for IEDSS vs
0¢8891, 95%CI 0¢8800-0¢8983 for JO and 0¢9540,
95%CI 0¢9479-0¢9601 for SO) and sensitivity (0¢9634,
95%CI 0¢9580-0¢9689 for IEDSS vs 0¢8666, 95%CI
0¢8568-0¢8765 for JO and 0¢9434, 95%CI 0¢9366-0¢
9501 for SO) (Supplementary Table S2). The highest
ACC were reached in classes with obvious features such
as MH (0¢9909, 95%CI 0¢9877-0¢9942) and pathologi-
cal changes in the ONH region were well differentiated
with ACCs over 0¢99. The detailed evaluation of prelim-
inary screening module and lesion atlas mapping mod-
ule of IEDSS was elaborated in Supplementary Text S5,
Figure S2 and Figure S3. F1 scores and precision were
also calculated in consideration of the imbalance data-
sets (Table 2 and Supplementary Table S3). The fre-
quency-weighted average F1 score achieved 0¢9042
(95%CI 0¢8957-0¢9127). F1 scores were above 0¢84 for
all diseases except CSCR (0¢7088, 95%CI 0¢7028-
0¢7147), AMD (0¢7813, 95%CI 0¢7789-0¢7866) and
CRVO (0¢6245, 95%CI 0¢6182-0¢6308). The precisions
were over 0¢74 except CSCR (0¢5878, 95%CI 0¢5177-
0¢6546), AMD (0¢6611, 95%CI 0¢6046-0¢7133) and
CRVO (0¢4580, 95%CI 0¢3829-0¢5350). It seemed that
IEDSS obtained lower F1 scores and precision in seri-
ously imbalanced subclasses. For example, F1 score and
precision reached 0¢9443 (95%CI 0¢9414-0¢9473) and
0¢9300 (95%CI 0¢9138-0¢9434) for DR, whose positive
to negative ratio was 1: 1¢88, but was 0¢6245 (95%CI
0¢6182-0¢6308) and 0¢4580 (95%CI 0¢3829-0¢5350) for
CRVO, whose positive to negative ratio was 1:19¢54. In
our multi-label dataset, the negative samples were vastly
outnumbered by positive samples, which would mag-
nify the shortcoming of F1 score and precision that the
false-positives would dominate the results.34,35

The screening system successfully localised and dis-
cerned the pathological features in different diseases as
www.thelancet.com Vol 53 Month , 2022



SAHZU APHNU FAHUSTC

AUROC (%)

(95% CI)

ACC (%)

(95%CI)

F1(95%CI) Sensitivity

(%) (95% CI)

Specificity (%)

(95% CI)

AUROC (%)

(95% CI)

ACC (%)

(95%CI)

F1(95%CI) Sensitivity (%)

(95% CI)

Specificity

(%) (95% CI

AUROC (%)

(95% CI)

ACC (%)

(95%CI)

F1(95%CI) Sensitivity

(%) (95% CI)

Specificity

(%) (95% CI)

wet-

AMD

98¢84
(98¢48-99¢20)

95¢34
(94¢63-96¢06)

0¢7813
(0¢7759-0¢7866)

95¢49
(92¢22-97¢47)

95¢33
(94¢50-96¢04)

98¢62
(98¢36-99¢32)

94¢70
(93¢69-95¢70)

0¢5750
(0¢5560-0¢5940)

94¢52
(85¢84-98¢23)

94¢70
(93¢56-95¢66

98¢84
(98¢44-99¢24)

95¢96
(95¢22-96¢70)

0¢7860
(0¢7728-0¢7992)

93¢95
(89¢65-96¢61)

96¢14
(95¢29-96¢84)

BRVO 99¢61
(99¢40-99¢82)

97¢55
(97¢02-98¢08)

0¢8469
(0¢8422-0¢8516)

97¢82
(94¢70-99¢19)

97¢53
(96¢90-98¢04)

99¢24
(99¢33-99¢89)

96¢93
(96¢16-97¢70)

0¢7986
(0¢7832-0¢8141)

97¢50
(92¢32-99¢35)

96¢89
(95¢96-97¢62

99¢51
(99¢25-99¢77)

98¢20
(97¢70-98¢70)

0¢9026
(0¢8930-0¢9121)

95¢78
(92¢14-97¢84)

98¢43
(97¢84-98¢87)

CRVO 98¢61
(98¢21-99¢01)

94¢25
(93¢46-95¢05)

0¢6245
(0¢6182-0¢6308)

98¢14
(94¢22-99¢52)

94¢06
(93¢16-94¢84)

97¢74
(98¢09-99¢13)

87¢26
(85¢77-88¢75)

0¢5224
(0¢5032-0¢5416)

98¢53
(94¢25-99¢74)

86¢40
(84¢71-87¢94

97¢38
(96¢78-97¢98)

92¢18
(91¢18-93¢19)

0¢5958
(0¢5800-0¢6117)

96¢91
(92¢57-98¢86)

91¢88
(90¢74-92¢90)

CSCR 98¢16
(97¢70-98¢62)

95¢68
(94¢98-96¢37)

0¢7088
(0¢7028-0¢7147)

89¢23
(83¢80-93¢06)

96¢08
(95¢32-96¢72)

98¢54
(97¢56-98¢76)

98¢13
(97¢52-98¢73)

0¢7049
(0¢6874-0¢7225)

87¢76
(74¢45-94¢92)

98¢40
(97¢69-98¢90

98¢72
(98¢30-99¢14)

94¢94
(94¢11-95¢76)

0¢5175
(0¢5014-0¢5336)

89¢16
(79¢94-94¢62)

95¢12
(94¢21-95¢89)

DR 98¢75
(98¢37-99¢13)

96¢07
(95¢41-96¢73)

0¢9443
(0¢9414-0¢9473)

95¢91
(94¢56-96¢95)

96¢15
(95¢23-96¢91)

98¢56
(98¢25-99¢25)

93¢45
(92¢34-94¢55)

0¢9259
(0¢9158-0¢936)

93¢69
(91¢77-95¢20)

93¢26
(91¢56-94¢65

98¢25
(97¢76-98¢74)

95¢82
(95¢06-96¢57)

0¢9442
(0¢9368-0¢9516)

93¢97
(92¢28-95¢31)

96¢94
(95¢97-97¢68)

EMM 99¢35
(99¢08-99¢62)

97¢67
(97¢16-98¢19)

0¢8824
(0¢8783-0¢8866)

94¢75
(91¢45-96¢87)

97¢97
(97¢38-98¢43)

97¢29
(98¢99-99¢71)

93¢03
(91¢89-94¢17)

0¢5939
(0¢5751-0¢6128)

92¢45
(85¢23-96¢45)

93¢07
(91¢77-94¢17

98¢40
(97¢93-98¢87)

92¢29
(98¢34-99¢17)

0¢5607
(0¢5447-0¢5767)

91¢78
(85¢77-95¢49)

92¢32
(91¢21-93¢31)

MH 99¢74
(99¢57-100¢00)

99¢09
(98¢77-99¢42)

0¢9045
(0¢9006-0¢9083)

98¢61
(94¢56-99¢76)

99¢11
(98¢70-99¢40)

99¢50
(99¢51-99¢97)

98¢18
(97¢58-98¢78)

0¢7244
(0¢7072-0¢7416)

95¢83
(84¢57-99¢28)

98¢24
(97¢51-98¢77

99¢60
(99¢36-99¢84)

98¢75
(98¢34-99¢17)

0¢7671
(0¢7535-0¢7808)

96¢55
(87¢05-99¢40)

98¢80
(98¢29-99¢16)

RT 99¢26
(98¢97-99¢70)

96¢73
(96¢13-97¢34)

0¢8846
(0¢8805-0¢8888)

96¢50
(94¢17-97¢96)

96¢77
(96¢04-97¢37)

99¢08
(98¢88-99¢64)

94¢70
(93¢69-95¢70)

0¢8000
(0¢7846-0¢8154)

94¢88
(90¢79-97¢29)

94¢67
(93¢47-95¢67

98¢82
(98¢41-99¢23)

95¢56
(94¢79-96¢33)

0¢7858
(0¢7726-0¢7991)

92¢12
(87¢77-95¢06)

95¢89
(95¢02-96¢62)

VH NA 99¢39
(99¢16-99¢61)

0¢9333
(0¢9301-0¢9366)

97¢03
(93¢35-98¢79)

99¢49
(99¢14-99¢69)

NA 99¢19
(98¢85-99¢53)

0¢9501
(0¢9541-0¢9585)

96¢15
(92¢29-98¢20)

99¢46
(99¢04-99¢70

NA 99¢38
(99¢13-99¢63)

0¢9635
(0¢9575-0¢9696)

97¢12
(94¢42-98¢59)

99¢59
(99¢29-99¢76)

RD NA 99¢65
(99¢48-99¢82)

0¢9905
(0¢9893-0¢9918)

99¢17
(98¢22-99¢64)

99¢76
(99¢44-99¢90)

NA 99¢77
(99¢59-99¢95)

0¢9863
(0¢9819-0¢9908)

99¢18
(97¢41-99¢79)

99¢69
(99¢32-99¢86

NA 99¢73
(99¢56-99¢90)

0¢9906
(0¢9875-0¢9937)

99¢44
(98¢22-99¢85)

99¢78
(99¢52-99¢90)

RMO NA 99¢46
(99¢24-99¢67)

0¢9395
(0¢9364-0¢9426)

94¢17
(89¢80-96¢82)

99¢71
(99¢43-99¢86)

NA 99¢38
(99¢08-99¢68)

0¢9252
(0¢9151-0¢9353)

97¢06
(91¢02-99¢24)

99¢48
(99¢09-99¢71

NA 99¢21
(98¢92-99¢50)

0¢8889
(0¢8788-0¢899)

93¢55
(87¢28-96¢97)

99¢41
(99¢09-99¢63)

ODE NA 99¢52
(99¢28-99¢75)

0¢9292
(0¢9259-0¢9325)

100¢00
(95¢60-100¢00)

99¢50
(99¢17-99¢70)

NA 99¢69
(99¢48-99¢91)

0¢9048
(0¢8935-0¢9161)

97¢44
(84¢92-99¢87)

99¢73
(99¢41-99¢88

NA 99¢70
(99¢53-99¢88)

0¢9160
(0¢9071-0¢9250)

96¢77
(87¢83-99¢44)

99¢75
(99¢51-99¢88)

OA NA 99¢73
(99¢55-99¢91)

0¢9557
(0¢953-0¢9583)

97¢98
(92¢19-99¢65)

99¢78
(99¢53-99¢90)

NA 99¢58
(99¢33-99¢83)

0¢9241
(0¢914-0¢9343)

98¢53
(90¢99-99¢92)

99¢60
(99¢25-99¢80

NA 99¢68
(99¢49-99¢86)

0¢9250
(0¢9165-0¢9335)

97¢37
(89¢95-99¢54)

99¢72
(99¢47-99¢86)

SG NA 99¢24
(98¢95-99¢54)

0¢9383
(0¢9351-0¢9414)

94¢06
(89¢60-96¢75)

99¢58
(99¢26-99¢77)

NA 98¢46
(97¢99-98¢93)

0¢9180
(0¢9075-0¢9286)

97¢82
(94¢70-99¢19)

98¢52
(97¢93-98¢95

NA 97¢83
(97¢36-98¢30)

0¢9111
(0¢9019-0¢9203)

97¢62
(95¢52-98¢79)

97¢86
(97¢29-98¢32)

Table 2: The performance of Interpretable Eye Diseases Screening System (IEDSS) for identifying common eye diseases in internal dataset d multicenter datasets.
AUROC is not applicable for multi-class models since the multi-class models make decisions by selecting the highest probability in each sample instead of a thr hold.

SAHZU, the Second Affiliated Hospital of Zhejiang University; APHNU, the Affiliated People’s Hospital of Ningbo University; FAHUSTC, the First Affiliated ospital of University of Science and Technology of China; wet-AMD, wet

age-related macular degeneration; BRVO, branch retinal vein occlusion; CRVO, central retinal vein occlusion; CSCR, central serous chorioretinopathy; DR, diab c retinopathy; EMM, epimacular membrane; MH, macular Hole; RT, reti-

nal tears; VH, vitreous hemorrhage; RD, retinal detachment; RMO, refractive media opacity; ODE, optic disc edema; OA, optic atrophy; SG, suspected glaucoma A, not applicable.
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Figure 4. The lesion geostatistics heatmap generated by lesion atlas illustrating the type, number and distribution of lesions in dif-
ferent diseases. CNV, choroidal neovascularization; HE, hard exudates; CWS, cotton wool spots; MA, microaneurysm; IRH, intraretinal
hemorrhage; SRH, subretinal hemorrhage; PRH, preretinal hemorrhage; SRD, serous retinal detachment; ERM, epiretinal membrane;
MH, macular holes; RT, retinal tears; ODE, optic disc edema; ODP, optic disc pallor; ICDR, increased cup-to-disc ratio.

Articles

10
shown in Figure 4. It was revealed that the distribution
and the amount of pathological features were signifi-
cantly different between diseases, which visualised the
principle of lesion atlas. Since the lesion type and the
total number of lesions were similar in BRVO and
CRVO subsets, we presented the distribution and num-
ber of IRH in each individual (Supplementary Figure
S4). It was showed that identified IRH distributed in all
retinal regions of individuals with CRVO while tended
to be more prevalent in one or two regions of individu-
als with BRVO. To further visualize how the IEDSS dis-
cerned encoded features from different images, we
mapped the 243-demension features into two-dimen-
sional coordinates by the t-distributed stochastic neigh-
bor embedding (t-SNE) (Figure 5). It showed that UWF
images formed distinct clusters (Figure 5a). Examining
query images selected from neighboring reference
images helped to explain class confusions. It was dem-
onstrated that the confusions were mainly in diseases
shared with similar lesions (Figure 5b-5e). To be more
specific, AMD and chronic CSCR would be confused
due to same lesions like SRD and CNV. Meanwhile, ret-
inal vascular diseases, including DR, CRVO and BRVO,
could be misclassified because the distribution of
shared lesions (IRH, HE, CWS) was similar.
Performance in identification of a single disease in
external datasets
The evaluate the generalization ability of IEDSS, the
task was performed in other two heterogeneous data-
sets. The system worked well in external datasets with
the average ACCs of 0¢9660 (95%CI 0¢9591-0¢9730)
and 0¢9709 (95%CI 0¢9655-0¢9763), sensitivities of
0¢9581 (95%CI 0¢9504-0¢9658) and 0¢9515 (95%CI
0¢9432-0¢9598), specificities of 0¢9658 (95%CI 0¢9588-
0¢9728) and 0¢9726 (95%CI 0¢9663-0¢9789),
AUROCs of 0¢9857 (95%CI 0¢9811-0¢9903) and
0¢9869 (95%CI 0¢9825-0¢9913), and frequency-
weighted average F1 scores of 0¢8837 (95%CI 0¢8714-
www.thelancet.com Vol 53 Month , 2022



Figure 5. The t-Distributed stochastic neighbor embedding visualizations of discrimination feature vectors in the screening model
for the classification of 11 diseases (a). The map preserved the topologic features, and adjacent coordinates meant they shared simi-
lar features in the original feature space. A selection of adjacent cases showing similar clinical features (b-e). DR, diabetic retinopa-
thy; CSCR, central serous chorioretinopathy; AMD, age-related macular degeneration; MH, macular Hole; EMM,
epimacular membrane; CRVO, central retinal vein occlusion; BRVO, branch retinal vein occlusion; RT, retinal tears; ODE, optic disc
edema; OA, optic atrophy; SG, suspected glaucoma.

Articles
0¢8960) and 0¢8874 (95%CI 0¢8752-0¢8996) in the
APHNU dataset and the FAHUSTC dataset, respec-
tively (Table 2, Supplementary Table S3, Figure S1 and
Figure S2).
Comparison with image-level identification
The comparisons of model performance among IEDSS,
a classic image-level classification model, a classic
image-level multi-label model, a novel image-level
multi-label model and a lesion atlas-based multi-label
model without AdaBoost were shown in Table 3, Sup-
plementary Table S3 and Table S4. The average sensitiv-
ity of CAFPN+SVM (0¢8892, 95%CI 0¢8784-0¢8999)
was higher than that of image-level multi-class
ResNetXt-50 (0¢8196, 95%CI 0¢8081-0¢8305), multi-
label ResNetXt-50 (0¢8180, 95%CI 0¢8048-0¢8311) and
multi-label ViT (0¢8498, 95%CI 0¢8376-0¢8620), which
approved the effectiveness of CAFPN (Supplementary
Table S4). The advantage of the framework of IEDSS
and the effect of AdaBoost were further investigated in
comparison with classic and novel image-level multi-
label models, multi-class model, and the model without
AdaBoost module. IEDSS showed better performance
www.thelancet.com Vol 53 Month , 2022
than other models with the average ACCs of 0¢9781
(95%CI 0¢9739-0¢9824), 0¢9398 (95%CI 0¢9329-
0¢9467), 0¢9278 (95%CI 0¢9189-0¢9366), 0¢9241
(95%CI 0¢9151-0¢9331) and 0¢9381 (95%CI 0¢9299-
0¢9463), sensitivities of 0¢9635 (95%CI 0¢9580-
0¢9689), 0¢8196 (95%CI 0¢8081-0¢8305), 0¢8180
(95%CI 0¢8035-0¢8316), 0¢8498 (95%CI 0¢8376-
0¢8620) and 0¢8892 (95%CI 0¢8785-0¢8999), specific-
ities of 0¢9792 (95%CI 0¢9743-0¢9841), 0¢9494
(95%CI 0¢9476-0¢9511), 0¢9406 (95%CI 0¢9325-
0¢9487), 0¢9333 (95%CI 0¢9248-0¢9418) and 0¢9431
(95%CI 0¢9352-0¢9510), and frequency-weighted aver-
age F1 scores of 0¢9042 (95%CI 0¢8957-0¢9127),
0¢6923 (95%CI 0¢6766-0¢7080), 0¢7337 (95%CI
0¢7186-0¢7488), 0¢6391 (95%CI 0¢6227-0¢6555) and
0¢7761 (95%CI 0¢7619-0¢7903) for IEDSS, multi-class
ResNetXt50, multi-label ResNetXt50, multi-label ViT
and CAFPN+SVM, respectively (Table 3).
Performance in identification of single disease on a
prospective real-world scenario
A cloud platform that could present the abnormal find-
ings, diagnostic reference and the referral
11



Multi-class ResNetXt-50 Multi-label ResNetXt-50 Multi-label ViT CAFPN+SVM IEDSS

ACC (%)

(95% CI)

AUROC

(%)

(95% CI)

F1

(95% CI)

ACC (%)

(95% CI)

AUROC

(%)

(95% CI)

F1 (95% CI) ACC (%)

(95% CI)

AUROC

(%)

(95% CI)

F1 (95% CI) ACC (%)

(95% CI)

AUROC

(%)

(95% CI)

F1 (95% CI) ACC (%)

(95% CI)

AUROC

(%)

(95% CI)

F1 (95% CI)

wet-

AMD

90¢63
(89¢79-91¢48)

99¢12
(98¢80-99¢44)

0¢5052
(0¢4858-0¢5247)

92¢08
(91¢16-93¢00)

93¢39
(92¢54-94¢23)

0¢6225
(0¢6036-0¢6413)

91¢65
(90¢71-92¢60)

96¢17
(95¢51-96¢82)

0¢6416
(0¢6229-0¢6602)

92¢20
(91¢28-93¢11)

96¢62
(96¢00-97¢24)

0¢6632
(0¢6448-0¢6816)

95¢34
(94¢63-96¢06)

98¢84
(98¢48-99¢20)

0¢7813
(0¢7759-0¢7866)

BRVO 94¢98
(94¢34-95¢61)

99¢39
(99¢12-99¢66)

0¢6514
(0¢6329-0¢6700)

95¢71
(95¢02-96¢40)

98¢23
(97¢78-98¢68)

0¢7482
(0¢7313-0¢7651)

96¢92
(96¢33-97¢5)

98¢46
(98¢04-98¢88)

0¢8097
(0¢7944-0¢8250)

95¢62
(94¢92-96¢31)

98¢62
(98¢22-99¢02)

0¢7504
(0¢7336-0¢7673)

97¢55
(97¢02-98¢08)

99¢61
(99¢40-99¢82)

0¢8469
(0¢8422-0¢8516)

CRVO 96¢09
(95¢53-96¢66)

98¢29
(97¢84-98¢73)

0¢5762
(0¢5570-0¢5954)

90¢23
(89¢22-91¢24)

94¢14
(93¢34-94¢94)

0¢4590
(0¢4396-0¢4784)

89¢23
(88¢18-90¢29)

94¢75
(93¢99-95¢51)

0¢4385
(0¢4192-0¢4578)

91¢53
(90¢58-92¢48)

96¢97
(96¢39-97¢56)

0¢5035
(0¢4841-0¢523)

94¢25
(93¢46-95¢05)

98¢61
(98¢21-99¢01)

0¢6245
(0¢6182-0¢6308)

CSCR 91¢97
(91¢18-92¢76)

98¢23
(97¢78-98¢68)

0¢3624
(0¢3437-0¢3811)

91¢05
(90¢08-92¢02)

94¢76
(94¢00-95¢52)

0¢4825
(0¢4631-0¢502)

91¢84
(90¢9-92¢77)

93¢34
(92¢49-94¢19)

0¢5018
(0¢4824-0¢5213)

93¢62
(92¢79-94¢45)

96¢56
(95¢94-97¢18)

0¢5903
(0¢5711-0¢6094)

95¢68
(94¢98-96¢37)

98¢16
(97¢70-98¢62)

0¢7088
(0¢7028-0¢7147)

DR 87¢80
(86¢85-88¢75)

96¢65
(96¢03-97¢26)

0¢7470
(0¢7301-0¢7640)

89¢23
(88¢18-90¢29)

94¢11
(93¢30-94¢91)

0¢8429
(0¢8287-0¢8571)

87¢72
(86¢6-88¢84)

92¢78
(91¢90-93¢66)

0¢8227
(0¢8078-0¢8376)

91¢53
(90¢58-92¢48)

96¢35
(95¢71-96¢99)

0¢8801
(0¢8675-0¢8928)

96¢07
(95¢41-96¢73)

98¢75
(98¢37-99¢13)

0¢9443
(0¢9414-0¢9473)

EMM 92¢26
(91¢48-93¢03)

93¢55
(92¢71-94¢38)

0¢5537
(0¢5344-0¢5731)

93¢80
(92¢98-94¢62)

96¢24
(95¢59-96¢89)

0¢6861
(0¢6680-0¢7041)

91¢84
(90¢9-92¢77)

95¢98
(95¢31-96¢65)

0¢6260
(0¢6072-0¢6449)

93¢44
(92¢59-94¢28)

97¢14
(96¢57-97¢71)

0¢7031
(0¢6854-0¢7209)

97¢67
(97¢16-98¢19)

99¢35
(99¢08-99¢62)

0¢8824
(0¢8783-0¢8866)

MH 97¢30
(96¢83-97¢77)

93¢97
(93¢16-94¢78)

0¢6720
(0¢6537-0¢6903)

97¢01
(96¢43-97¢59)

99¢59
(99¢37-99¢81)

0¢7227
(0¢7053-0¢7401)

97¢64
(97¢12-98¢16)

99¢21
(98¢91-99¢51)

0¢7784
(0¢7622-0¢7946)

98¢61
(98¢21-99¢01)

99¢59
(99¢37-99¢81)

0¢8571
(0¢8435-0¢8708)

99¢09
(98¢77-99¢42)

99¢74
(99¢57-100¢00)

0¢9045
(0¢9006-0¢9083)

RT 95¢46
(94¢85-96¢06)

97¢10
(96¢53-97¢68)

0¢7708
(0¢7544-0¢7871)

93¢11
(92¢24-93¢97)

97¢21
(96¢65-97¢78)

0¢7625
(0¢7459-0¢7791)

92¢44
(91¢54-93¢34)

97¢43
(96¢90-97¢97)

0¢7596
(0¢743-0¢7763)

93¢95
(93¢14-94¢76)

97¢48
(96¢95-98¢02)

0¢7984
(0¢7828-0¢814)

96¢73
(96¢13-97¢34)

99¢26
(98¢97-99¢70)

0¢8846
(0¢8805-0¢8888)

VH 97¢19
(96¢71-97¢67)

94¢43
(93¢65-95¢21)

0¢7500
(0¢7331-0¢7669)

NA NA NA NA NA NA NA NA NA 99¢39
(99¢16-99¢61)

NA 0¢9333
(0¢9301-0¢9366)

RD 97¢26
(96¢78-97¢73)

93¢13
(92¢27-93¢99)

0¢9297
(0¢9198-0¢9397)

NA NA NA NA NA NA NA NA NA 99¢65
(99¢48-99¢82)

NA 0¢9905
(0¢9893-0¢9918)

RMO 96¢20
(95¢65-96¢76)

93¢90
(93¢08-94¢72)

0¢6826
(0¢6644-0¢7007)

NA NA NA NA NA NA NA NA NA 99¢46
(99¢24-99¢67)

NA 0¢9395
(0¢9364-0¢9426)

ODE 95¢46
(94¢85-96¢06)

95¢63
(94¢93-96¢32)

0¢4838
(0¢4643-0¢5032)

NA NA NA NA NA NA NA NA NA 99¢52
(99¢28-99¢75)

NA 0¢9292
(0¢9259-0¢9325)

OA 93¢73
(93¢02-94¢43)

98¢80
(98¢43-99¢17)

0¢3755
(0¢3567-0¢3944)

NA NA NA NA NA NA NA NA NA 99¢73
(99¢55-99¢91)

NA 0¢9557
(0¢953-0¢9583)

SG 89¢38
(88¢49-90¢28)

97¢79
(97¢29-98¢29)

0¢3858
(0¢3668-0¢4047)

NA NA NA NA NA NA NA NA NA 99¢24
(98¢95-99¢54)

NA 0¢9383
(0¢9351-0¢9414)

Table 3: The performance comparison experiment of Interpretable Eye Diseases Screening System (IEDSS) and classic algorithms.
The multi-label models including Multi-label ResNetXt-50, Multi-label ViT and CAFPN+SVM were not tested on the multi-class labels, including VH, RD, RMO, ODE, OA, SG.

wet-AMD, wet age-related macular degeneration; BRVO, branch retinal vein occlusion; CRVO, central retinal vein occlusion; CSCR, central serous chorioretinopathy; DR, diabetic retinopathy; EMM, epimacular membrane; MH,

macular Hole; RT, retinal tears; VH, vitreous hemorrhage; RD, retinal detachment; RMO, refractive media opacity; ODE, optic disc edema; OA, optic atrophy; SG, suspected glaucoma; CAFPN, channel-attention feature pyramid

network; SVM, support vector machine; NA, not applicable.
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Diseases IEDSS Junior ophthalmologist (JO) Senior ophthalmologist (SO)

ACC (%)

(95%CI)

Sensitivity (%)

(95%CI)

Specificity

(%) (95%CI)

P value Without IEDSS With IEDSS P value Without IEDSS With IEDSS P value

IEDSS

vs JO

IEDSS

vs SO

ACC (%)

(95%CI)

Sensitivity

(%)

(95%CI)

Specificity

(%)

(95%CI)

ACC (%)

(95%CI)

Sensitivity

(%)

(95%CI)

Specificity

(%)

(95%CI)

ACC (%)

(95%CI)

Sensitivity

(%)

(95%CI)

Specificity

(%)

(95%CI)

ACC (%)

(95%CI)

Sensitivity

(%)

(95%CI)

Specificity

(%)

(95%CI)

DR 97¢36
(96¢73-97¢98)

97¢62
(95¢18-98¢89)

97¢32
(96¢53-97¢93)

0¢001** 0¢268 97¢83
(97¢26-98¢40)

91¢67
(88¢05-94¢30)

98¢77
(98¢19-99¢17)

98¢62
(98¢17-99¢07)

93¢75
(90¢46-96¢00)

99¢36
(98¢91-99¢64)

0¢299 98¢93
(98¢54-99¢33)

96¢13
(93¢31-97¢84)

99¢36
(98¢91-99¢64)

99¢45
(99¢16-99¢74)

97¢92
(95¢57-99¢08)

99¢68
(99¢31-99¢86)

0¢173

CSCR 97¢20
(96¢56-97¢84)

88¢37
(79¢21-93¢98)

97¢51
(96¢79-98¢07)

0¢012* 0¢648 98¢46
(97¢98-98¢94)

73¢26
(62¢44-81¢96)

99¢35
(98¢92-99¢61)

99¢17
(98¢82-99¢52)

87¢21
(77¢85-93¢13)

99¢59
(99¢22-99¢79)

0¢022 98¢90
(98¢49-99¢30)

86¢05
(76¢50-92¢27)

99¢35
(98¢92-99¢61)

99¢37
(99¢06-99¢68)

91¢86
(83¢42-96¢39)

99¢63
(99¢28-99¢82)

0¢224

MH 99¢41
(99¢11-99¢71)

96¢55
(87¢05-99¢40)

99¢48
(99¢08-99¢71)

0¢015 * 0¢083 99¢61
(99¢36-99¢85)

82¢76
(70¢12-90¢99)

100¢00
(99¢81-100¢00)

99¢92
(99¢81-100¢00)

96¢55
(87¢05-99¢40)

100¢00
(99¢81-100¢00)

0¢015* 99¢72
(99¢52-99¢93)

87¢93
(76¢09-94¢61)

100¢00
(99¢81-100¢00)

99¢96
(99¢88-100¢00)

98¢28
(89¢54-99¢91)

100¢00
(99¢81-100¢00)

0¢028*

EMM 98¢78
(98¢35-99¢20)

93¢94
(88¢21-97¢15)

99¢04
(98¢54-99¢38)

0¢000** 0¢025* 98¢70
(98¢26-99¢14)

78¢03
(69¢82-84¢57)

99¢83
(99¢54-99¢95)

99¢65
(99¢41-99¢59)

93¢94
(88¢02-97¢15)

99¢96
(99¢73-100¢00)

0¢000** 99¢25
(98¢91-99¢59)

85¢61
(78¢18-90¢89)

100¢00
(99¢80-100¢00)

99¢65
(99¢41-99¢88)

93¢18
(87¢08-96¢64)

100¢00
(99¢80-100¢00)

0¢046*

Wet-

AMD

97¢59
(97¢00-98¢19)

93¢48
(87¢62-96¢78)

97¢83
(97¢14-98¢36)

0¢008** 0¢099 98¢07
(97¢53-98¢60)

83¢33
(75¢83-88¢93)

98¢92
(98¢39-99¢28)

99¢25
(98¢91-99¢59)

91¢30
(84¢98-95¢22)

99¢71
(99¢37-99¢87)

0¢047* 99¢05
(98¢68-99¢43)

87¢68
(80¢74-92¢45)

99¢71
(99¢37-99¢87)

99¢57
(99¢31-99¢82)

93¢48
(87¢62-96¢78)

99¢92
(99¢66-99¢99)

0¢099

CRVO 95¢94
(95¢17-96¢71)

99¢04
(93¢99-99¢95)

95¢80
(94¢91-96¢55)

0¢010* 0¢031* 98¢86
(98¢44-99¢27)

91¢35
(83¢78-95¢72)

99¢18
(98¢71-99¢48)

99¢17
(98¢82-99¢52)

94¢23
(87¢36-97¢63)

99¢38
(98¢96-99¢64)

0¢421 99¢33
(99¢01-99¢65)

93¢27
(86¢15-97¢02)

99¢59
(99¢22-99¢79)

99¢68
(99¢47-99¢90)

97¢12
(91¢19-99¢25)

99¢79
(99¢49-99¢92)

0¢195

BRVO 99¢13
(98¢77-99¢49)

98¢39
(94¢98-99¢58)

99¢19
(98¢74-99¢50)

0¢006 ** 0¢311 99¢17
(98¢82-99¢52)

92¢47
(87¢44-95¢67)

99¢70
(99¢36-99¢87)

99¢61
(99¢36-99¢85)

96¢24
(92¢09-98¢34)

99¢87
(99¢59-99¢97)

0¢116 99¢72
(99¢52-99¢93)

96¢77
(92¢79-98¢68)

99¢96
(99¢72-100¢00)

99¢80
(99¢63-99¢98)

97¢85
(94¢23-99¢31)

99¢96
(99¢72-100¢00)

0¢5210

RT 99¢80
(99¢63-99¢98)

98¢72
(96¢01-99¢67)

99¢91
(99¢65-99¢98)

0¢000 ** 0¢127 98¢93
(98¢54-99¢33)

88¢51
(83¢56-92¢16)

100¢00
(99¢79-100¢00)

99¢88
(99¢75-100¢00)

98¢72
(96¢01-99¢67)

100¢00
(99¢79-100¢00)

0¢000** 99¢68
(99¢47-99¢90)

96¢60
(93¢15-98¢41)

100¢00
(99¢79-100¢00)

99¢96
(99¢88-100¢00)

99¢57
(97¢28-99¢98)

100¢00
(99¢79-100¢00)

0¢018*

ODE 99¢96
(99¢88-100¢00)

100¢00
(88¢57-100¢00)

99¢88
(99¢62-99¢97)

0¢005** 0¢314 99¢72
(99¢52-99¢93)

81¢58
(65¢11-91¢68)

100¢00
(99¢81-100¢00)

99¢96
(99¢88-100¢00)

97¢37
(84¢57-99¢86)

100¢00
(99¢81-100¢00)

0¢025* 99¢96
(99¢98-100¢00)

97¢37
(84¢57-99¢86)

100¢00
(99¢81-100¢00)

100¢00
(100¢00-100¢00)

100¢00
(88¢57-100¢00)

100¢00
(99¢81-100¢00)

0¢314

OA 99¢61
(99¢36-99¢85)

98¢82
(92¢71-99¢94)

99¢63
(99¢28-99¢82)

0¢096 0¢560 99¢80
(99¢63-99¢98)

94¢12
(86¢20-97¢81)

100¢00
(99¢80-100¢00)

99¢96
(99¢88-100¢00)

98¢82
(92¢71-99¢94)

100¢00
(99¢80-100¢00)

0¢096 99¢92
(99¢81-100¢00)

97¢65
(90¢96-99¢59)

100¢00
(99¢80-100¢00)

99¢96
(99¢88-100¢00)

98¢82
(92¢71-99¢94)

100¢00
(99¢80-100¢00)

0¢560

SG 99¢57
(99¢31-99¢82)

97¢86
(94¢81-99¢21)

99¢17
(98¢69-99¢49)

0¢000** 0¢055 99¢25
(98¢91-99¢59)

91¢88
(87¢42-94¢91)

100¢00
(99¢79-100¢00)

99¢80
(99¢63-99¢98)

97¢86
(94¢81-99¢21)

100¢00
(99¢79-100¢00)

0¢003** 99¢68
(99¢47-99¢90)

96¢58
(93¢13-98¢40)

100¢00
(99¢79-100¢00)

99¢84
(99¢69-100¢00)

98¢29
(95¢39-99¢45)

100¢00
(99¢79-100¢00)

0¢242

RD 99¢84
(99¢69-100¢00)

99¢29
(97¢77-99¢82)

99¢95
(99¢69-99¢99)

0¢033* 0¢563 99¢72
(99¢52-99¢93)

98¢34
(96¢46-99¢27)

100¢00
(99¢77-100¢00)

99¢96
(99¢88-100¢00)

99¢76
(98¢48-99¢99)

100¢00
(99¢77-100¢00)

0¢033* 99¢92
(99¢81-100¢00)

99¢53
(98¢11-99¢92)

100¢00
(99¢77-100¢00)

99¢96
(99¢88-100¢00)

99¢76
(98¢48-99¢99)

100¢00
(99¢77-100¢00)

0¢563

RMO 98¢07
(97¢53-98¢60)

95¢65
(91¢91-97¢78)

98¢31
(97¢67-98¢77)

0¢662 0¢189 99¢17
(98¢82-99¢52)

94¢78
(90¢84-97¢15)

99¢61
(99¢23-99¢81)

99¢53
(99¢26-99¢79)

95¢65
(91¢91-98¢77)

99¢91
(99¢65-99¢99)

0¢662 99¢68
(99¢47-99¢90)

97¢83
(94¢72-99¢20)

99¢87
(99¢59-99¢97)

99¢76
(99¢88-100¢00)

97¢83
(94¢72-99¢20)

99¢87
(99¢59-99¢97)

1¢000

VH 99¢87
(99¢57-99¢95)

98¢80
(96¢26-99¢69)

99¢87
(99¢5-99¢96)

0¢080 1¢000 99¢49
(99¢21-99¢77)

96¢41
(93¢17-98¢24)

99¢82
(99¢52-99¢94)

99¢76
(99¢57-99¢95)

99¢20
(96¢84-99¢86)

99¢82
(99¢52-99¢94)

0¢033* 99¢60
(99¢36-99¢85)

98¢80
(96¢26-99¢69)

99¢91
(99¢65-99¢98)

99¢92
(99¢81-100¢00)

99¢60
(97¢45-99¢98)

99¢96
(99¢72-100¢00)

0¢315

Table 4: The auxiliary performance of Interpretable Eye Diseases Screening System (IEDSS) in the real-world scenario.
DR, diabetic retinopathy; CSCR, central serous chorioretinopathy; MH, macular hole; EMM, epimacular membrane; wet-AMD, wet age-related macular degeneration; CRVO, central retinal vein occlusion; BRVO, branch retinal vein occlusion;

RT, retinal tears; ODE, optic disc edema; OA, optic atrophy; SG, suspected glaucoma; RD, retinal detachment; RMO, refractive media opacity; VH, vitreous hemorrhage.

* p < 0¢05,
** p < 0¢01.
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Accuracy
(95% CI)

P value
(vs IEDSS)

P value
(with IEDSS vs
without IEDSS)

Correct
diagnosis

Misidenti-
fication

Undetected
lesions

Misdetected
lesions

Junior ophthalmologist

without IEDSS

78¢40
(74¢79-82¢01)

0¢003** 0¢009** 392 61 29 22

Junior ophthalmologist

with IEDSS

84¢80
(81¢65-87¢95)

0¢722 424 51 15 14

Senior ophthalmologist

without IEDSS

85¢00
(81¢87-88¢13)

0¢789 0¢271 425 32 18 27

Senior ophthalmologist

with IEDSS

87¢40
(84¢49-90¢31)

0¢405 437 30 10 23

IEDSS 85¢60
(82¢52-88¢68)

428 53 9 16

Table 5: The auxiliary performance of Interpretable Eye Diseases Screening System (IEDSS) in identifying multimorbidity.
Correct diagnosis was defined as successfully identifying all types of diseases. The wrong samples were summarized into: (1) misidentification, which was

defined as the lesion was correctly detected but the disease was misdiagnosed; (2) undetected lesions, which was defined as the missed detection of lesions; (3)

misdetected lesions, including false positives and wrongly categorized lesions. *p < 0¢05,
** p < 0¢01.
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recommendations was established for clinical interac-
tion (Supplementary Figure S5, Video 1). In the test,
IEDSS showed greater performance than JO, with aver-
age ACCs of 0¢9872 (95%CI 0¢9828-0¢9915) and
0¢8846 (95%CI 0¢8722-0¢8971) (p= 0¢000), respectively.
It also reached higher average ACC than SO (0¢9872,
95%CI 0¢9828-0¢9915 vs 0¢9413, 95%CI 0¢9321-0¢9504,
p= 0¢000) and especially worked better in identifying
EMM (p = 0¢025) and CRVO (p = 0¢031). The diagnostic
capability of JO was significantly improved with the assis-
tance of IEDSS, with an average ACC increased from
0¢8846 (95%CI 0¢8722-0¢8970) to 0¢9906 (95%CI
0¢9868-0¢9944). The ACC of SO was also significantly
increased with the help of IEDSS in MH (0¢9972,
95%CI 0¢9952-0¢9993 vs 0¢9996, 95%CI 0¢9988-1¢
000, p = 0¢028), EMM (0¢9925, 95%CI 0¢9891-
0¢9959 vs 0¢9965, 95%CI 0¢9941-0¢9988, p = 0¢046)
and RT (0¢9968, 95%CI 0¢9947-0¢9990 vs 0¢9996,
95%CI 0¢9988-1¢000, p = 0¢018) (Table 4).

Expandability of IEDSS in multimorbidity datasets
In the expanded task, the performance of IEDSS was
better than that of JO (ACC = 0¢8560, 95%CI 0¢8252-0¢
8868 vs 0¢7840, 95%CI 0¢7479-0¢8201, p = 0¢003) and
comparable to that of SO (ACC = 0¢8560, 95%CI
0¢8252-0¢8868 vs 0¢850, 95%CI 0¢9952-0¢9993, p =
0¢789). With the help of IEDSS, it achieved a higher
ACC of 0¢8480 (95%CI 0¢8165-0¢8795) by JO (p =
0¢009) and 0¢8740 (95%CI 0¢8449-0¢9031) by SO
(p = 0¢271) (Table 5). It was found that the misdiagnoses
mainly existed in diseases sharing same pathological
features such as AMD and chronic CSCR, CRVO and
DR, etc. IEDSS was more likely to generate false posi-
tives when the lesion atlas of the sample was similar to
other diseases. The diagnoses of 30 examples by IEDSS
and two ophthalmologists with (without) the assistance
of IEDSS were listed in Figure 6.
Discussion
We developed a four-level hierarchical eye diseases
screening system integrated with lesion atlas that could
identify up to 30 abnormalities and eye diseases in
UWF. The lesion atlas, an inductive pattern was intro-
duced to the DL training process, to overcome the clini-
cal challenge that the limited training samples could
not cover diverse clinical settings. It also surmounted
the drawback that the DL system often lacked fine-
grained explainable information which limited the
application of computer-aided diagnosis system. The
system reached an average ACC of 0¢987 in the real-
world scenario and 0¢856 in diagnosing multimorbidity.
The performance of the system rivaled that of senior
human ophthalmologists and could significantly
increase the diagnostic accuracy of junior clinicians. It
would greatly facilitate learning in medical knowledge
and improve efficiency of clinical diagnosis especially in
remote areas with few specialists.

Our system covered a wide range of diseases from
UWF images and demonstrated favorable accuracy for
all classes. It obtained higher AUCs of over 0¢981 in the
multi-label task of UWF images compared with previ-
ous study of identifying singles diseases, with 0¢976 of
BRVO.36, 0¢915 of DR,37 0¢953 of RT.38 The sensitivity
was greatly improved in our study to reduce miss rates
(0¢980 vs 0¢940 of BRVO,36 0¢959 vs 0¢834 of DR,37

0¢965 vs 0¢875 of RT).38 The sensitivity of IEDSS was
higher than JO and comparable to that of SO (Supple-
mentary Table S2). Several innovations were proposed
in IEDSS to achieve a higher accuracy and sensitivity
with less training data. Firstly, IEDSS was designed to
extract lesions directly from original images to suppress
irrelevant noise and amplify critical features. The t-SNE
map exhibited prominent class separability of IEDSS
(Figure 5). The extracted features and their distribution
pattern could clearly distinguish different diseases
www.thelancet.com Vol 53 Month , 2022



Figure 6. The diagnosis of 30 examples of multimorbidity by the IEDSS and two ophthalmologists with (without) assistance
of Interpretable eye diseases screening system (IEDSS). Correct diagnosis was defined as successfully identifying all types of dis-
eases. The wrong samples were analysed and summarized the reasons into the following three types: 1. misidentification, which
was defined as the lesion was correctly detected but the disease was misdiagnosed, 2. undetected lesions, which was defined as
the missed detection of lesions, 3. misdetected lesions, including false positives and wrongly categorized lesions. DR, diabetic reti-
nopathy; CSCR, central serous chorioretinopathy; AMD, age-related macular degeneration; MH, macular Hole; EMM, epimacular
membrane; CRVO, central retinal vein occlusion; BRVO, branch retinal vein occlusion; ODE, optic disc edema; OA, optic atrophy; SG,
suspected glaucoma.

Articles
(Figure 4 and Supplementary Figure S4). Secondly, the
lesion-based diagnosis model could efficiently improve
the fault-tolerant ability of the system. A few errors in
detection would not notably take the edge off the sys-
tem’s performance because the judgement was based
on the summarization of the lesions’ geostatistical
information and the system did not need to detect every
pathological change. In the comparative test with
image-level models, it was proved that IEDSS achieved
higher ACCs and F1 scores. The average sensitivity was
dramatically increased by over 20% after extracting key
features (Table 3 and Supplementary Table S4). Besides,
compared with CAFPN+SVM, it could be found that the
AdaBoost module could help to form a stronger SVM,
with an average ACC increased from 0¢9381 to 0¢9781.
The improvement of ACCs and sensitivities was particu-
larly suitable for the diseases screening task especially
when there was a significant shortage of ophthalmolo-
gists in developing countries.39

IEDSS demonstrated excellent expandability in com-
plex clinical settings. Previously, several studies tried to
identify multiple diseases from colorful fundus photo-
graphs (CFP). Son et al. developed 12 classification neu-
ral networks to screen 12 abnormal findings in CFP.40

Cen et al. built a multi-label model that could detect 39
classes of fundus diseases and conditions.41 Whereas, it
was still hard for these models to apply to patients with
more than one disease, which were common in the
clinic. It was difficult for multi-class models to
www.thelancet.com Vol 53 Month , 2022
recognize multimorbidity since the outcomes were
mutually exclusive. The task was also challenged for
image-level multi-label classifiers due to noise and inter-
twined features. In view of these problems, lesion atlas
was introduced to overcome the obstacles and make
sound judgements by essentially discriminating the
pathological changes of different diseases. It was dem-
onstrated that IEDSS with lesion atlas could recognize
more than one disease in one UWF image with high
accuracy even if it was not trained for such samples
before. The performance of IEDSS in recognizing mul-
timorbidity was excellent and better than that of JO
(0¢856 vs 0¢784, p = 0¢003) and comparable to that of
SO (ACC = 0¢856 vs 0¢850, p = 0¢789) (Table 5).

The interpretability and acceptance of the system
was also improved with lesion atlas proposed to visual-
ize the analyzing progress of the DL system. With the
dramatic advances of DL, the “black-box” nature has
been the most challenging factor that limited large-scale
adoption of AI in healthcare. Several technical advance-
ments were provided to solve this problem, such as
occlusion testing,42 class activation mappings (CAMs)43

and so on. However, the highlighted area was often
hard for clinical interpretation44 and it was unclear that
whether it was a new biomarker or just an erroneous
correlation.45 There could be a considerable disagree-
ment between highlighted regions and expert annota-
tions.46 In addition, these techniques were not suitable
for retinal diseases perfectly since they could not
15
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precisely highlight small targets. Herein, lesion atlas
was raised to present the evidence of the DL-based diag-
nosis in a pathological and anatomical level. Compared
with previous studies40,41 which highlighted a rough
outline as potential pathological changes using heat-
maps, the system focused on detailed pathological infor-
mation, which mimicked human thought process. The
visualized lesion feature bounding boxes, distribution
diagrams and urgency determination were presented to
doctors by a user-interface established in our study
(Supplementary Figure S5). Ophthalmologists could
combine the clinical experience and pathological
changes provided by IEDSS to make the diagnosis and
treatment decisions more reliably. In the prospective
real-world test, the ACC of JO was significantly
enhanced with the assistance of IEDSS (Table 4). The
performance of SO in discerning MH, EMM and RT
from UWF images could also be promoted by IEDSS.
The system with high sensitivity for minor lesions could
be suited to young doctors without abundant clinical
experience and medical students in the early learning
stage. The auxiliary pattern seemed to be particularly
essential when there was an ophthalmological health
service gap worldwide, with only one ophthalmologist
per 110,000 people in developing countries and one
ophthalmologist per 13,000 in developed countries.39

There were several limitations in our study. Firstly, it
was hard to precisely detect subtle changes such as MA,
tiny IRH and CWS. It was warranted to develop algo-
rithms to detect subtle pathological changes in retinal
images with higher accuracy. Secondly, it would often
lead to confusion when diseases shared similar lesions
and distribution, as showed in Figure 5. The confused
diseases mostly focused on vascular diseases (DR,
BRVO and CRVO) and CNV-related diseases (AMD and
chronic CSC). To make a more confirmative diagnosis,
a more delicate analysis of vascular morphology and a
comprehensive clinical information were required.
Thirdly, the concrete number and area of lesions were
not calculated. Several neighbored lesions would be
boxed into the same detection frame. In addition, only
accuracy was calculated for evaluation of expandability
of IEDSS in a multimorbidity scenario because it was
hard to define false positive and false negative for the
images with more than one diagnosis. Lastly, samples
collected from three clinical centres this study included
populations from different regions of China and could
be representative of Asian populations, to a certain
extent. The community-based study and multiethnic
clinic-based study were needed to further investigated
the generalization performance of IEDSS in other eth-
nics.

In conclusion, we designed an explainable and
expansible DL-assisted eye diseases screening system
and evaluated its performance in the multicentre sce-
nario, the extended multimorbidity scenario and the
real-world scenario. Lesion atlas was proposed to
improve the accuracy, interpretability and potential of
clinical application of IEDSS by visualizing fine-grained
pathological and anatomical information. The system
would be more valuable for clinical requirements. It
could significantly enhance the efficiency and reliability
of eye diseases diagnosis, and equilibrate medical
resources, especially in remote areas with limited and
uneven medical resources.
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