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Abstract
We aimed to develop a risk scoring system for 1-week and 1-month mortality 
after major non-cardiac surgery, and assess the impact of postoperative factors 
on 1-week and 1-month mortality using machine learning algorithms. We retro-
spectively reviewed the medical records of 21,510 patients who were transfused 
with red blood cells during non-cardiac surgery and collected pre-, intra-, and 
postoperative features. We derived two patient cohorts to predict 1-week and 
1-month mortality and randomly split each of them into training and test co-
horts at a ratio of 8:2. All the modeling steps were carried out solely based on 
the training cohorts, whereas the test cohorts were reserved for the evaluation 
of predictive performance. Incorporation of postoperative information demon-
strated no significant benefit in predicting 1-week mortality but led to substan-
tial improvement in predicting 1-month mortality. Risk scores predicting 1-week 
and 1-month mortality were associated with area under receiver operating char-
acteristic curves of 84.58% and 90.66%, respectively. Brain surgery, amount of in-
traoperative red blood cell transfusion, preoperative platelet count, preoperative 
serum albumin, and American Society of Anesthesiologists physical status were 
included in the risk score predicting 1-week mortality. Postoperative day (POD) 
5 (neutrophil count × mean platelet volume) to (lymphocyte count × platelet 
count) ratio, preoperative and POD 5 serum albumin, and occurrence of acute 
kidney injury were included in the risk score predicting 1-month mortality. Our 
scoring system advocates the importance of postoperative complete blood count 
differential and serum albumin to better predict mortality beyond the first week 
post-surgery.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Postoperative mortality accounts for 7.7% of all-cause mortality and is the 
third greatest contributor to death. Hence, risk stratification and prediction of 
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INTRODUCTION

Postoperative death—a global burden accounting for 
7.7% of all-cause mortality—is the third greatest con-
tributor to death, following ischemic heart disease and 
stroke.1 Globally, more than 200 million patients undergo 
major non-cardiac surgery each year and 4.2 million of 
them die within 30 days after surgery.1,2 Therefore, risk 
stratification and prediction of postoperative mortality 
are essential for improving global health. There are sev-
eral risk scores and models for predicting mortality after 
major surgery, most of which utilize pre- and intraop-
erative factors.3–7 However, postoperative factors may 
significantly impact postoperative mortality.8 Moreover, 
mortality risk factors may change in different postopera-
tive periods.5

Neutrophils, lymphocytes, and platelets play essential 
roles in mediating innate and adaptive immune responses. 
Systemic inflammation is associated with alterations in 
the counts of these blood cells, and it often manifests as 
neutrophilia, lymphopenia, and thrombocytopenia.9–11 
Several studies have revealed significant associations be-
tween such alterations and postoperative mortality.12–16 
Moreover, albumin is a negative acute phase reactant that 
is downregulated during inflammation, irrespective of the 
patient’s nutritional state.17,18 Hence, pre- and postoper-
ative hypoalbuminemia reportedly increase postoperative 

mortality risk.19–22 Therefore, the evidence suggests that 
alterations of complete blood count (CBC) and serum al-
bumin levels offer significant prognostic information.

In this study, we aimed to explore the most informa-
tive features predictive of early mortality after major non-
cardiac surgery using a large pool of candidate features 
collected during pre-, intra-, and postoperative periods. 
We used various machine learning algorithms to identify 
robust predictors of postoperative mortality. In particular, 
we investigated the added benefit of incorporating postop-
erative features by comparing prediction models trained 
using pre- and intraoperative variables with those addi-
tionally incorporating postoperative variables. Among 
postoperative features, we focused on evaluating the im-
pact of time-varying variables, such as CBC with differ-
ential and serum albumin. Finally, a simple risk scoring 
system of 1-week and 1-month mortality after surgery was 
developed with the selected features.

METHODS

Patients

We retrospectively collected data from electronic medi-
cal records of a university hospital that included 21,510 
patients, with an American Society of Anesthesiologists 

postoperative mortality are crucial for improving global health. Previous studies 
identified several pre- and intraoperative risk factors for predicting postoperative 
mortality but largely overlooked postoperative factors.
WHAT QUESTION DID THIS STUDY ADDRESS?
Would incorporation of early postoperative information help improve mortality 
prediction? If so, what are the most important factors? Are risk factors of 1-week 
and 1-month mortality different?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A simple risk scoring system predicting 1-week and 1-month mortality after major 
non-cardiac surgery was developed. Different sets of risk factors were associated 
with 1-week and 1-month mortality. Incorporation of postoperative information 
demonstrated no significant benefit in predicting 1-week mortality but led to sub-
stantial improvement in predicting 1-month mortality. Routine laboratory tests 
such as complete blood count (CBC) differentials and serum albumin performed 
on postoperative day 5 and occurrence of acute kidney injury (AKI) offered cru-
cial information to predict 1-month mortality.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
To efficiently predict postoperative mortality, clinicians should not only consider 
pre- and intraoperative factors but also postoperative variables. In particular, 
serum albumin levels and CBC indices can be utilized to predict mortality be-
yond the first week of surgery. AKI also significantly increases the risk of patient 
mortality, suggesting the need for effective prevention strategies.
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F I G U R E  1   Description of the 
analysis workflow. Two patient cohorts 
were randomly split into training (80%) 
and test (20%) cohorts (step 1). The 
training cohorts were used to train various 
machine learning models, out of which 
the best performing model was selected 
and validated (step 2). The most important 
features of the validated model were used 
to develop the risk scoring system, and its 
performance was assessed using the test 
cohorts (step 3).

(ASA) physical status of I–IV, who were transfused with 
at least one unit of red blood cells (RBCs) during non-
cardiac surgery between November 2005 and January 
2020. We only included the patients receiving at least 
one unit of RBCs during surgery due to the higher risk 
of early mortality in these patients,23–26 thus filtering out 
minor surgeries associated with negligible mortality risk. 
The study was approved by the Institutional Review Board 
and Hospital Research Ethics Committee of Severance 
Hospital, Yonsei University Health System, Seoul, Korea 
(number: 4-2020-0590). All information was anonymized, 
and the requirement for informed consent was waived 
due to the retrospective study design. All methods were 
carried out in accordance with relevant guidelines and 
regulations.

Derivation of analysis datasets

To identify risk factors that change with time, we defined 
two patient cohorts based on their survivorship. All pa-
tients who were alive immediately after surgery were de-
fined as cohort 1, and the mortality event was defined as 
death within 1 week of surgery. Cohort 2 was derived by 
excluding patients who died before 1 week, and the events 
of interest were deaths between 1 week and 1 month of 
surgery. This scheme yielded 21,510 and 21,374 patients 
for cohorts 1 and 2, respectively, because 136 patients of 
cohort 1 died in the first postoperative week. Prediction 
models were subsequently developed using candidate 
features that included pre-, intra-, and postoperative 

information. Prior to training the models, we randomly 
split the cohorts into training and test cohorts in a ratio 
of 8:2. Hereafter, all the modeling steps were carried out 
solely based on the training cohorts and the test cohorts 
were reserved for evaluation of predictive performance. 
All features were z-score-normalized prior to model de-
velopment. The analysis workflow is schematically illus-
trated in Figure 1.

Candidate features

The original dataset consisted of the following features: 
patient characteristics (age, sex, body mass index [BMI], 
ASA physical status, and comorbidities), pre- and post-
operative laboratory parameters (CBC, serum albumin, 
and estimated glomerular filtration rate [eGFR] calcu-
lated using the Chronic Kidney Disease Epidemiology 
Collaboration equation27), intraoperative factors, such 
as amounts of RBC transfusions, anesthesia method 
(general vs. spinal, inhalation vs. total intravenous an-
esthesia [TIVA]), anesthesia duration, blood loss, urine 
output, emergency surgery, type of surgery and field of 
surgery, and postoperative acute kidney injury (AKI) 
occurrence. For preoperative laboratory parameters, the 
latest measurement within 2 months before surgery was 
chosen. Postoperative laboratory parameters were col-
lected postoperative day (POD) 0 (immediately after sur-
gery) to 5 days. AKI was defined as an increase in serum 
creatinine by 50% within 7 days postoperatively, or an 
increase in serum creatinine by 0.3 mg/dL within 2 days 
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postoperatively, based on the Kidney Disease Improving 
Global Outcomes Work Group criteria.28 Among the 
original features, the following features were used for 
training the models:

	(i)	 Patient characteristics: age, sex, BMI, ASA physical 
status, and comorbidities (hypertension, diabetes 
mellitus, atrial fibrillation, chronic kidney disease, 
cerebrovascular disease, and coronary artery disease).

	(ii)	 Preoperative features: preoperative CBC (neutrophil 
count, lymphocyte count, platelet count, mean plate-
let volume [MPV], and hematocrit), serum albumin, 
and eGFR.

	(iii)	 Intraoperative features: anesthesia duration, type 
of anesthesia (TIVA or spinal), blood loss, albumin 
administration, RBC transfusion, platelet transfu-
sion, fresh frozen plasma transfusion, urine output 
per hour, emergency surgery, type of surgery (lapa-
roscopic surgery and cancer surgery), and field of 
surgery.

	(iv)	 Postoperative features: CBC (neutrophil count, lym-
phocyte count, platelet count, MPV, and hematocrit) 
and serum albumin measured on PODs 0 to 5 and 
AKI occurrence.

Missing values were imputed using multiple imputa-
tion with chained equations, implemented via the R pack-
age “mice.”29

Model development

Penalized regression (least absolute shrinkage and selec-
tion operator [LASSO], Ridge, and Elastic Net), random 
forest, support vector machine, and gradient boost meth-
ods were trained on the two cohorts. Python packages 
(“scikit-learn” and “lightgbm”) were used for implement-
ing each of the abovementioned models. Four-fold cross 
validation was used to tune the hyperparameters. The best 
performing model was identified based on cross-validated 
log loss. Permutation feature importance values were sub-
sequently generated to identify the most essential features 
based on the training cohorts.

In the initial stage, only pre- and intraoperative features 
were used for model training. Next, we additionally incor-
porated postoperative features. For cohort 1, postoperative 
information was limited to those collected on POD 0. For 
cohort 2, all information available between PODs 0 and 5 
were considered. We first used all available measurements 
between PODs 0 and 5 to train a reference LASSO model. 
We next explored whether a single timepoint chosen from 
PODs 0, 1, 2, 3, 4, or 5 would provide comparable predic-
tive performance. To this end, we additionally trained 

LASSO models using measurements taken from one of 
PODs 0, 1, 2, 3, 4, or 5. If cross-validated log loss of the 
best performing model was not greater than 5% of the ref-
erence log loss, we chose the simpler prediction scheme of 
using only a single timepoint value for subsequent model 
development.

Assessment of predictive performance

Predictive performances were assessed on the test cohorts 
using four different metrics—area under the receiver op-
erating characteristic curve (AUROC), area under the 
precision-recall curve (AUPR), Brier score, and log loss. 
Performances of models developed using pre- and intra-
operative information were compared with those addi-
tionally incorporating postoperative information.

Final clinical score development

Top-ranking features across all cohorts were identified 
from the feature importance values. Optimal binning al-
gorithm implemented via the “OptBinning” Python pack-
age30 was then used to derive the final risk scoring system. 
The incremental contribution of each of the risk factors 
was assessed based on the mean relative percentage in-
crease in log loss upon random permutations, repeated 
100 times.

RESULTS

Patient characteristics are summarized in Table 1. Notably, 
40.1% of included patients underwent cancer surgery, and 
of all, abdominal surgery was the most common (19.2%). 
The mean anesthesia duration and intraoperative blood 
loss were 5.5  h and 1158 ml, respectively, with 35.7% of 
patients receiving greater than or equal to three units of 
intraoperative RBC transfusion.

Exploratory data analysis

The frequencies and percentages of the different causes 
of 1-week and 1-month mortality after surgery are shown 
in Table S1. Mortality due to hemorrhagic events was the 
most frequent in the first week and decreased thereafter. 
Multiple organ dysfunction syndrome (MODS) was the 
most frequent cause of death by 2–4 weeks. Respiratory 
failure was one of the lowest contributors to death in the 
first week but became the third most frequent cause by 
2–4 weeks. Septic shock was a relatively steady contributor 
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to death and hypovolemic and cardiogenic shocks were 
minor contributors.

Training machine learning models

We trained various machine learning models on the two 
training cohorts using pre- and intraoperative features. 
Hyper-parameter tuning and model selection were car-
ried out based on comparison of cross-validated log loss. 
LightGBM and ElasticNet yielded the best prediction per-
formances for cohorts 1 and 2, respectively (Table S2).

Next, we trained machine learning models on the two 
training cohorts using additional information collected in 
the postoperative period. For cohort 1, routinely performed 
laboratory values on POD 0 were used. For cohort 2, occur-
rence of AKI and all laboratory values measured between 
PODs 0 and 5 were initially used to train a reference LASSO 
model. Next, LASSO models were retrained by selecting only 
a single timepoint from PODs 0 to 5. The cross-validated log 
loss of the model using all available information was 0.0560. 
The best performing single-timepoint model was shown to 
yield a cross-validated log loss of 0.0568 based on measure-
ments taken on POD 5. Because the log loss was not greater 
than 5% of the reference log loss, we concluded that POD 5 
offers the optimal timepoint for subsequent model building, 
and, regardless of the machine learning algorithm used, ad-
ditional incorporation of postoperative variables improved 
prediction performance in cohort 2, but not in cohort 1. 
Hence, we only incorporated postoperative information for 
cohort 2. LightGBM was the best performing model for both 
cohorts (Table S2).

Feature importance assessment

The permutation feature importance plots of the top 10 
features and SHapley Additive exPlanations (SHAP) 

T A B L E  1   Patient characteristics (n = 21,510)

Variable

Demographics

Age, year 60.0 (15.6)

Female 12,871 (59.8%)

Body mass index, kg/m2 23.7 (3.7)

ASA physical status

I 4625 (21.5%)

II 9850 (45.8%)

III 6206 (28.8%)

IV 829 (3.9%)

Comorbidities

Hypertension 10,945 (50.9%)

Diabetes mellitus 5376 (25.0%)

Atrial fibrillation 367 (1.71%)

Chronic kidney disease 432 (2.0%)

Cerebrovascular disease 1510 (7.0%)

Coronary artery disease 629 (2.9%)

Preoperative laboratory values

Neutrophil count, × 103/μL 5.00 (3.45)

Lymphocyte count, × 103/μL 1.74 (0.81)

Platelet count, × 103/μL 259 (101)

Mean platelet volume, fL 8.7 (1.2)

Hematocrit (%) 36.3 (5.7)

Serum albumin, g/dL 4.0 (0.6)

eGFR, ml/min/1.73 m2 87.9 (23.1)

Intraoperative factors

TIVA 1759 (8.2%)

Duration of anesthesia, h 5.5 (3.3)

Blood loss, ml 1158 (1349)

Urine output, ml/h 135 (112)

Red blood cell transfusion

1/2/≥3 units 8058 (37.5%)/5769 
(26.8%)/7683 (35.7%)

Emergency surgery 2846 (13.2%)

Type of surgery

Laparoscopic surgery 1158 (5.4%)

Cancer surgery 8628 (40.1%)

Field of surgery

Abdominal 4121 (19.2%)

Thoracic 545 (2.5%)

Brain 2771 (12.9%)

Head and neck 1352 (6.3%)

Breast 107 (0.5%)

Obstetric/gynecological 310 (1.4%)/972 (4.5%)

Kidney 575 (2.7%)

Variable

Prostate/bladder and urinary 643 (3.0%)/684 (3.2%)

Cervical/thoraco-lumbar spine 440 (2.0%)/4032 (18.7%)

Upper/lower extremities 185 (0.9%)/3534 (16.4%)

Hip 1091 (5.1%)

Skin, soft tissue 60 (0.3%)

Postoperative AKI 1779 (8.3%)

Notes: Values are expressed as mean (standard deviation) or number of 
patients (percentage).
Abbreviations: ASA, American Society of Anesthesiologists; AKI, acute 
kidney injury; eGFR, estimated glomerular filtration rate; TIVA, total 
intravenous anesthesia.

T A B L E  1   (Continued)



      |  2235PREDICTING EARLY MORTALITY IN NON-CARDIAC SURGERY

summary plots of lightGBM model are shown in Figure 2, 
evaluated using the training cohorts. In cohort 1, brain 
surgery, duration of anesthesia, and amount of intraop-
erative RBC administration were the top three factors, 
followed by preoperative platelet and albumin levels. In 
cohort 2, the highest-ranking features were POD 5 platelet 
count, neutrophil count, and lymphocyte count, followed 
by preoperative albumin level, POD 5 albumin level, and 
AKI occurrence. POD 5 MPV was found as the eighth 
most important feature. Hence, CBC differentials arose as 
crucial predictors of 1-month mortality. The SHAP sum-
mary plot revealed that lower platelet count, higher neu-
trophil count, lower lymphocyte count, and higher MPV 
were associated with a higher mortality risk. Interestingly, 
duration of anesthesia was inversely correlated with 1-
week mortality risk based on the SHAP summary plot. 
Closer scrutiny revealed a biphasic pattern between dura-
tion of anesthesia and incidence of mortality in cohort 1 
such that durations of less than 1, 1–2, 2–3, 3–4, 4–5, and 
greater than or equal to 5 h were associated with 0%, 0.59%, 
0.91%, 1.19%, 0.53%, and 0.44% mortality, respectively. For 

mortality in cohort 2, a longer duration of anesthesia was 
positively correlated with mortality.

Evaluation of predictive performances

The predictive performances of the best performing light-
GBM models were evaluated using log loss, AUROC, Brier 
score, and AUPR using the test cohorts (Table 2). As was 
suggested from comparison of cross-validated log-loss, in-
corporation of postoperative features led to a substantial 
improvement in all four performance metrics in the test 
dataset of cohort 2, with nearly a twofold increase in AUPR.

Feature selection and engineering for risk 
score development

For cohort 1, we selected brain surgery, the amount of in-
traoperative RBC transfusion, preoperative platelet count, 
preoperative albumin level, and ASA physical status as the 

F I G U R E  2   The feature importance and SHapley Additive exPlanations (SHAP) summary plots were generated based on the best 
performing lightGBM models. AKI, acute kidney injury; ASA, American Society of Anesthesiologists; eGFR, estimated glomerular filtration 
rate; FFP, fresh frozen plasma; Intraop, intraoperative; MPV, mean platelet volume; Preop, preoperative; Postop, postoperative; RBC, red 
blood cell; TL, thoracolumbar.
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features to be included in the final risk score. For cohort 2, we 
explored effective methods of feature engineering. Given the 
signature pattern of neutrophilia, lymphocytopenia, higher 
MPV, and thrombocytopenia being associated with higher 
mortality risk, we tested neutrophil-to-lymphocyte ratio 
(NLR) and MPV-to-platelet ratio (MPR) as substitute features. 
Given the highly right-skewed distribution of both NLR and 
MPR values, we applied logarithmic transformation with 
base two to both. Training lightGBM models by substituting 
the four CBC-related features with log2 NLR and log2 MPR 
led to cross-validated log loss of 0.0554. We also created a new 
composite index, (neutrophil count × mean platelet volume) 
to (lymphocyte count × platelet count) ratio (NMLPR), by 
multiplying NLR by MPR. The cross-validated log loss of the 
lightGBM model using log2 NMLPR was 0.0558, which was 
not greater than 5% of the cross-validated log loss of 0.0553 
in the lightGBM model using the original CBC differentials.

In cohort 2, comparison of various performance metrics 
using the test dataset additionally confirmed that use of 
NMLPR, despite lumping four variables into a single number, 
was not substantially inferior (Table S3). We thus concluded 
that NMLPR constitutes an effective mortality risk indicator 
with high data compression efficiency and used it as a vari-
able representing the overall effect of CBC alterations during 
subsequent risk score development. The other selected risk 
factors were preoperative albumin, POD 5 albumin, and AKI.

Final risk score development

An optimal binning algorithm was used to derive the final 
risk scoring system. The scoring scheme and the predic-
tive performance evaluated on the test datasets are shown 
in Table 3. The total score can be converted to a probabil-
ity estimate based on the following equation:

The log loss, AUROC, Brier score, and AUPR of the scor-
ing system assessed using the two test cohorts showed that 
log loss and Brier score were slightly inferior to those of 
the lightGBM models. Nevertheless, the performance was 

comparable in terms of AUROC and AUPR (Tables 2 and 3). 
Random permutation of each of the risk factors showed that 
the amount of intraoperative RBC transfusion, brain sur-
gery, preoperative platelet count, and preoperative albumin 
showed a similar incremental contribution of 9–12% in pre-
dicting 1-week mortality. On the contrary, POD 5 NMLPR 
showed a dominant incremental contribution to the predic-
tion of 1-month mortality with a 43% relative increase in log 
loss upon random permutation (Table  S4). To verify how 
well predicted probabilities matched observed probabilities, 
predictions were binned into intervals of [0, 0.025], [0.025, 
0.05], [0.05, 0.1], and [0.1, 1], yielding a similar number of 
mortality events across all bins, and observed mortality rates 
(i.e., number of deaths/total number of patients) within 
each interval were visualized (Figure 3). The results showed 
that the actual mortality rates in the corresponding intervals 
were 0.00, 0.03, 0.08, and 0.14 for cohort 1 and 0.01, 0.04, 
0.09, and 0.25 for cohort 2, respectively.

DISCUSSION

We developed a risk scoring system of 1-week and 1-month 
mortality after major non-cardiac surgery. This study ad-
dressed two core issues: (1) the impact of postoperative fac-
tors on early postoperative mortality, and (2) the change of 
risk factor profile with postoperative time. Postoperative in-
formation did not offer much benefit for predicting 1-week 
mortality when considered in addition to pre- and intraop-
erative information. This was in stark contrast to 1-month 
mortality prediction where postoperative information—
including serum albumin and CBC indices—were crucial in 
improving the prediction accuracy. Despite the parsimoni-
ous inclusion of predictor variables, the final scoring system 
demonstrated good predictive performance (i.e., AUROC 
>80%) in both 1-week and 1-month mortality.

Several risk stratification tools for predicting mortal-
ity after non-cardiac surgery have been proposed, most 
of which utilized pre- and/or intraoperative factors as 
predictors.3–7,31 For example, Physiological and Operative 
Severity Score for the enUmeration of Mortality and mor-
bidity (POSSUM) and Portsmouth POSSUM scores—
the most frequently used tools in heterogeneous surgical 

Probability of patient death=
1

1+exp (−0.1× total score)

Cohort Features
Log 
loss AUROC

Brier 
score AUPR

1 Pre- and intraoperative 0.0307 87.76% 0.00621 8.65%

Pre-, intra-, and postoperative 0.0302 89.17% 0.00610 10.82%

2 Pre- and intraoperative 0.0728 86.32% 0.0166 17.75%

Pre-, intra-, and postoperative 0.0619 90.53% 0.0146 35.48%

Abbreviations: AUROC, area under the receiver operating characteristic curve; AUPR, area under 
precision-recall curve.

T A B L E  2   Performance comparisons 
of lightGBM model evaluated using the 
test datasets
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patients—included 12 physiological and six operative fac-
tors.31 However, these models had a core limitation; the 
impact of postoperative factors was ignored. Because pa-
tient mortality results from various events cannot be ef-
fectively predicted preoperatively, a realistic prediction 
scheme should allow for the possibility of updating of the 
risk estimates with newly available information. Our study 
is one of the few to investigate the effects of postoperative 
factors in determining mortality risk,8 parting from a rigid 
framework wherein only pre- and/or intraoperative infor-
mation was used. Our approach uses newly acquired post-
operative information to reassess mortality risk at 1 week 
after surgery. Such dynamic evaluation involved separately 

identifying the most significant risk factors of 1-week and 
1-month mortality. To this end, we defined two patient co-
horts by censoring mortality events at different timepoints, 
thereby artificially mimicking clinical trials with different 
start and end times. By elucidating significant mortality 
risk factors in the two cohorts, we aimed to gain a simple 
and clear picture of what risk factors are important to pre-
dict 1-week and 1-month mortality.

The identified risk factors for the two periods—day 0 
to 1 week and 1 week to 1 month— seem to reflect the 
major causes of death in the corresponding periods. In 
line with the observation of intracranial hemorrhage and 
hemorrhagic shock constituting the first and third most 

T A B L E  3   Final risk scoring system

Endpoint/performance Feature Range Points

1-week mortality
Log loss: 0.0330
AUROC: 84.58%
Brier score: 0.00625
AUPR: 9.31%

Brain surgery No −4

Yes +13

Amount of intraoperative RBC transfusion (pack) <2 −9

2–4 −1

4–10 +1

≥10 +14

Preoperative platelet count (cell/nL) <120 +13

120–200 0

200–220 −16

≥ 220 −3

Preoperative albumin (g/dL) < 3.1 +11

3.1–3.7 0

3.7–4.6 −4

≥ 4.6 −11

ASA physical status 1–2 −5

3–4 +5

1-month mortality
Log-loss: 0.0640
AUROC: 90.66%
Brier score: 0.0155
AUPR: 25.91%

POD 5 NMLPR (×10−8 nL2/cell) <100 −22

100–300 −8

300–1000 +4

≥1000 +19

Preoperative albumin (g/dL) < 3.1 +8

3.1–3.8 +2

3.8–4.1 0

≥4.1 −7

POD 5 albumin (g/dL) <2.7 +6

2.7–3.0 +1

3.0–3.3 −2

≥3.3 −5

AKI No −2

Yes +8

Abbreviations: AKI, acute kidney injury; ASA, American Society of Anesthesiologists; AUROC, area under the receiver operating characteristic curve; AUPR, 
area under precision-recall curve; NMLPR, (neutrophil count × mean platelet volume) to (lymphocyte count × platelet count) ratio; POD, postoperative day; 
RBC, red blood cell.
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frequent causes of death in the first week (Table S1), brain 
surgery, the amount of RBC transfusion, and preopera-
tive platelet count were identified as the top risk factors. 
Meanwhile, the increasing incidences of respiratory fail-
ure (often implying pneumonia), septic shock, and MODS 
between 2 and 4 weeks suggest that markers of systemic 
inflammation and/or infection would become more im-
portant beyond the first week of surgery. The identifica-
tion of CBC differentials and serum albumin as the most 
crucial factors support this possibility because these are 
widely known biomarkers of inflammation and sepsis.

We included a novel CBC-based index, NMLPR, in the 
final clinical scoring system, which strongly correlated with 
postoperative mortality risk. NMLPR is a composite index 
of NLR × MPR, both of which are known predictors of post-
operative and other disease-related mortalities.12,14–16,32–34 
The use of composite indices offers two main advantages: 
(1) they compress information and (2) increase the diag-
nostic and prognostic specificity of individual biomarkers. 
With systemic inflammation, the lymphocyte count de-
creases and the neutrophil count increases.9 NLR, which is 
a composite index of neutrophils and lymphocytes, reflects 
changes in both cell types and is therefore a more sensitive 
marker of systemic inflammation than measures of either 
cell type alone.35 Platelets are increasingly recognized as 
important contributors to inflammation and thrombocyto-
penia is a common finding in patients with critical illness.36 
MPR, which is a composite index of MPV and platelet 
count, was shown to predict poor clinical outcome in pa-
tients admitted to the surgical intensive care unit.37 In ad-
dition, a high MPR was an independent predictor of 28-day 
mortality in patients with severe sepsis.38 Because systemic 
inflammation is responsible for increasing both NLR and 
MPR, NMLPR might be a more robust indicator of inflam-
matory status than either NLR or MPR. Indeed, our analysis 

showed that NMLPR was as effective as NLR and MPR 
when used for predicting 30-day mortality.

The close association of pre- and postoperative serum 
albumin level with postoperative mortality is well-
documented,18–21 and our study strengthens this view. The 
definition of hypoalbuminemia differs from study to study 
and ranges from less than 2.5 g/dL to less than 4.0 g/dL.19–21 
The optimal binning algorithm used to construct our risk 
scoring system suggested a binning scheme of dividing 
albumin ranges into less than 3.1, 3.1–3.8, 3.8–4.1, and 
greater than or equal to 4.1 g/dL in cohort 1. However, a 
different binning scheme was chosen for cohort 2. It seems 
unlikely that there exists a sharp threshold demarcating in-
creased risk from no risk. Rather, a decline in the albumin 
level seems to result in graded increases in mortality risk. 
Whether lower albumin is a causative factor of increased 
mortality risk cannot be answered from a retrospective anal-
ysis. Further studies investigating the benefit of increasing 
albumin level during perioperative periods may be needed; 
according to a previous study, human albumin administra-
tion in the early postoperative periods was not beneficial 
in correcting hypoalbuminemia or improving clinical out-
comes following gastrointestinal surgery.39

Preoperative hematocrit was found as the ninth most im-
portant feature in cohort 1, whereas pre- or postoperative he-
matocrit was not selected among the top 10 features in cohort 
2. As a result, hematocrit was not included in our scoring 
system, although preoperative anemia reportedly increases 
mortality after non-cardiac surgery.4,40,41 Intraoperative RBC 
transfusion of 1 or 2 units is known to be associated with 
a higher risk of 30-day mortality and morbidity after non-
cardiac surgery.24–26 In our study, all patients received an 
intraoperative RBC transfusion and there was a definite as-
sociation between the amount of packed RBC and the risk 
of 1-week mortality, with a dramatic increased mortality 
risk when transfused with greater than or equal to 10 units. 
However, intraoperative RBC transfusion was only associ-
ated with 1-week mortality but not 1-month mortality, which 
implies that RBC transfusion is no longer a main determi-
nant of mortality after 1 week of non-cardiac surgery.

The ASA physical status is the most widely used tool 
to classify patient preoperative health, and thus has been 
incorporated into several risk scores for postoperative 
mortality.42 Similarly, ASA physical status was selected in 
our final scoring system for 1-week mortality. However, 
the importance of ASA physical status on mortality was 
trivial after 1 week of surgery. AKI occurrence was found 
as a significant risk factor increasing 1-month mortality, 
which is in concordance with previous studies demon-
strating an increased hospital mortality risk in patients 
with than without postoperative AKI.43,44 Nevertheless, its 
impact on mortality compared to CBC and albumin level 
seems less pronounced.

F I G U R E  3   The calibration plot of the final risk scoring system 
developed based on the most important features showing observed 
versus predicted probabilities of mortality.
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The predictive performances of the final risk score 
show overall better performances than those found in 
the literature. Based on a recent systematic review, pre-
vious models using preoperative variables have reported 
AUROC ranging from 82% to 93%, excluding one study 
conducted in 1998 reporting AUROC of 0.68.7 Due to 
the heterogeneity of the underlying patient population 
used in the different studies, however, a direct compari-
son of predictive performances is not always possible. To 
assess the impact of the year the surgery was performed, 
we compared the predictive performances of our scoring 
system across different time periods ranging from 2005 to 
2020. No specific trend was noted, and the associated vari-
ability appeared largely random (Table S5).

Our study has some limitations. First, data were retro-
spectively collected. Hence, no clear conclusion can be drawn 
regarding whether high NMLPR and hypoalbuminemia are 
true predictors or mere epiphenomena of high mortality. This 
warrants further research to clarify the clinical implications 
and physiology underlying the possible role of the above-
mentioned parameters in postoperative mortality prediction 
for definite clinical acceptance. Second, the patient popula-
tion might not be representative of the general surgical popu-
lation. We used data of patients who underwent non-cardiac 
surgery requiring intraoperative RBC transfusion in one of 
the largest tertiary hospitals in South Korea. Hence, the pre-
dicted mortality probability of our model should not be ex-
trapolated directly to all postoperative patients, except after 
a careful baseline mortality hazard recalibration. Despite the 
abovementioned limitations, our study population was suffi-
ciently large, and therefore the study was satisfactorily pow-
ered to estimate the smallest effect sizes.

In conclusion, we developed a risk scoring system 
that integrated pre-, intra-, and postoperative factors to 
predict 1-week and 1-month mortality in patients under-
going major non-cardiac surgery with RBC transfusion. 
Albumin and CBC differentials were revealed as main 
factors and NMLPR is proposed as a novel and efficient 
CBC-based composite index for mortality prediction. 
Postoperative laboratory values were found to constitute 
key information to predict 1-month mortality but not 
1-week mortality. This result clearly suggests the time-
varying nature of postoperative mortality risk and alarms 
the physicians to sensitively attend to the patients’ chang-
ing status. The dynamic framework that we used may 
foster similar approaches in future studies to effectively 
assess time-varying postoperative mortality predictors.
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