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ABSTRACT: New approaches to target antibacterial agents toward Gram-
negative bacteria are key, given the rise of antibiotic resistance. Since the
discovery of polymyxin B nonapeptide as a potent Gram-negative outer
membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of
literature on such synergists has been published. This Review addresses a range
of peptide-based and small organic compounds that disrupt the OM to elicit a
synergistic effect with antibiotics that are otherwise inactive toward Gram-
negative bacteria, with synergy defined as a fractional inhibitory concentration
index (FICI) of <0.5. Another requirement for the inclusion of the synergists
here covered is their potentiation of a specific set of clinically used antibiotics:
erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have
focused on those synergists with reported activity against Gram-negative
members of the ESKAPE family of pathogens namely, Escherichia coli,
Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly
reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct
comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists
reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds
for Gram-negative bacteria.
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he increasing occurrence of antibiotic resistance among consists of an asymmetrical lipid bilayer (see Figure 1A).*° The

Gram-negative pathogens highlights the need for novel inner leaflet consist mostly of phospholipids and is similar to
antibacterial agents and therapeutic strategies. It is well the cytoplasmic membrane.”’ The outer leaflet is made up of
established that Gram-negative bacteria are inherently harder an organized and fortified structure of densely packed
to kill with antibiotics than Gram-positives, given the presence lipopolysaccharides (LPSs) and Mg**/Ca®" cations that bridge
of the Gram-negative outer membrane (OM) as well as efflux the negatively charged phosphate groups of the lipid A
pumps.'~* Given the limited number of clinically effective anti- component of LPS (see Figure 1B).>*” Furthermore, the
Gram-negative agents, there is an urgen;c_7need for new tightly packed saturated acyl chains result in a low level of
treatments against Gram-negative pathogens.”™ " This troubling membrane fluidity that limits the diffusion of hydrophobic

reality is further exacerbated by increasing accounts of
emerging resistance mechanisms against Gram-negative anti-
biotics, including extended spectrum f-lactamases (ESBLs)
that can render even fifth-generation cephalosporins and
carbapenems inactive,*”'" enzymes that structurally modify
and deactivate amino%lycosides,lz_15 and mcr-mediated
polymyxin resistance.'™”” In this context, the World Health
Organization (WHO) recently listed Acinetobacter baumannii
(carbapenem-resistant), Pseudomonas aeruginosa (carbapenem-
resistant), and the Enterobacteriaceae (carbapenem-resistant
and ESBL-producing strains) as the bacterial pathogens of
highest priority for the development of new antibiotics.””
The Gram-negative OM functions as a barrier that prevents
many antibiotics, that are otherwise active against Gram- Received: April 13, 2022
positive species, from reaching their targets.””” The OM itself Published: August 10, 2022

compounds across the OM.”* The OM also contains porins,
which function as size exclusion channels across the OM that
mediate the diffusion of small hydrophilic molecules between
the periplasm and the extracellular environment while keeping
large, hydrophobic molecules, including many antibiotics,
out."”*” Additionally, when lipophilic or amphiphilic anti-
biotics do manage to cross the OM, multi-drug efflux pumps
can transport these molecules back out.' >’ In many cases,
the overexpression of efflux pumps provides an effective means
for a Gram-negative pathogen to decrease its susceptibility to
antibiotics.>** Taken together, their diverse resistance
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Figure 1. (A) Schematic depiction of the OM disruption required for potentiation of Gram-positive specific antibiotics (created with
BioRender.com). (B) Lipid A (from Escherichia coli K-12), the hydrophobic anchor of LPS.

mechanisms and unique cellular features provide Gram-
negative bacteria with a formidable range of defenses against
antibacterial agents.

To address the specific challenges posed by Gram-negative
bacteria, a number of new and innovative approaches are
currently under investigation. Such strategies include interfer-
ing with LPS biosynthesis,”* " targeting OM proteins such as
the p-barrel assembly machine (BAM) complex,’***”
developing siderophore—antibiotic conjugates as Trojan
horse agents, including the recently approved cefiderecol,**~**
co-administering different antibiotics to restrict or reverse
antibiotic resistance,"”** and blocking efflux pumps.”~** In
addition to these promising strategies, the development of
agents that can selectively disrupt the OM offers the possibility
of sensitizing Gram-negative bacteria to antibiotics that
otherwise function only against Gram-positive bacteria.””**
The pursuit of such synergists continues to be a very active
field of research and is the basis for this Review.

The best-studied example of an OM-disrupting synergist is
polymyxin B nonapeptide (PMBN), which is obtained by
enzymatic degradation of the clinically used lipopeptide
polymyxin B (PMB).”** The potentiating effects of PMBN
were first reported in the 1980s, and in the decades since, a
growing number of OM-disrupting synergists have been
discovered.”*** To date, a number of reviews have been
published on the general topic of antibiotic synergy,”’™>’
including compounds that potentiate Gram-positive antibiotics
through interactions with the OM®® and OM-disrupting
S}rn<31'gists.32’59_63 However, a comprehensive overview of
OM-disrupting synergists that also provides the reader with a
direct comparison of both the potency and selectively of these
compounds has, to date, been lacking. In this regard, the most
widely accepted benchmark for synergistic activity is the so-
called fractional inhibitory concentration index (FICIL, Box
1).°* In this Review, we discuss only those synergists for which
FICI values are reported or could be calculated from published
data. The other criterion we have also chosen to emphasize is
the selectivity of OM disruption associated with these
synergists. In this regard, we pay special attention to the
hemolytic activity reported for the various OM disrupters as a
means of assessing their membrane specificity.

Among the Gram-negative bacteria for which OM-disrupting
synergists have been reported, we have selected those
pathogens noted on the WHQ’s priority list: A. baumannii,
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Box 1. An important formalism in the field of synergy is the
fractional inhibitory concentration index (FICI)

The FICI is calculated from experimental minimum inhibitory
concentration (MIC) data as shown in eq 1. A synergistic
combination is generally defined as an FICI < 0.5.
Additionally, it allows for a straightforward comparison of
the potency of the synergistic combinations: the lower the
FICI, the more potent the combination.

MIC( Diotici .
antibiotic in presence of synergist)
FICI = 2 k.

MIC(antibiotic alone)

MIC( synergist in presence of antibiotic)

MIC(synergist alone) ( 1)

Escherichia coli, Klebsiella pneumoniae, or P. aeruginosa.28 As for
Gram-positive specific antibiotics whose activity is potentiated
by OM-disrupting synergists, we have chosen to focus on
clinically used agents that are most commonly evaluated for
synergy with OM disrupters: erythromycin, rifampicin,
vancomycin, and novobiocin.”*® This criterion has, for
example, led to the exclusion of OM-disrupting agents for
which synergy was rePorted with macrolide antibiotics other
than erythromycin.”>"® Also, while the specific media
conditions used in antibacterial assays can strongly influence
the outcome of synergy studies, for the sake of brevity, we do
not include this level of detail here and instead provide clear
referencing of the original studies wherein such information
can be found. In addition, to further streamline the Review,
synergists for which an OM-disrupting mechanism was not
clearly demonstrated are not here discussed in detail.””~"’
Furthermore, synergists that specifically engage with Gram-
negative targets and subsequently cause OM disruption as a
secondary effect are not discussed in this Review.”*™*°

The scope of the synergists included in this Review ranges
from peptides to synthetic small molecules and small polymers
of <1500 Da. In this regard, protein-based OM disrupters such
as the membrane attack complex (MAC),” lactoferrin,*® and
the bactericidal/permeability-increasing protein (BPI)* or
larger polymers or polymer-like agents”™"’ will not be
discussed. This Review is further organized on the basis of
the chemical families of the synergists covered. We begin with

https://doi.org/10.1021/acsinfecdis.2c00193
ACS Infect. Dis. 2022, 8, 1731-1757
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Figure 2. Molecular structures of (A) polymyxin B (PMB), deacylpolymyxin B (DAPB), polymyxin B nonapeptide (PMBN), polymyxin B
octapeptide (PMBO), and polymyxin B heptapeptide (PMBH) and (B) PMBN analogues SPR741, NAB739, and NAB7061.

cyclic peptides based on PMBN, followed by linear peptides,
cationic steroids, peptide—steroid hybrids, and small mole-
cules. For each subgroup of synergists, a summary table has
been assembled to provide a convenient comparative overview
of FICI values. These tables also include the identity of the
Gram-negative species and companion antibiotics employed in
generating the FICIs. In addition, where possible, we have
included the reported hemolytic activity of each synergist to
provide an indication of its selectivity for Gram-negative cells.

1. PEPTIDE-BASED POTENTIATORS

1.1. Polymyxin-Derived Synergists. Polymyxin-derived
synergists have been extensively reviewed in the past, and
therefore only a concise summary of these analogues is here
included.”*>®* PMBN is derived from the parent lipopeptide
PMB (see Figure 2A). Unlike its parent compound, PMBN has
no inherent antimicrobial activity, nor is it nephrotoxic.7’98 In
their landmark 1983 paper, Martti and Timo Vaara
demonstrated that the combination of PMBN with hydro-
phobic, generally Gram-positive-specific, antibiotics results in a
potent synergistic effect (see Table 1).>*** In this regard,

Table 1. Synergistic Activity of Polymyxin Analogues

name ref FICI* pathogen antibiotic
PMBN 105 0.013“ E. coli rifampicin
PMBO 105 0.013“ E. coli rifampicin
PMBH 105 0.020“ E. coli rifampicin
DAPB 105 0.043“ E. coli rifampicin
SPR741 106 0.06 E. coli rifampicin
NAB739 100 0.126 A. baumannii rifampicin
NAB7061 100 0.0S5 E. coli rifampicin

“FICI calculated using eq 1 from MIC values reported in the cited
reference.

PMBN is often used as a benchmark for synergistic activity.”
Apart from PMBN, other truncated derivatives of PMB, like
deacylpolymyxin B (DAPB), polymyxin B octapeptide
(PMBO), and polymyxin B heptapeptide (PMBH), also
display synergistic activity (Figure 1A and Table 1).** The
peptide macrocycle is of key importance for these synergists, as
linear PMBN variants lose their synergistic activity.””

A new generation of PMBN analogues containing only three
positive charges was developed more recently.'””'"" SPR741,
previously named NAB741, has passed the Phase I clinical
trials (see Figure 2B).” Like PMBN, SPR741 has no lipophilic
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tail, resulting in improved renal clearance compared to PMB
and other analogues that have a lipophilic tail, such as NAB739
and NAB7061."°" NAB7061 has little inherent antimicrobial
activity but is a very potent synergist, while NAB739 has very
potent antimicrobial activity (Table 1).'”” Remarkably, this
difference in activity between NAB739 and NAB7061 is
attributed to the absence of one hydroxyl group in NAB7061
(see Figure 2B).'” NAB739 has been reported to exhibit
generally moderate synergistic activity against wild-type strains,
with the exception of the A. baumannii strain indicated in
Table 1.'9%103 Interestingly, against mcr-positive strains, the
loss of antimicrobial activity for NAB739 is accompanied by a
significant increase in its synergistic activity, an effect also
noted for colistin.'**'**

1.2. Dilipidated Polymyxins. Polymyxin analogues
bearing additional lipid tails have also been explored to test
the hypothesis that additional hydrophobicity might enhance
membrane interactions.'”” To generate these variants, a variety
of acyl tails were added to both amino groups of the N-
terminal 2,4-diaminobutyric acid (Dab) residue of PMB
(Figure 3).'°7'% The introduction of simple propyl lipids, as
in analogue 1, led to a complete loss of inherent activity (MIC
> 64 pg/mL), while the analogues 2 and S, bearing larger,
more hydrophobic groups, maintained moderate activity, with
MICs of 4—64 pg/mL against most Gram-negative bacteria.'’’
Notably, the reduced inherent activity was accompanied by a
higher synergistic potential (Table 2), indicating that these
dilipidated analogues have an increased capacity to disrupt the
OM.""” Also of note is the reported activity of analogues 2 and
5 against Gram-positive bacteria (MICs of 8—32 ug/mL)
compared to colistin, which has no such activity (MIC > 128
pg/mL).\”

1.3. Linear Peptide-Based Synergists. In most reviews
published on the topic of OM-targeting synergists, relatively
little attention has been paid to linear peptides. Peptides have
several drawbacks, including poor metabolic stability, low
bioavailability, potential immunogenicity, and high production
costs."”””""" To improve their metabolic stability, the
structures of peptides can be adapted by a number of
approaches, including peptidomimetics, lipidation, head-to-
tail cyclization, N- and C-terminus modifications, backbone
stereochemistry changes, and incorporation of unnatural amino
acids.' > Improvements to the bioavailability of
peptides have also been explored by applying formulation
techniques, adjusting the properties of peptides, or linking
them to a moiety to improve passage over the blood—brain

https://doi.org/10.1021/acsinfecdis.2c00193
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Figure 3. Molecular structures of the dilipidated polymyxin analogues.
Table 2. Synergistic Activities of Dilipidated Polymyxin Analogues
name ref FICI pathogen antibiotic hemolytic activity”
dilipid polymyxin 1 107 0.02 P. aeruginosa rifampicin <10% (1 h)
dilipid polymyxin 2 107 0.26 P. aeruginosa novobiocin <10% (1 h)
dilipid polymyxin 5 107 0.31 P. aeruginosa rifampicin <10% (1 h)

“Non-hemolytic is defined as <10% hemolysis compared to positive control, with incubation times denoted in parentheses.

barrier."” """ These advances, combined with the develop-
ment of more economical methods for peptide synthesis,
support a future role for peptide-based therapeutics, with a
number of antimicrobial peptides (AMPs) already in (pre)-
clinical development.'"”™

An increasing number of peptide synergists that function
through OM disruption have been reported in the literature
(see Table 3). In some studies, panels of structurally similar
peptides are screened, resulting in the identification of multiple
hits with FICI <0.5. In such cases, we have opted to select up
to four of the most potent synergists to limit the number of
peptides. Given that most peptide-based synergists are derived
from specific lead proteins or AMPs, we have divided the linear
peptide synergists accordingly, both in the discussion below
and in the overview in Table 3.

1.3.1. Cathelicidin Antimicrobial Peptides. The cathelici-
dins are AMPs that play an important role in the innate
immune defense system of mammals and function by binding
to bacterial membranes, resulting in their destabilization and
lysis.'**~"** In addition to their direct antibacterial activity,
cathelicidins have also been found to play a role in recruiting
immune cells to the site of infection as well as in LPS
neutralization.”®'*>'* The sole human cathelicidin-AMP gene
encodes for hCAP-18, which is cleaved by proteases into the
active LL-37."°7'* The mature LL-37 peptide forms an
amphipathic a-helix that, upon interaction with bacterial cell
surfaces, is associated with a detergent-like antimicrobial
activity.'”’~"*” Recently, a truncated version of LL-37, termed
FK16, was reported to potentiate the activity of vancomycin
against P. aeruginosa (Table 3)."*° Similarly, the Kuipers group
showed that another LL-37-derived sequence, termed KR-12-
2, is able to synergize with azithromycin (and erythromycin,
Table 3)."*' Further optimization of the peptide sequence
resulted in peptide L11, which was also synthesized as the p-
amino acid variant (D11) as a means of improving serum
stability (Table 3)."*"'** These peptides were screened in
combination with multiple antibiotics against different Gram-
negative strains, and OM disruption assays verified their mode
of action."?'~"?

In addition to the human cathelicidins, derivatives of
cathelicidins from other mammals have also been screened
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for synergistic activity, including novicidin (sheep), bactenec-
tin (bovine), and indolicidine (bovine)."””"**"*> Among these,
only novicidin was reported to display potent synergy (Table
3)."** In the case of bactenectin, which normally contains a
disulfide bridge, a number of linear analogues have been
prepared, including peptides G2, R2, and DP7, which were
found to exhibit OM disruption and moderate synergy (Table
3)."71% In the case of indolicidin, structure—activity
relationship (SAR) studies have led to the discovery of the
synergists Indopt 10 and CLS001 (Table 3). CLSO001 is
particularly effective and displays synergy with both
vancomycin and azithromycin against multiple Gram-negative
pathogens.'*>"** Marketed under the name Omiganan,
CLS001 is also much less hemolytic than indolicidin and is
currently in clinical trials for the treatment of skin-related
infections. >34

1.3.2. Lactoferrin-Derived Peptides. Lactoferrin is a multi-
functional protein found in mammals and plays key roles in the
human immune system. Lactoferrin has inherent activity
against a range of bacterial, fungal, and viral pathogens, and
in the case of Gram-negative bacteria, it can disrupt the OM.**
Based on the LPS-binding region of lactoferrin, known as
LF11, the Martinez-de-Tejada group synthesized a series of
LF11 homologues (Table 3) that were screened in
combination with novobiocin for synergistic activity.'*!
Based on these findings, a new generation of peptide synergists
was designed using PEptide DEscriptors from Sequence
(PEDES) software to predict OM-permeabilizing sequen-
ces.'*” The peptides thus obtained (i.e., peptide P2-16, Table
3) generally showed synergistic activity on par with that of the
original series."*> Given the abundance of lactoferrins in other
mammals, Svendsen and co-workers also investigated a series
of peptides derived from bovine lactoferrin for both
antimicrobial activity and synergistic activity.'**~"*® This led
to the identification of a 12-mer peptide termed P12, along
with P15, a 15-mer containing biphenylalanine (Bip), and a
longer 18-mer termed P18, all of which were found to exhibit
moderate synergy with erythromycin when tested against E.
coli (Table 3).

1.3.3. Thrombin-Derived Peptides. Thrombin is an enzyme
that plays a critical role in coagulation, and recent studies have

https://doi.org/10.1021/acsinfecdis.2c00193
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Table 3. Overview of Linear Peptide-Based Synergists

a
name

FK16
KR-12-a2
L-11
D-11
novicidin
G2

R2

DP7
indopt 10
CLS001

P10
P14
P22
P2—-16
P12
P1S
P18

peptide 6
peptide 14
peptide 19

Nal-P-113
Bip-P-113

buforin II
esculentin 1b
HE2a
HE232
anoplin
magainin IT

cecropin A

CAME
CAMA
HPMA
H-TriA,
SLAP-S25
Al3

Al7

A21

L7A

S1

S1-Nal
S1-Nal-Nal

peptide 79
peptide 1
peptide 2
peptide D1
peptide D2

ECS

ref

130
131, 214
132
132, 133
134
135
135
138, 215
135
138, 140

141
141
141
142
145, 216
145
145

148
148
148

153, 155
153, 155

156, 217
157, 218
158, 162
158, 162
159

160, 217
160, 165

219, 220
219, 220
219, 221
168, 169
173
159
159
159
139
181, 184
181, 184
181, 184

180, 185
71, 222
71, 188
71
71

131, 186

peptide sequenceb FICI
Cathelicidin-Derived Peptides

FKRIVQRIKDFLRNLV 0.25
KRIVQRIKKWLR-NH, 0.156
RIVQRIKKWLR-NH, 0.070
rivqrikkwlr-NH, 0.032
KNLRRIIRKGIHIIKKYF 0.018
RGARIVVIRVAR-NH, 038
RRARIVVIRVAR-NH, 0.27
VQWRIRVAVIRK 0.25
ILKWKIFKWKWER-NH, 0.38
ILRWPWWPWRRK-NH, 0.28

Lactoferrin-Derived Peptides

FWQRNIRKVKKK-NH, 0.113
FWQRNIRKVKKKI-NH, 0.113
RFWQRNIRKYRR-NH, 0431
FWRNIRIWRR-NH, 0.116
RRWQWRMKKLGA 043
FK-Bip-RRWQWRMKKLGA* 0.38
PAWFKARRWAWRMLKKAA 0.38

Thrombin-Derived Peptides

VFRLKKWIQKVI-NH, 0.094
VFRLKKAIQKVI-NH, 0.078
VFRLKKWIQKVA-NH, 0.078

Histatin-Derived Peptides
Ac-AKR-Nal-Nal-GYKRKE-Nal-NH,* 0.38
Ac-AKR-Bip-Bip-GYKRKEF-Bip-NH, 0.38

Other Natural AMPs, Their Hybrids, and Derivatives

TRSSRAGLQFPVGRVHRLLRK 0312
GIFSKLAGKKLKNLLISG-NH, 0.36
VHISHREARGPSFRICVGFLGPRWARGCSTGN 0.3
GDVPPGIRNTICRMQQGICRLFFCHSGTGQQHRQRCG 0.2
GLLKRIKTLL 0.3125
GIGKFLHAAKKFAKAFVAEIMNS-NH, 0.312
KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQ 0312
ATQIAK-NH,
KWKLFKKIGIGAVLKVLTTG-NH, 0.375
KWKLFKKIGIGKFLHSAKKF-NH, 0.25
AKKVFKRLGIGKFLHSAKKF-NH, 0.313
v-dab-GswS-Dab-dab-FEV-alle-A"$ 0.002
Ac-Dab-I-Dab-I-Dab-fL-Dab-vLA-NH;" 0.031
GWWKRIKTWW 0.375
KWWKRWKKWW 0.3125
KWWKKWKKWW 0.3125
LNLKALAAVAKKIL-NH, 0.31
Ac-KKWRKWLAKK-NH, 0.38
Ac-KKWRKWLAKK-Nal-NH,* 027
Ac-KKWRKWLAKK-Nal-Nal-NH,* 0.27

Peptide Synergists via Library Screening

KKWRKWLKWLAKK-NH, 0.14
KLWKKWKKWLK-NH, 0.02
GKWKKILGKLIR-NH, 0.04
klwkkwkkwlk-NH, <0.03
gkwkkilgklir-NH, <0.04

Peptide Synergists from Phage Display
RLLFRKIRRLKR 0.266
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pathogen

aeruginosa
aeruginosa
baumannii
baumannii
coli

aeruginosa
aeruginosa
aeruginosa

aeruginosa

R ISR

aeruginosa

aeruginosa
aeruginosa
aeruginosa
aeruginosa
coli
coli

I

coli

E. coli
coli
E. coli

1

E. coli
E. coli

A. baumannii
E. coli
E.coli
E.coli
P. aeruginosa
P. aeruginosa

P. aeruginosa

A. baumannii
A. baumannii
A. baumannii
E. coli

E. coli

K. pneumoniae
P. aeruginosa
K. pneumoniae
E. coli

A. baumannii
A. baumannii

A. baumannii

E. coli

K. pneumoniae
K. pneumoniae
K. pneumoniae
K. pneumoniae

P. aeruginosa

antibiotic

vancomycin
erythromycin
vancomycin
rifampicin
rifampicin
erythromycin
erythromycin
vancomycin
erythromycin

vancomycin

novobiocin
novobiocin
novobiocin
novobiocin
erythromycin
erythromycin
erythromycin

rifampicin
erythromycin

rifampicin

vancomycin

vancomycin

rifampicin
erythromycin
rifampicin
rifampicin
rifampicin
rifampicin

rifampicin

erythromycin
erythromycin
erythromcyin
rifampicin
rifampicin
rifampicin
rifampicin
rifampicin
rifampicin
vancomycin
vancomycin

vancomycin

rifampicin
rifampicin
rifampicin
rifampicin

rifampicin

erythromycin

hemolytic activity®

<10% (1 h)
<10% (1 h)
NR

<10% (1 h)
<10% (1 h)
NR

NR

<10% (1 h)
NR

10% (30 min)

<10% (1 h)
<10% (1 h)
<10% (1 h)
NR
<10% (2 h)
NR
NR

<10% (20 h)
<10% (20 h)
<10% (20 h)

>10% (1 h)
>10% (1 h)

<10% (1 h)
>10% (1 h)
<10% (1 h)
<10% (1 h)
<10% (1 h)
>10% (1 h)
<10% (1 h)

<10% (1 h)
<10% (1 h)
<10% (1 h)"
<10% (30 min)”
<10% (1 h)
<10% (1 h)
>10% (1 h)
<10% (1 h)
<10% (1 h)
<10% (1 h)”"
<10% (1 h)”"
>10% (1 h)

<10% (1 h)
<10% (1 h)
<10% (1 h)
NR
NR

<10% (24 h)
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Table 3. continued

name” ref peptide sequence” FICI pathogen antibiotic hemolytic activity®
Designed Peptides
peptide 4 187 KFFKFFKFF 0.03 E. coli rifampicin >10% (30 min)
peptide 5 187 IKFLKFLKFL 0.06 E. coli rifampicin NR
peptide 7 187 CKFKFKFKFC 0.20 E. coli rifampicin NR
AFm 191 Ac—GAFRKAFHKAFWA—NHZ" 0.3 E. coli rifampicin <10% (1 h)
AFmscr 191 Ac-GAFRKAFKAAFWH-NH," 0.14 E. coli rifampicin <10% (1 h)
LK-L8P 223 Ac-LKKLLKLPKKLLKL-NH, 0.18 E. coli erythromycin ~ <10% (4 h)
LK-L11P 223 Ac-LKKLLKLLKKPLKL-NH, 0.47 E. coli erythromycin ~ <10% (4 h)
KL-L6P 223 Ac-LKKLLPLLKKLLKL-NH, 0.33 E. coli erythromycin ~ >10% (4 h)
KL-L9P 223 Ac-LKKLLKLLPKLLKL-NH, 0.12 E. coli erythromycin ~~ <10% (4 h)
zpl2 196 GIKRGIIKIIKRIKRI-NH, 0.25 K. pneumoniae vancomycin NR
zpl6 196 GIKRGIIKIIRRIKRI-NH, 0.06 K. pneumoniae ~ vancomycin <10% (1 h)
K4 197,198 ' WRKWRKWRKWRK-NH, 0.2 K. pneumoniae  rifampicin <10% (1 h)
KS 197,198  WRKWRKWRKWRKWRK-NH, 0.2 E. coli rifampicin <10% (1 h)
Lipopeptide Synergists
paenipeptin 1 199,200  CgDab-I-Dab-fL-Dab-vLS-NH," 0.125° E. coli rifampicin <10% (30 min)
paenipeptin 9 199 Cg-Dab-I-Dab-fL-Dab-vL-Dab-NH;"/ <0.03° K. pneumoniae  rifampicin <10% (30 min)
paenipeptin 15 199 Cbz-Dab-I-Dab-fL-Dab-vLS-NH;"* <0.03° K. pneumoniae  rifampicin <10% (30 min)
paenipeptin 16 199 Cha-Dab-I-Dab-fL-Dab-vLS-NH;"' 0.06” K. pneumoniae  rifampicin <10% (30 min)
dUSCL 2 201 C10-K(Cy)KKK-NH," (Figure 4A) 0.07 P. aeruginosa rifampicin <10% (1 h)
dUSCL 6 201 C10-K(Cy)KGK-NH," (Figure 4A) 0.25 P. aeruginosa rifampicin <10% (1 h)
UTBLP § 202 Cy-K(Cg)KKKK-NH,' (Figure 4B) >0.016 P. aeruginosa novobiocin NR
UTBLP 6 202 CyK(Cg)K(Me)K(Me)K(Me)K(Me)-NH,’ (Figure 4B) 0047 A baumannii  rifampicin NR
Lipopeptidomimetic Synergists
dUSTBP 2 206 Figure 4C >0.250 P. aeruginosa rifampicin <10% (1 h)
dUSTBP 5 206 Figure 4C >0.125 P. aeruginosa rifampicin <10% (1 h)
dUSTBP 8 206 Figure 4C >0.002 A. baumannii novobiocin <10% (1 h)
OAK Cy,(,7) 212 Figure 4D <0.073°  E. coli rifampicin >10% (3 h)
OAK Cy, 212 Figure 4D <0.211°  E. coli rifampicin >10% (3 h)
OAK Cy 212 Figure 4D <0.036°  E. coli rifampicin <10% (3 h)"
OAK Cy 212 Figure 4D <0.078°  E. coli rifampicin <10% (3 h)"
OAK Cj4(5)00¢; 00 213 Figure 4D 0.207 K. pneumoniae rifampicin <10% (3 h)"

“Compound names are provided as given in the cited literature references. bLowercase letters indicate p-amino acids. “Non-hemolytic is defined as

<10% hemolysis compared to positive control, with incubation times denoted in parentheses; NR denotes no data reported. “Bip

biphenylalanine. “Nal = f-naphthylalanine. /Dab = 2,4-diaminobutyric acid. %alle = p-allo-isoleucine. AF = a,f-didehydrophenylalanine. ‘Cy =
hexanoyl.’Cq = octanoyl. kCbz = benzyloxycarbonyl. 'Cha = cyclohexylalanyl. "’C, = decanoyl. "Concentration tested was lower than 100 yg/mL.
°FICI calculated from MIC values reported in the cited literature references.

also shown that certain thrombin-derived C-terminal peptides
are capable of binding to LPS and neutralizing its toxic and
inflammatory effects.””” Given the capacity of PMB to also
bind and neutralize LPS, our group was interested in assessing
whether these thrombin-derived peptides might also exhibit
the synergistic behavior of PMBN. To this end, we prepared a
series of 12-mer thrombin-derived peptides and showed that a
number of them are, indeed, potent synergists."** The most
active synergist thus identified (peptide 6, Table 3) was further
investigated by means of an alanine scan, leading to the
discovery of more potent variants (peptides 14 and 19, Table
3). Notably, these peptides were found to be non-hemolytic,
and their synergistic activity was shown to extend to
rifampicin, erythromycin, and novobiocin against multiple
Gram-negative strains, including those with mcr-mediated
resistance. **

1.3.4. Histatins. The histatins are a unique group of
histidine-rich peptides found in human saliva that play roles in
defending against infection as well as in aiding wound-
healing.I ? Among the most common histatins, the 24 amino
acid histatin § has been shown to bind Lipid A and has
endotoxin-neutralizing properties.”>” SAR studies with histatin
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S led to the identification of a 12-mer sub-region termed P-113
that exhibits antimicrobial activity against Gram-positive and
Gram-negative bacteria.'*”"*'~">? Further structural optimiza-
tion to enhance the stability of P-113 led to analogues
incorporating S-naphthylalanine (Nal) and Bip residues to
yield Nal-P-113 and Bip-P-113 and wherein the 4th, 5th, and
12th histidine resides were replaced by Nal or Bip, respectively
(Table 3).">* Bip-P-113 and Nal-P-113 exhibit antimicrobial
activity and improved serum proteolytic stability, and they
were also found to permeabilize LPSs containing large
unilamellar vesicles used to model the Gram-negative
OM.">>"** These findings prompted investigation of vanco-
mycin potentiation by Bip-P-113 and Nal-P-113, revealing
both to exhibit moderate synergy.155 However, a notable
drawback of Bip-P-113 and Nal-P-113 is their significantly
increased hemolytic activity relative to that of P-113.">*

1.3.5. Other Natural AMPs, Their Hybrids, and Deriva-
tives. A number of other naturally occurring AMPs have been
reported to potentiate antibiotics that are otherwise excluded
by the OM. These AMPs are all polycationic and include
buforrin II, esculentin 1b, sphistin, HE2a, HE2/32, anoplin,
magainin II, and cecropin A (Table 3)."°7'°° The sources of

https://doi.org/10.1021/acsinfecdis.2c00193
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these AMPs are diverse and include toads, wasp venom, or
even the human male reproductive tract.'**'3*'! The AMPs
here discussed have all been reported to disrupt the
OM,' 571591627164 1id to LPS, and/or show endotoxin-
neutralizing activity.156’160’165’166 In general, these AMPs
exhibit modest FICIs (0.2—0.36), which has also led to
interest in hybrids and derivatives with enhanced synergistic
activity. For example, Park and co-workers developed a series
of hybrid peptide synergists, termed CAME, CAMA, and
HPMA, containing sequences derived from crecopin A,
magainin II, and melittin (Table 3).'°>'®” Other approaches
include truncation, as in the case of the lipopeptide AMPs
tridecaptin A; and B, (TriA; and TriB,;), which themselves
exhibit potent inherent anti-Gram-negative activity and, when
truncated, were found to be effective synergists.'**™'""!
Specifically, removal of the TriA; N-terminal lipid yielded H-
TriA,, which was found to be much less active as an antibiotic
but exhibited very potent synergism when combined with
rifampicin, resulting in an FICI of 0.002 against E. coli (Table
3).1%1% Like the tridecaptins, the recently discovered
paenipeptins contain a number of Dab residues and have
been the subject of SAR studies.'”> These efforts led to the
discovery of a potent paenipeptin-inspired synergist termed
SLAP-S25, which effectively potentiates the activity of
rifampicin and vancomycin against E. coli (Table 3).'” In
addition to OM disruption, the binding of SLAP-S25 to LPS
and phosphatidylglycerol (PG) was established, su%%esting that
SLAP-S25 is also an inner membrane disrupter.””” This was
confirmed by dose-dependent uptake of propidium iodide and
release of cellular contents in cells treated with SLAP-$25."7
Notably, SLAP-S25 was also demonstrated to effectively
enhance the in vivo activity of colistin against a colistin-
resistant strain of E. coli in both Galleria mellonella and mouse
infection models.'”

Originally isolated from wasp venom, anoplin is one of the
smallest known amphipathic, a-helical AMPs."*”'°" Multiple
SAR investigations have been performed to improve its
antimicrobial activity and stability.'”*~'"® A recent study with
anoplin reported the systematic introduction of tryptophan
and lysine residues to determine the optimal hydrophobicity,
amphipathicity, and number of positive char$es required for
antibacterial activity and minimal cytotoxicity. >” A number of
these analogues were also found to be synergistic when
combined with rifampicin (see peptides A13, A17, and A21 in
Table 3) via a mechanism involving OM disruption."”” A
similar study with mastoparan-C, a peptide found in the venom
of the European hornet, led to the identification of an analogue
termed L7A (Table 3), which also displays synergy via OM
perturbation.'”” Another example of a synergist derived from a
toxic peptide is myotoxin II, which is isolated from certain
snake venoms. Studies with peptide sequences based on the C-
terminus of myotoxin II resulted in peptide S1 (Table 3),
which showed a good balance of synergy with vancomycin and
low hemolytic activity.'””'*" Attempts at further improving the
S1 peptide involved the introduction of Nal residues at the C-
terminus to generate S1-Nal, which exhibited enhanced
synergistic activity, and S1-Nal-Nal, which also exhibited
enhanced synergistic activity but at the expense of increased
hemolytic activity (Table 3)."'~'**

1.3.6. Peptide Synergists Discovered via Library Screen-
ing. Guardabassi and co-workers recently reported the
development and validation of an assay meant to enable
high-throughput screens for identifying OM disruption
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agents.'® To this end, they applied a whole-cell screening
platform that allows for detection of OM permeabilization in E.
coli based on the signal generated by a chromogenic substrate
reporter for a cytoplasmic f-galactosidase. To validate the
assay, a library of peptides and peptidomimetics was screened,
which generated a notable hit termed peptide 79 that showed
potentiation of various antibiotics at therapeutically relevant
levels (Table 3)."*° In a follow-up study, the same group went
on to develop two improved synergists, termed peptides 1 and
2, along with the all p-amino acid variants, which were also
found to effectively potentiate rifampicin against K. pneumoniae
(Table 3).7%'%

1.3.7. Peptide Synergists from Phage Display. Phage
display techniques have also been applied to identify novel
peptides capable of interaction with the OM. In one such
investigation, a phage library displaying random 12-mer
peptides was screened for the ability to bind to the cell surface
of Gram-negative bacteria."*® Specificity for the Gram-negative
OM was ensured by removal of peptides binding to Gram-
positive bacteria by pre-incubation of the library with
Staphylococcus aureus."*® This approach led to the identi-
fication of a peptide termed ECS that exhibits moderate
antibacterial activity against E. coli and P. aeruginosa, with
MICs in the range of 8—16 pg/mL against both.'*® The ECS
peptide was shown to cause OM disruption and cytoplasmic
membrane depolarization while exhibiting very little hemolytic
activity.'®® Subsequent synergy studies showed that the
peptide was also capable of potentiating the activity of
erythromycin, clarithromycin, and telithromycin against P.
aeruginosd. -

1.3.8. Rationally Designed Peptide Synergists. Inspired by
the structure of DAPB (see Figure 2), Vaara and co-workers
designed a series of linear and cyclic peptides for evaluation as

c L 187 :

synergists. -~ The sequences of these peptides were based on
an ABB, motif, in which A is a basic amino acid and B a
hydrophobic residue (see peptides 4 and $, Table 3)."*” Cyclic
peptides were also prepared bearing a similar AB, motif (see
peptide 7, Table 3).""” All peptides were screened for
synergistic activity with erythromycin, rifampicin, novobiocin,
and fusidic acid, with the rifampicin combinations being the
most potent (Table 3)."*” While the synergistic activity of
these peptides could be correlated to their OM-disrupting
activity, the effect was not specific, given their high hemolytic
activi‘cy.187

De novo-designed peptides have also been explored as a
means of generating novel synergists. To this end, the Sahal
group developed a number of peptides incorporating key
elements found in AMPs and synergists, including amphipa-
thicity, positive charge, and helical conformation.'**"* Of
note was the introduction of @,8-didehydrophenylalanine (AF)
into the peptides as a means of constraining the helical
conformation of the peptides.'”*™'"* Using this approach, two
peptides termed AFm and AFmscr were identified as effective
synergists with low toxicity toward mammalian cells (Table 3).

In another recent approach to identifying novel peptide
synergists, Yu and colleagues reported the construction of a
small library wherein amphipathic peptides where subjected to
a proline-scanning strategy to generate novel hinged
peptides."” Such proline-hinged peptides are reported to
have lower toxicity toward mammalian cells, given that their
membrane binding is reduced compared to that of conven-
tional AMPs with a high a-helical conformation.'"”* Proline
scanning of two model peptides, LK (LKKLLKLLKKLLKL)

https://doi.org/10.1021/acsinfecdis.2c00193
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Figure 4. Lipopeptide and lipopeptidomimetic synergists. Representative structures of (A) dilipid ultrashort cationic lipopeptides (dUSCLs), (B)
ultrashort tetrabasic lipopeptides (UTBLPs), (C) dilipid ultrashort tetrabasic peptidomimetics (dUSTBPs), and (D) oligo-acyl-lysyls (OAKs).

and KL (KLLKLLKKLLKLLK), provided a set of peptides
that were screened for synergistic activity, with the four most
potent peptides displayed in Table 3. The peptides were also
screened for hemolysis, which led to identification of peptide
KL-L9P as the most promising hit. This peptide was
subsequently shown to permeabilize the OM, as evidenced
by uptake of N-phenylnaphthalen-1-amine (NPN), and was
also found to bind LPS without disturbing the inner
membrane.'”> Mouse sepsis studies were also performed to
evaluate the in vivo synergistic effect of KL-L9P, which
displayed a significant potentiation of a number of clinically
used antibiotics and resulted in improved overall survival.'”’
In another recently reported study, Zeng et al. described the
application of rational design approaches to generate novel
helix-forming AMPs based on cytolytic peptide toxins
produced by highly virulent strains of S. aureus."”>'"® The
peptides thus obtained were shown to have improved
physicochemical properties and antibacterial activity, while
maintaining low hemolytic activity and cytotoxicity. Among
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the 16-mers thus generated, two peptides, termed zpl12 and
zp16, were also found to exhibit potent synergy (Table 3).
Notable in this regard is the finding that peptide zpl6
specifically potentiates the effect of the glycopeptide antibiotics
vancomycin and teicoplanin against highly pathogenic K
pneumoniae.'”® The vancomycin-zpl6 combination exhibits
negligible toxicity in vitro and in vivo, and mechanistic studies
indicate that zpl6 enhances vancomycin’s cell permeability,
leading to markedly reduced biofilm formation and rapid
bactericidal effect.'”

In 2022, the group of Ni reported the potentiation of
multiple antibiotics, including rifampicin, by two rationally
designed peptides named K4 and K5 (Table 3)."”” These
peptides were selected from a library of variants all containing
a repeating motif, (WRX),, wherein X represents I, K, L, F, and
W."”® Hemolysis and cytotoxicity assays led to the selection of
peptides K4 and KS as leads."”® The finding that these peptides
permeabilize the OM resulted in follow-up studies on the
potentiation of antibiotics against Gram-negative bacteria.'”’

https://doi.org/10.1021/acsinfecdis.2c00193
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Figure 5. Overview of the synergistic steroids (A) squalamine, (B) squalamine mimic SM-7, (C) polycationic cholic acid ether-linked steroid
synergists, (D) polycationic cholic acid ester-linked steroid synergists, and (E) steroid—peptide hybrids.

Apart from synergy, a 15-day resistance assay was also
performed for the K4 and KS peptides, with or without
antibiotics, showing no significant resistance develop-
ment.'””"*® Also of note, while the inherent activity of K4
was found to be comparable to that of PMB, K4 was reported
to display no in vivo toxicity when tested as high as 40 mg/kg,
while all mice dosed with PMB at the same concentration died
within 24 h."*

1.4. Lipopeptide Synergists. In addition to the
exclusively peptide-based synergists described above, lip-
opeptides have also been explored as synergists. We here
cover examples of lipopeptides that do not possess potent
inherent antibacterial activity but rather have the capacity to
effectively potentiate the activity of other antibiotics. A recent
example includes the synthetic paenipeptins developed by
Huang and co-workers.'”” The design of these lipopeptides is
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based on peptides produced by Paenibacillus sp. strain OSY-N
that contain a number of unnatural and p-amino acids. Using
low hemolytic activity as a selection criterion, a subset of these
lipopeptides were selected and screened for synergistic activity.
This led to the identification of paenipeptins 1, 9, 15, and 16,
which exhibit potent synergy (Table 3)."””*°° These lip-
opeptides were further shown to have OM-disrupting activity,
as indicated by the NPN assay. Furthermore, in a murine thigh
infection model, paenipeptin 1 was shown to effectively
potentiate the in vivo activity of both clarithromycin and
rifampin against polymyxin-resistant E. coli.”"’

Small cationic lipopeptides have also been explored as
synergists, with the aim of identifying smaller, less hemolytic
agents. To this end, Schweizer and co-workers recently
reported a series of dilipid ultrashort cationic lipopeptides
(dUSCLs) capable of enhancing the activity of clinically used
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Table 4. Overview of Synergists Based on Cationic Steroids

name ref FICI pathogen antibiotic hemolytic activity”
squalamine 224, 226 0.35" P. aeruginosa erythromycin >10% (10 min)
SM-7 227 0.063 K. pneumoniae rifampicin <10% (24 h)

Polycationic Cholic Acid Analogues

Ether-linked
I 229, 230 0.035 K. pneumoniae rifampicin >10% (24 h)
I 230 0.029 K. pneumoniae novobiocin <10% (24 h)
I 230 0.022 K. pneumoniae novobiocin >10% (24 h)
v 232 0.13 K. pneumoniae rifampicin <10% (24 h)
Ester-Linked
\% 233 0.057" E. coli erythromycin NR
VI 233 0.064" E. coli erythromycin NR
VII 234 0.176" E. coli erythromycin <10% (24 h)
Steroid—Peptide Hybrids
VIII 239 0.099 E. coli erythromycin NR
X 239 0.093 E. coli erythromycin NR
X 239 0.078 E. coli erythromycin NR

“Non-hemolytic is defined as <10% hemolysis compared to positive control, with incubation times denoted in parentheses; NR denotes no data
reported. “FICI calculated from MIC values reported in the cited literature references.

antibiotics against Gram-negative bacteria.””’ The design of
these dUSCLs consists of lysine-rich tetrapeptides bearing
various lipids at the N-terminal residue, as illustrated in Figure
4A. It was found that dUSCLs bearing lipids of >11 carbon
atoms caused significant hemolysis. However, analogues with
slightly shorter lipids were found to achieve an acceptable
balance of low hemolytic activity and synergistic activity. This
led to the identification of dUSCLs 2 and 6 as the most
promising synergists (Table 3) capable of sensitizing a range of
Gram-negative strains to various antibiotics. The authors also
noted that, in addition to permeabilizing the OM, the dUSCLs
may also function by indirectly disrupting antibiotic efflux.”’

The Schweizer group also recently reported a series of
ultrashort tetrabasic lipopeptides (UTBLPs) synergists.”"”
These compounds were specifically prepared to assess the
effect of lysine N-(-methylation on the potentiation of
antibiotics, inspired by reports suggesting that N-methylation
can lead to reduced hemolysis, increased proteolytic stability,
and improved antibacterial activity.””>"*"> Compared to the
dUSCLs, UTBLPs S and 6 contain an extra lysine, while an
octanoyl group was employed as the lipophilic moiety (Figure
4B).”°"?%% Methylation of the lysine side chain resulted in a
reduction of potentiation for rifampicin and novobiocin in
both wild-type and resistant Gram-negative strains.””> A
correlation between the number of methyl groups and loss
of activity was seen, while the increase in NPN fluorescence of
the trimethylated UTBLPs was on par with that of their un- or
monomethylated analogues.”"”

1.5. Lipopeptidomimetic Synergists. The Schweizer
group also expanded the scope of their dUSCLs by exploring a
series of dilipid ultrashort tetrabasic peptidomimetics
(dUSTBPs) as proteolytically stable alternatives.””® In a
focused SAR study, they prepared dUSTBPs consisting of
three basic amino acids separated by a molecular scaffold,
bis(3-aminopropyl)glycine, along with ligation to simple fatty
acids (see Figure 4C).**° This led to identification of a number
of dUSTBPs capable of potentiating the activity of several
antibiotics against pathogenic Gram-negative bacteria while
exhibiting low hemolytic activity (Table 3). In particular,
dUSTBP 8, consisting of three L-arginine units and a dilipid
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eight carbons long, was found to potentiate novobiocin and
rifampicin against multi-drug-resistant (MDR) clinical isolates
of P. aeruginosa, A. baumannii, and Enterobacteriaceae
species.zo6

In 2007, Mor and co-workers introduced the oligo-acyl-
lysyls (OAKs) as peptidomimetics of the antimalarial peptide
dermseptin S3 (Figure 4D) that were initially evaluated
primarily for antimicrobial activity.””’ ™" Among the first
series of analogues prepared, OAK C,,(,,) was found to adhere
to the OM with minimal insertion, and its antibacterial activity
against Gram-negative bacteria improved in combination with
ethylenediaminetetraacetate (EDTA).>*~>'" The introduction
of a double bond in OAK C,,,;) resulted in a significant
reduction of hemolytic activity compared to that of OAK C,,,
while the slightly less hydrophobic OAK C,, and OAK Cg
analogues also showed no hemolytic activity.”*”*'> In 2013,
these four OAKs, as well as the more recently described OAK
C14(ws5)00¢;(O, containing ornithine instead of lysine (Figure
4D), were reported to potentiate rifampicin against Gram-
negative bacteria (Table 3).”'*?"? Interestingly, the synergistic
activity of the OAKs was maintained in human plasma but was
suppressed by addition of anti-complement antibodies,
suggesting that these compounds sensitize Gram-negative
bacteria to the action of antibacterial innate immune

. 213
mechanisms.

2. CATIONIC STEROIDS

In 1993, the isolation of squalamine from tissues of the dogfish
shark Squalus acanthias was reported.””* Squalamine consists of
a steroid core linked to a spermidine moiety (Figure SA) and
was found to exhibit broad antimicrobial activity.”** Later, it
was established that squalamine disrupts membranes and is
also hemolytic. Notably, investigations into its synergistic
activity showed that it was unable to potentiate erythromycin
against wild-type strains, showing an effect only against a P.
aeruginosa strain overproducing MexAB-OprM efflux pumps
(see Table 4).”>**° A few years after its discovery, novel
squalamine mimics (SMs) were synthesized in an attempt to
enhance antibacterial activities (Figure 5B).”*” These synthetic
analogues consist of cholic and deoxycholic acid as the steroid
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backbone to which a spermidine chain is appended. This
approach resulted in the identification of analogue SM-7,
which was found to potentiate rifampicin against multiple
Gram-negative bacteria (Table 4).”*” However, like squal-
amine, SM-7 also possesses significant hemolytic activity,
limiting its potential for systemic use.””’

In another approach, the Savage group also employed the
cholic acid backbone but with the aim of mimicking
polymyxins through the amphiphilic positioning of positive
charges (Figure 5C,D).”****’ In doing so, a variety of cationic
steroids were developed and screened for inherent antimicro-
bial activity as well as the ca}z)acity to potentiate antibiotics
against Gram-negative bacteria.”*”~"*” The hydroxyl groups on
the cholic acid backbone provide convenient functionalities for
the incorporation of positively charged moieties via formation
of ether (Figure SC) or ester (Figure SD) linkages. Among the
ether-linked series, an analogue bearing three carbon atom
spacers between the steroid and the primary amine groups,
along with an N-benzylated tertiary amino group at the C24
position (analogue I, Figure SC), was found to exhibit both
inherent antimicrobial activity and synergistic activity.””’
Interestingly, replacement of the lipophilic N-benzyl moiety
with a hydroxyl group led to analogue II, which showed a
significant reduction of inherent activity while maintaining a
strong ability to potentiate the activity of erythromycin against
E. coli”*®** The decreased lipophilicity of analogue II also
reduced the hemolytic activity seen with analogue I (Table 4).
Follow-up studies revealed that conversion of the free hydroxyl
group at the C24 position to the propyl ether, as in analogue
111, significantly increased the hemolytic activity.”*”**!
Notably, addition of a terminal amino group to the propyl
ether moiety provided analogue IV, which exhibited
significantly reduced hemolysis relative to that of analogue
I1I while maintaining effective synergistic activity (Table 4).***
A series of ester-linked analogues were also prepared by the
Savage group (Figure SD), wherein compounds V, VI, and VII
exhibited synergistic activity comparable to that of the
corresponding ether variants (Table 4).**** Amide analogues

1741

were also explored; however, they exhibited a significant lower
potentiation of erythromycin, presumably due to conforma-
tional constraints, relative to the more active esters.”>’

In addition to the polycationic steroids described above,
steroid—pegtide hybrids have also been explored as syner-
gists.”””~**” In one case, Bavikar et al. reported a series of
hybrids wherein simple tetrapeptides were coupled to cholic
acid in an attempt to mimic the squalamine tail (Figure SE).**
As indicated in Table 4, these steroid—peptide hybrids exhibit
potent synergy with erythromycin against E. coli. While the
hemolytic activity of these compounds was not reported, they
were described as having low cytotoxicity toward HEK293 and
MCE-7 cells.”*’

3. NON-STEROID SMALL-MOLECULE SYNERGISTS

3.1. Synergists Based on Approved Drugs. Recently,
Brown and co-workers reported an innovative screening
platform for the identification of non-lethal, OM-active
compounds with potential as adjuvants for conventional
antibiotics.”** They applied their screen to a library of 1440
previously approved drugs, which resulted in the identification
of three hits. Among the three hits identified, the anti-
protozoal agent pentamidine (Figure 6A) was subsequently
found to display the highest synergistic potency (Table 5).**
Notably, while pentamidine’s OM-targeting mechanism was
found to be driven by interaction with LPS, mcr-resistance did
not affect its synergistic potential.”** The potentiation of
novobiocin by pentamidine was also established in vivo against
wild-type and resistant A. baumannii.*** Subsequently, a
focused SAR study using commercially available bis-amidines
similar in structure to pentamidine led to the identification of
compound 9 as an even more potent synergist (Figure 6a and
Table 5).>*

Inspired by these findings, our group recently undertook a
broad SAR investigation wherein a number of structurally
unique bis-amidines were synthesized and evaluated as
synergists.”*' Specifically, we focused our attention on the
length and rigidity of the linker motif as well as the geometry
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Table 5. Overview of Non-steroid Small-Molecule Synergists

name” ref FICI pathogen antibiotic hemolytic activity”
Synergists Based on Approved Drugs
pentamidine 240, 241 0.2 E. coli rifampicin <10% (20 h)
compound 9 240, 241 <0.047 E. coli rifampicin >10% (20 h)
compound 21 241 <0.094 E. coli rifampicin <10% (20 h)
compound 38 241 <0.039 E. coli rifampicin >10% (20 h)
compound P35 242 0.094 A. baumannii novobiocin <10% (45 min)©
metformin 245 0.375 E. coli vancomycin <10% (1 h)
High-Throughput Screening Hits
MAC-0568743 246 <0.16 E. coli rifampicin NR
liproxstatin-1 246 0.257 E. coli rifampicin NR
BWC-Azal 247 0.258 E. coli rifampicin <10% (4S min)
BWC-Aza2 247 0.06 A. baumannii rifampicin <10% (45 min)
Peptidomimetics
OAK Ciy () 212 <0.0737 E. coli rifampicin >10% (3 h)
OAK Cy, 212 <0.211¢ E. coli rifampicin >10% (3 h)
OAK C,y 212 <0.0367 E. coli rifampicin <10% (3 h)©
OAK Cq 212 <0.078 E. coli rifampicin <10% (3 h)“
Cia(05)00C,,0 213 0.207 K. pneumoniae rifampicin <10% (3 h)“
dUSTBP 2 206 >0.250 P. aeruginosa rifampicin <10% (1 h)
dUSTBP S 206 >0.125 P. aeruginosa rifampicin <10% (1 h)
dUSTBP 8 206 >0.002 A. baumannii novobiocin <10% (1 h)
Synergists with a Polyamine Motif
p-LANA-14 249, 250 0.09 P. aeruginosa rifampicin <10% (1 h)
naphthylacetylspermine 251 0.1257 E. coli novobiocin nr
bisacyl-homospermine 8a 253 0.3047 E. coli rifampicin <10% (30 min)
bisacyl-homospermine 8b 253 02974 E. coli rifampicin >10% (30 min)
spermidine analogue 14 258 0.2557 E. coli erythromycin <10% (1 h)°
spermidine analogue 17 258 02554 P. aeruginosa erythromycin <10% (1 h)“
600-Da BPEI 261, 275 0.26 P. aeruginosa erythromycin <10% (1 h)
Plant-Derived Synergists
eugenol 262, 276 <027 P. aeruginosa rifampicin <10% (24 h)
linalool 263, 277 0.37 E. coli erythromycin <10% (4 h)
thymol 271,278 0.25 E. coli erythromycin <10% (1 h)
cinnamaldehyde 271, 279 0.24 E. coli erythromycin <10% (48 h)
trans-cinnamic acid 272, 280 0.36 E. coli erythromycin <50% (1 h)
ferulic acid 272, 280 0.48 E. coli erythromycin <50% (1 h)
3,4-dimethoxycinnamic acid 272, 280 0.42 E. coli erythromycin <50% (1 h)
2,4,5-trimethoxycinnamic acid 272, 280 0.22 E. coli erythromycin <50% (1 h)

“Compound names are provided as given in the cited literature references. “Non-hemolytic is defined as <10% hemolysis compared to positive
control, with incubation times denoted in parentheses; NR denotes no data reported. “Concentration tested was lower than 100 yg/mL. 9FICI
calculated from MIC values reported in the cited literature references.

of the amidine groups on the aromatic rings. In addition to
assessing the synergistic activity of the new bis-amidines
prepared, we also performed hemolysis assays with each
compound to ascertain OM selectivity. Given the potent
synergy previously reported for bis-amidine 9,*° we also
synthesized it to use as a benchmark. Among the compounds
prepared in our study, bis-amidine 21, containing an ortho-
substituted benzene linker, was found to be significantly more
synergistic than pentamidine and displayed no hemolytic
activity (Figure 6A and Table 5).*! We also found that the
introduction of additional aromatic groups to the linker, such
as in compound 38, led to further enhancement of synergy;
however, this came at the cost of increased hemolytic activity
(Table S). Interestingly, our studies also revealed benchmark
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bis-amidine 9 to be hemolytic. These findings further highlight
the importance of assessing OM selectivity when pursuing
synergists.241

The Brown group also recently reported a follow-up SAR
study aimed at further enhancing the therapeutic potential of
bis-amidine synergists.”*” Similar to our own SAR study, the
rigidity, conformational flexibility, and lipophilicity were
further explored. In addition, the roles of chirality and charge
were also investigated.”*> A key focus of this study was to
identify bis-amidine synergists with improved off-target effects
relative to those of pentamidine, especially the QT
prolongation resulting from its effect on the hERG ion
channel.***~*** This led to compound P35, which was shown
to have the same synergistic mode of action as pentamidine; it
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displayed a strong potentiation of novobiocin and no
hemolytic activity (Table S). Furthermore, compound P35
outperformed pentamidine on multiple levels: an improvement
in cytoxicity, a higher efficacy in a mouse infection model, and
reduced hERG inhibition.”*

Wang and co-workers also recently reported a study wherein
the Prestwick Chemical Library, comprising 158 FDA-
approved drugs, was assessed for compounds exhibiting
synergy with doxycycline.”* This led to the finding that
metformin, a commonly prescribed anti-diabetic agent (Figure
6B), effectively potentiates vancomycin as well as tetracycline
antibiotics, particularly doxycycline and minocycline, against
MDR S. aureus, Enterococcus faecalis, E. coli, and Salmonella
enteritidis.”* The capacity for metformin to disturb the OM
was assessed using the NPN assay, revealing an increase in E.
coli OM permeability in a dose-dependent manner. Of
particular note was the finding that metformin was also able
to fully restore the activity of doxycycline in animal infection
models.***

3.2. Small-Molecule Synergists via High-Throughput
Screening. Following the success in applying their OM
perturbation reporter assay to identify pentamidine as a potent
synergist, the Brown group applied the same approach in a
much larger high-throughput screening (HTS) campaign with
a library of ca. 140 000 synthetic compounds.**”**® This, in
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turn, led to the identification of 39 hits that were subsequently
screened for synergistic activity with rifampicin.”*® Among
these hits, MAC-0568743 and liproxstatin-1 (Figure 7A) were
found to be particularly active synergists (Table 5).**° Both
compounds were found to potentiate the activity of the Gram-
positive-targeting antibiotics rifampicin, novobiocin, erythro-
mycin, and linezolid. This potentiation was further shown to
be due to selective disruption of the OM, driven by
interactions with LPS, and neither compound impacted the
inner membrane.>*’

In another recently reported campaign, Datta and co-
workers screened a focused library of 3000 drug-like
compounds for antibiotic synergy using a whole-cell-based
phenotypic assay.”*” This led to the identification of a series of
azaindoles that potentiate the MICs of novobiocin and
rifampicin by 100—1000-fold vs Gram-negative bacteria.
Optimization studies led to compounds BWC-Azal and
BWC-Aza2 (see Figure 7B), both of which were screened for
synergistic activity with an extensive panel of antibiotics against
E. coli (Table S). The OM-permeabilizing activity of the
azaindoles was also probed using the NPN assay, revealing
dose-dependent disruption.**”

3.3. Small-Molecule Polyamine Synergists. In recent
years, the polyamines norspermine and norspermidine have
been explored as starting points for the development of
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Table 6. Overview of Synergists Based on Clinically Used Antibiotics

name” ref FICIL pathogen antibiotic hemolytic activity”
Tobramycin Derivatives
TOB-MOX 1 291 0.125 P. aeruginosa novobiocin <10% (30 min)
tobramycin-ciprofloxacin le 292 <0.04 P. aeruginosa rifampicin <10% (30 min)
tobramycin-rifampicin 1 293 0.28 P. aeruginosa rifampicin <10% (1 h)
tobramycin-rifampicin 2 293 0.15 P. aeruginosa erythromycin <10% (1 h)
tobramycin-rifampicin 3 293 0.06 P. aeruginosa erythromycin <10% (1 h)
tobramycin-lysine 3 294 0.008 P. aeruginosa novobiocin <10% (1 h)
TOB-NMP 1 296 >0.008 P. aeruginosa rifampicin <10% (30 min)
TOB-PAR 2 296 >0.008 P. aeruginosa rifampicin <10% (30 min)
tobramycin homodimer 1 297 0.07 P. aeruginosa novobiocin <10% (1 h)
tobramycin homodimer 2 297 0.08 P. aeruginosa novobiocin <10% (1 h)
tobramycin homodimer 3 297 0.0S P. aeruginosa novobiocin <10% (1 h)
tobramycin-cyclam 1 298 0.13 P. aeruginosa novobiocin <10% (30 min)
tobramycin-cyclam 2 298 0.13 P. aeruginosa novobiocin <10% (30 min)
tobramycin-cyclam 3 298 0.08 P. aeruginosa novobiocin <10% (30 min)
Nebramine Derivatives

NEB-MOX 1la 299 >0.002 K. pneumoniae rifampicin NR

NEB-CIP 1b 299 >0.008 P. aeruginosa rifampicin <10% (1 h)
NEB-NMP 2 299 >0.004 P. aeruginosa rifampicin NR
nebramine-cyclam 300 0.25 P. aeruginosa rifampicin <10% (1 h)

Levofloxacin—Polybasic Peptide Conjugates

levofloxacin conjugate 10 301 0.10 P. aeruginosa rifampicin <10% (1 h)
levofloxacin conjugate 11 301 0.10 P. aeruginosa novobiocin <10% (1 h)
levofloxacin conjugate 12 301 0.08 P. aeruginosa novobiocin <10% (1 h)

“Compound names are provided as given in the cited literature references.

“Non-hemolytic is defined as <10% hemolysis compared to positive

control, with incubation times denoted in parentheses; NR denotes no data reported.

antibacterial and antibiofilm agents.”****’ Building on this
work, the Haldar group recently reported the development of
D-LANA-14, composed of a norspermidine core linked to two
D-lysines, along with conjugation to a tetradecanoyl chain at
the central secondary amine (Figure 7C).”*° p-LANA-14
showed potent synergy with tetracycline or rifampicin against
meropenem-resistant A. baumannii and P. aeruginosa clinical
isolates (Table S) and, importantly, was also found to disrupt
established biofilms formed by these pathogens.””’ p-LANA-14
was shown to perturb the OM by means of the NPN assay and,
importantly, was also found to exhibit potent in vivo activity
when combined with rifampicin, resulting in a significant
reduction of bacterial burden in a mouse model of burn-wound
infection.**’

In another study involving small-molecule polyamines, Katsu
and co-workers investigated synthetic analogues of the joro
spider toxin as OM-disrupting agents, leading to the
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identification of naphthylacetylspermine (Figure 7D), which
was found to potentiate the activity of novobiocin against E.
coli (Table 5).**' Mechanistic studies revealed that admin-
istration of naphthylacetylspermine causes OM disruption,
which was attributed to displacement of LPS-associated Ca*".
In addition, naphthylacetylspermine was found to promote
cellular uptake of the tetraphenylphosphonium (TPPY),
indicating membrane permeabilization, a finding similar to
that obtained with PMBN.**"*** Interestingly, spermidine and
spermine were also found to induce loss of Ca** but did not
cause uptake of TPP*, pointing to the importance of the
naphthyl moiety for membrane permeabilization.”” Given that
no hemolysis data was reported for naphthylacetylspermine, it
is not possible to assess the selectively of its OM activity.
The David group also reported the development of acylated
polyamines as LPS neutralizing ag_ents capable of functioning
as OM-disrupting synergists.” >>> A series of monoacyl- and
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bisacyl-homospermines were prepared and evaluated as
potentiators of rifampicin, resulting in the identification of
two potent synergists, compounds 8a and 8b (see Figure 7E
and Table 5).*>* A clear correlation between the length of the
lipophilic tail and hemolytic activity was seen, with compound
8a appearing to strike an optimal balance.”>® Using a similar
approach, Copp and co-workers introduced the indole-3-
acrylamido-spermine conjugates inspired by a class of indole-
spermidine alkaloid natural products.”****” An SAR study led
to the development of spermidine analogues like 14 and 17,
which exhibited effective synergy with various antibiotics
(Figure 7F and Table 5).29%%% These compounds affect
bacterial membrane integrity and show low cytotoxicity and
hemolytic activity. Interestingly, compound 14 was also found
to inhibit bacterial efflux pumps, suggesting that the
potentiation of antibiotics by these compounds may be
attributed to a dual mechanism of action.”****®

Given the inclusion criteria noted in the introduction, only
small-molecule synergists (MW under 1500 kDa) are included
in this Review, and as such we do not discuss larger
polycationic polymers even though some have been shown
to exhibit synergistic activity.”’” “****°° It is noteworthy,
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however, that branched polyethylenimine (BPEI) with a MW
of 600 Da shows synergistic activity (Figure 7G, Table S) and
can also eradicate biofilms when co-administered with a variety
of antibiotics.”®" Mechanistic studies using isothermal titration
calorimetry and fluorescence spectroscopy indicate that, at the
concentration required for antibiotic potentiation, 600 Da
BPEI reduces diffusion barriers from LPS without disrupting
the OM itself.*®"

3.4. Plant-Derived Synergists. A number of plant-derived
compounds have also been reported to potentiate the activity
of antibiotics against Gram-negative bacteria (Table 5). These
include natural products like eugenol, a major component of
clove oil; linalool, which can be isolated from coriander;
thymol, which is extracted from thyme; and cinnamaldehyde
and cinnamic acid, which are found in the bark and leaves of
the cinnamon tree (Figure 8).262_268 Important to note is that
only pure compounds derived from plants are included in our
assessment. We refer the reader to other reviews on the
synergistic activity of essential oils or crude extracts.****”°
Notably, most plant-derived compounds reported to potentiate
antibiotics against Gram-negative bacteria are not cationic,
setting them apart from most other synergists. Despite their
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lack of positive charge, a number of investigations have shown
that the synergy associated with these compounds is a function
of their abilitgf to induce OM permeabilization (Table
6).26%2632717275 The broad range of biological activities
associated with cinnamic acid and its derivatives, including
ferulic acid, 3,4-dimethoxycinnamic acid, and 2,4,5-trimethox-
ycinnamic acid (Figure 8), has been recently reviewed
including synergistic effects associated with OM disruption.””*
Interestingly, despite its clear structural similarities with
cinnamic acid, studies with cinnamaldehyde suggest that it
may operate via a different synergistic mechanism. Unlike
cinnamic acid, cinnamaldehyde does not increase OM
permeabilization based on the NPN assay, but it does exhibit

synergistic effects with erythromycin and novobiocin (Table
5)‘271,273

4. ANTIBIOTIC-DERIVED SYNERGISTS

In general, the antibiotic potentiators discussed above show
little to no inherent antibacterial activity. There are, however, a
number of reports describing antibacterial compounds that
also exhibit OM-disrupting effects and, in doing so, synergize
with antibiotics that are otherwise inactive toward Gram-
negative bacteria. The synergists described in this section are
specifically included on the basis of their OM-disrupting
activity rather than a contribution of their inherent activity to
synergy. We therefore do not include the combination of
rifampicin with imipenem or trimethoprim, which is solely
based on functional synergy.”*"*** In addition, we also do not
cover reports describing systems where an OM-perturbing
motif like PMBN is covalently linked to another antibiotic as a
means of enhancing anti-Gram-negative activity.”””** =%
4.1. Tobramycin-Derived Synergists. Tobramycin (Fig-
ure 9A) belongs to the aminoglycoside class of antibiotics that
function by inhibiting ribosomal protein synthesis in bacteria.
Recent studies have also revealed that aminoglycosides like
tobramycin also interact with bacterial membranes by
specifically binding to LPS and, in doing so, cause membrane
depolarization.”*~**° Building on these insights, Schweizer
and co-workers prepared and assessed a number of conjugates
wherein one tobramycin molecule is linked to a second
antibiotic, providing hybrid systems that possess both inherent
antibacterial activity and potent synergy with other antibiotics
(Figure 9A).*7'779%2832957300 " Among  the first hybrids
prepared was a series tobramycin—fluoroquinolone conju-
gates.””"*”> Both the optimal sites of conjugation and linker
lengths between the two antibiotics were investigated,
revealing TOB-MOX, a tobramycin—moxifloxacin hybrid,
and tobramycin—cigroﬂoxacin conjugate le to be potent
synergists (Table 6).””> OM disruption was confirmed for both
hybrids using the NPN assay, and both were found to
potentiate multiple antibiotics, includingg rifampicin, erythro-
mycin, novobiocin, and vancomycin.””"*** Also of note was
the finding that these hybrids exhibited a significantly reduced
capacity to inhibit protein translation compared to that of
tobramycin.””**> Conversely, the hybrids were found to
maintain, and in some cases exceed, the gyrase-inhibiting
activity of the parent fluoroquinolones.””"*”* Another series of
hybrids was prepared by coupling tobramycin with rifampicin,
which targets the bacterial RNA polymerase.”” As for the
fluoroquinolone conjugates, the inherent activity of the
tobramycin—rifampicin conjugates was significantly reduced
compared to that of the parent antibiotics. Again, however,
some hybrids were found to exhibit synergy via an OM-
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disrupting mechanism (see tobramycin—rifampicins 1-3,
Figure 9A).22 29302

A number of other hybrids have also been reported by the
Schweizer group wherein tobramycin was coupled to various
other small molecules known to engage with different bacterial
targets. In one case, tobramycin was coupled to a lysine-based
amphiphile known to function as a membrane permeabilizer
(see tobramycin—lysine 3, Figure 9A).”**°> This conjugate
was found to effectively potentiate the activity of novobiocin,
erythromycin, and vancomycin (Table 6).***°* The same
group also explored hybrids wherein tobramycin was coupled
to small-molecule efflux pump inhibitors such as 1-(1-
naphthylmethyl)})i erazine (NMP) and paroxetine (PAR)
(Figure 9A).**75305737 Along with potent synergy against
P. aeruginosa (Table 6), these hybrids were also found to cause
OM disruption and inner membrane depolarization.””>**
Two additional generations of tobramycin conjugates were also
reported: tobramycin homodimers and tobramycin coupled to
chelating cyclams (Figure 9A).>7*® The dimerization of
tobramycin was conveniently achieved by means of copper-
catalyzed azide—alkyne click chemistry, resulting in potent
synergists that also exhibit enhanced OM disruption relative to
tobramycin itself (Table 6).” A combination of novobiocin
and tobramycin homodimer 1 (both administered at 50 ug/
mL) was further shown to have in vivo efficacy against A.
baumannii in a wax worm larvae model.””” Studies with the
corresponding monomeric tobramycin azide and alkyne
precursors revealed neither to be synergistic, underscoring
the need for dimerization to achieve synergy.””” In the case of
the tobramycin—cyclam conjugates, the introduction of the
cyclam chelating group was hypothesized to aid in the OM
permeabilization by sequestration of divalent cations bridging
the Lipid A phosphate groups.””****~*'° While tobramycin—
cyclam hybrids 1-3 effectively potentiated novobiocin,
rifampicin, vancomycin, and erythromycin (Table 6), it is
also particularly noteworthy that they also enhanced the
activity of meropenem against both carbapenem-resistant and
-sensitive strains.””® This effect was abrogated by the addition
of excess MgCl,, further supporting a mode of action driven by
OM disruption.””®

4.2. Nebramine-Derived Synergists. Following on their
work with tobramycin hybrids, the Schweizer group also
prepared a number of analogous nebramine conjugates (Figure
9B). Nebramine (NEB) is a disaccharide sub-unit of
tobramycin that interestingly displays activity against tobra-
mycin-resistant strains and also interacts with the
OM.**7?"'=317 The NEB hybrids synthesized included
conjugates with moxifloxacin (MOX), ciprofloxacin (CIP),
NMP, and cyclam (Figure 9B).”*”*% These hybrids were all
found to effectively potentiate the activity of multiple classes of
antibiotics against a range of Gram-negative bacteria (Table 6).
Furthermore, NEB-MOX 1a, NEB-CIP 1b, and NEB-NMP 2
were also reported to dissipate proton motive force and
proposed to cause OM disruption, as for the corresponding
tobramycin conjugates.291’294’295’299’300

4.3. Levofloxacin—Polybasic Peptide Conjugates as
Synergists. Schweizer and co-workers also recently reported
another class of antibiotic-based synergists, consisting of
levofloxacin conjugated to polybasic peptides of varying
lengths (Figure 9C).*" While these levofloxacin—peptide
hybrids were found to be non-hemolytic, they were also
shown to be essentially devoid of inherent antimicrobial
activity (MICs typically >128 ug/mL). They did, however,
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Figure 10. Chelating agents with demonstrated synergistic activity.

exhibit strong potentiation of numerous antibiotics against
MDR clinical isolates of P. aeruginosa, E. coli, K. pneumoniae,
and, to a lesser extent, A. baumannii (Table 6).*°" Preliminary
mechanistic studies indicate that these conjugates potentiate
other antibiotics both by blocking active efflux and by
permeabilization of the OM.*"'

5. CHELATING AGENTS AS OM-DISRUPTING
SYNERGISTS

The activity of antibiotics can also be potentiated by chelating
agents that disturb the integrity of the OM by sequestering the
divalent cations Mg** or Ca®" coordinated by the phosphate
groups of the lipid A core of LPS (Figure 1B).*” The pre-
eminent chelating agent, EDTA (Figure 10), is a well-
described synergist, and its reported ability to potentiate
antibiotics actually pre-dates the reported synergistic activity of
PMBN.*»?"¥732!" Exposure of Gram-negative bacteria to
EDTA is accompanied by the significant release of LPS and,
as for treatment with PMBN, also results in the increased
uptake of NPN.”**~*** While the potentiating effects of EDTA
on antibiotics such as novobiocin and rifampicin are well
documented, FICI values have not been reported in literature
and cannot be readily calculated from published
data, 2321323325 Gimilarly, for the other chelating agents
here discussed, no FICI values could be found in the literature,
and, as such, we do not provide a summary table as was done
for the other synergists discussed in this Review.

In additional to his seminal work with PMBN, Vaara also
reported the potentiation of hydrophobic antibiotics by
sodium hexametaphosphate (HMP, Figure 10) against Gram-
negative bacteria as well as the increase in NPN uptake in cells
treated with this potent Ca*"-binding agent.””® In a similar
study, Ayres and Russell also described sodium polyphosphates
as potent synergists with several antibiotics (structures not
shown).””” In the same study, citric acid (Figure 10) was also
demonstrated to exhibit synergistic activity with erythromycin,
novobiocin, rifampicin, methicillin, and gentamicin.32 In
addition, 2,3-dimercaptosuccinic acid (Figure 10), clinically
used in the treatment of lead intoxication, was also found to
potentiate the activity of hydrophobic antibiotics.”*® The
synergistic activity of 2,3-dimercaptosuccinic acid was
attributed to an OM-permeabilizing mechanism, as evidenced
by increased NPN uptake in bacterial cells treated with the
compound.”*

B CONCLUDING REMARKS

New strategies are required to address the growing threat
posed by MDR Gram-negative pathogens. To this end, a large
and growing number of synergists capable of potentiating
Gram-positive-specific antibiotics against Gram-negative bac-
teria have been described in the literature to date. Within this
Review, we provide the reader with a comprehensive and up-
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to-date overview of those synergists reported to have a
demonstrated OM-targeting mechanism. We also draw
attention to the importance of selective OM disruption, a
factor that has often been overlooked by researchers when
characterizing their synergists. In this regard, and based on our
assessment of the literature, the majority of hemolysis studies
reported for such synergists use relatively short incubation
times compared to the incubation times actually used in
assessing synergy (i.e., in checkerboard assays). Based on our
own experience, not only is the concentration at which
hemolysis is assessed relevant, but incubation time can also
make a significant difference in describing a compound as
hemolytic or not. For example, in cases where 5% hemolysis is
reported after 1 b, it is our experience that such compounds are
often much more hemolytic after overnight incubation. For
this reason, we have included both the concentrations and
incubation times of the synergists described in this Review.
Doing so provides for a more honest and accurate assessment
of the OM specificity of these synergists.

To provide a means of comparing the relative activity of the
synergists here summarized, we have emphasized their FICI
values, a descriptor broadly applied as a scale to quantify
synergistic potency. However, another important consideration
that is not directly revealed by the FICI is, of course, the
concentration at which a synergist actually potentiates the
companion antibiotic. As for the concentrations of the
antibiotics being potentiated, we suggest using the correspond-
ing Gram-positive breakpoints as a guide for assessing whether
the synergistic MICs determined against Gram-negative
bacteria (for which Gram-positive antibiotics have no break-
point) are within therapeutically relevant concentrations. Also
related to this is the importance of the pharmacokinetic/
pharmacodynamic (PK/PD) profile of the synergist and how
well it matches that of the antibiotic it potentiates. Given that
the vast majority of antibiotic synergists reported to date have
only been characterized using cell-based in vitro and
biochemical assays, we have not touched on this. Clearly,
significant in vivo studies are needed to establish and optimize
such parameters and will be essential to the (pre)clinical
development of any such synergist. It is also notable that OM-
perturbing synergists have been investigated as a means of
enhancing the effect of other multi-drug cocktails, further
underscoring the importance of such PK/PD considerations.
Specifically, addition of the polymyxin-derived SPR741 has
recently been studied as a means of enhancing the activity of f-
lactam/f-lactamase inhibitor combinations such as piperacil-
lin—tazobactam.’*® Given the challenges associated with
developing anti-Gram-negative agents and therapeutic strat-
egies, the pursuit of antibiotic synergists is likely to remain an
active field of research for the years to come.
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ethylenediaminetetraacetate; ESBL, extended spectrum f-
lactamase; FICI, fractional inhibitory concentration index;
HMP, hexametaphosphate; HTS, high-throughput screening;
LPS, lipopolysaccharide; MAC, membrane attack complex;
MDR, multi-drug-resistant; MIC, minimum inhibitory con-
centration; MOX, moxifloxacin; Nal, f-naphthylalanine; NEB,
nebramine; NMP, 1-(1-naphthylmethyl)piperazine; NPN, N-
phenylnaphthalen-1-amine; NR, no data reported; OAK, oligo-
acyl-lysyl; OM, outer membrane; PAR, paroxetine; PEDES,
PEptide DEscriptors from Sequence; PG, phosphatidylglycer-
ol; PK/PD, pharmacokinetic/pharmacodynamic; PMB, poly-
myxin B; PMBH, polymyxin B heptapeptide; PMBN,
polymyxin B nonapeptide; PMBO, polymyxin B octapeptide;
SAR, structure—activity relationship; SM, squalamine mimic;
TOB, tobramycin; TPP, tetraphenylphosphonium; TriA,,
tridecaptin A;; UTBLP, ultrashort tetrabasic lipopeptide;
WHO, World Health Organization
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