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Worldwide, ovarian cancer (OC) is the seventh common cancer and the second most com-
mon cause of cancer death in women. Due to high rates of relapse, there is an urgent need
for the identification of new targets for OC treatment. The far-upstream element binding
protein 1 (FBP1) and enhancer of zeste homolog 2 (EZH2) are emerging proto-oncogenes
that regulate cell proliferation and metastasis. In the present study, Oncomine data analy-
sis demonstrated that FBP1 was closely associated with the development of OC, and The
Cancer Genome Atlas (TCGA) data analysis indicated that there was a positive correlation
between FBP1 and EZH2 in ovarian tissues. Moreover, we found that FBP1 knockdown sup-
pressed tumor formation in nude mice and cisplatin resistance of OC cells, but the role of
FBP1 in the cisplatin resistance of OC cells remained unclear. In addition, we verified phys-
ical binding between FBP1 and EZH2 in OC cells, and we demonstrated that FBP1 knock-
down enhanced cisplatin cytotoxicity in OC cells and down-regulated EZH2 expression and
trimethylation of H3K27. These results suggested that FBP1 increases cisplatin resistance
of OC cells by up-regulating EZH2/H3K27me3. Thus, FBP1 is a prospective novel target for
the development of OC treatment.

Introduction
Tumor development is a multistep and multistage complex biological process regulated by several signals,
such as the Wnt signaling pathway and the TGF-β signaling pathway, as well as factors, including tumor
suppressor, apoptosis, cell cycle, epigenetic alteration and drug resistance genes [1–7]. Ovarian cancer
(OC) is the second most common cause of cancer in Occident and the third most common cause in Asia
[8]. Worldwide, OC is the seventh common cancer and the second most common cause of cancer death
in women [9]. The conventional treatment for OC is platinum-dependent cytotoxic chemotherapy after
surgical operation [10], and treatment with surgery and chemotherapy is clinically effective for 50–80% of
patients [11,12]. The combination therapy used for the treatment of OC consists of a platinum compound,
either cisplatin or carboplatin, and a taxane, such as paclitaxel or docetaxel. In the last 30 years, the 5-year
survival rate of OC has remained the same, while the 5-year survival rate of all cancers has increased by
approximately 20% [13]. Even if OC patients gain benefits from platinum–paclitaxel combination therapy
in the early phases of treatment, most of these patients relapse after an average of 18 months of survival
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without progression [14]. Therefore, there is an urgent need to improveresponse rates and to identify new targets for
developing novel therapies for OC [15].

The occurrence and development of OC involve multiple factors, including tumor suppressor gene inactivation,
oncogene activation and epigenetic abnormality. As a key regulator of the c-Myc proto-oncogene, far upstream ele-
ment binding protein 1 (FBP1) plays an important role in cell proliferation [16,17]. In the past several years, several
studies have shown that FBP1 is a novel proto-oncogene that has important functions in tumorigenesis [17]. The
expression of FBP1 is low in most normal cells but is significantly increased in a variety of tumor cells, including
liver cancer cells [18,19], oligodendroglioma [20], non-small cell lung cancer [21], breast cancer [22] and clear cell
renal cancer [23]. In addition to activating c-Myc, FBP1 promotes cell proliferation by decreasing p21 [19] and pro-
motes cell migration by increasing stathmin [18,21]. FBP1 also activates the replication of Hepatitis C virus [24–26]
and Enterovirus 71 [27,28]. We previously reported that FBP1 is overexpressed in OC and inhibits the cell cycle and
metastasis of OC cells [29,30].

Epigenetic polycomb group (PcG) proteins are transcriptional regulators in the form of polycomb repressor com-
plexes (PRCs), and they play important roles in tumor development. Human PRCs are mainly divided into PRC1
and PRC2 [31]. PRC2 is conserved and is an important chromatin modifier. As the subunits of PRC2, EZH2, EED
and SUZ12 are all indispensable for the methyltransferase activity of PRC2. PRC2 is the only identified methyltrans-
ferase that can catalyze mono-, di- and tri- methylation of histone H3 at lysine 27 (H3K27) [32,33]. H3K27me2 is
abundant (accounting for approximately 50–70% of H3K27) and covers inter- and intragenic regions. H3K27me2
prevents inappropriate promoter or enhancer activities. H3K27me3 (accounting for 5–10% of H3K27) overlaps at
the sites that PRC2 binds [33]. Most studies on PRC2 have been focused on H3K27me3, which is considered as
a marker of PRC2-mediated gene repression [32,33]. By tri-methylating histone H3 (H3K27) at lysine 27 to form
trimethylation histone H3 (H3K27Me3), EZH2 plays a key role in epigenetic gene regulation [34,35]. After trimethy-
lation of H3K27, PRC2 regulates downstream genes by binding to specific gene sites, leading to tumorigenesis and
multidirectional differentiation of stem cells [36]. EZH2 activates or inhibits the expression of downstream genes in
a PRC2-dependent/-independent manner in different types of tumor cells [37–39], and it is involved in a variety of
biological processes, including cell proliferation and apoptosis [40]. It has been reported that EZH2 is abnormally ex-
pressed in various tumors [41–43], including OC [29,30]. Moreover, EZH2 increases the resistance of OC to cisplatin
[44,45]. In osteosarcoma cells, we demonstrated that FBP1 physically binds with EZH2 and that a positive mutual
regulatory mechanism exists between FBP1 and EZH2 [46,47].

In the present study, we comprehensively analyzed the expression of FBP1 in OC described in three datasets, includ-
ing Oncomine, Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), as well as its correlation
with clinical features. Using Gene Set Enrichment Analysis (GSEA), we predicted the involvement of FBP1 in epi-
genetic regulation, histone methylation and DNA methylation. Furthermore, we analyzed the relationship between
FBP1 and EZH2 in OC based on TCGA cohorts, and we confirmed a positive correlation between FBP1 and EZH2
in osteosarcoma cells. Because EZH2 is associated with OC resistance to cisplatin, we investigated the effects of FBP1
in cisplatin resistance of OC cells as well as the molecular mechanisms underlyingthis effect.

Materials and methods
Data collection and bioinformatics analysis
The clinical implication of FBP1 was determined based on the Oncomine dataset (https://www.oncomine.org). OC
microarray data were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) comprises GSE12470
[48] (Platform: GPL887), GSE26712 [49] (Platform: GPL96), GSE93793 [50] (Platform: GPL17077) and GSE23554
[51] (Platform: GPL96). FBP1 mRNA expression and clinical data of OC were obtained from The Cancer Genome
Atlas (TCGA) database (https://tcga-data.nci.nih.gov/tcga/) [52]. The relationship between FBP1 and EZH2 in ovar-
ian tissues was analyzed using data from TCGA. The two-gene correlation map was generated using the ggstatsplot
package in R.

GSEA
In the present study, we obtained a list of all genes related to FBP1expression from TCGA. All genes were input into
GSEA (https://www.gsea-msigdb.org/gsea/index.jsp), and the gene set permutations were performed 1000 times. The
threshold values of adjusted P-value < 0.05 and FDR q-value < 0.25 were considered to be statistically significant.
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Samples collection
The experimental protocols of the present study were implemented after approval by the Medical Ethics Committee of
Guangzhou Red Cross Hospital of Jinan University (Reference number: 2017-017-01). All methods were implemented
in accordance with the Declaration of Helsinki. In total, 65 ovarian clinical samples were collected from our hospital.
The normal clinical samples were received from patients who underwent adnexectomy for myoma or adenomyosis.
The average age of patients was 48.8 years old (ranging from 17 to 73 years old). All OC patients were pathologically
confirmed and did not receive preoperative chemotherapy, radiotherapy and/or immunotherapy. The samples were
assigned into three groups, namely normal (20 samples), benign (25 samples) and malignant (20 samples). All tissues
were fixed with 10% formalin and then embedded in paraffin.

Immunohistochemical (IHC) staining
Immunohistochemical (IHC) was performed as previously reported [30]. Formalin-fixed paraffin-embedded ovar-
ian tissue sections (5 μm) were deparaffinized (100% turpentine oil) and hydrated consecutively (100% ethanol,
95% ethanol, 90% ethanol, 85% ethanol, 75% ethanol and distilled water). The sections were incubated with cit-
rate buffer (pH 6.0) for antigen retrieval using a microwave. Endogenous peroxidase activity was quenched using
3% hydrogen peroxide (H2O2), and the sections were blocked with 10% bovine serum albumin (BSA) for 30 min
before incubation with FBP1, EZH2 and H3K27me3 antibodies overnight at 4◦C. The sections were then incubated
with horseradish peroxidase (HRP)-conjugated secondary antibody for 1 h at room temperature. After washing with
phosphate-buffered saline (PBS), the reaction was visualized by incubating the sections with 3,3’-diaminobenzidine
(DAB) followed by immersion in hematoxylin for 5 min. Finally, the sections were dehydrated with graded alcohol
and sealed. Negative control sections were incubated with blocking reagent alone in the absence of primary antibody.

Images were acquired using a 40× objective, and image processing and analyses were performed using Image-Pro
Plus 6.0 software (Media Cybernetics, Shanghai, China). The intensity of the immunohistochemical reaction was ex-
pressed as integral optical density (IOD) of DAB brown reaction products. The results of five separate measurements
for each sample are expressed as the mean +− standard deviation (SD) [30].

Antibodies and reagents
FBP1 (Cat. No. ab213525) antibody was obtained from Abcam (Cambridge, England, U.K.), and the EZH2 (Cat. No.
5246), H3K27me3 (Cat. No. 9733) and GAPDH (Cat. No. 5174) antibodies were purchased from Cell Signaling Tech-
nology (Danvers, MA, U.S.A.). Dulbecco’s modified Eagle medium (DMEM), FBS and L-glutamine were obtained
from Gibco (Gaithersburg, MD, U.S.A.). Penicillin and streptomycin sulfate were purchased from Hyclone (Logan,
Utah, U.S.A.). The CellTiter 96 AQueous One Solution Reagent (MTS) was purchased from Promega (Madison, WI,
U.S.A.). Cisplatin was purchased from QiLu Pharmaceutical (Shandong, China).

Cell culture and cell viability assay
As previously reported [29], human OC SKOV-3 cells were cultured in DMEM with 10% (v/v) FBS, 2 mM
L-glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin at 37◦C and 5% CO2 in a humidified incubator. The
medium was changed every 2–3 days, and cultures were passaged using 0.25% trypsin (Gibco, Gaithersburg, MD,
U.S.A.).

A pSi-LVRH1GP lentiviral vector with a puromycin resistance cassette (GeneCopoeia, Rockville, MD, U.S.A.) was
used to express a short hairpin (shRNA) to knockdown FBP1 expression [29]. The control vector expressed a scram-
bled sequence (5’-GCT TCG CGC CGT AGT CTT A-3’) and was named pSi-LV-FBP1-C. The FBP1 knockdown vec-
tor expressed aa 1671-1691 of FBP1(5’-GCA GGA ACG GAT CCA AAT TCA-3’) and was named pSi-LV-FBP1-KD.
FBP1knockdown (FBP1-KD) and FBP1 control (FBP1-C) SKOV3 cells were generated as previously reported [29].

SKOV-3 cells were seeded into 96-well plates at a density of 5 × 103 cells per well and incubated overnight. SKOV-3
cells were then treated with a series of cisplatin concentrations (0, 1, 5, 10, 15, 20, 30, 40 and 50 μM) for 48 h. For
FBP1-C and FBP1-KD, SKOV-3 cells were seeded into a 96-well plate at a density of 5 × 103 cells/well and incubated
overnight. FBP1-C and FBP1-KD SKOV-3 cells were treated with 10μM cisplatin for 48 h. Cell viability was measured
using MTS in accordance with the manufacturer’s protocol (Promega, Madison, WI, U.S.A.), and the absorbance at
awavelength of 490 nm was read in an automated plate reader (BioTek, Winooski, VT, U.S.A.).

Cell apoptosis and caspase-3/7 activity assay
The apoptosis of FBP1-C and FBP1-KD SKOV-3 cells was assessed with an apoptosis detection kit (BD Biosciences,
San Diego, CA, U.S.A.). Cells were incubated with V450 solution for 30 min in the dark followed by incubation with
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7-AAD solution for 5 min. The percentage of apoptotic cells was detected and analyzed by FACScan Flow Cytometer
(BD Biosciences) and BD CellQuest Pro software (BD Biosciences).

For the caspase-3/7 activity assay, FBP1-C and FBP1-KD SKOV-3 cells (5 × 103 cells) were seeded into a 96-well
plate and incubated overnight. FBP1-C and FBP1-KD SKOV-3 cells were cultured with 10 μM cisplatin for 48 h. The
activities of caspase-3/7 were evaluated by the Caspase-Glo 3/7 assay kit (Promega). Following the manufacturer’s
instructions, the Caspase-GloR 3/7 buffer and lyophilized Caspase-GloR 3/7 substrate were equilibrated to room
temperature before use. Caspase-GloR 3/7 substrate was dissolved thoroughly in Caspase-GloR 3/7 buffer to form
the Caspase-GloR 3/7 reagent. After equilibrating the 96-well plate containing treated cells to room temperature, 100
μl of Caspase-Glo 3/7 reagent was added to each well, and the plate was incubated at 22◦C with gentle shaking. After
2 h, the luminescence was measured using an luminometer (Promega).

Quantitative real-time polymerase chain reaction (qRT-PCR)
Total RNA was extracted from FBP1-KD and FBP1-C SKOV-3 cells using TRIzol Reagent (Invitrogen, Carls-
bad, CA, U.S.A.) according to the manufacturer’s instructions [46]. After the quality and quantity of the ex-
tracted total RNA were confirmed by a spectrophotometer (Beckman, Berkeley, CA, U.S.A.), cDNA was syn-
thesized using a reverse transcription kit (TaKaRa, Dalian, China) according to the manufacturer’s protocol.
The following primers were used for qRT-PCR: EZH2 forward, 5′-ACCAGCATTTGGAGGGAGC-3′; EZH2 re-
verse, 5′-TGGGAAGCCGTCCTCTTCT-3′; FBP1 forward, 5′-TGATTCCAGCTAGCAAGGCA-3′; FBP1 reverse,
5′-CGGCCCGTCTTGAATCATAA-3′; GAPDH forward, 5′-GATTCCACCCATGGCAAATT-3′; and GAPDH re-
verse, 5′-TCTCGCTCCTGGAAGATGGT-3′. All reactions were performed on an Applied Biosystems 7300 PCR sys-
tem (Applied Biosystems, Foster, CA, U.S.A.). A master mix was prepared on ice containing 1 μl of cDNA sample,
12.5 μl of SYBR Green Real-time PCR Master Mix (TaKaRa) and 1 μl of 10 μM primers. The final volume was then
adjusted to 20 μl with water. Reactions were performed under the following cycling conditions: initial denaturation
at 95◦C for 3 min; and 40 cycles of denaturation at 95◦C for 15 s, annealing at 60◦C for 30 s and extension at 72◦C
for 45 s. Relative quantification was performed using the Ct (2−��Ct) method. PCR amplification was performed in
triplicate to verify the results.

Western blot analysis
As previously reported [46], cells were lysed in modified RIPA buffer (150 mM NaCl, 1% NP-40, 50 mM Tris-Cl
[pH 8.0] and 0.1% SDS) supplemented with PMSF (1 mM). After homogenization, the lysate was incubated on ice
for 30 min and centrifuged at 12000 g for 15 min at 4◦C. Protein concentrations were checked by a Bio-Rad protein
assay (Bio-Rad, Hercules, CA, U.S.A.). Protein samples (50 μg) were resolved by 12% SDS-PAGE and transferred to
PVDF membranes (Millipore, Bedford, MA, U.S.A.). According to the expected molecular weights of the proteins,
the membranes were cut into narrow pieces. The membrane pieces were blocked with 5% nonfat milk for 1 h and then
incubated with primary antibodies overnight at 4◦C. After washing, membranes were incubated with HRP-labeled
secondary antibodies for 1 h at room temperature and detected with ECL-Plus detection systems (Pierce, Rockford,
IL, U.S.A.). The relative abundance was quantified by densitometry using Quantity One 4.6.7 software (Bio-Rad,
Hercules, CA, U.S.A.).

Co-immunoprecipitation (Co-IP) experiments
SKOV-3 cells were harvested and lysed in lysis buffer (150 mM NaCl, 50 mM Tris-HCl, 1 mM EDTA [pH 7.5] and
1% NP-40) containing protease inhibitor (Roche, CA, U.S.A.). Whole cell lysates were incubated with an anti-FBP1
antibody, anti-EZH2 antibody or isotype IgG (Abcam, Cambridge, U.K.) at 4◦C for 2 h followed by incubation with
prepared Protein A+G agarose beads (Santa Cruz, CA, U.S.A.) at 4◦C overnight with rotation. After washing with
lysis buffer, the precipitates were eluted in SDS-PAGE loading buffer by boiling for 5 min. The supernatants were
then resolved by SDS-PAGE and transferred to PVDF membranes. Immunoblotting using appropriate antibodies
was conducted using a standard Western blot protocol [47].

Xenograft tumor model
For tumorigenicity examination, 5-week-old female nude athymic BALB/c mice were obtained from Guangdong An-
imal Experiment Center (Guangdong, China). The care and use of animals in this experiment was in accordance with
the Regulations on the Administration of Laboratory Animals of Guangdong Province. The mice were acclimated to
the environment for one week at the Institute of Laboratory Animal Science of Jinan University before tumor forma-
tion experiments. To evaluate the role of FBP1 in tumor formation, FBP1-KD or FBP1-C SKOV-3 cells (2 × 106) were
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injected subcutaneously into the dorsal flanks of mice (four mice for FBP1-C cells and three mice for FBP1-KD cells).
After 4 weeks of injection, mice were anesthetized and euthanized using 40 mg/kg ketamine (Sigma-Aldrich, U.S.A.)
and 5 mg/kg xylazine (Sigma-Aldrich, U.S.A.), respectively. The tumors were collected, and the tumor weights were
measured. Each tumor was divided into three portions for qRT-PCR, Western blot and IHC analyses. Ethics approval
for the animal experiment was obtained from the Medical Ethics Committee of Guangzhou Red Cross Hospital of
Jinan University (Reference number: 2017-017-01).

Statistical analysis
R software (version. 3.6.2; http://www.Rproject.org) was used for the bioinformatics analyses. The difference between
FBP1 expression in normal and tumor tissues was analyzed by the Wilcoxon rank-sum test. The association be-
tween clinical characteristics and FBP1 expression was evaluatedby logistic regression, Kruskal–Wallis test, Wilcoxon
signed-rank test, Fisher exact test or Chi-square test. In all tests, P<0.05 was considered statistically significant.

For experiment data analysis, all data were obtained from at least three independent experiments. Data were an-
alyzed using an independent t-test and one-way analysis of variance (ANOVA), and data are presented as the mean
+− SD. Spearman’s correlation analysis was used to evaluate the correlation between quantitative variables without a
normal distribution. P<0.05 was considered statistically significant.

Results
Association between FPB1 expression and clinical characteristics
We analyzed FBP1 expression in 379 OC patients from TCGA database. By Fisher’s exact test or Chi-square test, we
found that there was a significant correlation between FBP1 expression and FIGO stage (P=0.006), but there was
no significant correlation with other clinical characteristics, including lymphatic invasion, primary therapy outcome,
age, histological grade, anatomic neoplasm subdivision, venous invasion, tumor residual and tumor status (Table 1).
The low or high FBP1 expression is just distinguished according to TPM in Table 1. The median expression of FBP1
from TCGA database is believed as TPM and the TPM is 49.16. It is believed as high expression if TPM is more than
49.16 and low expression if TPM is less than 49.16.

We also used Wilcoxon signed-rank test and Kruskal–Wallis test to analyze the association between FBP1 expres-
sion and clinical characteristics. Regarding the FIGO stage, lymphatic invasion showed a significant correlation with
FBP1 expression (Figure 1A and B). FBP1 expression was significantly lower in FIGO stage III (P<0.01) and IV
(P<0.001) than in FIGO stages I and II, and FBP1 expression was significantly lower in lymphatic invasion OC than
in lymphatic non-invasion OC. There were no significant differences in FBP1 expression with regard to other clinical
characteristics (Figure 1C–I).

Furthermore, we used univariate logistic regression to analyze the relationship between FBP1 expression and clini-
copathological factors of OC. In addition to FIGO stage (OR = 0.246, 95% CI: 0.080–0.627, P=0.006), tumor residual
(OR = 0.564, 95% CI: 0.325–0.967, P=0.039) also showed a significant correlation with FBP1 expression (Table 2).
There was no significant correlation of FBP1 expression with the other clinical characteristics (Table 2).

These statistical analyses demonstrated that FBP1 is associated with FIGO stage.

FBP1 expression in ovarian tissues
Because FBP1 is the promoter of the c-Myc oncogene, we investigated the Oncomine database (https://www.
oncomine.org), which demonstrated that FBP1 expression increased with the development of carcinoma. The log2
median-centered intensity of adenocarcinoma was 2.184-fold greater than that of normal ovarian tissues (P = 6.67E-7,
Figure 2A). In the GSE12470 and GSE26712 datasets, FBP1 was overexpressed in OC (Figure 2B,C). These data
demonstrated that the expression of FBP1 is higher in ovarian tumor tissue than in normal ovarian tissue.

FBP1 promotes OC cell proliferation and cancer formation in vivo
To investigate the function of FBP1 in tumorigenesis, we performed a nude mouse xenograft experiment. SKOV-3
FBP1-KD cells or FBP1-C cells were subcutaneously inoculated into the dorsal flank of nude mice. After injection,
tumors were present in all mice in the fourth week. After the tumors were removed, the tumor weights were measured.
FBP1-KD tumors were smaller than FBP1-C tumors (Figure 2D,E). The expression of FBP1 was significantly lower
in FBP1-KD tumors than in FBP1-C tumors according to IHC staining (Figure 2F), and the DAB intensities (mean
+− SD) were lower in FBP1-KD tumors than in FBP1-C tumors (Figure 2G). These data demonstrated that FBP1
promotes OC cell proliferation and tumor formation in vivo.
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Table 1 Association between FBP1 expression and clinicopathologic features in ovarian cancer samples from the TCGA
database

Characteristic FBP1 low expression FBP1 high expression P

n (%) 189 (50%) 190 (50%)

FIGO stage 0.006

Stage I 0 (0%) 1 (0.3%)

Stage II 5 (1.3%) 18 (4.7%)

Stage III 147 (38.9%) 148 (38.9%)

Stage IV 35 (9%) 22 (5.8%)

Deficiency 2 (0.5%) 1 (0.3%)

Lymphatic invasion 0.100

No 18 (4.7%) 30 (7.9%)

Yes 54 (14.3%) 47 (12.4%)

Deficiency 117 (31.0%) 113 (29.7%)

Primary therapy outcome 0.945

PD 15 (4.0%) 12 (3.2%)

SD 11 (2.9%) 11 (2.9%)

PR 21 (5.6%) 22 (5.8%)

CR 107 (28.3%) 109 (28.7%)

Deficiency 35 (9.2%) 36 (9.4%)

Age 0.646

≤60 101 (26.7%) 107 (28.2%)

>60 88 (23.3%) 83 (21.8%)

Histologic grade 0.142

G1 1 (0.3%) 0 (0%)

G2 27 (7.1%) 18 (4.7%)

G3 155 (41.0%) 167 (43.9%)

G4 0 (0%) 1 (0.3%)

Deficiency 6 (1.6%) 4 (1.1%)

Anatomic neoplasm subdivision 0.750

Unilateral 53 (14.0%) 49 (12.9%)

Bilateral 126 (33.3%) 129 (33.9%)

Deficiency 10 (2.7%) 12 (3.2%)

Venous invasion 0.321

No 15 (4%) 26 (6.8%)

Yes 31 (8.2%) 33 (8.7%)

Deficiency 143 (37.8%) 131 (34.5%)

Tumor residual 0.085

NRD 28 (7.4%) 39 (10.3%)

RD 146 (38.6%) 122 (32.1%)

Deficiency 15 (4%) 29 (7.6%)

Tumor status 0.113

Tumor free 29 (7.7%) 43 (11.3%)

With tumor 137(36.2%) 128 (33.7%)

Deficiency 23 (6.1%) 19 (5%)

Age, meidan (IQR) 60 (51, 70) 58 (51, 67) 0.365

Abbreviations: CR, complete remission; IQR, interquartile range; NRD, no residual disease; PD, progressive disease; PR, partial remission; RD, residual
disease; SD, stable disease.

FBP1 enhances cisplatin resistance of OC cells
The platinum–paclitaxel regimen is the main treatment used for OC. Cisplatin and carboplatin are two agents used
inthis combination regimen. Analysis of the GSE93793 cohort demonstrated that there was no difference in FBP1
expression in the OC patients who were treated with or without cisplatin (Figure 3A). Furthermore, we analyzed
the expression of FBP1 in cisplatin complete response (CR) patients and incomplete response (IR) patients in the
GSE24554 cohort, and we found that there was no difference in FBP1 expression levels between these two groups
(Figure 3B). Herein, we evaluated cisplatin cytotoxicity in OC cells by MTS assay. Cells were treated with 1, 5, 10,
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Figure 1. Association between FBP1 expression and clinicopathological characteristics in OC from TCGA database

(A) FBP1 expression in FIGO stage (stage III vs. stages I and II, P<0.01; stage IV vs. stages I and II; P<0.001). (B) FBP1 expression

in lymphatic invasion (yes vs. no; P<0.05). (C) FBP1 expression in primary therapy outcome (CR vs. PD, SD and PR; P>0.05). (D)

FBP1 expression in age (≤60 vs. >60; P>0.05). (E) FBP1 expression in histologic grade (G3 and G4 vs. G1 and G2; P>0.05). (F)

FBP1 expression in anatomic neoplasm subdivision (bilateral vs. unilateral; P>0.05). (G) FBP1 expression in venous invasion (yes

vs. no; P>0.05). (H) FBP1 expression in tumor residual disease (RD vs. NRD; P>0.05). (I) FBP1 expression in cancer status (with

tumor vs. tumor free; P>0.05).

15, 20, 30, 40 and 50 μM cisplatin, and the viability of SKOV-3 cells was significantly inhibited at 5, 10, 15, 20, 30,
40 and 50 μM cisplatin in a dose-dependent manner (Figure 3C). To determine the role of FBP1 in the cisplatin
resistance of OC cells, FBP1-C and FBP1-KD SKOV-3 cells were exposed to 10 μM cisplatin. The MTS assay revealed
that FBP1 knockdown exacerbated the decrease of SKOV-3 cell viability induced by cisplatin (Figure 3D). Cisplatin
treatment elevated caspase-3/7 activity in SKOV-3 cells, and the knockdown of FBP1 enhanced this effect (Figure
3E). As indicated by flow cytometryanalyses, cisplatin treatment resulted in a higher proportion of apoptotic cells,
whileFBP1 knockdown significantly enhanced the proportion of apoptotic cells (Figure 3F,G). Taken together, these

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 2. FBP1 promotes OC cell proliferation and tumor formation

(A) FBP1 expression was closely associated with OC development based on Oncomine datasets. (B) FBP1 expression in normal

and OC tissues in the GSE12470 dataset. (C) FBP1 expression in normal and OC tissues in the GSE26712 dataset. (D) Tumor

formation in nude mice following the injection of FBP1-C or FBP1-KD SKOV-3 cells. (E) Tumor weight after the injection of FBP1-C

or FBP1-KD SKOV-3 cells. (F,G) FBP1 expression in xenograft tumor tissues; magnification = 400; bar, 50 μm; *P<0.05, ***P<0.001.

8 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. FBP1 enhances cisplatin resistance of OC cells

(A) FBP1 expression in OC treated without or with cisplatin from the GSE93793 dataset. (B) FBP1 expression in cisplatin complete

response (CR) or incomplete response (IC) OC from the GSE23554 dataset. (C) Cisplatin inhibited the viability of ovarian SKOV-3

cells. After treatment with indicated concentrations of cisplatin for 48 h, SKOV-3 cell viabilities were evaluated by the MTS method.

(D) FBP1 knockdown enhanced cisplatin sensitivity of ovarian SKOV-3 cells. After treatment with 10 μM cisplatin for 48 h, FBP1-C

and FBP1-KD SKOV-3 cell viabilities were evaluated by the MTS method. (E) FBP1 knockdown accelerated caspase-3/7 activi-

ties induced by cisplatin treatment. (F,G) FBP1 knockdown accelerated apoptosis (F) and apoptosis rate (G) as analyzed by flow

cytometry analysis. Apoptosis rate was defined as the percentage of apoptotic cells; *P<0.05.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 2 The relationship between the clinicopathological factors of ovarian cancer and FBP1 expression by using logistic
analysis

Characteristics Total (n) Odds ratio (OR) P

FIGO stage (stage I and II vs. stage III and
IV)

376 0.246 (0.080–0.627) 0.006

Primary therapy outcome (PD and SD
and PR vs. CR)

308 1.437 (0.880–2.360) 0.149

Age (≤60 vs. >60) 379 0.853 (0.569–1.279) 0.442

Histologic grade (G1 and 2 vs. G3 and 4) 369 1.243 (0.670–2.329) 0.491

Anatomic neoplasm subdivision (unilateral
vs. bilateral)

357 1.065 (0.672–1.687) 0.789

Venous invasion (no vs. yes) 105 0.577 (0.255–1.277) 0.179

Lymphatic invasion (no vs. yes) 149 0.517 (0.251–1.040) 0.068

Tumor residual (NRD vs. RD) 335 0.564 (0.325–0.967) 0.039

Tumor status (tumor free vs. with tumor) 337 0.602 (0.352–1.018) 0.060

Abbreviations: CR, complete remission; NRD, no residual disease; PD, progressive disease; PR, partial remission; RD, residual disease; SD, stable
disease.

Table 3 Results of gene set enrichment analysis (GSEA)

Description
Set
size

Enrichment
score NES Value P adjust

FDR q
value Rank Leading edge

REACTOME EPIGENETIC REGULATION OF GENE EXPRESSION
146 -0.44602192 -1.89149556 0.00123305 0.03822158 0.02879123 3812 tags = 21%, list

= 10%, signal =
19%

REACTOME PRC2 METHYLATES HISTONES AND DNA
71 -0.62990528 -2.37378572 0.0013369 0.03822158 0.02879123 3654 tags = 39%, list

= 10%, signal =
36%

Abbreviations: FDR, false discovery rate; NES, normalized enrichment score. Gene sets with P adjust < 0.05 and FDR q value < 0.05 are
considered as significant.

results indicated that FBP1knockdown decreases the cisplatin resistance of OC cells, which disagreed with the GEO
database analysis results.

Knockdown of FBP1 decreases EZH2 and H3K27me3 expression
As a transcriptional regulator, PRC2 plays an important role in tumor development. We used GSEA to identify
FBP1-related signaling pathways in OC. The results showed that the enrichment of FBP1 in OC was associated with
epigenetic regulation of gene expression, histone methylation and DNA methylation promoted by PRC2 (Figure 4A,B
and Table 3). Analysis of the FBP1 and EZH2 mRNA sequences from TCGA dataset confirmed a positive relation-
ship between FBP1 and EZH2 in ovarian tissues (r = 0.42, Figure 4C). Similarly, the heatmap of co-expressed genes
showed a consistent expression of EZH2 in response to FBP1 (Figure 4D). Thus, we hypothesized that FBP1 enhances
cisplatin resistance of OC cells through promoting EZH2 and H3K27me3 expression. Co-IP experiments using FBP1
or EZH2 antibodies confirmed EZH2 or FBP1 in the corresponding reaction by Western blot, respectively. Co-IP
experiments confirmed the interaction between FBP1 and EZH2 in OC SKOV-3 cells (Figure 4E,F). FBP1 knock-
down significantly decreased EZH2 expression both at the protein and mRNA levels (Figure 4G–I). As one ofthe
downstream targets of EZH2, the expression of H3K27me3 protein was also significantly down-regulated by FBP1
knockdown (Figure 4G,I).

To identify whether the expression of EZH2 and H3K27me3 is related with OC development, we measured the
protein expression of EZH2 and H3K27me3 in ovarian tissues by IHC. As shown in Figure 4J, EZH2 was mainly
localized in the nucleus of ovarian cells and increased as the OC developed. The expression of EZH2 in malignant
cells was significantly higher than that in benign or normal tissues. Similarly, H3K27me3 expression in malignant cells
was significantly higher than thatin benign or normal tissues (Figure 4J). According to IHC, the intensities of EZH2
and H3k27me3 were weaker in the xenograft tumors of the FBP1-KD group compared to the FBP1-C group (Figure
4K). Compared with the FBP1-C group, the expression of EZH2 was lower in the xenograft tumors of the FBP1-KD
group at both mRNA and protein levels according to qRT-PCR and Western blot analyses, respectively (Figure 4L–N).

10 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. FBP1 promotes the EZH2/ H3K27me3 signaling pathway

(A) FBP1 was differentially enriched in epigenetic regulation of gene expression according to GSEA. (B) FBP1 was differentially

enriched in PRC2 methylation of histone and DNA according to GSEA. (C) The relationship between FBP1 and EZH2 was determined

based on TCGA dataset. (D) Heatmap of co-expression of FBP1 and EZH2 based on TCGA dataset. (E,F) The physical interaction

between FBP1 and EZH2 in OC SKOV-3 cellswasdetected by Co-IP assay using FBP1 or EZH2 antibody, respectively. (G) Protein

expression of FBP1, EZH2 and H3K27me3 in FBP1-C and FBP1-KD OC SKOV-3 cells as detected by Western blot analysis. (H)

mRNA expression levels of FBP1 and EZH2 in ovarian cells as detected by qRT-PCR. (I) Relative protein expression levels of FBP1,

EZH2 and H3K27me3 in FBP1-C and FBP1-KD OC SKOV-3 cells. (J) Expression of EZH2 and H3K27me3 in normal, benign and

malignant ovarian tissues as detected by IHC. (K) Expression of EZH2 and H3K27me3 in xenograft tumor tissues as detected by

IHC. (L) mRNA expression of FBP1 and EZH2 in xenograft tumor tissues as detected by qRT-PCR. (M) Protein expression of FBP1,

EZH2 and H3K27me3 in xenograft tumor tissues as detected by Western blot analysis. (N) Relative protein expression of FBP1,

EZH2 and H3K27me3 in xenograft tumor tissues. Note: The blots were cropped from the same gel; magnification: ×400; *P<0.05.

***P<0.001; bar: 50 μm.
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Figure 5. Schematic illustration of FBP1 promoting OC development

Similarly, a significantly lower expression of H3K27me3 was identified in the FBP1-KD group compared with the
FBP1-C group (Figure 4M,N). Based on these data, the promoting effect of FBP1 on ovarian tumor formation and
cisplatin resistance may be attributed to the up-regulation of the EZH2/H3k27me3 signaling pathway.

Discussion
FBP1 is a DNA- and RNA-binding protein that acts as apotent pro-proliferative and anti-apoptotic factor, and it is
involved in diverse cellular processes [53]. Importantly, emerging studies have revealed that FBP1 plays oncogenic
roles in multiple cancers [18,23,54,55]. In the present study, the Oncomine and TCGA results showed that FBP1 was
highly expressed in OC tissues compared with normal tissues, which was consistent with our previous results in OC
[29]. Additionally, FBP1 was highly expressed in OC in the GSE12470 and GSE26712 datasets. In addition, FBP1
knockout reduced tumor formation in transplanted nude mice in vivo, which indicated that FBP1 promoted OC
development. Analysis of the association between FBP1 expression and the clinical characteristics of OC from TCGA
database demonstrated that FBP1 was down-regulated in OC with a higher FIGO stage and lymphatic invasion OC.
These results indicated that FBP1 may have an important effect on the pathogenesis and tumor formation of OC.

Chemotherapy resistance is a major obstacle to effective cancer treatment [56]. Despite improvements in
chemotherapy regimens, most OC patients will eventually die of this disease due to increasing chemoresistance when
the disease progresses [57]. In general, chemoresistance is classifiedinto innate and obtained resistance, eventhough it
is difficult to make a distinction between these two mechanisms. Innate resistance can be prevented with mechanisms,
such as lower usage of drugs [58], drug degradation [59], poor vascularization [60] and ECM-related environment
resistance [61]. Obtained resistance comes from the adaptation of tumor cells to the environment through Darwinian
selection, which can include the modulation of gene expression to increase cell viability and cell tolerability of genetic
damage. Many molecules and signal pathways are involved in OC chemotherapy resistance. Cancerous inhibitor of
protein phosphatase 2A (CIP2A) has been identified as a human oncoprotein that inhibits c-Myc protein degradation.
Knockdown of CIP2A increases cisplatin sensitization of OC cells [62], and knockout of high-mobility group box 3
(HMGB3) protein attenuates cisplatin resistance in human OC cells [63]. In the present study, we analyzed FBP1
expression in the GSE93793 and GSE24554 cohort datasets, and we found that there was no difference in FBP1 ex-
pression between cisplatin-treated OC patients and non-cisplatin-treated OC patients as well as between cisplatin-CR
and cisplatin-IR patients. However, these results were not consistent with the in vitro cell experiments. In the present
study, knockdown of FBP1 in vitro not only attenuated cell proliferation activity but also increased ovarian cell apop-
tosis induced by cisplatin treatment, indicating that knockdown of FBP1 increases the sensitivity of ovarian cells to
cisplatin. However, additional research is required to verify these results.

To further investigate the role of FBP1 in OC, we analyzed the GSEA dataset and found that high FBP1 expression
was enriched in critical biological functions related to tumorigeneses, such as epigenetic regulation, histone methyla-
tion and DNA methylation promoted by PRC2. EZH2, a subunit of the PRC2 epigenetic regulator, is involved in tumor
progression [32]. In the present study, we demonstrated a positive correlation between FBP1 and EZH2 in ovarian
tissues by analyzing TCGA dataset. In addition, we confirmed the internal physical interaction between FBP1 and
EZH2 in OC cells. High expression of EZH2 is found in a variety of tumors [64,65], including OC [66]. EZH2 not
only promotes the proliferation and metastasis of OC but also plays an important role in drug resistance [44,45,67].
In the present study, the mRNA and protein expression levels were significantly reduced with FBP1 knockdown.
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H3K27me3, the downstream target of EZH2, was also decreased in FBP1 knockdown OC cells. Furthermore, anal-
ysis of clinical ovarian and transplanted animal tumors clearly indicated a significantly positive correlation of FBP1,
EZH2 and H3K27me3 expression with OC malignancy. The expression levels of EZH2 and H3K27me3 were signifi-
cantly higher in FBP1 control tumors than in FBP1 knockdown tumors. These data demonstrated that knockdown of
FBP1 decreases the expression of EZH2 and H3K27me3. Thus, we postulated that the knockdown of FBP1 enhances
cisplatin sensitivity of OC via down-regulation of the EZH2/H3K27me3 pathway (Figure 5).

In summary, the present study showed that FBP1 expression was closely associated with clinical characteris-
tics of OC. Knockdown of FBP1 attenuated cell proliferation and enhanced cisplatin cytotoxicity potentially by
down-regulating EZH2/H3K27me3. These results provide evidence that FBP1 depletion may be a promising inter-
vention for OC treatment.
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