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Abstract

Objective: The standard twelve-lead electrocardiogram (ECG) is a widely used tool for 

monitoring cardiac function and diagnosing cardiac disorders. The development of smaller, 

lower-cost, and easier-to-use ECG devices may improve access to cardiac care in lower-resource 

environments, but the diagnostic potential of these devices is unclear. This work explores these 

issues through a public competition: the 2021 PhysioNet Challenge. In addition, we explore the 

potential for performance boosting through a meta-learning approach.

Approach: We sourced 131,149 twelve-lead ECG recordings from ten international sources. We 

posted 88,253 annotated recordings as public training data and withheld the remaining recordings 

as hidden validation and test data. We challenged teams to submit containerized, open-source 

algorithms for diagnosing cardiac abnormalities using various ECG lead combinations, including 

the code for training their algorithms. We designed and scored algorithms using an evaluation 

metric that captures the risks of different misdiagnoses for 30 conditions. After the Challenge, we 

implemented a semi-consensus voting model on all working algorithms.

Main results: A total of 68 teams submitted 1,056 algorithms during the Challenge, providing 

a variety of automated approaches from both academia and industry. The performance differences 

across the different lead combinations were smaller than the performance differences across the 

different test databases, showing that generalizability posed a larger challenge to the algorithms 

than the choice of ECG leads. A voting model improved performance by 3.5%.

Significance: The use of different ECG lead combinations allowed us to assess the diagnostic 

potential of reduced-lead ECG recordings, and the use of different data sources allowed us to 
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assess the generalizability of algorithms to diverse institutions and populations. The submission of 

working, open-source code for both training and testing and the use of a novel evaluation metric 

improved the reproducibility, generalizability, and applicability of the research conducted during 

the Challenge.

1. Introduction

Cardiovascular diseases are the leading cause of death worldwide [1]. Early treatment of 

cardiovascular disease can prevent serious cardiac events and improve outcomes, and the 

electrocardiogram (ECG) is a critical screening tool for a range of cardiac abnormalities, 

such as atrial fibrillation and ventricular hypertrophy [2], [3]. Moreover, recent advances 

in ECG technologies have allowed the development of smaller, lower-cost, and easier-to-

use devices with the potential to improve access to cardiac screening and diagnoses in 

low-resource environments. However, due to the large variety of potential diagnoses, manual 

interpretation of ECGs is a time-consuming task that requires highly skilled and well trained 

personnel [4], [5].

Automatic detection and classification of cardiac abnormalities from ECGs can assist 

clinicians and ECG technicians, especially in the context of the ever-increasing number 

of recorded ECGs. Recent progress in machine learning techniques combined with standard 

clinical or handcrafted features has led to the development of algorithms that may identify 

cardiac abnormalities [6]-[10]. However, most published methods have only been developed 

in or tested on a single populations and/or relatively small and relatively homogeneous 

populations. Moreover, few publications provide software that allows for redeveloping and 

evaluating these models, so the work is often not scientifically repeatable or extendable. 

Additionally, most algorithms focus on identifying a limited number of cardiac issues that 

do not represent the complexity and difficulty of pathologies present in the ECG, and the 

reported performance for these cardiac issues does not reflect the cost of misclassification 

in a multi-class classification problem, where most outcomes have very different burdens 

on the individual. Finally, most publications that focus on automated approaches do not 

consider different lead combinations. The wide diagnostic potential of more accessible 

devices that use subsets of the standard twelve leads is largely unknown [11]-[13].

The 2021 George B. Moody PhysioNet Challenge (formerly the PhysioNet/Computing in 

Cardiology Challenge) provided an opportunity to address these issues by inviting teams 

to develop algorithms for diagnosing 30 cardiac abnormalities from various twelve-lead, 

six-lead, four-lead, three-lead, and two-lead ECG recordings [14]-[16]. For more than two 

decades, through the PhysioNet Challenges, we have invited participants from academia and 

industry to address clinically important questions that have not been adequately addressed. 

Similarly to previous years, the Challenge ran over the course of nine months to allow for 

the development and refinement of the Challenge objective, data, and evaluation metric. 

Previous Challenges have addressed arrhythmia detection from ECGs: the 2017 Challenge 

considered the identification of atrial fibrillation in single-lead ECG recordings, and the 

2020 Challenge considered the identification of 27 cardiac abnormalities from twelve-

lead ECG recordings [14], [17]. However, this was the first Challenge that explored the 

diagnostic potential of reduced-lead ECGs for a variety of diagnoses [15], [16]. In particular, 
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we have built on the data and scoring metric from the 2020 Challenge, doubled the number 

of ECG recordings, introduced new data sources and diagnoses, and, importantly, considered 

subsets of the standard twelve-lead ECG.

For the 2021 Challenge, we sourced 131,149 twelve-lead ECG recordings from ten 

databases from around the world; we shared two-thirds of the recordings as public training 

data and retained one-third of the recordings as hidden validation and test data, including 

recordings from two completely hidden databases. We designed an evaluation metric to 

capture the risks of different outcomes and misdiagnoses for 30 diagnoses, and we used it 

to evaluate the submitted algorithms on twelve-lead, six-lead, four-lead, three-lead, and two-

lead versions of the ECG recordings. We required the teams to submit containerized, open-

source code for training and testing their algorithms to ensure full scientific reproducibility. 

This article expands upon [15], which first described the 2021 Challenge, to provide a fuller 

description of the Challenge motivation, data, scoring metric, and algorithms, including 

a naïve voting model that leverages the strengths of the algorithms to achieve higher 

performance than the individual algorithms as well as follow-up algorithms to the Challenge.

2. Methods

2.1. Data

For the 2021 Challenge, we sourced data from several countries across three continents. 

Each database contained electrocardiogram (ECG) recordings with diagnoses and basic 

demographic information. We use twelve-lead ECG recordings for the public training data 

and twelve-lead, six-lead, four-lead, three-lead, and two-lead versions of ECG recordings for 

the hidden validation and test data.

2.1.1. Challenge Data Sources—We created ten databases for the 2021 Challenge 

[15]. Tables 1 and 2 describe the sources and splits (training, validation, and test) of these 

data. We publicly released the training data and the clinical ECG diagnoses for the training 

data, but we kept the validation and test data hidden to allow us to assess algorithmic 

generalizability and other common machine learning issues. For sources represented in 

multiple splits, the training, validation, and test data were matched as closely as possible 

to preserve the distributions of age, sex, and diagnoses. When there are multiple recordings 

from the same individual, these recordings belong to only one of the training, validation, or 

test sets.

i. Chapman-Shaoxing. The Chapman-Shaoxing database is derived from the 

database in [18]. We posted this database as training data.

ii. CPSC. The CPSC database is derived from the China Physiological Signal 

Challenge 2018 (CPSC 2018), held during the 7th International Conference on 

Biomedical Engineering and Biotechnology in Nanjing, China [19]. We posted 

the training data from CPSC 2018 as training data, and we split the test data from 

CPSC 2018 into validation and test data.

iii. CPSC-Extra. The CPSC-Extra database contains unused data from CPSC 2018 

[19]. We posted this database as training data.
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iv. G12EC. The G12EC Database is a new database representing a large population 

from the Southeastern United States. We split this database into training, 

validation, and test data.

v. INCART. The INCART database is derived from the St. Petersburg Institute 

of Cardiological Technics (INCART) twelve-lead Arrythmias Database [20]. We 

posted this database as training data.

vi. Ningbo. The Ningbo database is derived from the database in [21]. We posted 

this database as training data.

vii. PTB. The PTB database is derived from the Physikalisch-Technische 

Bundesanstalt (PTB) Database [22]. We posted this database as training data.

viii. PTB-XL. The PTB-XL database is derived from the Physikalisch-Technische 

Bundesanstalt XL (PTB-XL) Database [23]. We posted this database as training 

data.

ix. UMich. The UMich database is a database from the University of Michigan‡. 

We used this database as test data.

x. Undisclosed. The Undisclosed database is a new database from an undisclosed 

American institution that is geographically distinct from the sources for the other 

databases. This database has never been publicly released, and it may never be 

publicly released. We used this database as test data.

2.1.2. Challenge Data Variables—Each ECG recording was acquired in a hospital or 

clinical setting and included signal data, basic demographics data, and clinical diagnoses. 

The specifics of the data acquisition processes depended on the source of the databases 

and could vary from institution to institution. We have provided a summary of the clinical 

variables, and we encourage the readers to check the original publications for the details of 

each database and to cite them directly when used in their research.

We shared the full twelve-lead ECG signal data with the public training data, and we used 

twelve-lead, six-lead, four-lead, three-lead, and two-lead versions of the signal data for the 

hidden validation and test data. Table 3 summarizes the lead combinations included in the 

different versions of the hidden data. The choices of lead combination were made to test 

the notion of over-completeness. That is, the twelve-lead ECG can be approximated by a 

three-dimensional (time-varying) dipole [24], to produce a wide variety of morphologies, 

rhythms and pathologies (such as premature ventricular contractions, ST-elevation and long-

QT) [25]-[29]. The dipole model has also been used to effectively generate, filter, measure, 

and classify the ECG [26], [27], [29]-[32].

‡De-identified data collected under U-M HUM00092309: Approximately 20,000 ten-second-long twelve-lead ECGs obtained from 
the University of Michigan Section of Electrophysiology. The sample was randomly selected from the patients who had a routine ECG 
test from 1990 to 2013 to approximately match the demographics of the training databases. The dataset was de-identified and contains 
only basic demographics information such as age (any age over the age of 90 is denoted as 90+) and sex, the ECG waveforms and the 
diagnosis statements associated with the record.
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The twelve-lead ECG represents a spatial over-sampling of this dipole model, and so, one 

might conclude that only three orthogonal leads are required to capture all surface cardiac 

activity. However, the heart is not a point source dipole, and motion, physical distortion, 

and near-field electromagnetic effects come into play. It is well-known that precordial leads 

‘image’ the ventricles far better than the limb leads, for example. For this Challenge, we 

asked ‘will two do?’ In other words, we wanted to know if two leads (I and II) would 

allow researchers to do as well as twelve leads, at least for the diagnoses being evaluated 

in this Challenge. However, we added three extra categories, all of which are approximately 

equivalent to the same two leads, in order to test whether any subtle extra information was 

buried in these signals, or if the addition of more leads, which would necessitate more 

parameters in a machine learning model, would lead to overfitting during training. We note 

that the addition of lead III should add no extra information, since it is part of ‘Einthoven’s 

Triangle’ (lead I + lead III = lead II). In addition, the augmented leads (aVR, aVL and 

AVF), which are unipolar (in contrast to the bipolar limb leads) while providing different 

‘viewpoints’, theoretically do not add any new information since they are also formed by 

recording the potential difference at the right arm, left arm and left leg. There are two 

reasons for including these apparently redundant leads. First, they provide clinicians with 

a deeper intuition, which may be a reflection of the varying amplitude resolution on each 

lead when the vectors are represented in a low-resolution format (e.g., paper, or on-screen). 

Second, the vectors are referenced to different grounds. There is an assumption that there 

is a stable voltage reference (with negligible variation during the cardiac cycle), known 

as the ‘Wilson Central Terminal’ (WCT), which is obtained by averaging the three active 

limb electrode voltages measured with respect to the return ground electrode. In the case of 

the augmented leads, the reference is provided by averaging limb electrodes (‘Goldberger’s 

Central Terminal’); see Figure 1. However, concerns have been raised by researchers about 

the ambiguous value and behavior of this reference voltage, which may lead to misdiagnoses 

or biases in certain circumstances [33]-[37]. Notably, Bacharova et al. [33] found significant 

diagnostic differences based on the reference in the case of ischemia. See Jin et al. [38] for 

further discussion on this point.

The precordial leads provide information in the transverse plane, in addition to the 

frontal plane information provided by the limb leads; see Figure 2. We chose to swap 

the augmented leads for lead V2 to provide information on the ventricular septum and 

anterior wall. For the two-lead case, we removed the precordial lead to stick with the most 

common configurations seen in ambulatory ECG monitoring. In summary, the full list of 

lead combinations are given in Table 3, where 12 leads provides the maximum information 

available in the recordings (and is the same as the 2020 Challenge [14]). The four-lead 

and four-lead combinations should be equivalent and provide the next largest amount of 

information (limb and precordial). Finally, the six-lead and two-lead combinations should 

be equivalent to each other and provide equivalent (and the least) information. Figure S1 

illustrates the equivalence of the different lead combinations considered in the Challenge.

The sampling frequency of the signals varied from 250 Hz to 1 kHz, and the duration of the 

signals ranged from from 5 seconds to 30 minutes. The age and sex of the subjects were 

provided with most recordings. Table 4 provides a summary of the age, sex, and recording 
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information for the Challenge databases, including splits of the CPSC and G12EC databases 

between the training, validation, and test sets.

The diagnoses or labels were provided with the training data; neither the teams nor their 

algorithms had access to the diagnoses for the validation and test data. The quality of the 

labels depended on the clinical or research practices, and the datasets included labels that 

were machine-generated, over-read by a single cardiologist, and adjudicated by multiple 

cardiologists. Human experts may have used different criteria for ECG interpretation for 

some abnormalities; see e.g., [40]. We did not correct for differences in labeling practices 

except to encode the diagnoses using approximate Systematized Nomenclature of Medicine 

Clinical Terms (SNOMED-CT) codes for all of the datasets.

The data include 133 diagnoses or classes. All 133 diagnoses were represented in the 

training data, and a subset of these diagnoses were represented in the validation and test 

data. We evaluated the participant algorithms using 30 of the 133 diagnoses that were chosen 

by our cardiologists because they were relatively common, of clinical interest, and more 

likely to be recognizable from ECG recordings. Table 5 contains the list of the scored 

diagnoses for the Challenge with long-form descriptions, the corresponding SNOMED-CT 

codes, and abbreviations. While we only scored the algorithms using the diagnoses in Table 

5 and Figure 3, we included all 133 classes in the data so that that participants could choose 

whether or not to use them with their algorithms.

All data were provided in MATLAB- and WFDB-compatible format [41]. Each ECG 

recording had a binary MATLAB v4 file for the ECG signal data and an associated plain 

text file in WFDB header format describing the recording and patient attributes, including 

the diagnosis or diagnoses for the recording. We did not change the original data or 

labels from the databases, except (1) to provide consistent and Health Insurance Portability 

and Accountability Act (HIPAA)-compliant identifiers for age and sex, (2) to encode the 

diagnoses as approximate SNOMED CT codes, and (3) to store the signal data using 16-bit 

signed integers for WFDB format.

2.2. Challenge Objective

We asked the Challenge participants to design working, open-source algorithms for 

identifying cardiac abnormalities from standard twelve-lead and several reduced-lead ECG 

recordings. We required that the Challenge teams submit code both for training their models 

and for applying their trained models, which aided the reproducibility of the research 

conducted during the Challenge. We ran the participants’ trained models on the hidden 

validation and test data and evaluated their performance using an expert-based evaluation 

metric that we designed for this year’s Challenge.

2.2.1. Challenge Overview, Rules, and Expectations—This year’s Challenge 

was the 22nd PhysioNet/Computing in Cardiology Challenge [41]. Similarly to previous 

Challenges, this year’s Challenge had an unofficial phase and an official phase. The 

unofficial phase (December 24, 2020 to April 8, 2021) provided an opportunity to socialize 

the Challenge and seek discussions and feedback from teams about the data, scoring, and 

requirements. The unofficial phase allowed 5 scored entries from each team on the hidden 
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validation data. After a short break, the official phase (May 1, 2021 to August 15, 2021) 

introduced additional training data. The official phase allowed 10 scored entries from each 

team on the hidden validation data. After the end of the official phase, we evaluated one 

algorithm from each team on the hidden test data to prevent sequential training on the test 

data. Moreover, while teams were encouraged to ask questions, pose concerns, and discuss 

the Challenge in a public forum, they were prohibited from discussing or sharing their work 

for the Challenge to preserve the diversity and uniqueness of the approaches to the problem 

posed by the Challenge.

2.2.2. Classification of ECGs—We required teams to submit their code for both 

training and testing their models, including any code for processing or relabeling the data. 

We ran each team’s training code on the training data to create a model, and we ran this 

model on the hidden validation and test sets. We ran the trained model on the recordings 

sequentially, instead of providing them all of the recordings at the same time, to apply them 

as realistically as possible. We then scored the outputs from the models. Figure 4 illustrates 

this computational pipeline.

We allowed teams to submit either MATLAB or Python implementations of their code. 

Participants containerized their code in Docker and submitted it in GitHub or Gitlab 

repositories. We downloaded their code and ran it in containerized environments on Google 

Cloud. We described the computational environment that we used to run entries more fully 

in [42]. We used virtual machines on Google Cloud with 10 virtual central processing units 

(vCPUs), 65 GB of random-access memory (RAM), and an optional NVIDIA T4 Tensor 

Core graphics processing unit (GPU). We imposed a 72 hour time limit for training with a 

GPU on the full training set and a 48 hour time limit for training without a GPU on the full 

training set. We used virtual machines on Google Cloud with 6 vCPUs, 39 GB of RAM, and 

an optional NVIDIA T4 Tensor Core GPU with a 24 hour time limit with or without a GPU 

for running the trained classifiers on each of the validation and test sets.

To aid teams, we shared example entries that we implemented in MATLAB and Python. The 

MATLAB example model was a multinomial logistic regression classifier that used age, sex, 

and the root-mean square of the signal for each ECG lead as features. The Python example 

model was a random forest classifier that also used age, sex, and the root-mean square of 

the signal for each ECG lead as features. We did not design these example models to be 

competitive but instead to provide working examples of how to read and extract features 

from the recordings that teams could easily run in several minutes on a personal computer.

2.2.3. Evaluation of Classifiers—We introduced a scoring metric that awarded partial 

credit to misdiagnoses that resulted in similar outcomes or treatments as the true diagnoses 

that were given by our cardiologists. This scoring metric reflected the clinical reality some 

misdiagnoses are more harmful than others and should be scored accordingly.

First, let C = {ci}i = 1
m  be a collection of m distinct diagnoses for a database of n recordings, 

and let A = [aij] be a multi-class confusion matrix, where aij is a normalized number of 

recordings in a database that were classified as belonging to class ci but actually belonged to 

class cj, where ci and cj may be the same class or different classes.
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Specifically, for each recording k = 1, …, n, let xk be the set of positive labels and yk be the 

set of positive classifier outputs for recording k. We defined A = [aij] such that

aij = ∑
k = 1

n
aijk, (1)

where

aijk =
1

∣ xk ∪ yk ∣ , if ci ∈ xk and cj ∈ yk,

0, otherwise,
(2)

where the quantity ∣xk ∪ yk∣ is the number of distinct classes with a positive label and/or 

classifier output for recording k. We normalized the counts in the confusion matrix because 

each recording could have multiple true or predicted diagnoses, and we wanted incentivize 

teams to develop multi-class classifiers, but we did not want recordings with many diagnoses 

to dominate the scores that the algorithms received.

Next, let W = [wij] be a reward matrix, where wij is the reward for a positive classifier output 

for class ci with a positive label cj, where ci and cj may be the same class or different classes. 

The entries of W were defined by our cardiologists based on the similarity of treatments 

or differences in risks (see Figure 5). This matrix provided full credit to correct classifier 

outputs, partial credit to incorrect classifier outputs, and no credit for labels and classifier 

outputs that are not captured in the weight matrix. Also, four pairs of similar classes (i.e., 

CLBBB and LBBB, CRBBB and RBBB, PAC and SVPB, and PVC and VPB) were scored 

as if they were the same class by assigning full credit to off-diagonal entries, so a positive 

label or classifier output in one diagnosis in the pair was considered to be a positive label 

or classifier output for both diagnoses in the pair. We did not change the labels in the 

training, validation, or test data to make these classes identical so that we could preserve any 

institutional preferences and other information in these data.

Finally, let

sU = ∑
i = 1

m
∑
j = 1

m
wijaij (3)

be a weighted sum of the entries in the confusion matrix. This score is a generalized version 

of the traditional accuracy metric that awards full credit to correct outputs (ones in diagonal 

entries of the matrix) and no credit to incorrect outputs (zeros in off-diagonal entries of 

the matrix). To aid interpretability, we normalized this score so that a classifier that always 

output the true class or classes received a score of one and an inactive classifier that always 

output the sinus rhythm class received a score of zero, i.e.,

sN = sU − sI
sT − sI

, (4)

where sI is the score for the inactive classifier and sT is the score for ground-truth classifier.
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We used the same values of W for each algorithm and database, but each algorithm received 

different values of A and sN for each database. For any particular lead combination, the 

algorithm with the highest value of sN on the hidden test data for a specific lead combination 

won.

This scoring metric was designed to award full credit to correct diagnoses and partial 

credit to misdiagnoses with risks or outcomes that were similar to the true diagnosis. 

The resources, populations, practices, and preferences of an institution all affect how such 

a reward matrix W should be defined; the definition of this scoring metric from our 

cardiologists for the Challenge provides one such example.

3. Results

3.1. Entries

A total of 68 teams from academia and industry submitted 1,056 entries throughout the 

unofficial and official phases of the 2021 Challenge. During the unofficial and official 

phases, we trained the teams’ models on the public training data and scored the trained 

models on the hidden validation set. After the end of the official phase, we scored a final 

entry from each team on the twelve-lead, six-lead, four-lead, three-lead, and two-leads 

versions of the hidden test set using the Challenge evaluation metric (4). The qualifying 

teams with the highest score on each version of the test set won the lead combination 

category for the Challenge.

There were 430 successful entries, including 165 successful entries during the unofficial 

phase and 265 successful entries during the official phase. There were 636 unsuccessful 

entries, including 234 unsuccessful entries and 309 unsuccessful entries that we were unable 

to train during the unofficial and official phases, respectively, highlighting the importance of 

sharing training code for the reproducibility of the models.

A total of 39 teams met all of the conditions for the Challenge, including the submission 

of algorithms that we could successfully run on the training, validation, and test databases 

[16]. There were several reasons for disqualification of teams including the following: the 

training code failed to train on the training data or simply loaded a pretrained model, the 

trained model failed to run on the validation or test data, the team failed to submit a preprint 

to Computing and Cardiology by the conference preprint deadline, the team failed to attend 

Computing in Cardiology either remotely or in person to present and defend their work. The 

algorithms from teams that met all of the conditions for the Challenge are called ‘official 

entries’, and the other algorithms are called ‘unofficial entries’.

Deep learning (DL) approaches were common (35 algorithms, 90% of the official entries), 

including convolutional neural networks (CNNs) in general and ResNet-based approaches in 

particular [43]. Although only 4 (10%) entries used other classifiers such as random forest 

classifiers [44], logistic regression (LogitBoost) [45], and XGBoost [46], [47], ten of the DL 

algorithms (about 30%) extracted hand-crafted features for their DL models. By combining 

hand-crafted extracted features with the DL models, these teams tried to generate more 

robust multi-label classification.
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Across the different approaches, common trends appeared for the different lead 

combinations and data sources. Figure 6a shows the scores (the Challenge evaluation metric 

(4)) of the 39 official entries. It shows that the algorithms had similar performance (mean 

change of 2.6% for the Challenge evaluation metric) across different lead combinations on 

the different test databases; Figure 6 shows these scores for each of the lead combinations 

considered by the Challenge. Figure 6b demonstrates the scores of the 39 official entries on 

the individual and full test sets. It shows that the algorithms have varied performance on 

different test databases, including noticeably lower performance for the completely hidden 

test databases from sources for which no training data was provided, demonstrating the 

difficulty of generalizing to new databases.

Table 6 further quantifies the changes in performance for different lead combinations 

and databases using the median relative change in the Challenge evaluation metric, again 

showing small changes across different lead combinations and larger ones across different 

test databases. Per-diagnosis scores and run times for the algorithms are available in [48].

Supplemental Table S1 provides a list of the 39 official entries that met all of the conditions 

for the Challenge, including their scores and ranks using the Challenge evaluation metric 

on the two-lead test set. This table also summarizes the libraries, model architectures, data 

processing, and optimization methods used by the algorithms, and it includes citations of the 

Computing and Cardiology papers for more information about the methods.

3.2. Voting algorithm

We developed and applied a naïve voting approach to combine individual algorithms into a 

single algorithm. This approach leveraged the different strengths of the individual algorithms 

while outperforming any single individual algorithm. In particular, we built a simple model 

that considered the classifier outputs of k different models that returned a positive vote for a 

diagnosis if at least αk different algorithms returned a positive vote for that diagnosis. This 

approach provided a majority votes-like voting model that used the data to determine a more 

optimal amount of consensus between methods than a simple majority.

We chose the voting model parameters k and α as follows for the two-lead versions of the 

data and the Challenge evaluation metric; the same approach applies to other versions of 

the data and other scoring schemes. We first ranked the 39 official entries from highest to 

lowest performance according to the Challenge evaluation metric (4) on the training set, and 

we defined a voting model using the top k algorithms that returned a positive vote for a 

diagnosis if at least αk different algorithms returned a positive vote for that diagnosis. We 

found that k = 10 and α = 0.4 resulted in the voting model with the highest score on the 

validation set; Figure 7 illustrates this parameter search. We then ranked the algorithms from 

highest to lowest performance on the validation set, and we defined a voting model using the 

k = 10 highest scoring algorithms that returned a positive vote for a diagnosis if at least αk 
= 0.4 · 10 = 4 algorithms returned a positive vote for that diagnosis. We finally applied this 

model to the test data.

This voting model received a Challenge evaluation metric of 0.60 on the two-lead version of 

the test data, outperforming the highest-performing individual algorithm, which received a 
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Challenge evaluation metric of 0.58. Notably, this voting model used classifier outputs from 

an algorithm that was ranked 24th on the test data; some individual algorithms had lower 

overall performance but higher performance on some diagnoses or patient groups, which the 

voting model was able to utilize.

4. Follow-up Entries from the 2021 Challenge

As with most Challenges, we provided the community with another chance to evaluate 

their code on the test data for the 2021 Challenge. For this opportunity, we required 

the authors to submit updated code (or entirely new code) and a preprint describing the 

novelty of their updated or new approach that they planned to submit to the special issue 

containing this article. Tables 7, 8, and 9 provide the updated metrics for the twelve-lead, 

three-lead and two-lead of the full test set. The metrics include the area under the receiver 

operating characteristic curve (AUROC), the area under the precision recall curve (AUPRC), 

accuracy (defined here as the fraction of correctly classified recordings), F-measure, and the 

Challenge evaluation metric. We received 33 entries and successfully ran 13 entries.

In general, these post-Challenge entries improved on the performance of the original entries, 

and they again showed small changes in performance across the different lead combinations 

and larger changes across the different test databases from different sources.

5. Discussion

While the 2021 Challenge sought to assess the diagnostic potential of reduced-lead 

ECGs, the real-world issues of using clinical data proved to be more of an obstacle to 

the automatic detection of cardiac abnormalities than the different choices of lead sets, 

highlighting the challenge of generalizing to datasets from new settings with different data 

collection procedures and populations. However, this common issue represents a diversity of 

approaches to automatically identifying cardiac abnormalities from reduced-lead ECGs.

Supplemental Table S1 summarizes the 39 algorithms submitted by teams that satisfied all of 

the requirements of the 2021 Challenge. It shows that deep learning (DL) approaches were 

common for the 2021 Challenge, which was also true of the 2020 Challenge and reflects 

recent trends in ECG signal processing and arrhythmia detection. Some participants adopted 

algorithms from other applications, but they did not necessarily perform better than custom-

made machine learning algorithms. The performance of these algorithms showed that the 

custom model architectures, custom optimization techniques, and deliberate attempts to 

generalize to new databases can help to provide better diagnostic outcomes. The algorithms 

developed by the Challenges teams widely used convolutional neural networks (CNN) 

and ResNet deep neural networks with different architectures and customized models. An 

example of a customized model was a channel self-attention-based model developed by 

team cardiochallenger, which used an ensemble inception and residual architecture with 

a genetic algorithm to optimize thresholds for each class for maximizing the Challenge 

evaluation metric [62].

For handling different signal characteristics across different datasets in the training 

set, including different sampling rates, gains, signal quality, and signal lengths of the 
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ECG recordings, many algorithms applied preprocessing steps to the ECG signals. The 

preprocessing steps included resampling, normalization, peak correction, filtering, noise 

reduction, and/or discarding the beginnings and ends of the signals [63]-[65]. Different 

normalization techniques were applied, including z-score normalization [64], [66] and 

minmax scaling [67]. snu_adsl reported that standardization did not necessarily improve 

the performance of their algorithm, but they implemented it in their preprocessing step in 

case the unseen dataset had unexpected characteristics.

One of the common preprocessing steps of the algorithms (implemented by 25 teams, 64% 

of the official algorithms) was filtering the signals using different techniques such as the 

Butterworth bandpass filter with a bandwidth between 1-45 Hz. [68] used a finite impulse 

response bandpass filter with a bandwidth between 3-45 Hz [69].

Some of the algorithms investigated the quality of the signals or used data augmentation. 

For instance, HaoWan_AIeC assessed the quality of each lead and created a mask for 

low-quality leads [70]. They also applied data augmentation by randomly cropping signals 

and randomly generating masks [70]. HeartlyAI applied different augmentation techniques 

such as cut-out, adding different types of noise, and allowing dropout of individual or groups 

of ECG channels [71].

Many algorithms segmented the signals into windows during preprocessing. For example, 

Biomedic2ai segmented the signals into 5-second windows with a stride of one second for 

a 4-second overlap for adjacent signals [72]. snu_adsl selected a random window with a 

width of 13.3 seconds and zero-padded ECG signals shorter than 13.3 seconds at the end 

of the signal [68]. prna set a fixed window width of 15.36 seconds, allowing the signal to 

be split into divisible segments sizes and zero-padding the ends of the signals as needed 

[69]. iadiecg extracted the middle of recordings that were longer than 10 seconds and 

zero-padded both sides of recordings that were shorter than 10 seconds and normalized the 

signals so that they had zero mean and unit variance [73]. Although these algorithms were 

not the highest performing algorithms, they were among the top half of the entries and 

obtained a Challenge evaluation metric between 0.44 and 0.46 on the two-lead full test set.

Some participants decided not to train their models on some of the training databases. The 

scores of the winning algorithms shows that inclusion of all of the available data may lead to 

better generalization on the unseen test data [62], [64], [74].

For addressing differences in data collection practices from different sources, teams 

applied different methods to improve generalization. For example, HaoWan_AIeC adopted 

MixStyle to use feature-based augmentation to generalize to different domains [70]. Team 

DSAIL_SNU used the WRN model architecture with 14 convolution/dense layers and a 

widening factor of 1 and attempted to improve generalization by using constant-weighted 

cross-entropy loss, additional features, MixUp augmentation, a squeeze/excitation block, 

and a OneCycle learning rate scheduler [75]. Another team, NIMA, whose entry was among 

the top three algorithms, used spatial dropouts and average pooling between each layer of 

two separate deep CNNs to reduce overfitting and model complexity [74].
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Eleven entries (about 30% of the official teams) used a binary cross-entropy loss function 

for multi-label classification, but custom loss functions for this problem also helped 

to improve classification performance. Team ISIBrno-AIMT, the winning algorithm, 

optimized a ResNet architecture with a multi-head attention mechanism using a mixture 

of a binary cross-entropy loss function, a custom loss function that provided a differentiable 

approximation of Challenge evaluation metric, and an evolutionary optimization loss 

function that attempted to estimate the optimal probability threshold for each class [64]. 

BUTTeam noticed that using the Challenge evaluation metric as a loss function seemed to 

be unstable and lead to sub-optimal results [76]. Their approach was to first train their 

model with weighted cross-entropy (WCE) loss and then retrain it with the Challenge 

evaluation metric and a decaying learning rate [76]. Another example of a custom loss-

function was a weighted, generalized softmax loss function with quadratic differences by 

AADAConglomerate [63].

Although 90% of the 39 official entries used DL models, about 40% of the algorithms 

combined hand-crafted features with their DL models [72], [77]. Team PhysioNauts was 

among the unofficial teams that used a ResNet model with a squeeze and excitation module 

with handcrafted and DL features and used a grid search and the Nelder-Mead method 

to optimize the Challenge evaluation metric [78]. UMCU used an adaptive pooling layer to 

combine the features over the temporal dimension, after which a linear layer created the final 

output [79].

Class imbalance was another significant issue for classification, and the larger number and 

varying prevalence rates of the diagnoses from different sources represented the real-world 

problem of clinical diagnosis. Many algorithms applied different methods to correct for 

class imbalance. UMCU weighted each class by dividing the maximum number of positive 

samples from any class by the number of positive samples from the weighted class and used 

a threshold of 0.5 for prediction; all values greater than 0.5 were positive, and all below 

0.5 were negative [79]. Most teams performed best on the CPSC dataset, but it was the 

least representative dataset due to having fewer and more balanced diagnoses than the other 

datasets.

Almost all teams performed similarly on the different lead combination with average scores 

change in the Challenge evaluation metric of less than 2% from the twelve-lead to two-lead 

versions of the test data, which could be interpreted as responding to the Challenge question 

of “Will two do?” with the answer “Yes, two can do!”. Although the average scores change 

between different lead combinations is relatively negligible, performances varied across 

different diagnoses and different data sources, suggesting that better data processing and 

generalization techniques are required for better performance on unseen datasets.

6. Conclusions

This article explores the diagnostic potential of automated approaches for reading 

standard twelve-lead and various reduced-lead ECG recordings. While most algorithms 

had similar overall performance across the different lead combinations considered during 

the Challenge, including two-lead ECGs and standard twelve-lead ECGs, performance 
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varied more widely across different diagnoses and on data from different institutions. 

We found no definitive evidence that over-complete lead systems provided any additional 

diagnostic power, although without underlying knowledge of the electronic circuitry of the 

individual systems used to capture the ECGs, it is impossible to be sure if inter-database 

differences in performances as a function of lead combinations are due to variations in: 

population phenotypes; clinical practice behaviors; hardware filters; manufacturer software 

pre-processing before data storage; or circuit configuration differences (such as derivation of 

the WCT). Moreover, the lack of consistent differences between lead configurations across 

all data is confined to the rhythms explored in this work. Other conditions, such as much 

more subtle ST changes perhaps, may yield different results.

Most importantly, this article describes the world’s largest open-access database of twelve-

lead ECG recordings along with large hidden validation and test databases of twelve-lead 

and various reduced-lead recordings, providing unbiased and repeatable research on the 

diagnostic potential of automated approaches for reduced-lead diagnoses. The data were 

drawn from several countries across three continents with diverse and distinctly different 

populations, encompassing 133 diagnoses with 30 diagnoses of special interest for the 

Challenge. Additionally, we introduced a novel scoring matrix that captures the similarities 

between and risks of different diagnostic outcomes. Finally, we supported the development 

of a large corpus of open-source, repeatable, and diverse algorithmic approaches for 

classifying full-lead and reduced-lead ECG recordings. The algorithms and diverse data 

can provide benchmarks for the field and help push beyond the current theme of applying 

machine learning to large single-center databases, which in our experience are unlikely to 

generalize across populations to individuals that are underrepresented in existing datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustrations of the three Einthoven limb leads (I, II, and III; left-most figure) and three 

circuits of the three Goldberger augmented leads (aVR, aVL, and aVF; three right-most 

figures). This figure is recreated from [39].
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Figure 2: 
Illustration of the electrode locations for the six precordial leads, V1 to V6, on a human 

torso (left figure) and projections of these lead vectors centrally located on a transverse/

horizontal plane (right figure). This figure is recreated from [39].
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Figure 3: 
Numbers of recordings with each scored diagnosis in the training databases in the 

Challenge. Colors indicate the fraction of recordings with each scored diagnosis in each 

database, i.e., the total number of each scored diagnosis in a database normalized by the 

number of recordings in each database. Parentheses indicate the total numbers of records 

with a given label across the training data (rows) and the total numbers of recordings, 

including recordings without scored diagnoses, in each database (columns). The symbols *, 

+, #, and % indicate that distinct diagnoses were scored as if they were the same diagnosis.

Reyna et al. Page 24

Physiol Meas. Author manuscript; available in PMC 2023 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Computational pipeline for the 2021 Challenge. The vertices show the code, data, and 

results, and the edges show the relationships between the code, data, and results. Teams 

share their training and test scripts, which we run and score on the training, validation, and 

test sets; the test scripts running the trained models never see the labels for the validation 

and test sets.
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Figure 5: 
Reward matrix W for the 30 diagnoses scored in the Challenge. The rows and columns 

are the abbreviations for the ground-truth and predicted diagnoses in Table 5. Off-diagonal 

entries that are equal to 1 indicate similar diagnoses that are scored as if they were the 

same diagnosis. Each entry in the table was rounded to the first decimal place due to space 

constraints in this manuscript, but the shading of each entry reflects the actual value of the 

entry.
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Figure 6: 
Scores of the 39 official entries that we were able to evaluate on the hidden validation 

and test databases for the Challenge and met the other conditions for the Challenge. The 

points indicate the score of each individual algorithm on each dataset, with the higher points 

showing algorithms with the highest scores on each database. The ranks on the test set are 

further indicated by color, with red indicating the algorithms with the best rankings on the 

database and blue indicating the algorithms with the worst rankings on the database. The 

dashed line shows the median score for each lead combination or database.
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Figure 7: 
Parameter selection for voting model. The top k models (x-axis) were included in the voting 

model based on performance on the training set that returns a positive vote if at least 

αk models (y-axis) returned positive votes. The heat map shows the performance of the 

resulting voting model using the Challenge evaluation metric on validation data, and the 

x marks the parameters that define the voting model with the highest performance on the 

validation data; these parameters define the voting model to be applied to the test set. This 

figure shows performance for two-lead versions of the data with similar results on other 

datasets.
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Table 1:

Sources, locations, and references for each database in the Challenge.

Database Source Locations(s) Reference

Chapman-Shaoxing Shaoxing People’s Hospital Shaoxing, Zhejiang, China [18]

CPSC CPSC 2018 Various Locations, China [19]

CPSC-Extra CPSC 2018 Various Locations, China [19]

G12EC Emory University Hospital Atlanta, Georgia, USA [14]

INCART St. Petersburg Institute of Cardiological Technics St. Petersburg, Russia [20]

Ningbo Ningbo First Hospital Ningbo, Zhejiang, China [21]

PTB University Clinic Benjamin Franklin Berlin, Germany [22]

PTB-XL Physkalisch Technische Bundesanstalt Various Countries, Europe [23]

UMich University of Michigan Ann Arbor, Michigan, USA [15]

Undisclosed N/A USA [14]
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Table 2:

Numbers of patients and recordings in the training, validation, and test splits of the databases in the Challenge. 

The numbers of patients for the completely hidden test sets are not given.

Database Total
Patients

Training Set
Recordings

Validation Set
Recordings

Test Set
Recordings

Total
Recordings

Chapman-Shaoxing 10247 10247 0 0 10247

CPSC Unknown 6877 1463 1463 9803

CPSC-Extra Unknown 3453 0 0 3453

G12EC 15738 10344 5167 5161 20672

INCART 32 74 0 0 74

Ningbo 34905 34905 0 0 34905

PTB 262 516 0 0 516

PTB-XL 18885 21837 0 0 21837

UMich N/A 0 0 19642 19642

Undisclosed N/A 0 0 10000 10000

Total N/A 88253 6630 36266 131149
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Table 3:

Lead combinations used for the hidden validation and test sets in the 2021 Challenge.

Number
of Leads

Number of
Independent
Leads

Lead Combination

12 8 I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6

4 3 I, II, III, V2

3 3 I, II, V2

6 2 I, II, III, aVR, aVL, aVF

2 2 I, II
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Table 4:

Number of recordings, mean duration of recordings, mean age of patients in recordings, sex of patients in 

recordings, and sample frequency of recordings for each database in the Challenge. The CPSC and G12EC 

databases were represented in the training, validation, and test data and include summary statistics for the 

entire database and splits of the database.

Database Number of
Recordings

Sampling
Frequency
(Hz)

Mean
Duration
(seconds)

Mean Age
(years)

Sex
(female/male)

Chapman-Shaoxing 10247 500 10.0 60.1 44%/56%

CPSC 9803 500 16.4 60.0 47%/53%

- CPSC training 6877 500 15.9 60.2 46%/54%

- CPSC validation 1463 500 17.2 58.9 49%/51%

- CPSC test 1463 500 17.5 60.0 47%/53%

CPSC-Extra 3453 500 15.9 63.7 47%/53%

G12EC 20672 500 10.0 60.5 46%/54%

- G12EC training 10344 500 10.0 60.5 46%/54%

- G12EC validation 5167 500 10.0 60.3 47%/53%

- G12EC test 5161 500 10.0 60.7 46%/54%

INCART 74 257 1800.0 56.0 46%/54%

Ningbo 34905 500 10.0 57.7 43%/56%

PTB 516 1000 110.8 56.3 27%/73%

PTB-XL 21837 500 10.0 59.8 48%/52%

UMich 19642 250 or 500 10.0 60.2 47%/53%

Undisclosed 10000 300 10.0 63.0 47%/53%
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Table 5:

Diagnoses, SNOMED CT codes, and abbreviations that were scored for the Challenge. CLBBB and LBBB, 

CRBBB and RBBB, PAC and SVPB, and PVC and VPB are distinct diagnoses, but we scored them as if they 

were the same diagnosis.

Diagnosis Code Abbreviation

Atrial fibrillation 164889003 AF

Atrial flutter 164890007 AFL

Bundle branch block 6374002 BBB

Bradycardia 426627000 Brady

Complete left bundle branch block 733534002 CLBBB

Complete right bundle branch block 713427006 CRBBB

1st degree AV block 270492004 IAVB

Incomplete right bundle branch block 713426002 IRBBB

Left axis deviation 39732003 LAD

Left anterior fascicular block 445118002 LAnFB

Left bundle branch block 164909002 LBBB

Prolonged PR interval 164947007 LPR

Low QRS voltages 251146004 LQRSV

Prolonged QT interval 111975006 LQT

Nonspecific intraventricular conduction disorder 698252002 NSIVCB

Sinus rhythm 426783006 NSR

Premature atrial contraction 284470004 PAC

Pacing rhythm 10370003 PR

Poor R wave progression 365413008 PRWP

Premature ventricular contractions 427172004 PVC

Q wave abnormal 164917005 QAb

Right axis deviation 47665007 RAD

Right bundle branch block 59118001 RBBB

Sinus arrhythmia 427393009 SA

Sinus bradycardia 426177001 SB

Sinus tachycardia 427084000 STach

Supraventricular premature beats 63593006 SVPB

T wave abnormal 164934002 TAb

T wave inversion 59931005 TInv

Ventricular premature beats 17338001 VPB
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Table 6:

The median relative change in the Challenge evaluation metric from the full validation set to the individual test 

sets and full test set for the five different lead combinations.

Number of leads CPSC test G12EC test UMich test Undisclosed test Full test

12 −10% −3% −14% −39% −17%

6 −13% −3% −14% −36% −19%

4 −13% −3% −12% −37% −17%

3 −14% −3% −13% −38% −19%

2 −13% −3% −13% −41% −18%

Physiol Meas. Author manuscript; available in PMC 2023 August 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reyna et al. Page 35

Table 7:

The metrics and ranks of the teams for follow-up entries to the special issue on the twelve-lead version of 

the full test set, including teams’ papers and changes in score (“±”) from their original entries. “AUROC” is 

area under the receiver operating characteristic curve, and “AUPRC” is area under the precision recall curve. 

‘Voting’ indicates the voting algorithm described in Section 3.2, which used a subset of the algorithms in the 

Challenge, rather than any follow-up entries. “N/A” denotes “not available”: N/Aa indicates that the voting 

model did not report numerical outputs, N/Ab indicates that the voting model was run only once, and N/Aa 

indicates failed original entries on the test set during the Challenge.

Rank Team [Reference] AUROC AUPRC Accuracy F-measure Challenge metric
[ ± original score]

- Voting N/Aa N/Aa 0.32 0.49 0.62 [N/Ab]

1 CeZIS [49] 0.87 0.53 0.34 0.51 0.62 [+0.10]

2 ISIBrnoAIMT [50] 0.87 0.45 0.29 0.41 0.59 [+0.01]

3 HeartBeats [51] 0.94 0.52 0.21 0.44 0.57 [−0.01]

3 DrCubic [52] 0.93 0.51 0.26 0.45 0.57 [+0.08]

5 AIRCAS_MEL1 [53] 0.91 0.47 0.24 0.42 0.52 [+0.14]

6 iadi-ecg [54] 0.87 0.45 0.27 0.41 0.48 [+0.00]

6 SMS+1 [55] 0.87 0.36 0.21 0.32 0.48 [−0.04]

8 skylark [56] 0.83 0.30 0.02 0.26 0.39 [+0.03]

8 itaca-UPV [57] 0.82 0.32 0.05 0.29 0.39 [+0.05]

10 Revenger [58] 0.83 0.45 0.37 0.43 0.38 [N/Ac]

11 Medics [59] 0.74 0.26 0.07 0.26 0.36 [N/Ac]

12 Biomedic2ai [60] 0.79 0.35 0.28 0.32 0.24 [−0.12]

13 WEAIT [61] 0.52 0.07 0.01 0.10 −0.12 [+0.50]

Physiol Meas. Author manuscript; available in PMC 2023 August 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reyna et al. Page 36

Table 8:

The metrics and ranks of the teams for follow-up entries to the special issue on the three-lead version of 

the full test set, including teams’ papers and changes in score (“±”) from their original entries. “AUROC” is 

area under the receiver operating characteristic curve, and “AUPRC” is area under the precision recall curve. 

‘Voting’ indicates the voting algorithm described in Section 3.2, which used a subset of the algorithms in the 

Challenge, rather than any follow-up entries. “N/A” denotes “not available”: N/Aa indicates that the voting 

model did not report numerical outputs, N/Ab indicates that the voting model was run only once, and N/Aa 

indicates failed original entries on the test set during the Challenge.

Rank Team [Reference] AUROC AUPRC Accuracy F-measure Challenge metric
[ ± original score]

1 CeZIS [49] 0.87 0.53 0.34 0.50 0.61 [+0.09]

- Voting N/Aa N/Aa 0.32 0.47 0.60 [N/Ab]

2 ISIBrnoAIMT [50] 0.87 0.44 0.28 0.40 0.60 [+0.02]

3 HeartBeats [51] 0.93 0.50 0.21 0.46 0.58 [+0.05]

4 Dr_Cubic [52] 0.93 0.51 0.26 0.45 0.56 [+0.05]

5 AIRCAS_MEL1 [53] 0.91 0.45 0.23 0.41 0.51 [+0.08]

6 iadi-ecg [54] 0.87 0.44 0.29 0.39 0.46 [−0.01]

7 Revenger [58] 0.86 0.45 0.38 0.42 0.40 [+0.07]

8 skylark [56] 0.83 0.29 0.02 0.26 0.39 [−0.06]

9 itaca-UPV [57] 0.84 0.33 0.04 0.28 0.38 [+0.08]

10 SMS+1 [55] 0.82 0.33 0.18 0.30 0.36 [−0.14]

11 Medics [59] 0.79 0.29 0.08 0.27 0.32 [N/Ac]

12 Biomedic2ai [60] 0.79 0.33 0.29 0.27 0.19 [−0.10]

13 WEAIT [61] 0.52 0.07 0.01 0.10 −0.12 [+0.50]
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Table 9:

The metrics and ranks of the teams for follow-up entries to the special issue on the two-lead version of the 

full test set, including the teams’ papers and changes in score (“±”) from their original entries. “AUROC” is 

area under the receiver operating characteristic curve, and “AUPRC” is area under the precision recall curve. 

‘Voting’ indicates the voting algorithm described in Section 3.2, which used a subset of the algorithms in the 

Challenge, rather than any follow-up entries. “N/A” denotes “not available”: N/Aa indicates that the voting 

model did not report numerical outputs, N/Ab indicates that the voting model was run only once, and N/Aa 

indicates failed original entries on the test set during the Challenge.

Rank Team [Reference] AUROC AUPRC Accuracy F-measure Challenge metric
[ ± original score]

- Voting N/Aa N/Aa 0.30 0.46 0.60 [N/Ab]

1 CeZIS [49] 0.87 0.52 0.33 0.49 0.59 [+0.07]

1 ISIBrnoAIMT [50] 0.87 0.43 0.27 0.39 0.59 [+0.00]

3 HeartBeats [51] 0.92 0.50 0.20 0.42 0.57 [+0.04]

4 Dr_Cubic [52] 0.92 0.50 0.25 0.44 0.55 [+0.07]

5 AIRCAS_MEL1 [53] 0.89 0.44 0.22 0.40 0.50 [+0.12]

5 SMS+1 [55] 0.86 0.36 0.26 0.32 0.50 [+0.01]

7 iadi-ecg [54] 0.87 0.42 0.27 0.38 0.45 [−0.01]

8 skylark [56] 0.81 0.27 0.03 0.26 0.39 [−0.10]

9 Medics [59] 0.78 0.28 0.08 0.27 0.38 [N/Ac]

10 itaca-UPV [57] 0.82 0.31 0.04 0.26 0.37 [+0.03]

11 Revenger [58] 0.84 0.43 0.35 0.40 0.35 [+0.02]

12 Biomedic2ai [60] 0.80 0.33 0.28 0.29 0.26 [−0.08]

13 WEAIT [61] 0.62 0.17 0.01 0.17 −0.08 [+0.54]
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