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Summary

Factorization models express a statistical object of interest in terms of a collection of simpler 

objects. For example, a matrix or tensor can be expressed as a sum of rank-one components. 

However, in practice, it can be challenging to infer the relative impact of the different components 

as well as the number of components. A popular idea is to include infinitely many components 

having impact decreasing with the component index. This article is motivated by two limitations of 

existing methods: (1) lack of careful consideration of the within component sparsity structure; and 

(2) no accommodation for grouped variables and other non-exchangeable structures. We propose a 

general class of infinite factorization models that address these limitations. Theoretical support is 

provided, practical gains are shown in simulation studies, and an ecology application focusing on 

modelling bird species occurrence is discussed.
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1. INTRODUCTION

Factorization models are used routinely to express matrices, tensors or other statistical 

objects based on simple components. The likelihood for data y under a general class of 

factorization models can be expressed as L(y; Λ, Ψ, Σ), with Λ = (Λh, h = 1, …, k} a p × 

k matrix, Λh = (λ1h, …, λph)T the hth column vector of Λ, Ψ and Σ additional parameters, 

and k a positive integer. This class includes Gaussian linear factor models (Roweis & 

Ghahramani, 1999), exponential family factor models (Jun & Tao, 2013), Gaussian copula 
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factor models (Murray et al., 2013), latent factor linear mixed models (An et al., 2013), 

probabilistic matrix factorization (Mnih & Salakhutdinov, 2008), underlying Gaussian factor 

models for mixed scale data (Reich & Bandyopadhyay, 2010), and functional data factor 

models (Montagna et al., 2012). A fundamental problem is how to choose weights for 

the components and the number of components k. This article proposes a general class of 

Bayesian methods to address this problem.

Although there is a rich literature, selection of k is far from a solved problem. In 

unsupervised settings, it is common to fit the model for different choices of k and then 

choose the value with the best goodness-of-fit criteria. For likelihood models, the Bayesian 

information criteria is particularly popular. It is also common to use an informal elbow 

rule, selecting the smallest k such that the criteria improves only a small amount for k + 

1. In specific contexts, formal model selection methods have been developed. For example, 

taking a Bayesian approach, one can choose a prior for k and attempt to approximate the 

posterior distribution of k using Markov chain Monte Carlo; see Lopes & West (2004) for 

linear factor models, Miller & Harrison (2018) for mixture models and Yang et al. (2018) for 

matrix factorization. Although such methods are conceptually appealing, computation can 

be prohibitive outside of specialized settings.

Due to these challenges it has become popular to rely on over-fitted factorization models, 

which include more than enough components, but with shrinkage priors adaptively removing 

unnecessary ones by shrinking their coefficients close to zero. Such approaches were 

proposed by Rousseau & Mengersen (2011) for mixture models and Bhattacharya & Dunson 

(2011) for Gaussian linear factor models. The latter approach specifically assumes an 

increasing shrinkage prior on the columns of the factor loadings matrix Λ. Legramanti 

et al. (2020) recently modified this approach using a spike and slab structure (Mitchell & 

Beauchamp, 1988) that increases the mass on the spike for later columns.

Although over-fitted factorizations are widely used, there are two key gaps in the literature. 

The first is a careful development of the shrinkage properties of increasing shrinkage 

priors (Durante, 2017). Outside of the factorization context and mostly motivated by high-

dimensional regression, there is a rich literature recommending specific desirable properties 

for shrinkage priors. These include high concentration at zero to favor shrinkage of small 

coefficients and heavy tails to avoid over shrinking large coefficients. Motivated by this 

thinking, popular shrinkage priors have been developed including the Dirichlet-Laplace 

(Bhattacharya et al., 2015) and horseshoe (Carvalho et al., 2010). Current increasing 

shrinkage priors, such as those of Bhattacharya & Dunson (2011), were not designed to 

have the desirable shrinkage properties of these priors. For this reason, ad hoc truncation and 

use of the horseshoe/Dirichlet-Laplace can outperform increasing shrinkage priors in some 

contexts; for example, this was the case in Ferrari & Dunson (2020).

A second gap in the literature on over-fitted factorization priors is the lack of structured 

shrinkage. The focus has been on priors for Λ that are exchangeable within columns, with 

the level of shrinkage increasing with the column index. However, it is common in practice 

to have meta covariates encoding features of the rows of Λ. For example, the rows may 

correspond to different genes in genomic applications or species in ecology. There is a 
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rich literature on incorporating gene ontology in statistical analyses of genomic data; refer, 

for example to Thomas et al. (2009). In ecology it is common to include species traits in 

species distribution models (Ovaskainen & Abrego, 2020). Beyond the Bayesian literature, 

it is common to include structured penalties, with the grouped Lasso (Yuan & Lin, 2006) a 

notable example.

Motivated by these deficiencies of current factorizations priors, this article proposes a 

broad class of generalized infinite factorization priors, along with corresponding theory and 

algorithms for routine Bayesian implementation.

2. GENERALIZED INFINITE FACTOR MODELS

2.1. Model specification

Suppose that an n × p data matrix y is available. In our motivating application, yij is a binary 

indicator of occurrence of bird species j (j = 1, …, p) in sample i (i = 1, …, n). Consider the 

following general class of models,

yij = tj zij , zi = Ληi + ϵi, ϵi ∼ fϵ, (1)

with Λ a p × k loadings matrix, ηi a k dimensional factor with diagonal covariance matrix 

Ψ = diag(ψ11, …, ψkk), ϵi a p-dimensional error term independent of ηi, and the function 

tj:ℛ ℛ, for j = 1 …, p. We refer to this class as generalized factorization models. Class 

(1) includes most of the cases mentioned in Section 1. When ϵi and ηi are Gaussian random 

vectors and tj is the identity function, model (1) is a Gaussian linear factor model. With 

similar assumptions for ϵi and ηi, and assuming tj = Fj
−1 Φ zij , with Φ(zij) the Gaussian 

cumulative distribution function, model (1) is a Gaussian copula factor model (Murray 

et al., 2013). Exponential family factor models (Jun & Tao, 2013), probabilistic matrix 

factorization (Mnih & Salakhutdinov, 2008) and underlying Gaussian models for mixed 

scale data (Reich & Bandyopadhyay, 2010) can be obtained by appropriately defining the 

elements in (1), whereas multivariate response regression models belong to this framework 

when ηi is known.

The matrix Ω = var(zi) can be expressed as Ω = ΛΨΛT + Σ, where Σ = var(ϵi). Following 

common practice in Bayesian factor analysis (Bhattacharya & Dunson, 2011), we avoid 

imposing identifiability constraints on Λ and assume Ψ is pre-specified. Our focus is on a 

new class of generalized infinite factor models induced through a novel class of priors for Λ 
that allows infinitely many factors, k = ∞. In particular, we let

λjℎ|θjℎ ∼ N 0, θjℎ , θjℎ = τ0γℎϕjℎ, τ0 ∼ fτ0, γℎ ∼ fγℎ, ϕjℎ ∼ fϕj, (2)

where fτ0, fγh, and fϕj are supported on [0, ∞) with positive probability mass on (0, ∞). 

The local ϕjh, column-specific γh, and global τ0 scales are all independent a priori. We let 

N(0, 0) denote a degenerate distribution with all its mass at zero. Expression (2) induces a 

class of scale-mixture of Gaussian shrinkage priors (Polson & Scott, 2010) for the loadings. 

Although we allow infinitely many columns in Λ, (2) induces a prior for Ω supported on the 
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set of p × p positive semi-definite matrices under mild conditions reported in Proposition S1 

in the Supplementary Material.

Differently from most of the existing literature on shrinkage priors, we want to define a 

non-exchangeable structure that includes meta covariates x informing the sparsity structure 

of Λ. In our context, meta covariates provide information to distinguish the p different 

variables as opposed to traditional covariates that serve to distinguish the n subjects. Letting 

x denote a p × q matrix of such meta covariates, we choose fϕj not depending on the index h 
and such that

E ϕjℎ|βℎ = g xjTβℎ , βℎ = β1ℎ, …, βqℎ
T, βmℎ ∼ fβ m = 1, …, q (3)

where g:ℛ A ⊂ ℛ+ is a known smooth one-to-one differentiable link function, xj = (xj1, 

…, xjq)T denotes the jth row vector of x, and βh are coefficients controlling the impact of the 

meta covariates on shrinkage of the factor loadings in the hth column of Λ.

To illustrate the usefulness of (3), consider the previously introduced ecological study and 

suppose xj = 1, 1 κj = 2 , …, 1 κj = q T , where κj ∈ {1, …, q} denotes the phylogenetic 

order of species j. Species of the same order may tend to have similarities that can be 

expressed in terms of a shared pattern of high or low loadings on the same latent factors. 

To illustrate this situation, we simulate a loadings matrix, displayed in Fig. 1, sampling 

from the prior introduced in Section 3 where pr(λjh = 0) > pr(ϕjh = 0) > 0. The loadings 

within each column are penalized basing on the group structure identified by the q = 3 

phylogenetic orders (Passeriformes, Charadriiformes, and Piciformes) of the p = 10 birds 

species considered. Our proposed prior allows for the possibility of such structure while 

not imposing it. In the bird ecology application, x can be defined to include not just 

phylogenetic placement of each bird species but also species traits, such as size or diet 

(Tikhonov et al., 2020). Related meta covariates are widely available, both in other ecology 

applications (Miller et al., 2019) and in other fields such as genomics (Thomas et al., 2009).

2.2. Properties

In this section we present some properties motivating the shrinkage process in (2) and 

provide insight into prior elicitation. It is important to relate the choice of hyperparameters 

to the signal-to-noise ratio, expressed as the proportion of variance explained by the factors. 

Section S2.4 of the Supplementary Material provides a study of the posterior distribution 

of the proportion of variance explained; the posterior tends to be robust to hyperparameter 

choice. Below we study key properties of our prior, including an increasing shrinkage 

property, the ability of the induced marginal prior to accommodate both sparse and large 

signals, and control of the multiplicity problem in sparse settings. Proofs are included in 

the Appendix and in Section S1 of Supplementary Material. This theory illuminates the 

role of hyperparameters; specific recommendations of hyperparameter choice in practice are 

illustrated under the model settings of Section 3.1.

To formalize the increasing shrinkage property, we introduce the following definition.
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DEFINITION 1. Letting ΠΛ denote a shrinkage prior on Λ, ΠΛ is a weakly increasing shrinkage 
prior if var(λj(h–1)) > var(λjh) for j in 1, …, p and h = 2, …, ∞. ΠΛ is a strongly increasing 
shrinkage prior if var(λs(h–1)) > var(λjh), for j, s in {1, …, p} and h = 2, …, ∞.

Weakly increasing shrinkage corresponds to the prior variance increasing across columns 

within each row of Λ, while strongly increasing shrinkage implies that the prior variance of 

any loading element is larger than all elements with a higher column index. In the following 

Theorem, we show that the process in (2) induces weakly increasing shrinkage under a 

simple sufficient condition.

THEOREM 1. Expression (2) is a weakly increasing shrinkage prior under Definition 1 if E(γh) 

> E(γh+1) for any h.

Increasing shrinkage priors favor a decreasing contribution of higher indexed columns of 

Λ to the covariance Ω. In addition to inducing a flexible shrinkage structure that allows 

different factors to have a different sparsity structure in their loadings, this allows one 

to accurately approximate the likelihood L(y; Λ, Ψ, Σ) by L(y; ΛH, ΨH, Σ), with ΛH 

containing the first H columns of the infinite matrix Λ and ΨH the first H rows and columns 

of Ψ. To measure the induced truncation error of ΩH = ΛHΨHΛH
T + Σ, we use the trace of 

Ω. The trace is justified by the fact that the maximum error occurring in an element of Ω 
due to truncation always lies along the diagonal and by the relation between difference of 

traces and the nuclear norm, routinely used to approximate low rank minimization problems 

(Liu & Vandenberghe, 2010). The following Proposition provides conditions on prior (2) so 

that the under-estimation of Ω that occurs by truncating decreases exponentially fast as H 
increases.

PROPOSITION 1. Let E(τ0) and E(ϕjh) be finite for j = 1, …, p and h = 1, …, ∞ and E(γh) = 

abh−1 with a > 0 and b ∈ (0, 1) for all h = 1, …, ∞. Let c > 0 be a sufficiently large number 
such that c ≥ maxℎ = 1, …, ∞ψℎℎ. If

mΩ = min
j = 1, …, p

E σj−2 , E
ℎ = 1

∞
ψℎℎλjℎ

2
−1

< ∞,

then for any T ∈ (0, 1),

pr
tr ΩH
tr Ω ≤ T ≤ 1

1 − T ac bH
1 − bmΩE τ0

j = 1

p
E ϕj1 .

The above increasing shrinkage properties can be satisfied by naive priors that over-shrink 

the elements of Λ. It is important to avoid such over-shrinkage and allow not only many 

elements that are ≈ 0 but also a small proportion of large coefficients. A similar motivation 

applies in the literature on shrinkage priors in regression (Carvalho et al., 2010). Borrowing 

from that literature, the marginal prior for λjh should be concentrated at zero to reduce 
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mean square error by shrinking small coefficients to zero but with heavy tails to avoid 

over-shrinking the signal.

To quantify the prior concentration of (2) in an ϵ neighbourhood of zero, we can obtain

pr |λjℎ| > ϵ ≤ E τ0 E γℎ E ϕjℎ
ϵ2 (4)

as a consequence of Markov’s inequality. Common practice in local-global shrinkage priors 

chooses E(τ0) small while assigning a heavy-tailed density to the local or column scales. 

In our case, (3) allows the bound in (4) to be regulated by meta covariates x, while, under 

the condition in Theorem 1, decreasing E(γh) with column index causes an increasing 

concentration near zero, since E(ϕjh) = E(ϕjl) for every h, l ∈ {1, …, ∞}. The means of the 

column and the local scales control prior concentration near zero, while over-shrinkage can 

be ameliorated by choosing fϕj or fγh (h = 1, …, ∞) heavy tailed. The following Proposition 

provides a condition on the prior to guarantee a heavy tailed marginal distribution for λjh. A 

random variable has power law tails if its cumulative distribution function F has 1 − F(t) ≥ 

ct−α for constants c > 0, α > 0, and for any t > L for L sufficiently large.

PROPOSITION 2. If at least one scale parameter among τ0, γh or ϕjh is characterized by a power 
law tail prior distribution, then the prior marginal distribution of λjh has power law tails.

An important consequence of the heavy tailed property is avoidance of over-shrinkage of 

large signals. This is often formalized via a tail robustness property (Carvalho et al., 2010). 

As an initial result, key to showing sufficient conditions for a type of local tail robustness, 

we provide the following Lemma on the derivative of the log prior in the limit as the value of 

λjh → ∞.

LEMMA 1. If at least one scale parameter among τ0, γh or ϕjh has a prior with power law tails 
for any possible prior distribution of βh, then for any finite truncation level H,

lim
λ ∞

∂log fλjℎ|Λ−jℎ λ
∂λ = 0

where fλjℎ|Λ−jℎ λ  is the conditional distribution of λjh given the other elements of ΛH.

The following definition introduces a type of local tail robustness property.

DEFINITION 2. Consider model (1) with factors η known. Let fλjℎ|y, η, Λ−jℎ λ  denote the 

posterior density of λjh, given the data, conditional on any possible value of the other 
elements of ΛH for any finite H, and let λjℎ denote the conditional maximum likelihood 

estimate of λjh for any possible value of the other elements of ΛH. We say that the prior on 
λjh is tail robust if

lim
λjℎ ∞

|λjℎ − arg max
λ

fλjℎ|y, η, Λ−jℎ λ | = 0.
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For a given sample, λjℎ is a fixed quantity; the above limit should be interpreted as what 

happens as the data support a larger and larger maximum likelihood estimate. In order for 

tail robustness to hold, we need the data to be sufficiently informative about the parameter 

λjh and the likelihood to be sufficiently regular; this is formalized as follows.

Assumption 1. Let L(y; Λ, η, Σ) denote the likelihood for data y conditionally on latent 

variables η, let ls(λ) denote the derivative function of the log-likelihood with respect to 

λjh, and let J λjℎ  denote the negative of the second derivative of the log-likelihood with 

respect to λjh, evaluated at the conditional maximum likelihood estimate λjℎ. Then ls(λ) is 

a continuous function for every λ ∈ ℛ and J λjℎ ≥ ν λjℎ , where υ λjℎ  is of order O(1) as 

λjℎ ∞.

This assumption can be verified for most of the cases mentioned in Section 1; for example, 

for Gaussian linear factor models J λjℎ  is of order O(1) with respect to λjℎ.

THEOREM 2. Under Assumption 1, if at least one scale parameter among τ0, γh or ϕjh is 
power law tail distributed for any possible prior distribution of βh, then the prior on λjh is 
tail robust under Definition 2.

As an additional desirable property, we would like to control for the multiplicity problem 

within each column λh of the loadings matrix, corresponding to increasing numbers of false 

signals as dimension p increases. This can be accomplished by imposing an asymptotically 

increasingly sparse property on the prior, which is defined as follows.

DEFINITION 3. Let |suppϵ λℎ | denote the cardinality of suppϵ λℎ = j: |λjℎ| > ϵ . Let sp = o(p) 

such that sp ≥ cslog p /p for some constant cs > 0. We say that the prior on Λ defined in (2) is 

an asymptotically increasingly sparse prior if

lim
p ∞

pr |suppϵ λℎ | > a sp|γℎ, τ0 = 0, for some constant a > 0 .

The quantity |suppϵ(λh)| represents an approximate measure of model size for continuous 

shrinkage priors and, conditionally on βh, γh, and τ0, it is a priori distributed as a sum of 

independent Bernoulli random variables Ber(ζϵjh), where

ζϵjℎ = pr |λjℎ| > ϵ|βℎ, γℎ, τ0 ≤
τ0γℎg xjTβℎ

ϵ2 .

We now provide sufficient conditions for an asymptotically increasingly sparse prior, 

allowing regulation of the sparsity behaviour of the prior of the columns of Λ for increasing 

dimension p.

THEOREM 3. Consider prior (2) with ϕjh (j = 1, …, p) a priori independent given βh. If 

pr{g xjTβℎ ≤ νj(p)} = 1, with νj(p) = O{log(p)/p}, (j = 1, …, p), then the prior on Λ is 

asymptotically increasingly sparse under Definition 3.
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The condition of the theorem is easily satisfied, for example, if g is the multiplication of 

a bounded function and a suitable offset depending on p as assumed in Section 3.1. The 

multiplicative gamma process (Bhattacharya & Dunson, 2011) and cumulative shrinkage 

process (Legramanti et al., 2020) do not satisfy the sufficient conditions of Theorem 3, and, 

furthermore, the following lemma holds.

LEMMA 2. The multiplicative gamma process prior (Bhattacharya & Dunson, 2011) and 
the cumulative shrinkage process prior (Legramanti et al., 2020) are not asymptotically 
increasing sparse under Definition 3.

Although this Section has focused on properties of the prior, we find empirically that 

these properties tend to carry over to the posterior, as will be illustrated in the subsequent 

sections. For example, the posterior exhibits asymptotic increasing sparsity; refer to Table 

2 of Section 4, which shows results for a novel process in our proposed class that is much 

more effective than current approaches in identifying the true sparsity structure, particularly 

when p is large.

3. STRUCTURED INCREASING SHRINKAGE PROCESS

3.1. Model specification

In this section we propose a structured increasing shrinkage process prior for generalized 

infinite factor models satisfying all the sufficient conditions in Propositions 1–2 and 

Theorems 2–3. Let Ga(a, b) denote the gamma distribution with mean a/b and variance 

a/b2. Following the notation of Section 2.1, we specify

τ0 = 1, γℎ = ϑℎρℎ, ϕjℎ|βℎ ∼ Ber logit−1 xjTβℎ cp , (5)

ϑℎ
−1 ∼ Ga aθ, bθ , aθ > 1, ρℎ = Ber 1 − πℎ , βℎ ∼ Nq 0, σβ

2Iq ,

where we assume the link g(x) = logit−1(x)cp, with logit−1(x) = ex/(1 + ex) and cp ∈ (0, 1) a 

possible offset. The parameter πh = pr(γh = 0) follows a stick-breaking construction,

πℎ =
l = 1

ℎ
wl, wl = vl

m = 1

l − 1
1 − υm , υm ∼ Be 1, α ,

with Be(a, b) the beta distribution with mean a/(a + b), such that πℎ + 1 > πℎ is guaranteed 

for any h = 1, …, ∞ and limℎ ∞πℎ = 1 almost surely. The prior expected number of 

non degenerate Λ columns is E ℎ = 1
∞ ρℎ = α (Legramanti et al., 2020), suggesting setting 

α equal to the expected number of active factors. The prior specification is completed 

assuming Σ = diag σ1
2, …, σp2  with σj−2 ∼ Ga aσ, bσ  for j = 1, …, p, consistently with the 

literature. The hyperparameters can be chosen based on one’s prior expectation of the 

signal-to-noise ratio, as σj2 is the contribution of the noise component to the total variance of 

the jth variable. A sensitivity study in Section S2.4 of the Supplementary Material, however, 
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shows that posterior distributions tend to be robust to the specification of aσ, bσ. Regarding 

prior elicitation, we recommend setting bθ ≥ aθ to induce a high enough proportion of 

variance explained by the factor model. In Section S2.4 in the Supplementary Materials we 

report empirical evidence of the effect of different prior parameters on this quantity.

The above specification respects (2) and, consequently, the following corollary holds.

COROLLARY 1. The structured increasing shrinkage process defined in (5)

i. is a strongly increasing shrinkage prior under Definition 1;

ii. for any T ∈ (0, 1),

pr
tr ΩH
tr Ω ≤ T ≤ 1

1 − T
bH

1 − bθ0
aσ
bσ j = 1

p
E ϕj1 ,

with b = {α(1 + α)}−1 and θ0 = E ϑℎ .

We conducted a simulation study on the posterior distribution of {tr(ΩH)/tr(Ω) ≤ T} 

for varying hyperparameters, and found that the results, reported in Section S2.4 of the 

Supplementary Material, were quite consistent with our prior truncation error bounds.

The prior concentration of the structured increasing shrinkage process in (5) follows from 

(4):

pr |λjℎ| > ϵ ≤
E ϑℎ 1 − E πℎ E ϕjℎ

ϵ2 =
θ0 α/ 1 + α ℎ

ϵ2
cp
2 .

In addition, the inverse gamma prior on ϑℎ implies a power law tail distribution on γh 

inducing robustness properties on λjh as formalized by the next corollary of Proposition 2 

and Theorem 2.

COROLLARY 2. Under the structured increasing shrinkage process defined in (5)

i. the marginal prior distribution on λjh (j = 1, …, p; h = 1, 2, …) has power law 
tails;

ii. under Assumption 1, the prior on λjh (j = 1, …, p; h = 1, 2, …) is tail robust 
under Definition 2.

Finally, it is important to assess the joint sparsity properties of the prior on each column of 

Λ. This is formalized in the following corollary of Theorem 3.

COROLLARY 3. If cp = O{log(p)/p} the structured increasing shrinkage process defined in (5) 
is asymptotically increasingly sparse under Definition 3.

3.2. Posterior computations

Posterior inference is conducted via Markov chain Monte Carlo sampling. Following 

common practice in infinite factor models (Bhattacharya & Dunson, 2011; Legramanti et 
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al., 2020; Schiavon & Canale, 2020) we use an adaptive Gibbs algorithm, which attempts 

to infer the best truncation level H while drawing from the posterior distribution of the 

parameters. The value of H is adapted only at some Gibbs iterations by discarding redundant 

factors and, if no redundant factors are identified, by adding a new factor by sampling 

its parameters from the prior distribution. Convergence of the Markov chain is guaranteed 

by satisfying the diminishing adaptation condition in Theorem 5 of Roberts & Rosenthal 

(2007), by specifying the probability of occurrence of an adaptive iteration t as equal to p(t) 
= exp(α0 + α1t), where α0 and α1 are negative constants, such that frequency of adaptation 

decreases.

The decomposition of γh into two parameters ρh and ϑℎ allows one to identify the inactive 

columns of Λ, corresponding to the redundant factors, as those with ρh = 0, while Ha 

indicates the number of active columns of Λ. Consequently, at the adaptive iteration t + 

1, the truncation level H is set to H t + 1 = Ha
t + 1 if Ha

t < H t − 1, and H(t+1) = H(t) + 

1 otherwise. Given H(t+1), the number of factors of the truncated model at iteration t + 1, 

the sampler draws the model parameters from the corresponding posterior full conditional 

distributions. The detailed steps of the adaptive Gibbs sampler for the structured increasing 

shrinkage prior in case of Gaussian or binary data are reported in the Supplementary 

Material, as well as trace plots of the posterior samples for some parameters of the model in 

Section 5 (see Section S3.2), showing good mixing.

3.3. Identifiability and posterior summaries

Non-identifiability of the latent structure creates problems in interpretation of the results 

from Markov chain Monte Carlo samples. Indeed, both Λ and η are only identifiable 

up to an arbitrary rotation P with PPT = Ik. This is a well known problem in Bayesian 

factor models and there is a rich literature proposing post-processing algorithms that align 

posterior samples Λ(t), so that one can then obtain interpretable posterior summaries. Refer 

to McParland et al. (2014), Aßmann et al. (2016), and Roy et al. (2019) for alternative 

post-processing algorithms in related contexts.

Unfortunately, such post-hoc alignment algorithms destroy the structure we have carefully 

imposed on the loadings in terms of sparsity and dependence on meta covariates. Therefore, 

we propose a different solution to obtain a point estimate of Λ based on finding a 

representative Monte Carlo draw Λ(t) consistently with the proposals of Dahl (2006) 

and Wade et al. (2018) in the context of Bayesian model-based clustering. Specifically, 

we summarize Λ and β = (β1, β2, …) through Λ(t*) and β(t*) sampled at iteration t*, 

characterized by the highest marginal posterior density function f (Λ, β, Σ | y) obtained by 

integrating out the scale parameters τ0, γh, ϕjh (j = 1, …, p, h = 1, …) and the latent factors 

ηi (i = 1, …, n) from the posterior density function. Formally, we select the iteration t* ∈ {1, 

…, T} such that

f Λ t * , β t * , Σ t * |y > f Λ t , β t , Σ t |y t = 1, …, T ,
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where t = 1, …, T indexes the posterior samples. Under the structured increasing shrinkage 

prior described in Section 3.1, these computations are straightforward. The matrices Λ(t*), 

β(t*), Σ(t*) are Monte Carlo approximations of the maximum a posteriori estimator, which 

corresponds to the Bayes estimator under L∞ loss. Although one can argue that L∞ is not 

an ideal choice of loss philosophically in continuous parameter problems, it nonetheless is 

an appealing pragmatic choice in our context and is broadly used in other sparse estimation 

contexts, as in the algorithm proposed by Ročková & George (2016) that similarly aims to 

recover a strongly sparse posterior mode of an over-parameterized factor model.

4. SIMULATION EXPERIMENTS

We assess the performance of our structured increasing shrinkage prior compared with 

current approaches (Bhattacharya & Dunson, 2011; Ročková & George, 2016; Legramanti 

et al., 2020) through a simulation study. We have a particular interest in inferring sparse 

and interpretable loadings matrices Λ, but also assess performance in estimating the induced 

covariance matrix Ω and number of factors. We generate synthetic data from four scenarios 

based on different loadings structures. For each scenario we simulate R = 25 data sets with 

n = 250 observations from yi ∼ Np 0, Λ0Λ0
T + Ip  (i = 1, …, n). In Scenario a, we assume 

non sparse Λ0, sampling the loadings λjh from a Gaussian distribution with mean zero, 

variance equal to σλ
2 = 1 and ordering them to obtain decreasing variance over the columns. 

To ensure that each element λjh represents a signal, we shifted them away from zero by 

σλ
2/3. In Scenario b we remove the decreasing behaviour and introduce a random sparsity 

pattern characterized by an increasing number of zero entries over the column index. The 

loadings matrix for Scenario c is characterized by both the decreasing behaviour over the 

columns of Scenario a and the random sparsity structure of Scenario b. Finally, in Scenario 

d, while the decreasing behaviour is kept, we induce a sparsity pattern dependent on a 

categorical and two continuous meta covariates x0. Details are reported in Section S2.2 of 

the Supplementary Material.

For each scenario we consider four combinations of dimension and sparsity level of Λ0. 

We let (p, k, s) ∈ {(16, 4, 0.6), (32, 8, 0.4), (64, 12, 0.3), (128, 16, 0.2)}, where s 
is the proportion of non-zero entries of Λ, with the exception of Scenario a where s 
= 1. In these settings the algorithm takes from 0.07 to 0.73 seconds of computational 

time per iteration depending on the dimension p and considering an R implementation on 

an Intel Core i5-6200U CPU laptop with 15.8 GB of RAM. To estimate the structured 

increasing shrinkage model, we set x equal to the p-variate column vector of 1s, σβ = 1 and, 

consistently with Corollary 3, cp = 2e log(p)/p. In Scenario d we also estimate and compare 

a correctly specified structured increasing model with x = x0. For the method proposed 

by Ročková & George (2016), we set the hyperparameters as suggested by the authors, 

while for the remaining approaches, we follow the hyperparameter specification and factor 

selection guidelines in Section 4 of Schiavon & Canale (2020).

Scenario a is a worst case for the proposed method since there is no sparsity, no structure, 

and the elements of the loadings matrix are similar in magnitude. However, even in this 

case, structured increasing shrinkage performs essentially identically to the best competitor, 
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as illustrated by the results in Table 1. The results of Ročková & George (2016) are not 

reported as they are not competitive, as can be seen in table S2 in the Supplementary 

Material. We report the median and interquartile range over the R replicates of the logarithm 

of the pseudo-marginal likelihood (Gelfand & Dey, 1994) and of the estimated posterior 

mean of the number of factors E(Ha | y).

Scenario b judges performance in detecting sparsity. The proposed approach shows better 

performance in the logarithm of the pseudo-marginal likelihood and mean squared error of 

the covariance matrix, particularly as sparsity increases, as displayed in Fig. 2. Consistently 

with (Legramanti et al., 2020), the covariance mean squared error is estimated in each 

simulation by 
j, l

p

t = 1

S
ωjl

t − ωjl0
2/ p p + 1 /2 , where ωjl0 and ωjl

t  are the elements jl of 

Ω0 = Λ0Λ0
T + Ip and Ω t = Λ t Λ t T + Ip, respectively. The proposed approach allows exact 

zeros in the loadings, while the competitors require thresholding to infer sparsity. Following 

the thresholding approach described in Section S2.2 of the Supplementary Material, we 

evaluate performance in inferring the sparsity pattern via the mean classification error:

MCE = 1
S t = 1

S j = 1

p

ℎ = 1
k * t

|1 λjℎ0 = 0 − 1 λjℎ
t = 0 |

pk ,

where k*(t) is the maximum between the true number of factors k and Ha
t , and λjh0 and λjℎ

t

are the elements jh of Λ0 and Λ(t), respectively. If Ha
t  or k are smaller than k*, we fix the 

higher indexed columns at zero, possibly leading to a mean classification error bigger than 

one. The results reported in Table 2 show that the proposed structured increasing shrinkage 

prior is much more effective in identifying sparsity in Λ, maintaining good performance 

even with large p and in strongly sparse contexts. Also, more accurate estimation of the 

number of factors is obtained, as reported in Table S1 in the Supplementary Material.

Similar comments apply in Scenarios c and d reported in Fig. S2 in the Supplementary 

Material. The superior performance of the structured increasing shrinkage model is only 

partially mitigated in Scenario c for large p for the logarithm of the pseudo-marginal 

likelihood. In Scenario d, the use of meta covariates has a mild benefit in identifying the 

sparsity pattern. In lower signal-to-noise settings, meta covariates have a bigger impact, and 

they also aid interpretation, as illustrated in the next section. Additional details, tables, and 

plots for all scenarios are reported in Section S2.3 of the Supplementary Material.

5. FINNISH BIRD CO-OCCURRENCE APPLICATION

We illustrate our approach by modelling co-occurrence of the fifty most common bird 

species in Finland (Lindström et al., 2015), focusing on data in 2014. Response y is an n 
× p binary matrix denoting occurrence of p = 50 species in n = 137 sampling areas. An n 
× c environmental covariate matrix w is available, including a 5-level habitat type, ‘spring 

temperature’ (mean temperature in April and May), and (spring temperature)2, leading to c 

Schiavon et al. Page 12

Biometrika. Author manuscript; available in PMC 2022 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 7. We consider a meta covariate p × q matrix x of species traits: logarithm of typical body 

mass, migratory strategy (short-distance migrant, resident species, long-distance migrant), 

and a 7-level superfamily index. We model species presence or absence via a multivariate 

probit regression model:

yij = 1 zij > 0 , zij = wiTμj + ϵij, ϵi = ϵi1, …, ϵip
T ∼ Np 0, ΛΛT + Ip , (6)

where μj characterizes impact of environmental covariates on species occurrence 

probabilities, and covariance in the latent zi vector is characterized through a factor model. 

To borrow information across species while incorporating species traits, we let

μj ∼ Nc bxj, σμ2Ic , b= b1, …, bq , bm ∼ Nc 0, σb
2Ic , (7)

where b is a c × q coefficient matrix with column vectors bm given Gaussian priors.

Model (6)–(7) is consistent with popular joint species distribution models (Ovaskainen et al., 

2016; Tikhonov et al., 2017; Ovaskainen & Abrego, 2020), with current standard practice 

using a multiplicative gamma process for Λ. We compare this approach to an analysis that 

instead uses our proposed structured increasing shrinkage prior to allow the species traits x 
to impact Λ and hence the covariance structure across species. After standardizing w and x, 

we set α = 4, aθ = bθ = 2 and σμ = σb = 1. Posterior sampling is straightforward via a Gibbs 

sampler reported in Section S3.1 of the Supplementary Material.

Figure S8 in the Supplementary Material displays the posterior means of μ and b. A first 

investigation shows large heterogeneity of the habitat type effects across different species. 

Matrix b shows that covariate effects tend to not depend on migratory strategy or body mass, 

with the exception of urban habitats tending to have more migratory birds.

The estimated Λ and meta covariate coefficients β, following the guidelines of Section 3.3, 

are displayed in Fig. 3. The loadings matrix is quite sparse, indicating that each latent factor 

impacts a small group of species. Positive sign of the loadings means that high levels of the 

corresponding factors increase the probability of observing birds from those species. Lower 

elements of β(t*), represented with light cells on the right panel, induce higher shrinkage 

on the corresponding group of birds. To facilitate interpretation, we re-arrange the rows of 

Λ(t*) according to the most relevant species traits in terms of shrinkage, which are migration 

strategy and body mass. The species influenced by the first factor are fairly homogeneous, 

characterized by short distance or resident migratory strategies and a larger body mass. The 

strongly negative value of β(t*)42 suggests heavier species of birds tend to have loadings 

close to zero for the second factor. This is also true for the third factor, which also does not 

impact short-distance migrants.

Figure S9 in the Supplementary Material shows a spatial map of the sampling units coloured 

accordingly to the values of the first and the third latent factors. We can interpret these latent 

factors as unobserved environmental covariates. We find that the species traits included in 

our analysis only partially explain the loadings structure; this is as expected and provides 

motivation for the proposed approach. Sparsity in the loadings matrix helps in interpretation. 
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Species may load on the same factor not just because they have similar traits but also 

because they tend to favor similar habitats for reasons not captured by the measured traits.

The induced covariance matrix Ω = ΛΛT + Ip across species is of particular interest. We 

compare estimates of Ω under the multiplicative gamma process, estimated using the R 

package hmsc (Tikhonov et al., 2020), and our proposed structured increasing shrinkage 

model. Figure 4 reports the posterior mean of the correlation matrices under the two 

competing models. The network graph based on the posterior mean of the partial correlation 

matrices, reported in Fig. 5, reveals several communities of species under the proposed 

structured increasing shrinkage prior that are not evident under the multiplicative gamma.

We also find that the multiplicative gamma process provides a slightly worse fit to the 

data. The logarithm of the pseudo marginal likelihood computed on the posterior samples 

of the structured increasing shrinkage model is equal to −21.06, higher than that achieved 

by the competing model, which is −21.36. Using 4-fold cross-validation, we compared 

the log-likelihood evaluated in the held-out data, with μ and Ω estimated by the posterior 

mean in the training set. The mean of the log-likelihood was −22.62 under the structured 

increasing shrinkage and −23.22 under the multiplicative gamma process prior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Lemmas and proofs

Proof of Theorem 1. The variance of λjh is

var λjℎ = E E λjℎ
2 |ϕjℎ, γℎ, τ0 = E E θjℎ|ϕjℎ, γℎ, τ0 .

By construction, E θjℎ|ϕjℎ, γℎ, τ0 = ϕjℎγℎτ0. Then,

var λjℎ = E ϕjℎγℎτ0 = E ϕj1 E γℎ E τ0 > E ϕj1 E γℎ + 1 E τ0 = var λjℎ + 1 ,

since the scale parameters are independent and the local scale ϕjh is equally distributed over 

the column index h. □

To prove Proposition 2 we need to introduce the following Lemma.

LEMMA 3. Let u, v denote two real positive random variables. If at least one among (u | v) 

and (v | u) is power law tail distributed, then the product uv is power law tail distributed.
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Proof. For a positive value w, we can write

pr uv > w = 0
∞

pr u > w/v|v f v dv = E Fu|v
C w/v ,

where Fu|v
C w = pr u > w|v  and f(v) is the probability density function of v. If 

Fu|v
C w ≥ cw−α with c, α positive constants and w greater than a sufficiently large number L, 

then

pr uv > w ≥ E c w/v −α = cw−αE vα w > L ≫ 0 .

If E(vα) = ∞, then pr(uv > w) > cw−α = O(w−α), otherwise pr(uv > w) ≥ v(w) for w > L, 

with v(w) a function of order O(w−α) as w goes to infinity. This shows that the right tail of 

the distribution of the random variable uv follows a power law behaviour. □

Proof of Proposition 2. Consider the strictly positive random variables θjℎ* = θjℎ|θjℎ > 0 , 

τ0* = τ0|τ0 > 0 , γℎ* = γℎ|γℎ > 0 , and ϕjℎ* = ϕjℎ|ϕjℎ > 0 . Since θjℎ*  is equal to the product 

τ*γℎ*ϕjℎ*  of independent positive random variables, Lemma 3 ensures that if at least one 

of those scale parameters follows a power law tail distribution, then θjℎ*  is power law tail 

distributed, so that pr θjℎ* > θ ≥ cθ−α for c, α positive constants and θ > L. Without loss of 

generality, we focus on the right tail of λjh. Let

pr λjℎ > λ = pr λjℎ > λ|θjℎ > 0 pr θjℎ > 0 + pr λjℎ > λ|θjℎ = 0 pr θjℎ = 0 . (1)

It is straightforward to observe that λjh marginally has a power law tail if and only if (λjh | 

θjh > 0) is power law tail distributed and pr(θjh > 0) is strictly positive. Since pr(τ0 > 0) > 

0, pr(γh > 0) > 0, and pr(ϕjh > 0) > 0, then pr(θjh > 0) > 0, given independence between the 

scale parameters. Focusing on θjh > 0 in the first term of the right hand side of (1), we have

pr λjℎ > λ|θjℎ* = 1 − Φ λθjℎ
* − 0.5 ,

and we want to prove that the marginal Fλjℎ
c λ = pr λjℎ > λ  is sub-exponential as λ → ∞. 

Using the lower bound for the right tail of the standard Gaussian of Abramowitz & Stegun 

(1948),

1 − Φ λθjℎ
* − 0.5 ≥ 2

π
0.5 θjℎ

* 0.5

λ + λ2 + 4θjℎ*
0.5e−λ2/ 2θjℎ* .

Marginalizing over θjℎ* , we obtain

Schiavon et al. Page 15

Biometrika. Author manuscript; available in PMC 2022 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pr λjℎ > λ|θjℎ* ≥ E 2
π

0.5 θjℎ
* 0.5

λ + λ2 + 4θjℎ*
0.5e−λ2/ 2θjℎ* = E tλ θjℎ* ,

where tλ θjℎ*  is a monotonically increasing nonnegative function defined on the positive real 

line. Applying Markov’s inequality, we have E tλ θjℎ* > pr θjℎ* > ϵ tλ ϵ , and letting ϵ = λ2

E tλ θjℎ* > pr θjℎ* > λ2 e−0.5

1 + 50.5
2
π

0.5
.

If pr θjℎ* > λ ≥ cλ−α for certain α, c positive constants and λ sufficiently large, then

pr λjℎ > λ|θjℎ* ≥ e−0.5

1 + 50.5
2
π

0.5
cλ−2α = cλ−α,

where c = e−0.5 1 + 50.5 −1 2/π 0.5c > 0 and α = α/2 > 0. By symmetry, 

pr λjℎ < − λ|θjℎ > 0 ≥ cλ−α for λ > L sufficiently large. It is sufficient that the marginal 

distribution of θjℎ*  has power law right tail to guarantee that λjℎ|θjℎ > 0  has power law tail 

and then that marginally λjh has power law tail. □

Proof of Theorem 2. The mode of the conditional posterior density of λjh is λjℎ such that

ls λjℎ; y, η + ∂
∂λ log fλjℎ|Λ−jℎ λ |λ = λjℎ = 0, (2)

where ls λjℎ; y, η  is the jhth element of the score function of the likelihood for the data 

y conditionally on the latent variables η, and fλjℎ|Λ−jℎ is the conditional prior density 

function of λjℎ|Λ−jℎ . Given prior symmetry, without loss of generality, we focus on 

λjℎ > 0. In a neighbourhood λjℎ − ε, λjℎ + ε  of the conditional maximum likelihood 

estimate λjℎ of λjh, we can approximate the score function using a Taylor expansion: 

ls λ; y = − J λjℎ λ − λjℎ + ϵε, where J λjℎ > 0 is the negative of the derivative of ls (λ; 

y) evaluated at λ = λjℎ, and ϵε is an approximation error term such that limε 0ϵε/ε = 0. 

For λjℎ large enough, such that λjℎ − ε > L with L ≫ 0, Lemma 1 holds for every λ in 

λjℎ − ε, λjℎ + ε , leading to the lower bound

−J λjℎ λ − λjℎ + f′lb λ + ϵε ≤ ls λ; y + ∂
∂λ log fλjℎ|Λ−jℎ λ ,
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where f′lb λ  is a non positive continuous function for every λ > 0, limλ + ∞f′lb λ = 0. 

Let ε be a function of λjℎ such that limλjℎ ∞ε = 0 and limλjℎ ∞f′lb λjℎ /ε = 0. The limit 

for λjℎ ∞ of the lower bound evaluated in λjℎ − ε is

lim
λjℎ ∞

J λjℎ ε + f′lb λjℎ − ε + ϵε = lim
λjℎ ∞

|ε| J λjℎ + f′lb λjℎ − ε /|ε| + ϵε/|ε| .

Under Assumption 1, limλjℎ ∞J λjℎ + f′lb λjℎ − ε /|ε| + ϵε/|ε| ≥ 0, which guarantees 

λjℎ − ε ≤ λ jℎ ≤ λjℎ, and, hence limλjℎ ∞|λ jℎ − λjℎ| = 0, which proves the theorem. □

Proof of Theorem 3. Since the local scales are independent, conditionally on β, we can apply 

the Chernoff’s method and obtain the following upper bound

pr |suppϵ λℎ | > asp|βℎ, γℎ, τ0 ≤ exp −spat exp et − 1
j = 1

p
ζϵjℎ ,

for every t > 0 and ζϵjℎ = τ0γℎg xjTβℎ /ϵ2 a function of βh. Since g xjTβℎ  is of order 

≤ O log p /p  by assumption and is limited above with respect to βh, we can deduce 

g xjTβℎ ≤ cjlog p /p for p sufficiently large and for some constant cj > 0 that does not depend 

on βh and is asymptotically of order O(1) with respect to p. Then, for p ≫ 0,

j = 1

p
g xjTβℎ ≤

j = 1

p
cj log p /p ≤ p log p /p max

1 ≤ j ≤ p
cj = m log p ,

where m = max1 ≤ j ≤ pcj does not depend on βh. Then, the upper bound is

pr |suppϵ λℎ | > asp|βℎ, γℎ, τ0 ≤ exp −spat + et − 1
τ0γℎ
ϵ2 mlog p .

Let us choose t = log ϵ2/ τ0γℎm + 1 . Since sp ≥ log p cs for a certain cs > 0, then, for any 

a > cst −1, we can write

pr |suppϵ λℎ | > asp|βℎ, γℎ, τ0 ≤ exp −log p a ,

where a is a positive constant such that a = 1 + a cst −1. The upper bound does not depend 

on βh, so

pr |suppϵ λℎ | > asp|γℎ, τ0 ≤ v p

with ν(p) of order O(p−1) that goes to zero. □
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Fig. 1: 
Illustrative loadings matrix of an ecology application, where the rows refer to ten bird 

species belonging to three phylogenetic orders. White cells represent the elements of Λ 
equal to zero, while blue and red cells represent negative and positive values, respectively.
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Fig. 2: 
Boxplots of mean squared error of the covariance matrix of each model for different 

combinations of (p, k, s) in Scenario b. Cov. MSE, covariance mean squared error; 

CUSP, cumulative shrinkage process; MGP, multiplicative gamma process; SIS, structured 

increasing shrinkage process.

Schiavon et al. Page 21

Biometrika. Author manuscript; available in PMC 2022 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Posterior summaries Λ(t*) and β(t*) of the structured increasing shrinkage model; rows of left 

matrix refer to 50 birds species, and rows of right matrix to ten species traits. Light coloured 

cells of β(t*) induce shrinkage on corresponding cells of Λ(t*).
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Fig. 4: 
Posterior mean of the correlation matrices estimated by the structured increasing shrinkage 

model (on the left) and the multiplicative gamma process model (on the right).
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Fig. 5: 
Graphical representation based on the inverse of the posterior mean of the correlation 

matrices estimated by the structured increasing shrinkage model (on the left) and the 

multiplicative gamma process model (on the right). Edge thicknesses are proportional to 

the latent partial correlations between species. Values below 0.025 are not reported. Nodes 

are positioned using a FruchtermanReingold force-direct algorithm.
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Table 1:

Median and interquartile range of LPML and E(Ha | y) in 25 replications of Scenario a for different 

combinations of (p, k); Scenario a is a worst case for the proposed SIS method.

(p, k) MGP CUSP SIS

Q0.5 IQR Q0.5 IQR Q0.5 IQR

LPML (16,4) −28.68 0.42 −28.68 0.43 −28.65 0.41

(32,8) −60.08 0.45 −60.09 0.45 −60.07 0.49

(64,12) −117.68 0.56 −117.75 0.53 −117.88 0.56

(128,16) −225.04 1.04 −225.13 1.04 −228.76 1.47

E(Ha | y) (16,4) 8.17 1.44 4.00 0.00 4.00 0.00

(32,8) 10.68 0.33 8.00 0.00 8.00 0.00

(64,12) 14.16 1.09 12.00 0.00 12.00 0.00

(128,16) 17.03 0.47 16.00 0.00 18.00 0.02

LPML, logarithm of the pseudo-marginal likelihood; CUSP, cumulative shrinkage process; MGP, multiplicative gamma process; SIS, structured 
increasing shrinkage process; Q0.5, median; IQR, interquartile range.
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Table 2:

Median and interquartile range of the mean classification error computed in 25 replications assuming Scenario 

b and several combinations of (p, k, s)

MCE (p, k, s) MGP CUSP SIS

Q0.5 IQR Q0.5 IQR Q0.5 IQR

(16,4,0.6) 1.06 0.16 0.38 0.01 0.24 0.09

(32,8,0.4) 0.70 0.07 0.48 0.08 0.16 0.09

(64,12,0.3) 0.61 0.07 0.58 0.01 0.09 0.06

(128,16,0.2) 0.49 0.03 0.52 0.08 0.04 0.01

MCE, mean classification error; MGP, multiplicative gamma process; CUSP, cumulative shrinkage process; SIS, structured increasing shrinkage 
process; Q0.5, median; IQR, interquartile range.
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