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Summary

Factorization models express a statistical object of interest in terms of a collection of simpler
objects. For example, a matrix or tensor can be expressed as a sum of rank-one components.
However, in practice, it can be challenging to infer the relative impact of the different components
as well as the number of components. A popular idea is to include infinitely many components
having impact decreasing with the component index. This article is motivated by two limitations of
existing methods: (1) lack of careful consideration of the within component sparsity structure; and
(2) no accommodation for grouped variables and other non-exchangeable structures. We propose a
general class of infinite factorization models that address these limitations. Theoretical support is
provided, practical gains are shown in simulation studies, and an ecology application focusing on
modelling bird species occurrence is discussed.
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1. InTRODUCTION

Factorization models are used routinely to express matrices, tensors or other statistical
objects based on simple components. The likelihood for data ) under a general class of
factorization models can be expressed as L(y; A, ¥, Z), with A = (Ap h=1, ..., Ktapx
kmatrix, Ap= (A1p - kph)T the /th column vector of A, ¥ and X additional parameters,
and ka positive integer. This class includes Gaussian linear factor models (Roweis &
Ghahramani, 1999), exponential family factor models (Jun & Tao, 2013), Gaussian copula
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factor models (Murray et al., 2013), latent factor linear mixed models (An et al., 2013),
probabilistic matrix factorization (Mnih & Salakhutdinov, 2008), underlying Gaussian factor
models for mixed scale data (Reich & Bandyopadhyay, 2010), and functional data factor
models (Montagna et al., 2012). A fundamental problem is how to choose weights for

the components and the number of components 4. This article proposes a general class of
Bayesian methods to address this problem.

Although there is a rich literature, selection of kis far from a solved problem. In
unsupervised settings, it is common to fit the model for different choices of kand then
choose the value with the best goodness-of-fit criteria. For likelihood models, the Bayesian
information criteria is particularly popular. It is also common to use an informal elbow
rule, selecting the smallest & such that the criteria improves only a small amount for &+

1. In specific contexts, formal model selection methods have been developed. For example,
taking a Bayesian approach, one can choose a prior for kand attempt to approximate the
posterior distribution of kA using Markov chain Monte Carlo; see Lopes & West (2004) for
linear factor models, Miller & Harrison (2018) for mixture models and Yang et al. (2018) for
matrix factorization. Although such methods are conceptually appealing, computation can
be prohibitive outside of specialized settings.

Due to these challenges it has become popular to rely on over-fitted factorization models,
which include more than enough components, but with shrinkage priors adaptively removing
unnecessary ones by shrinking their coefficients close to zero. Such approaches were
proposed by Rousseau & Mengersen (2011) for mixture models and Bhattacharya & Dunson
(2011) for Gaussian linear factor models. The latter approach specifically assumes an
increasing shrinkage prior on the columns of the factor loadings matrix A. Legramanti

et al. (2020) recently modified this approach using a spike and slab structure (Mitchell &
Beauchamp, 1988) that increases the mass on the spike for later columns.

Although over-fitted factorizations are widely used, there are two key gaps in the literature.
The first is a careful development of the shrinkage properties of increasing shrinkage

priors (Durante, 2017). Outside of the factorization context and mostly motivated by high-
dimensional regression, there is a rich literature recommending specific desirable properties
for shrinkage priors. These include high concentration at zero to favor shrinkage of small
coefficients and heavy tails to avoid over shrinking large coefficients. Motivated by this
thinking, popular shrinkage priors have been developed including the Dirichlet-Laplace
(Bhattacharya et al., 2015) and horseshoe (Carvalho et al., 2010). Current increasing
shrinkage priors, such as those of Bhattacharya & Dunson (2011), were not designed to
have the desirable shrinkage properties of these priors. For this reason, ad hoc truncation and
use of the horseshoe/Dirichlet-Laplace can outperform increasing shrinkage priors in some
contexts; for example, this was the case in Ferrari & Dunson (2020).

A second gap in the literature on over-fitted factorization priors is the lack of structured
shrinkage. The focus has been on priors for A that are exchangeable within columns, with
the level of shrinkage increasing with the column index. However, it is common in practice
to have meta covariates encoding features of the rows of A. For example, the rows may
correspond to different genes in genomic applications or species in ecology. There is a
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rich literature on incorporating gene ontology in statistical analyses of genomic data; refer,
for example to Thomas et al. (2009). In ecology it is common to include species traits in
species distribution models (Ovaskainen & Abrego, 2020). Beyond the Bayesian literature,
it is common to include structured penalties, with the grouped Lasso (Yuan & Lin, 2006) a
notable example.

Motivated by these deficiencies of current factorizations priors, this article proposes a
broad class of generalized infinite factorization priors, along with corresponding theory and
algorithms for routine Bayesian implementation.

2. GENERALIZED INFINITE FACTOR MODELS

2.1. Model specification

Suppose that an 77x p data matrix yis available. In our motivating application, y;;is a binary
indicator of occurrence of bird species j(j=1, ..., p) in sample i (/= 1, ..., n). Consider the
following general class of models,

vij=t/zij), zZi=Am+e, €~ fe )

with A a px kloadings matrix, n;a k dimensional factor with diagonal covariance matrix
Y =diag(y11, ..., ), €/a p-dimensional error term independent of 7;, and the function
1% — R, for j=1..., p. We refer to this class as generalized factorization models. Class
(1) includes most of the cases mentioned in Section 1. When e;and 7;are Gaussian random
vectors and s the identity function, model (1) is a Gaussian linear factor model. With
similar assumptions for €;and 7; and assuming ¢; = Fj_l{<D(z,-j)}, with ®(z;) the Gaussian
cumulative distribution function, model (1) is a Gaussian copula factor model (Murray

et al., 2013). Exponential family factor models (Jun & Tao, 2013), probabilistic matrix
factorization (Mnih & Salakhutdinov, 2008) and underlying Gaussian models for mixed
scale data (Reich & Bandyopadhyay, 2010) can be obtained by appropriately defining the
elements in (1), whereas multivariate response regression models belong to this framework
when z;is known.

The matrix Q = var(z) can be expressed as Q = AYA T+ I, where X = var(e)). Following
common practice in Bayesian factor analysis (Bhattacharya & Dunson, 2011), we avoid
imposing identifiability constraints on A and assume ¥ is pre-specified. Our focus is on a
new class of generalized infinite factor models induced through a novel class of priors for A
that allows infinitely many factors, A= oo. In particular, we let

where 7y, f,,, and f¢jare supported on [0, o0) with positive probability mass on (0, 00).
The local ¢, column-specific y, and global =y scales are all independent a priori. We let
MO, 0) denote a degenerate distribution with all its mass at zero. Expression (2) induces a
class of scale-mixture of Gaussian shrinkage priors (Polson & Scott, 2010) for the loadings.
Although we allow infinitely many columns in A, (2) induces a prior for Q supported on the
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set of p x ppositive semi-definite matrices under mild conditions reported in Proposition S1
in the Supplementary Material.

Differently from most of the existing literature on shrinkage priors, we want to define a
non-exchangeable structure that includes meta covariates x informing the sparsity structure
of A. In our context, meta covariates provide information to distinguish the p different
variables as opposed to traditional covariates that serve to distinguish the 7 subjects. Letting
xdenote a px g matrix of such meta covariates, we choose f¢j not depending on the index A
and such that

E((»bjhlﬂh) = g(xJTﬁh)’ ﬂh = (ﬂlh’ cees ﬁqh)T’ ﬁmh ~ fﬁ (m =1.., q) ®)

where g: %2 — o c %, is a known smooth one-to-one differentiable link function, x;= (xj,

cey Xjg) T denotes the sth row vector of x, and By, are coefficients controlling the impact of the
meta covariates on shrinkage of the factor loadings in the Ath column of A.

To illustrate the usefulness of (3), consider the previously introduced ecological study and
suppose x; = {1,1(k; =2).....1(x; = q)}T, where x;€ {1, ..., g} denotes the phylogenetic
order of species J. Species of the same order may tend to have similarities that can be
expressed in terms of a shared pattern of high or low loadings on the same latent factors.
To illustrate this situation, we simulate a loadings matrix, displayed in Fig. 1, sampling
from the prior introduced in Section 3 where pr(A j, = 0) > pr(g;, = 0) > 0. The loadings
within each column are penalized basing on the group structure identified by the g=3
phylogenetic orders (Passeriformes, Charadriiformes, and Piciformes) of the p= 10 birds
species considered. Our proposed prior allows for the possibility of such structure while
not imposing it. In the bird ecology application, x can be defined to include not just
phylogenetic placement of each bird species but also species traits, such as size or diet
(Tikhonov et al., 2020). Related meta covariates are widely available, both in other ecology
applications (Miller et al., 2019) and in other fields such as genomics (Thomas et al., 2009).

2.2. Properties

In this section we present some properties motivating the shrinkage process in (2) and
provide insight into prior elicitation. It is important to relate the choice of hyperparameters
to the signal-to-noise ratio, expressed as the proportion of variance explained by the factors.
Section S2.4 of the Supplementary Material provides a study of the posterior distribution

of the proportion of variance explained; the posterior tends to be robust to hyperparameter
choice. Below we study key properties of our prior, including an increasing shrinkage
property, the ability of the induced marginal prior to accommodate both sparse and large
signals, and control of the multiplicity problem in sparse settings. Proofs are included in
the Appendix and in Section S1 of Supplementary Material. This theory illuminates the
role of hyperparameters; specific recommendations of hyperparameter choice in practice are
illustrated under the model settings of Section 3.1.

To formalize the increasing shrinkage property, we introduce the following definition.
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DeriniTion 1. Letting T denote a shrinkage prior on A, 1L, is a weakly increasing shrinkage
prior ifvar(Aj, ) > Vvar(Ajy) forjinl, ..., pand h=2, ..., .11 is a strongly increasing
shrinkage prior ifvar(A gp-1)) > var(Az), forj, s in{1, ..., py and h=2, ..., co.

Weakly increasing shrinkage corresponds to the prior variance increasing across columns
within each row of A, while strongly increasing shrinkage implies that the prior variance of
any loading element is larger than all elements with a higher column index. In the following
Theorem, we show that the process in (2) induces weakly increasing shrinkage under a
simple sufficient condition.

THeoReM 1. Expression (2) is a weakly increasing shrinkage prior under Definition 1 if E(yy)
> K ype1) forany h.

Increasing shrinkage priors favor a decreasing contribution of higher indexed columns of

A to the covariance Q. In addition to inducing a flexible shrinkage structure that allows
different factors to have a different sparsity structure in their loadings, this allows one

to accurately approximate the likelihood L(y; A, V¥, Z) by L(y, A ¥V iy, Z), with Ay
containing the first 4 columns of the infinite matrix A and ¥ 4 the first A rows and columns
of ¥. To measure the induced truncation error of Q = AHTHA% + X, we use the trace of

Q. The trace is justified by the fact that the maximum error occurring in an element of Q
due to truncation always lies along the diagonal and by the relation between difference of
traces and the nuclear norm, routinely used to approximate low rank minimization problems
(Liu & Vandenberghe, 2010). The following Proposition provides conditions on prior (2) so
that the under-estimation of Q that occurs by truncating decreases exponentially fast as A
increases.

ProposiTion 1. Let E(zg) and E(¢p) be finite forj=1, ..., pand h=1, ..., 00 and E(yy) =
ab/™ witha>0 and b€ (0, 1) forall h=1, ..., . Let c> 0 be a sufficiently large number
such thatc > maxp = 1, .. coWhh- If

-1

mQ = min
i=1...p

< 0o,

E(aj—2), E

= 2
> vhid jh)
n=1

then for any T € (0, 1),

()
Pr‘ Q) =

H p
T <(72 T)“C%’"QE(TO)FZIE(‘M)-

The above increasing shrinkage properties can be satisfied by naive priors that over-shrink
the elements of A. It is important to avoid such over-shrinkage and allow not only many
elements that are ~ 0 but also a small proportion of large coefficients. A similar motivation
applies in the literature on shrinkage priors in regression (Carvalho et al., 2010). Borrowing
from that literature, the marginal prior for A j, should be concentrated at zero to reduce
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mean square error by shrinking small coefficients to zero but with heavy tails to avoid
over-shrinking the signal.

To quantify the prior concentration of (2) in an e neighbourhood of zero, we can obtain

pr(14jnl > €) < E(TO)E(Z’)E(‘l’jh) "

as a consequence of Markov’s inequality. Common practice in local-global shrinkage priors
chooses E(zy) small while assigning a heavy-tailed density to the local or column scales.

In our case, (3) allows the bound in (4) to be regulated by meta covariates x, while, under
the condition in Theorem 1, decreasing £( ;) with column index causes an increasing
concentration near zero, since £(¢;y) = E(¢;) for every A, /€ {1, ..., oo}. The means of the
column and the local scales control prior concentration near zero, while over-shrinkage can
be ameliorated by choosing f¢jor f,, (h=1, ..., ) heavy tailed. The following Proposition
provides a condition on the prior to guarantee a heavy tailed marginal distribution for A j,. A
random variable has power law tails if its cumulative distribution function Fhas 1 - A9 =
cr @ for constants ¢> 0, a > 0, and for any ¢> L for L sufficiently large.

ProposiTIoN 2. /f at least one scale parameter among o, yp Or ¢jn, Is characterized by a power
law tail prior distribution, then the prior marginal distribution of A j, has power law tails.

An important consequence of the heavy tailed property is avoidance of over-shrinkage of
large signals. This is often formalized via a tail robustness property (Carvalho et al., 2010).
As an initial result, key to showing sufficient conditions for a type of local tail robustness,
we provide the following Lemma on the derivative of the log prior in the limit as the value of
7\,/'/, — 00,

Lemma 1. If at least one scale parameter among o, y, Or ¢y has a prior with power law tails
for any possible prior distribution of By, then for any finite truncation level H,

- atog{fapin_ ()
lim I Y E—— 0
A— o0

where f AjnlA_j () IS the conditional distribution of \.jy, given the other elements of A 1.

The following definition introduces a type of local tail robustness property.

DeriniTioN 2. Consider model (1) with factors n known. Let f Ajply. A jp(A) denote the

posterior density of \jp, given the data, conditional on any possible value of the other
elements of A  for any finite H, and let 1 jn denote the conditional maximum Iikelihood

estimate of A jy, for any possible value of the other elements of A . We say that the prior on
A jn Is tail robust if

_lim 14y —arg maxf,ljh|y’ 7 A_jh(ﬁ)l =0.
Ajp— 4
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For a given sample, Zjh is a fixed quantity; the above limit should be interpreted as what
happens as the data support a larger and larger maximum likelihood estimate. In order for
tail robustness to hold, we need the data to be sufficiently informative about the parameter
A jnand the likelihood to be sufficiently regular; this is formalized as follows.

Assumption 1. Let L(y; A, n, Z) denote the likelihood for data y conditionally on latent
variables 7, let /(\) denote the derivative function of the log-likelihood with respect to
Ajn and let #(1 ;) denote the negative of the second derivative of the log-likelihood with

respect to A j, evaluated at the conditional maximum likelihood estimate /Tjh. Then /(\) is
a continuous function for every 1 € % and 7(2 ) > v(4 ), Where v(4 ;) is of order O(1) as

//l\jh — 0.
This assumption can be verified for most of the cases mentioned in Section 1; for example,
for Gaussian linear factor models 7(4 ;) is of order O(1) with respect to 2 ;.

THeorem 2. Under Assumption 1, if at least one scale parameter among o, yp Or ¢ IS
power law tall distributed for any possible prior distribution of By, then the prior on'\ jy, Is
tail robust under Definition 2.

As an additional desirable property, we would like to control for the multiplicity problem
within each column A, of the loadings matrix, corresponding to increasing numbers of false
signals as dimension p increases. This can be accomplished by imposing an asymptotically
increasingly sparse property on the prior, which is defined as follows.

DerINITION 3. Lét Isupp(4p)| denote the cardinality of suppe(p) = (j:14jpl > €). Letsp,= o(p)
such that s, > c log(p)/p for some constant cs> 0. We say that the prior on A defined in (2) is
an asymptotically increasingly sparse prior if

lim pr{lsuppe(ﬁh)l > a splyp, 1'0} =0, for some constant a>0.
p— oo

The quantity [suppA\ )| represents an approximate measure of model size for continuous
shrinkage priors and, conditionally on Bg, ¥4, and =, it is a priori distributed as a sum of
independent Bernoulli random variables Ber(¢), where

Torhg(x]Tﬂh)

Cejn = pr(1Ajnl > €lBp, v, 70) < 2

We now provide sufficient conditions for an asymptotically increasingly sparse prior,
allowing regulation of the sparsity behaviour of the prior of the columns of A for increasing
dimension p.

THeorem 3. Consider prior (2) with ¢, (f=1, ..., p) a priorf independent given By If
prig(x] Bp) < vi(p)} = 1, with v{(p) = Oflog(n)/p}, (=1, ..., p), then the prior on A is
asymptotically increasingly sparse under Definition 3.
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The condition of the theorem is easily satisfied, for example, if gis the multiplication of

a bounded function and a suitable offset depending on p as assumed in Section 3.1. The
multiplicative gamma process (Bhattacharya & Dunson, 2011) and cumulative shrinkage
process (Legramanti et al., 2020) do not satisfy the sufficient conditions of Theorem 3, and,
furthermore, the following lemma holds.

Lemma 2. The multiplicative gamma process prior (Bhattacharya & Dunson, 2011) and
the cumulative shrinkage process prior (Legramanti et al., 2020) are not asymptotically
increasing sparse under Definition 3.

Although this Section has focused on properties of the prior, we find empirically that

these properties tend to carry over to the posterior, as will be illustrated in the subsequent
sections. For example, the posterior exhibits asymptotic increasing sparsity; refer to Table

2 of Section 4, which shows results for a novel process in our proposed class that is much
more effective than current approaches in identifying the true sparsity structure, particularly
when pis large.

3. STRUCTURED INCREASING SHRINKAGE PROCESS

3.1. Model specification

In this section we propose a structured increasing shrinkage process prior for generalized
infinite factor models satisfying all the sufficient conditions in Propositions 1-2 and
Theorems 2-3. Let Ga(a, b) denote the gamma distribution with mean &/ and variance
a/?. Following the notation of Section 2.1, we specify

..—1
=1, Yh = Inpn, PjnlBn ~ Ber{loglt (x;rﬂh)cp}, (5)
-1 _ 2
9y, ~ Ga(ag, by), ag > 1, pp = Ber(1 — zp), pp ~ Nq<0, aﬁIq>,

where we assume the link g(x) = logit™(x)c,, with logit™1(x) = e¥(1 + ¢*) and ¢, € (0, 1) a
possible offset. The parameter rr;, = pr(y,, = 0) follows a stick-breaking construction,

=1

h
h = lzlwl, wy = y; I I1 (1 —vy), om~Be(l,a),
= m=

with Be(a, ) the beta distribution with mean a/(a + 5), such that z;, 4 | > =, is guaranteed
forany A=1, ..., 00 and limy, _, ,7;, = 1 almost surely. The prior expected number of

non degenerate A columns is E( Y= 1 p») = « (Legramanti et al., 2020), suggesting setting
a equal to the expected number of active factors. The prior specification is completed
assuming X = diag(of, ..., 03) With 052 ~ Ga(ay, bs) for j= 1, ..., p, consistently with the
literature. The hyperparameters can be chosen based on one’s prior expectation of the
signal-to-noise ratio, as 0'12- is the contribution of the noise component to the total variance of

the jth variable. A sensitivity study in Section S2.4 of the Supplementary Material, however,
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shows that posterior distributions tend to be robust to the specification of 4,, .. Regarding
prior elicitation, we recommend setting bg= agto induce a high enough proportion of
variance explained by the factor model. In Section S2.4 in the Supplementary Materials we
report empirical evidence of the effect of different prior parameters on this quantity.

The above specification respects (2) and, consequently, the following corollary holds.
CoroLLARY 1. The structured increasing shrinkage process defined in (5)

i is a strongly increasing shrinkage prior under Definition 1,

ii. forany T€E (0, 1),

r(Q )
pr‘ Q) =

1\ bl ap<E
r S(1 —T)l—baoig;E(‘ﬁjl)’

with b= {a(l + @)}t and 6y = E(9y).

We conducted a simulation study on the posterior distribution of {tr(Q)/tr(Q) < 7}
for varying hyperparameters, and found that the results, reported in Section S2.4 of the
Supplementary Material, were quite consistent with our prior truncation error bounds.

The prior concentration of the structured increasing shrinkage process in (5) follows from

(4):

E| h
EW9){1 - E(x . o e
pr(l4jpl > €) < @n) ‘Z WE(#jn)} _ bol (iz+ )} 2,,.

In addition, the inverse gamma prior on 9, implies a power law tail distribution on

inducing robustness properties on A j, as formalized by the next corollary of Proposition 2
and Theorem 2.

CoroLLARY 2. Under the structured increasing shrinkage process defined in (5)

i the marginal prior distribution on A, (=1, ..., p; h=1, 2, ...) has power law
tails;

ii. under Assumption 1, the prioron\j, (=1, ..., b, h=1,2, ...) Is tail robust
under Definition 2.

Finally, it is important to assess the joint sparsity properties of the prior on each column of
A. This is formalized in the following corollary of Theorem 3.

CoroLLArY 3. If ¢, = Oflog(p)/p} the structured increasing shrinkage process defined in (5)
Is asymptotically increasingly sparse under Definition 3.

3.2. Posterior computations

Posterior inference is conducted via Markov chain Monte Carlo sampling. Following
common practice in infinite factor models (Bhattacharya & Dunson, 2011; Legramanti et
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al., 2020; Schiavon & Canale, 2020) we use an adaptive Gibbs algorithm, which attempts

to infer the best truncation level A/ while drawing from the posterior distribution of the
parameters. The value of His adapted only at some Gibbs iterations by discarding redundant
factors and, if no redundant factors are identified, by adding a new factor by sampling

its parameters from the prior distribution. Convergence of the Markov chain is guaranteed
by satisfying the diminishing adaptation condition in Theorem 5 of Roberts & Rosenthal
(2007), by specifying the probability of occurrence of an adaptive iteration #as equal to (8
= exp(ag + a1 8, where ag and a4 are negative constants, such that frequency of adaptation
decreases.

The decomposition of y into two parameters pp and 95, allows one to identify the inactive

columns of A, corresponding to the redundant factors, as those with o5, = 0, while H,
indicates the number of active columns of A. Consequently, at the adaptive iteration #+

1, the truncation level Hissetto H+ D = g 4 1if B < HO 1, and H#D = HO +

1 otherwise. Given H1), the number of factors of the truncated model at iteration 7+ 1,
the sampler draws the model parameters from the corresponding posterior full conditional
distributions. The detailed steps of the adaptive Gibbs sampler for the structured increasing
shrinkage prior in case of Gaussian or binary data are reported in the Supplementary
Material, as well as trace plots of the posterior samples for some parameters of the model in
Section 5 (see Section S3.2), showing good mixing.

3.3. Identifiability and posterior summaries

Non-identifiability of the latent structure creates problems in interpretation of the results
from Markov chain Monte Carlo samples. Indeed, both A and # are only identifiable

up to an arbitrary rotation Pwith PP” = /. This is a well known problem in Bayesian
factor models and there is a rich literature proposing post-processing algorithms that align
posterior samples A(, so that one can then obtain interpretable posterior summaries. Refer
to McParland et al. (2014), ABmann et al. (2016), and Roy et al. (2019) for alternative
post-processing algorithms in related contexts.

Unfortunately, such post-hoc alignment algorithms destroy the structure we have carefully
imposed on the loadings in terms of sparsity and dependence on meta covariates. Therefore,
we propose a different solution to obtain a point estimate of A based on finding a
representative Monte Carlo draw A(J consistently with the proposals of Dahl (2006)

and Wade et al. (2018) in the context of Bayesian model-based clustering. Specifically,

we summarize A and 8= (81, B, ...) through A() and A7) sampled at iteration #,
characterized by the highest marginal posterior density function 7(A, 8, Z | J) obtained by
integrating out the scale parameters =y, yp ¢j5(/=1, ..., p, =1, ...) and the latent factors
n;(/=1, ..., n) from the posterior density function. Formally, we select the iteration * € {1,
..., T} such that

f(A(t ) p*) * )Iy) > f(A(’), A0, 2(’)|y) (t=1,...T),
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where t=1, ..., Tindexes the posterior samples. Under the structured increasing shrinkage
prior described in Section 3.1, these computations are straightforward. The matrices A ("),
B, £() are Monte Carlo approximations of the maximum a posteriori estimator, which
corresponds to the Bayes estimator under L o loss. Although one can argue that L« is not
an ideal choice of loss philosophically in continuous parameter problems, it nonetheless is
an appealing pragmatic choice in our context and is broadly used in other sparse estimation
contexts, as in the algorithm proposed by Rockova & George (2016) that similarly aims to
recover a strongly sparse posterior mode of an over-parameterized factor model.

4. SIMULATION EXPERIMENTS

We assess the performance of our structured increasing shrinkage prior compared with
current approaches (Bhattacharya & Dunson, 2011; Rockova & George, 2016; Legramanti
et al., 2020) through a simulation study. We have a particular interest in inferring sparse

and interpretable loadings matrices A, but also assess performance in estimating the induced
covariance matrix Q and number of factors. We generate synthetic data from four scenarios
based on different loadings structures. For each scenario we simulate R = 25 data sets with

n= 250 observations from y; ~ Np(O, AoAg + Ip) (7/=1, ..., n). In Scenario a, we assume

non sparse Ag, sampling the loadings A j; from a Gaussian distribution with mean zero,
variance equal to aﬁ = 1 and ordering them to obtain decreasing variance over the columns.

To ensure that each element A j, represents a signal, we shifted them away from zero by
0'%/3. In Scenario b we remove the decreasing behaviour and introduce a random sparsity

pattern characterized by an increasing number of zero entries over the column index. The
loadings matrix for Scenario c is characterized by both the decreasing behaviour over the
columns of Scenario a and the random sparsity structure of Scenario b. Finally, in Scenario
d, while the decreasing behaviour is kept, we induce a sparsity pattern dependent on a
categorical and two continuous meta covariates xy. Details are reported in Section S2.2 of
the Supplementary Material.

For each scenario we consider four combinations of dimension and sparsity level of Ay.
We let (p, & s) € {(16, 4, 0.6), (32, 8, 0.4), (64, 12, 0.3), (128, 16, 0.2)}, where s

is the proportion of non-zero entries of A, with the exception of Scenario a where s

= 1. In these settings the algorithm takes from 0.07 to 0.73 seconds of computational

time per iteration depending on the dimension pand considering an R implementation on
an Intel Core i5-6200U CPU laptop with 15.8 GB of RAM. To estimate the structured
increasing shrinkage model, we set x equal to the p-variate column vector of 1s, og=1 and,
consistently with Corollary 3, ¢, = 2elog(p)/p. In Scenario d we also estimate and compare
a correctly specified structured increasing model with x = xp. For the method proposed

by Rockova & George (2016), we set the hyperparameters as suggested by the authors,
while for the remaining approaches, we follow the hyperparameter specification and factor
selection guidelines in Section 4 of Schiavon & Canale (2020).

Scenario a is a worst case for the proposed method since there is no sparsity, no structure,
and the elements of the loadings matrix are similar in magnitude. However, even in this
case, structured increasing shrinkage performs essentially identically to the best competitor,
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as illustrated by the results in Table 1. The results of Rockova & George (2016) are not
reported as they are not competitive, as can be seen in table S2 in the Supplementary
Material. We report the median and interquartile range over the R replicates of the logarithm
of the pseudo-marginal likelihood (Gelfand & Dey, 1994) and of the estimated posterior
mean of the number of factors £(H;| J).

Scenario b judges performance in detecting sparsity. The proposed approach shows better
performance in the logarithm of the pseudo-marginal likelihood and mean squared error of
the covariance matrix, particularly as sparsity increases, as displayed in Fig. 2. Consistently
with (Legramanti et al., 2020), the covariance mean squared error is estimated in each

P s
simulation by Z 12 1(0)5,;) _ wﬂo)Z/{p(p +1)/2}, where w;p and wx) are the elements j/ of
Js =

Qo = AoAG + I, and QO = AWAOT 4 1 respectively. The proposed approach allows exact
zeros in the loadings, while the competitors require thresholding to infer sparsity. Following
the thresholding approach described in Section S2.2 of the Supplementary Material, we
evaluate performance in inferring the sparsity pattern via the mean classification error:

’ EZ *_(ll)m(zjho =0)- 11(,15.2 = 0)|

S
1 Ej=l ~
MCE:EIE_I

pk

where K is the maximum between the true number of factors A and H‘(f), and A jxo and Ayh)

are the elements jA of Agand A, respectively. If H((j) or kare smaller than &*, we fix the

higher indexed columns at zero, possibly leading to a mean classification error bigger than
one. The results reported in Table 2 show that the proposed structured increasing shrinkage
prior is much more effective in identifying sparsity in A, maintaining good performance
even with large pand in strongly sparse contexts. Also, more accurate estimation of the
number of factors is obtained, as reported in Table S1 in the Supplementary Material.

Similar comments apply in Scenarios ¢ and d reported in Fig. S2 in the Supplementary
Material. The superior performance of the structured increasing shrinkage model is only
partially mitigated in Scenario ¢ for large p for the logarithm of the pseudo-marginal
likelihood. In Scenario d, the use of meta covariates has a mild benefit in identifying the
sparsity pattern. In lower signal-to-noise settings, meta covariates have a bigger impact, and
they also aid interpretation, as illustrated in the next section. Additional details, tables, and
plots for all scenarios are reported in Section S2.3 of the Supplementary Material.

5. FINNISH BIRD CO-OCCURRENCE APPLICATION

We illustrate our approach by modelling co-occurrence of the fifty most common bird
species in Finland (Lindstrom et al., 2015), focusing on data in 2014. Response yis an n

x pbinary matrix denoting occurrence of p =50 species in 7= 137 sampling areas. An n

x cenvironmental covariate matrix wis available, including a 5-level habitat type, ‘spring
temperature’ (mean temperature in April and May), and (spring temperature)?, leading to ¢
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= 7. We consider a meta covariate p x g matrix x of species traits: logarithm of typical body
mass, migratory strategy (short-distance migrant, resident species, long-distance migrant),
and a 7-level superfamily index. We model species presence or absence via a multivariate
probit regression model:

yij= H(Zij>0)’ zij= l,UiT,Llj+€ij, €i=(6‘[1,...,€l‘p)TNNP(O,AAT-l-IP), (6)

where y;characterizes impact of environmental covariates on species occurrence
probabilities, and covariance in the latent z; vector is characterized through a factor model.
To borrow information across species while incorporating species traits, we let

pj~ N(bxj020),  b=(by.....b;). by~ N[0.031,). ©)
where bis a ¢ x g coefficient matrix with column vectors b, given Gaussian priors.

Model (6)—(7) is consistent with popular joint species distribution models (Ovaskainen et al.,
2016; Tikhonov et al., 2017; Ovaskainen & Abrego, 2020), with current standard practice
using a multiplicative gamma process for A. We compare this approach to an analysis that
instead uses our proposed structured increasing shrinkage prior to allow the species traits x
to impact A and hence the covariance structure across species. After standardizing wand x,
we set a = 4, ag= bg=2 and o, = o= 1. Posterior sampling is straightforward via a Gibbs
sampler reported in Section S3.1 of the Supplementary Material.

Figure S8 in the Supplementary Material displays the posterior means of xand b. A first
investigation shows large heterogeneity of the habitat type effects across different species.
Matrix & shows that covariate effects tend to not depend on migratory strategy or body mass,
with the exception of urban habitats tending to have more migratory birds.

The estimated A and meta covariate coefficients g, following the guidelines of Section 3.3,
are displayed in Fig. 3. The loadings matrix is quite sparse, indicating that each latent factor
impacts a small group of species. Positive sign of the loadings means that high levels of the
corresponding factors increase the probability of observing birds from those species. Lower
elements of ,B(fk), represented with light cells on the right panel, induce higher shrinkage

on the corresponding group of birds. To facilitate interpretation, we re-arrange the rows of
A®) according to the most relevant species traits in terms of shrinkage, which are migration
strategy and body mass. The species influenced by the first factor are fairly homogeneous,
characterized by short distance or resident migratory strategies and a larger body mass. The
strongly negative value of Bs42 suggests heavier species of birds tend to have loadings
close to zero for the second factor. This is also true for the third factor, which also does not
impact short-distance migrants.

Figure S9 in the Supplementary Material shows a spatial map of the sampling units coloured
accordingly to the values of the first and the third latent factors. We can interpret these latent
factors as unobserved environmental covariates. We find that the species traits included in
our analysis only partially explain the loadings structure; this is as expected and provides
motivation for the proposed approach. Sparsity in the loadings matrix helps in interpretation.
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Species may load on the same factor not just because they have similar traits but also
because they tend to favor similar habitats for reasons not captured by the measured traits.

The induced covariance matrix Q = AA 7 + Ipacross species is of particular interest. We
compare estimates of Q under the multiplicative gamma process, estimated using the R
package hmsc (Tikhonov et al., 2020), and our proposed structured increasing shrinkage
model. Figure 4 reports the posterior mean of the correlation matrices under the two
competing models. The network graph based on the posterior mean of the partial correlation
matrices, reported in Fig. 5, reveals several communities of species under the proposed
structured increasing shrinkage prior that are not evident under the multiplicative gamma.

We also find that the multiplicative gamma process provides a slightly worse fit to the
data. The logarithm of the pseudo marginal likelihood computed on the posterior samples
of the structured increasing shrinkage model is equal to —21.06, higher than that achieved
by the competing model, which is —21.36. Using 4-fold cross-validation, we compared
the log-likelihood evaluated in the held-out data, with zand Q estimated by the posterior
mean in the training set. The mean of the log-likelihood was —22.62 under the structured
increasing shrinkage and —23.22 under the multiplicative gamma process prior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Lemmas and proofs

Proof of Theorem 1. The variance of A jp is

var(;) = E{E(ﬁh@ il Vhe ro)} = E{E(0jnl¢jn- vh 70)) -

By construction, E(0;4l¢ . vn. 10) = ¢;nrnto. Then,
var(4jp) = E(¢jnrnro) = E(¢j1)E(rn) E(z0) > E(b)1)E(vh + 1)E(z0) = var(4jp + 1),
since the scale parameters are independent and the local scale ¢ is equally distributed over
the column index A. O
To prove Proposition 2 we need to introduce the following Lemma.

Lemma 3. Let u, v denote two real positive random variables. If at least one among (u| V)
and (v| u) is power law tail distributed, then the product uv is power law tail distributed.
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Proof. For a positive value w, we can write

pr(uv > w) = Ampr(u > w/vlv) f(v)dv = E{Fﬁv(w/u)},

where Fﬁv(w) = pr(u > wiv) and V) is the probability density function of v. If

Fﬁu(w) > cw™* with ¢, a positive constants and w greater than a sufficiently large number L,
then

pr(uv > w) > E{c(w/v)_a} =cw YE(v*) w>L>0.

If A(v*) = oo, then pr(uv> w) > cw * = (W <), otherwise pr(uv> w) = Uw) for w> L,
with ) a function of order (W *) as wgoes to infinity. This shows that the right tail of
the distribution of the random variable vvfollows a power law behaviour. O

Proof of Proposition 2. Consider the strictly positive random variables 97 = (0j4l0;, > 0),
7§ = (zolro > 0), vj, = (valyn > 0), and ;‘h = (¢jnlpjn > 0). Since ejh is equal to the product
T*yp¢}, Of independent positive random variables, Lemma 3 ensures that if at least one

of those scale parameters follows a power law tail distribution, then ejh is power law tail
distributed, so that pr(o;?h > 6) > ¢~ * for ¢, a positive constants and 6> L. Without loss of

generality, we focus on the right tail of A, Let
pr(Ajn > A) = pr(Ajn > A0 > 0)pr(6;, > 0) + pr(Aj, > Al6; = 0)pr(6;, =0). (1)

It is straightforward to observe that A j, marginally has a power law tail if and only if (A j |
6j,> 0) is power law tail distributed and pr(&;, > 0) is strictly positive. Since pr(to > 0) >
0, pr(y,>0) >0, and pr(g;,> 0) > 0, then pr(6;,> 0) > 0, given independence between the
scale parameters. Focusing on ;> 0 in the first term of the right hand side of (1), we have

e\ £_05
pi{Aj > A0%,) =1 - q)(wjh )

and we want to prove that the marginal Fﬁjh(/l) = pr(4j, > 4) is sub-exponential as A — oo,

Using the lower bound for the right tail of the standard Gaussian of Abramowitz & Stegun
(1948),

0.5 (4 =0.5 2
. i K
0'5) > (2) B —— /(2 jh).

k

- q>(/19~
Jih P 2 0.5

h+ (4% +40%,)

Marginalizing over 67, we obtain
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05

. .5
ol a2 G e ) =kl
jh

where t,l(e;‘.‘h) is a monotonically increasing nonnegative function defined on the positive real
line. Applying Markov’s inequality, we have E{r,(6,)} > pr(6%, > €)ra(e), and letting e = A2

e—0.5 1105
7

Elilejn)) > plen> L5

If pr(e;!‘h > /1) > cA~ % for certain a, cpositive constants and A sufficiently large, then

~0.5 105 .
i (3) a2 = 5574,

-1
where & = ¢=03(1+5%7) @/m)*3¢ > 0and & = a/2 > 0. By symmetry,

pr(Ajp < — A0 > 0) > G %fora> L sufficiently large. It is sufficient that the marginal
distribution of 67, has power law right tail to guarantee that (4jnl0j > 0) has power law tail

and then that marginally A j, has power law tail. O

Proof of Theorem 2. The mode of the conditional posterior density of A, is 4;;, such that

(A jne yon) + 210g] Fagin_ (D=7, =0. @

where ls(jjh; ¥s ;1) is the j/th element of the score function of the likelihood for the data
yconditionally on the latent variables 7, and FAjpIA_jy is the conditional prior density
function of (4;,1A_ ;). Given prior symmetry, without loss of generality, we focus on

Ajn > 0. In a neighbourhood (45 — £, 45 + £) of the conditional maximum likelihood
estimate Ejh of A, we can approximate the score function using a Taylor expansion:
I(A:9) = — F(Ajn)(4 = 4;n) + €, where #(1;,) > 0 is the negative of the derivative of /s (A;
) evaluated at 1 = Ejh, and e, is an approximation error term such that lim, _, ge./e = 0.
For Zjh large enough, such that /Tjh — &> L with L> 0, Lemma 1 holds for every A in

(2n — . 4 + £), leading to the lower bound

~F(Ajn)(2 = Ajn)+ 1'16(A) + ee < Is(4; ) + a%log{f/ljhm_jh(l)},
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where f/;5(4) is a non positive continuous function for every A > 0, limy _, 4 o/ 15(4) = 0.
Let & be a function of 4, such that lim3 ;,  of =0 and limj , oof'16(4jn)/€ = 0. The limit

for /Tjh — oo Of the lower bound evaluated in ijh —€is

_lim j(jjh)f‘kf/lb(zjh_f)'*'eg: _lim Isl{j(/?jh)+f’]b(ijh—e)/|£|+e£/|6|}.
Ajp— o0 Ajp— o0

Under Assumption 1, limj ;, —, oo (Ajn) + '16(4jn — €)/1el + e /1l > 0, which guarantees
Ajn—¢€ < Ajn < 4, and, hence limj w4 jn = A jpl = 0, which proves the theorem. O

Proof of Theorem 3. Since the local scales are independent, conditionally on S, we can apply
the Chernoff’s method and obtain the following upper bound

p
pr{lsuppg(/lh)l > asplBp, yh,ro} < exp(—spat)expl(e’ - 1).21C€jh”
j =

for every £> 0 and ¢, = {zorag(x} Bn)}/€* a function of By Since g(x] p) is of order
< O(log(p)/p) by assumption and is limited above with respect to S5, we can deduce
g(xJT/ih) < ¢jlog(p)/p for psufficiently large and for some constant ¢;> 0 that does not depend

on B and is asymptotically of order O(1) with respect to p. Then, for p > 0,

p p
Z :g(x,Tﬂh) < Z :Cj log(p)/p < plog(p)/p max c;=mlog(p),
j=1 j=1 1<j<p

where m = max; < ; < p¢; does not depend on B, Then, the upper bound is

T0Yh
pr{lsuppe(ﬂh)l > asplBp, vhs TO] < exp[—spat + (et - l)e—zmlog(p) .

Let us choose 1 = log{e?/(zgypm) + 1}. Since s, > log(p)c; for a certain ¢5> 0, then, for any

a> (cst)” !, We can write

pr{lsuppe(Ap)l > asp\Bp. vh. 70} < exp{—log(p)a},

where a is a positive constant such that a = (1 + ii)(cst)_l. The upper bound does not depend

on By, so

pr{lsuppe(Ap)l > asplyp, 70} < v(p)

with () of order O(51) that goes to zero. O
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Turdus Philomelos

Dryocopus Martius

Dendrocopus major

Gallinago Gallinago

Numenius Arquata

Tringa Ochropus

Turdus Viscivorus

Parus Montanus

Loxia Curvirostra

Muscicapa Striata

Fig. 1:

Illustrative loadings matrix of an ecology application, where the rows refer to ten bird
species belonging to three phylogenetic orders. White cells represent the elements of A
equal to zero, while blue and red cells represent negative and positive values, respectively.
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Scenario b
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Fig. 2:

ngplots of mean squared error of the covariance matrix of each model for different
combinations of (p, &, s) in Scenario b. Cov. MSE, covariance mean squared error;

CUSP, cumulative shrinkage process; MGP, multiplicative gamma process; SIS, structured
increasing shrinkage process.
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Fig. 3:

Posterior summaries A(™) and A7) of the structured increasing shrinkage model; rows of left
matrix refer to 50 birds species, and rows of right matrix to ten species traits. Light coloured
cells of A7) induce shrinkage on corresponding cells of A(%"),
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Fig. 4:
Posterior mean of the correlation matrices estimated by the structured increasing shrinkage
model (on the left) and the multiplicative gamma process model (on the right).
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Fig. 5:

Graphical representation based on the inverse of the posterior mean of the correlation
matrices estimated by the structured increasing shrinkage model (on the left) and the
multiplicative gamma process model (on the right). Edge thicknesses are proportional to
the latent partial correlations between species. Values below 0.025 are not reported. Nodes
are positioned using a FruchtermanReingold force-direct algorithm.
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Table 1:

Median and interquartile range of LPML and E(H, | y) in 25 replications of Scenario a for different
combinations of (p, k); Scenario a is a worst case for the proposed SIS method.

(0, k) MGP CUSP sIs
Qos IQR Qos IQR Qos IQR
LPML (16,4) -28.68 0.42 -28.68 0.43 -28.65 041

(328) -60.08 045 -60.09 045 -60.07 049

(6412) -117.68 056 -117.75 053 -117.88 0.56

(128,16) -22504 104 -22513 104 -228.76 147

AH,ly)  (16.4) 817 144 400 0.00 400 0.00
(328) 1068 0.33 8.00 0.00 8.00 0.00

(6412) 1416 109 1200 000  12.00 0.00

(12816) 1703 047 1600 000  18.00 0.02

LPML, logarithm of the pseudo-marginal likelihood; CUSP, cumulative shrinkage process; MGP, multiplicative gamma process; SIS, structured
increasing shrinkage process; QQ.5, median; IQR, interquartile range.
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Table 2:

Median and interquartile range of the mean classification error computed in 25 replications assuming Scenario
b and several combinations of (p, k, s)

MCE Pk, 9 MGP CuUsP SIS
Qos IQR Qos IQR Qps IQR
(16,4,06) 106 016 038 001 0.24 0.09
(32,8,04) 070 0.07 048 0.08 0.16 0.09
(64,12,0.3) 061 0.07 058 0.01 0.09 0.06
(128,16,0.2) 049 0.03 052 0.08 0.04 0.01

MCE, mean classification error; MGP, multiplicative gamma process; CUSP, cumulative shrinkage process; SIS, structured increasing shrinkage
process; QQ.5, median; IQR, interquartile range.
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