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Abstract The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, 
and nutrient use efficiency. However, it remains unclear to what extent the composition of the rhizo-
biome is governed by intraspecific variation in host plant genetics in the field and the degree to 
which host plant selection can reshape the composition of the rhizobiome. Here, we quantify the 
rhizosphere microbial communities associated with a replicated diversity panel of 230 maize (Zea 
mays L.) genotypes grown in agronomically relevant conditions under high N (+N) and low N (-N) 
treatments. We analyze the maize rhizobiome in terms of 150 abundant and consistently reproduc-
ible microbial groups and we show that the abundance of many root-associated microbes is explain-
able by natural genetic variation in the host plant, with a greater proportion of microbial variance 
attributable to plant genetic variation in -N conditions. Population genetic approaches identify 
signatures of purifying selection in the maize genome associated with the abundance of several 
groups of microbes in the maize rhizobiome. Genome-wide association study was conducted using 
the abundance of microbial groups as rhizobiome traits, and n=622 plant loci were identified that 
are linked to the abundance of n=104 microbial groups in the maize rhizosphere. In 62/104 cases, 
which is more than expected by chance, the abundance of these same microbial groups was 
correlated with variation in plant vigor indicators derived from high throughput phenotyping of the 
same field experiment. We provide comprehensive datasets about the three-way interaction of host 
genetics, microbe abundance, and plant performance under two N treatments to facilitate targeted 
experiments toward harnessing the full potential of root-associated microbial symbionts in maize 
production.

Editor's evaluation
It is widely assumed that plants actively manipulate their root associated microbiomes although 
the genetic factors that contribute to this process have yet to be discovered. The authors catalog 
the root-associated bacteria that associate with diverse maize lines, grown under low and high 
nitrogen treatments and through a genome-wide association study, identify candidate genetic loci 
that influence the plant associated microbiome. In addition to the interesting insights reported in 
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the present manuscript, these data are likely to be used for and/or compared to, in many future 
studies.

Introduction
Symbiotic relationships between plant hosts and root-associated microbes have been shaped through 
natural selection over millions of years of coevolution (Limborg and Heeb, 2018), and have been a 
driver of crop performance and yield in agricultural production since the beginning of plant domes-
tication (Yadav et al., 2018). Microbial actors in the rhizosphere have been shown to promote plant 
growth (Saleem et al., 2019), improve nutrient use efficiency (Gomes et al., 2018; Zhu et al., 2016), 
and reduce abiotic stress response (Hussain et al., 2018). The promise of high throughput screens for 
plant growth promoting activity in isolated microbial strains or synthetic communities (Singer et al., 
2021; Yee et al., 2021) is the potential discovery of microbial agents that can be used as seed or soil 
additives to improve crop performance under field conditions. Promising results have been observed 
in controlled environments (Van Gerrewey et  al., 2020; Xi et  al., 2020; Yu et  al., 2021), but it 
remains a challenge to achieve similar outcomes in crops under agriculturally relevant field conditions 
(Eida et al., 2017; Kaur et al., 2020; Sessitsch et al., 2019), as many microbial inoculants struggle to 
compete with naturally occurring microbes in the rhizosphere and rarely survive for extended periods 
of time in the field (Piromyou et al., 2011). An improved understanding of how plants shape the 
composition of their rhizobiomes under diverse field conditions would make it more feasible to iden-
tify beneficial plant-microbe interactions that will be persistent and replicable in field environments. 
Moreover, studying the effects of plant genetics on microbial communities may identify opportunities 
to breed crop plants that recruit and maintain superior growth-conducive microbial communities from 
the natural environment.

Few studies to date have addressed the relationship between plant genetics and rhizobiomes 
in field settings, mainly because large-scale rhizosphere sampling (as opposed to leaf microbiome 
sampling) and DNA sequence analysis of microbial communities in diverse plant hosts is time-
consuming, expensive, and poses significant logistical and technical challenges. It has been shown 
that plant genetics can explain variation in both root architecture (Bray and Topp, 2018) and exuda-
tion (Mönchgesang et al., 2016). If these factors in turn shape microbial communities (Sasse et al., 
2018), variation in the root-associated microbial groups (hereafter referred to as rhizobiome traits) 
may also result from genetic factors. Recent studies suggested that the variation in the composition of 
rhizobiomes is likely controlled by plant genetic factors (i.e., heritable) in maize (Peiffer et al., 2013), 
sorghum (Deng et al., 2021), and switchgrass (Sutherland et al., 2021). However, it remains unclear 
to what extent these heritable microbes are affected by the plant host and contribute to variation 
in the crop phenotype. Like any other trait under heritable genetic control, rhizobiome traits can be 
targeted in selective breeding experiments. To explore this idea, previous efforts have been directed 
towards identifying plant genetic loci that are associated with rhizobiome traits. Initial studies have 
shown that rhizosphere microbial communities differ between distinct genotypes of the same host 
species, which has been shown in a study on 27 maize genotypes (Peiffer et al., 2013; Walters et al., 
2018) and more recently, in a diversity panel of 200 sorghum lines (Deng et al., 2021). Genome-wide 
association study (GWAS) has successfully revealed associations between plant genes and rhizobiome 
traits at high-level measures of rhizosphere community dissimilarity (i.e. using principal components) 
in an Arabidopsis diversity panel (Bergelson et al., 2019) or at order level (derived from operational 
taxonomic units [OTUs]) in a sorghum diversity panel (Deng et al., 2021). However, previous attempts 
at linking plant genes to the abundance of specific groups of microbes have had limited success due 
to small population size, limited host genetic diversity, or due to insufficient taxonomic resolution 
(Beilsmith et al., 2019; Liu et al., 2021). It was observed previously (Zhu et al., 2016) that soil micro-
bial communities drastically change in response to N fertilization. In bulk soil, this is likely due to a 
direct effect of N application or lack thereof. In rhizospheres, however, only a subset of the observed 
changes can be attributed to direct effects of nitrogen (N) fertilization, while particular microbial 
groups may be subject to indirect effects induced by the plant host in response to N availability 
or deficiency (Meier et al., 2021). A possible explanation for this could be that during most of the 
interval between maize domestication and the present, beneficial plant-microbe interactions have 
evolved in low-input agricultural systems characterized by relative scarcity of nutrients, predominantly 
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nitrogen (Brisson et al., 2019). This is in stark contrast to the modern agricultural environment that 
has been the norm since the 1960s, in which plants are supplied with large quantities of inorganic N 
fertilizer (Cao et al., 2018). As a consequence, previous selection pressure to retain traits favorable 
under low N conditions, including plant growth-promoting microbes, has been largely reduced in 
modern maize breeding programs (Haegele et al., 2013; Zhu et al., 2016). Thus, if a microbial group 
is indeed under host genetic control and has an effect on plant fitness (i.e. promotes plant develop-
ment or increases crop yield) under either N condition, we would expect the rhizobiome trait to be 
under host selection.

In the present study, we evaluate the role that selection on plant genetic factors has played in 
shaping the maize rhizobiome under different N conditions. We employ the Buckler-Goodman maize 
diversity panel, a set of maize lines selected for maximum representation of genetic diversity and 
growth in temperate latitudes (Flint-Garcia et al., 2005). This population has previously been used to 
determine the heritability of leaf microbiome traits and to perform genome-wide association studies 
(GWAS) on a number of different phenotypes (Wallace et al., 2018). We collected replicated data on 
the rhizobiome of 230 lines drawn from this panel when grown under either high nitrogen (+N) and 
low nitrogen (-N) conditions in the field. For 150 microbial groups present in the rhizosphere (referred 
to as ‘rhizobiome traits’), which were abundant and consistently reproducible, we quantify the degree 
to which variation is subject to plant genetic control, and test for evidence of selection under either 
or both N conditions. Using a set of 20 million high-density single-nucleotide polymorphisms (SNPs), 
we perform GWAS for each rhizobiome trait identifying genomic loci that are associated with one or 
more rhizobiome traits. Through comparison with gene expression data generated for the same popu-
lation, we determine whether genes near microbe-associated plant loci are preferentially expressed in 
root tissue. Lastly, we evaluate whether the abundance of each microbial group in the rhizosphere is 
correlated with plant performance traits measured in the field, and whether microbe abundance and 
plant performance depend on the allele variant at selected microbe-associated plant loci. The results 
presented in this study lay the groundwork for future endeavors to investigate the molecular mecha-
nisms of specific plant-microbe interactions under agronomically relevant conditions.

Results
Characterization of the rhizobiome for diverse maize genotypes under 
two different N conditions
3,313 rhizosphere samples from 230 replicated genotypes of the maize diversity panel (Flint-Garcia 
et  al., 2005) were collected from field experiments conducted under both +N and -N conditions 
(Materials and methods). At the time of sampling, visible phenotypic differences were observable 
between +N and -N plots as measured through aerial imaging (details are reported in Rodene et al., 
2022 using the same experimental field). Paired-end 16 S sequencing produced 216,681,749 raw 
sequence reads representing 496,738 unique amplicon sequence variants (ASVs) (Materials and 
methods). Raw reads were subjected to a series of quality checks and abundance filters following 
a workflow for 16 S sequencing data analysis by Callahan et al., 2016a, which resulted in a curated 
dataset of 3626 ASVs for 3306  samples, and 105,745,986 total ASV counts (Supplementary file 
1). This dataset includes ASVs that are highly abundant across the maize diversity panel and repro-
ducible in both years of sampling. Constrained Principal Coordinates analysis calculated from the 
abundances of 3626 ASVs shows divergence of samples collected under either -N or +N treatment 
(Figure 1A), which indicates that the microbiomes differ between these two experimental conditions 
(PERMANOVA p-value for N treatment <0.001).

An initial analysis looking at high-level rhizobiome traits (Principal Components and alpha diver-
sity metrics derived from the ASV table) shows the same pattern of divergent microbial communities 
between N treatments, and in particular under the -N treatment there is evidence for the associa-
tion of plant genomic loci and microbiome composition (Figure 1—figure supplement 1). To study 
changes in rhizobiome composition more accurately, the final 3626 ASVs were clustered into n=150 
distinct microbial groups (‘rhizobiome traits’), spanning 19 major classes of rhizosphere microbiota 
(Figure 1B, Supplementary files 2 and 3) using a method previously described (Meier et al., 2021, 
Supplementary Methods). Of these rhizobiome traits, 79/150 (52.7%) groups were significantly more 
abundant in samples collected from the +N condition (t-test, p<0.05), 53/150 (35.3%) significantly 
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Figure 1. Diversity, phylogenetics, and heritability of rhizobiome traits. (A) Constrained ordination analysis showing the largest two principal coordinates 
calculated from the abundances of 3626 ASVs. Each diamond represents one sample collected from plants under +N (blue) and -N (red) treatment, 
respectively. Note the separation of N treatments along PCo1. (B) Phylogenetic tree of 150 taxonomic groups of rhizosphere microbiota (‘rhizobiome 
traits’) generated by clustering 3626 ASVs. Families are prefixed with ‘f_’, genus and species names are given where known. Numbers at tree tips 

Figure 1 continued on next page
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more abundant in samples collected from the -N condition, and 18/150 (12.0%) showed no significant 
difference in abundance between the two treatments. In several cases, more closely related microbial 
groups exhibit shared patterns of differential abundance between N treatments (Figure 1—figure 
supplement 2A).

Rhizobiome traits are more heritable under -N conditions
The abundance of each of the 150 rhizobiome traits was assessed separately for +N and -N condi-
tions, and the heritability (proportion of total variance explicable by genetic factors) was estimated 
using an approach following a previous study (Deng et al., 2021) (Materials and methods). Rhizo-
biome traits were comparatively more heritable under -N than +N conditions (paired Student’s t-test, 
p=0.021, Figure 1C). We found 34/150 (22.7%) microbial groups to be significantly heritable (permu-
tation test, p<0.05, Materials and methods) under both N conditions, 18/150 (12%) only under +N 
conditions, and 27/150 (18%) only under -N conditions. Twelve rhizobiome traits exhibited estimated 
h2 >0.6 in both +N and -N conditions (Figure 1—figure supplement 3). These include four groups 
of ASVs assigned to the order Burkholderiales (the genus Pseudoduganella, an unknown genus in 
the Comamonadaceae family, the family A21b, and Burkholderia oklahomensis) and two groups in 
the Sphingomonadales order (Sphingobium herbicidovorans 1 and an unknown genus in the Sphin-
gomonadaceae family). Notably, closely related microbial groups did not exhibit obvious patterns 
of shared high or low estimated heritabilities (Figure 1B). As heritabilities and responses to treat-
ments can vary considerably within families, genera, and lower taxonomic ranks, this underscores the 
importance of adequate taxonomic resolution when analyzing rhizosphere microbial communities. We 
further observed that more abundant microbes in the rhizosphere also tend to be more heritable. The 
correlation of relative abundance vs. heritability was r=0.29 (Pearson’s correlation test, p=3.4 × 10–4) 
for +N and r=0.39 (Pearson’s correlation test, p=1.1 × 10–6) for -N (Figure 1—figure supplement 2B).

Rhizobiome traits are related with plant fitness and predominantly 
under purifying selection
Under the hypothesis that the rhizobiome traits have effects on plant fitness, we sought to estimate 
the selection differentials under different N treatments (Rausher, 1992). To reduce biases due to envi-
ronmental covariances (Lande and Arnold, 1983), the standardized BLUP values of the microbial traits 
were fitted into the fitness function (See Materials and methods). For the selection differential estima-
tion, the canopy coverage (CC) obtained from UAV imaging was used as a proxy for plant fitness. As 
a result, we identified 58 unique rhizobiome traits exhibiting significant linear selection differentials 
(bootstrapping p-value <0.05) under +N (28 traits) and -N (46 traits) treatments (Figure 2—figure 
supplement 1). Additionally, four rhizobiome traits showed significant quadratic selection differentials 
(+N: Luteolibacter pohnpeiensis [–2.627913e-05, p-value = 0.044], -N: Blastococcus [8.516159e-06, 
p-value = 0.03], Pseusomonas umsongensis [–2.003792e-05, p-value = 0.04], Chthoniobacter flavus 
[–5.807404e-05, p-value = 0.028]).

Selection acting on rhizobiome traits can happen either by purging deleterious alleles (purifying 
selection) or by elevating the frequencies of advantageous alleles (positive selection). To evaluate 
the mode of selection at the genomic level, a Bayesian-based method (Genome-wide Complex Trait 
Bayesian analysis, or GCTB) was used to test for each rhizobiome trait (Materials and methods). A 
set of n=834,975 independent SNPs was used to estimate their effects on 150 rhizobiome traits as 
well as 17 conventional plant traits collected from the same population in the same field experiments 

indicate distinct ASVs in each group. Label colors indicate heritability of each rhizobiome trait as in panel C. (C) Heritability (h2) calculated for all 150 
rhizobiome traits under +N and -N treatments. Green line indicates linear regression with 95% confidence interval, r2=0.104. Diagonal dashed line 
denotes identity. Gray lines mark density of data points. Colors indicate whether traits are significantly heritable under either or both N treatments, as 
determined through a permutation analysis using 1000 permutations.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. GWAS of high-level rhizobiome traits.

Figure supplement 2. Abundance and heritability of 150 microbial groups.

Figure supplement 3. Annotations of heritable microbial groups.

Figure 1 continued
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(Materials and methods, Supplementary file 4). Using the relationship between effects of non-zero 
SNPs and their minor allele frequencies (MAFs) as a proxy for the signature of selection (Zeng et al., 
2018), the S parameter was jointly estimated from the GCTB analysis for rhizobiome traits and plant 
traits. According to Zeng (Zeng et al., 2018), if S=0 (i.e. the posterior distribution of S is insignificantly 
different from zero), the SNP effect is independent of MAF, suggesting neutral selection. If there is 
selection acting on the trait, the SNP effect can be positively (S>0) or negatively (S<0) related to MAF, 
indicating positive and purifying selection, respectively.

We report 10 rhizobiome traits that showed both significant linear selection differentials and signif-
icant S parameters (Figure 2A). Under these stringent criteria, nine rhizobiome traits show evidence 
of purifying selection under +N or under -N. One microbial group (Bacillus fumarioli) showed positive 
S values indicating that this trait might have been a target of positive selection. Relative to rhizobiome 
traits, plant leaf traits and nutrient traits were both more likely to exhibit evidence of selection within 
this maize population. Three out of 15 plant leaf traits, that is leaf area (LA), leaf fresh weight (FW), and 

Figure 2. Population parameters estimated from genome-wide SNPs for plant and rhizobiome traits. Selection coefficients (S value) of rhizobiome 
(A) and plant (B) traits calculated for both N treatments using genome-wide independent SNPs. A negative S value indicates negative (purifying) 
selection, and a positive S value indicates positive (directional) selection. Traits are shown that show significant selection under one or both N 
treatments. (C) Number of SNPs showing non-zero effects for both plant and rhizobiome traits. (D) Examples of positive (Bacillus fumarioli) and 
purifying selection (f_Comamonadaceae Unknown Genus) showing minor allele effect vs. allele 1 frequency with data skew to the right and to the left, 
respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Rhizobiome traits exhibit significant linear selection differentials (bootstrapping p-value <0.05) under +N and -N treatments.

https://doi.org/10.7554/eLife.75790
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leaf dry weight (DW) (Materials and methods), exhibited S>0 values under the +N condition, consis-
tent with positive selection, while only one of the three exhibited a slightly negative S value in the -N 
condition and in that case exhibited a pattern consistent with weak purifying selection (Figure 2B). 
Note that the three leaf-related traits are not independent. The pairwise correlation coefficients are 
0.92, 0.91, and 0.94, for LA and FW, LA and DW, FW and DW, respectively. Of the 11 micronu-
trient traits evaluated, 9/11 and 4/11 showed significantly negative S values in trait data collected 
under +N and -N conditions, respectively. From the same GCTB analysis, estimates of the number 
of SNPs with non-zero effects were substantially lower for rhizobiome traits than for conventional 
plant traits, whereas the differences were insignificant between the two N treatments for both rhizo-
biome and plant traits (Figure 2C). Using these non-zero effect SNPs, we plotted their minor allele 
frequency vs. the minor allele effect. As expected, in the case of positive selection (Bacillus fumarioli), 
we observed a skew towards higher MAF and in the case of purifying selection (f_Comamonadaceae 
Unknown Genus), a skew towards lower MAF (Figure 2D).

Genes underlying microbe-associated plant loci are preferentially 
expressed in root tissue
The observation that many rhizobiome traits are both under significant host genetic control and 
targets of selection suggests it may be possible to detect individual large effect loci controlling rhizo-
biome traits. To investigate this, we performed GWAS using each of the 150 rhizobiome traits. This 
analysis was done separately for the -N and +N conditions, as N deficiency induces dramatic changes 
in plant metabolism, including changes in root gene expression (Singh et al., 2013) and root exuda-
tion (Zhu et al., 2016), and because N applied to the field directly impacts soil and rhizosphere micro-
biomes (Meier et al., 2021). We focused on ‘hotspots’ along the genome where we find the highest 
cumulative density of significant associations between SNPs and any rhizobiome traits under either 
N treatment, because morphological (i.e. root architecture) or physiological (root exudation) changes 
may simultaneously affect several rhizobiome traits. For this purpose, we split the maize genome into 
10 kb genomic windows and tallied the number of significant (p<10-7.2) GWAS signals in each window. 
This analysis revealed 622 genomic regions containing at least one significant GWAS signal, and we 
refer to these regions as microbe-associated plant loci (MAPLs) (Materials and methods). We report 
these MAPLs alongside nearby genes in Supplementary file 5. Out of 150 microbial groups, 104 were 
associated with at least one of the 622 loci.

To reduce false discoveries, we decided to discuss a subset of 119 MAPLs here, that had at least 
two significant GWAS signals. Among these 119 MAPLs, 69 were observed under +N treatment and 
50 under -N treatment (Figure 3A, Supplementary file 5). Of the 150 rhizobiome traits evaluated 
here, 35 were associated with at least one of the 119 MAPLs, with 21 rhizobiome traits associated with 
69 MAPLs under the +N treatment and 17 rhizobiome traits with 50 MAPLs under the -N treatment. 
Three rhizobiome traits (f_Chitinophagaceae Unknown Genus, Sphingoaurantiacus, and f_Vicinamib-
acteraceae) showed significant associations under both N treatments, albeit with different plant loci. 
No loci were found that had associations with rhizobiome traits under both N treatments, which is 
expected as GWAS analyses were done separately for different N treatments and the microbial groups 
studied here were partly distinguished based on differential abundance in response to N treatments.

We hypothesized that many plant genes underlying MAPL hotspots may exert control over the 
rhizosphere microbiome via changes in root physiology, architecture, and exudate composition 
(Vandenkoornhuyse et al., 2015) and may therefore be preferentially expressed in root tissue. Tran-
scribed sequences of 97 gene models were completely contained within ±10 kb of the 119 MAPL 
hotspots identified here, where 114/119 MAPLs contained between 1 and 5 genes. We evaluated 
the expression of these MAPL genes relative to the overall patterns exhibited by all genes outside 
the MAPL regions in seven tissues using published expression data from the same maize population 
(Kremling et al., 2018). Expression data was available in this dataset for 73 out of 97 MAPL genes 
across 298 maize genotypes from tissue samples collected at germination and during flowering time. 
These MAPL genes, when compared to (n=29,771) other genes available in the dataset, show on 
average significantly higher expression in the germinating root, the germinating shoot, and the third 
leaf base (Figure 3B).

To complement the gene expression data provided by Kremling et. al, we selected four diverse and 
well characterized maize genotypes (K55, W153R, B73, and SD40). Plants were grown in a controlled 

https://doi.org/10.7554/eLife.75790
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greenhouse environment under standard N and N deficient conditions and gene expression was 
analyzed in roots and shoots of two-week old seedlings (for details refer to Xu et al., 2022). In agree-
ment with the dataset provided by Kremling et al, significantly higher expression of 97 MAPL genes 
was observed in root but not leaf tissue compared to (n=44,049) other genes available in this dataset 
(Figure 3C). No strong physiological response to N deficiency was expected for 2-week-old seedlings 
and no significant differences were observed in the pattern of MAPL gene expression between the 
two N treatments.

Collectively, these data are consistent with the hypothesis that rhizobiomes are at least in part 
genetically controlled by the host plant in a process mediated by plant gene expression.

Figure 3. Microbe associated plant loci (MAPLs) contain genes expressed in roots. (A) GWAS of 150 rhizobiome traits reveals microbe-associated 
plant loci across the maize genome. Dashed line indicates the -log10(p)=7.2 significance level for GWAS signals. Circles on top of peaks at each MAPL 
indicate the number of rhizobiome traits associated with each locus. Each MAPL is annotated with the associated rhizobiome trait(s) that showed 
significant GWAS signals. (B) Mean gene expression of 73 MAPL genes and 29,771 other genes in seven tissue types, measured in 298 genotypes of the 
maize diversity panel (Kremling et al., 2018). (C) Mean gene expression of 97 MAPL genes and 44,049 other genes in two tissue types, measured in the 
present study in four maize genotypes under +N and -N treatments.

https://doi.org/10.7554/eLife.75790
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Heritable and adaptively selected rhizobiota are associated with plant 
phenotypes
We investigated the correlation of microbe abundance with 17 plant traits, including leaf physiology, 
leaf micronutrient traits, and traits extracted from aerial images (Materials and methods) to iden-
tify potential plant phenotypic consequences of variation in the abundance of specific rhizosphere 
microbes. Several rhizobiome traits were significantly correlated (p<0.01) with measures of plant 
performance, such as leaf area, leaf dry weight and fresh weight, and with several measures of leaf 
micronutrients such as nitrogen, sulfur, and phosphorus (Figure 4—figure supplement 1). The trait 
that was most strongly linked to microbe abundance was leaf canopy coverage (CC). In total, 62 
microbial groups – more than expected by chance (permutation test, p<0.001) – were significantly 

Figure 4. Heritable microbial groups tend to be correlated with whole plant canopy coverage. (A) Distribution of statistical significance and correlation 
values for the relationship between canopy coverage (CC) and each of 150 microbial groups under either +N or -N conditions. Dashed line indicates 
significance level (p=0.01). (B) Relationship between the estimated heritability of individual rhizobiome traits and correlation of the same individual 
rhizobiome traits with variation in CC. Dashed line indicates significance level (p=0.01).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Correlation of microbe abundance with 17 agronomic and micronutrient traits under +N (blue) and -N (red) conditions.

Figure supplement 2. Microbial traits that correlate with canopy coverage.

https://doi.org/10.7554/eLife.75790
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(Pearson correlation test, p<0.01) associated with CC (marked in Figure  4 in green for positive 
correlation and in red for negative correlation). 30 microbial groups under +N and 35 under -N were 
positively correlated with CC. 14 groups under +N and 12 under -N were negatively correlated with 
CC. 15 microbial groups were associated with CC under +N treatment, 18 under -N treatment, and 29 
showed a significant association under both N treatments (Figure 4A). Under both N treatments, we 
observe an association between heritability and the correlation with CC, which was statistically signif-
icant (Pearson correlation coefficient r=0.39, p=4 × 10–6) for +N and even more significant (r=0.49, 
p=1.7 × 10–9) under the -N condition (Figure 4B).

We summarize the relationship of the analyses conducted in this study under either N treatment 
for the 62 microbial groups that are correlated with CC. 44/62 (71%) are heritable and 13/62 (21%) 
are under selection under either or both N treatments (Figure 4—figure supplement 2 ). 56/62 (90%) 
show strong GWAS signals in 174/467 (39%) of the MAPLs identified here, which contain 255/395 
(65%) of possibly microbe-associated genes. Four microbial groups, Sphingoaurantiacus, Bacillus 
fumarioli, f_Comamonadaceae Unknown Genus, and Burkholderia pseudomallei are of particular 
interest as they overlap in all performed assays, showing evidence of heritability and selection, a 
strong GWAS signal in associated plant genomic loci, and positive correlation with canopy coverage. 
The complete summary data for all 150 microbial groups are available in Supplementary file 3.

Overall, our data show a clear trend that the 62 microbial groups associated with plant perfor-
mance also tend to be associated with host genetics, and the datasets provided here can be used to 
design more targeted experiments to confirm associations of rhizosphere microbial groups with plant 
genetics and performance on a case-by-case basis.

Allelic differences at microbe-associated plant loci predict microbe 
abundance
We identified several strong GWAS signals that link plant genomic loci to rhizobiome traits (Figure 3A). 
Such signals indicate that the pattern of SNPs at a given locus (i.e. the genetic architecture) has a large 
magnitude of effect attached to the abundance of the associated microbial groups. Next, we sought 
to determine whether a particular allele (either the major or the minor variant) in our maize population 
is associated with an increased or decreased abundance of the corresponding microbe.

The unknown genus in the Comamonadaceae family mentioned above, while unnamed and 
uncharacterized, shows high heritability under both N treatments (h2=0.610 under +N, and 0.651 
under -N, Figure  1B and C), and shows evidence of being under purifying selection under -N 
(Figure 2A and D). Under the same environmental conditions, a significant MAPL controlling varia-
tion in microbial abundance is detectable on maize chromosome 10 (Figure 3A and Figure 5A). This 
same rhizobiome trait is among those that are positively correlated with CC under both -N (r=0.347, 
p=5.313 × 10–6) and  +N (r=0.314, p=3.845 × 10–5) (Figure  4A). A total of five annotated gene 
models are located near the peak of significant SNP markers that define the chromosome 10 MAPL 
for this rhizobiome trait (Figure 5A and B). A linkage disequilibrium block was observed between 
23.90 and 23.96 MB on maize chromosome 10, spanning the set of significantly associated SNPs and 
three candidate genes Zm00001d023838, Zm00001d023839, and Zm00001d023840 (Figure 5C). In 
accordance with Figure 3C, these genes are preferentially expressed in roots (Figure 5—figure 
supplement 1). As described above, the abundance of the f_Comamonadaceae genus was signifi-
cantly correlated with variation in CC, shown here for the -N treatment (Figure 5D). Next, we used 
the haplotype information at the target SNP to mark genotypes that carry the major allele or the 
minor allele, respectively, and the abundance of the f_Comamonadaceae genus was significantly 
higher in rhizosphere samples collected from maize genotypes carrying the major allele than in 
samples collected from maize genotypes carrying the minor allele (Figure 5E). However, CC was 
not significantly different between maize genotypes carrying either the major or minor allele of the 
chromosome 10 MAPL (Figure 5F).

The example discussed here shows a three-way association of the abundance of a particular micro-
bial group in the rhizosphere, a corresponding locus on the maize genome, and plant performance 
in the field. The datasets provided alongside this publication contain several such associations and 
may serve as the basis for more targeted experiments to establish a direction of causation between 
microbe abundance and plant performance, and to shed light on the genetic mechanisms that shape 
symbiotic relationships between the plant host and associated rhizosphere microbes.

https://doi.org/10.7554/eLife.75790
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Figure 5. Abundance of heritable, adaptively selected microbes depends on allelic differences at MAPLs. (A) Results of a genome wide association 
study conducted using values for the rhizobiome trait (f_Comamonadaceae Unknown Genus) observed for ~230 maize lines grown under nitrogen 
deficient conditions. Alternating colors differentiate the 10 chromosomes of maize. Dashed line indicates a statistical significance cutoff of -log10(p)=7.2. 
(B) Zoomed in visualization of the region containing the peak observed on chromosome 10. (C) Linkage disequilibrium among SNP markers genotyped 
within this region, calculated using genotype data from 271 lines (D) Correlation plot of microbe abundance vs. canopy coverage (CC). Each point 
represents a maize genotype. Differences in microbe abundance (E) and CC (F) are marked between genotypes carrying the major allele (gold) vs the 
minor allele (purple) at the target SNP (red arrow in panel A and B).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Genes at MAPL are preferentially expressed in roots.

https://doi.org/10.7554/eLife.75790
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Discussion
This study profiled the rhizosphere inhabiting microbiota of several hundred maize genotypes under 
agronomically relevant field conditions. Through a 16 S rDNA-sequencing based approach, we iden-
tified a set of 150 rhizobiome traits based on 3626 ASVs that were highly abundant and consistently 
reproducible in this maize diversity panel. The phylogenetic tree in Figure 1B may deviate from the 
consensus microbial phylogeny since only the 350 bp ribosomal V4 region was used to establish the 
relationship between groups, and more accurate phylogenetic clustering should be considered in 
future studies with emphasis on the evolution of plant-microbe associations. In total, 79 out of the 
150 rhizobiome traits (52%) showed significant evidence of being influenced by host plant genotype 
in one or more environmental conditions. The estimated heritability of rhizobiome traits in this study 
ranged from 0 to 0.757 for the +N treatment (mean 0.320) and from 0 to 0.839 for the -N treatment 
(mean 0.352). A comparable study of the rhizobiomes in a sorghum diversity panel estimated similar 
values (Deng et al., 2021). A previous study on the same maize diversity panel (Wallace et al., 2018) 
investigated the heritability of 185 individual OTUs and 196 higher taxonomic units measured in the 
leaf microbiome. The study reported only two OTUs and three higher taxonomic groups showing 
significant heritability using the same permutation test we employed in this study. This may indi-
cate that plant genetics have a stronger influence on rhizosphere colonizing microbes than on leaf 
colonizing microbes. One reason for this may be that there is a direct pathway for plant-to-microbe 
communication via root exudates (Doornbos et al., 2012). In contrast, no equivalent exchange of 
chemical information has been reported above ground, with the possible exception of aerial root 
mucilage (Van Deynze et al., 2018).

We observed relatively higher heritability for rhizobiome traits quantified from plants grown in the 
-N treatment than under the +N treatment. This outcome is consistent with a model where the part-
nerships between microbiomes and plants were established in natural and early agricultural systems 
which were predominantly N limited (Brisson et al., 2019). N insufficiency in maize induces dramatic 
changes in physiology (Ciampitti et al., 2013), gene expression (Chen et al., 2011; Singh et al., 
2013), root architecture (Gaudin et  al., 2011), and root exudation (Baudoin et  al., 2003; Haase 
et al., 2007; Zhu et al., 2016). Consistent with this, N fertilization or the lack thereof has substantial 
consequences on plant-microbe associations. In this study, 12% of rhizobiome traits were only signifi-
cantly heritable under the +N treatment, and 18% only under the -N condition, and GWAS revealed 
plant-microbe associations at different genomic loci depending on the N treatment. Previous observa-
tions have also reported that rhizosphere microbial communities are highly sensitive to environmental 
conditions, in particular to N deficiency (Meier et al., 2021; Zhu et al., 2016). This finding emphasizes 
the need to optimize microbial communities not only for a specific host but also for specific levels of 
N fertilization.

Our results suggest that the capacity of maize plants to encourage or discourage colonization of 
the rhizosphere by specific microbiota has been a target of selection. The BayesS method leverages 
the relationship between the variance of SNP effects and MAF as a proxy of natural selection in the 
distant past. This method detects signatures of natural selection on SNPs associated with microbiome 
traits but is not directly indicative of selection acting on the particular microbes. Indeed, we observed 
purifying selection acting on genetic variants associated with the abundance of nine rhizosphere traits, 
7 in the +N and 7in the -N environment, respectively. Several rhizosphere denizens whose abundance 
showed evidence of being a target of purifying selection in the host genome have been linked to 
plant growth promoting activities, most notably Pseudomonas (Oteino et al., 2015; Preston, 2004) 
and Burkholderia (Bernabeu et al., 2015; Kurepin et al., 2015). Bacillus fumarioli, which showed 
evidence of positive selection, has previously been observed in plant rhizospheres, particularly in 
maize (Garbeva et al., 2008), and several strains of Bacillus plant growth promoting activities (Kumar 
et al., 2012). Notably, not all traits that are heritable are expected to be under selection, as traits can 
be heritable, that is transmitted from one generation to the next, without impacting the fitness or 
performance of offspring individuals under the conditions under which recent natural and/or artificial 
selection has occurred. Additional functional analyses (i.e. inoculation experiments) are warranted to 
further approve the beneficial effects of the microbes on plant fitness, and to investigate how naturally 
occurring microbe-plant symbiosis may be harnessed for further crop improvement.

Among the 150 rhizobiome traits analyzed here, 62 showed a significant correlation with measure-
ments of canopy coverage collected from the same field experiment. In particular, the observed link 

https://doi.org/10.7554/eLife.75790
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between heritability of microbes and correlation with plant performance may indicate a symbiotic 
relationship of the host plant and root-associated microbes. However, while our data show correla-
tions between microbe abundance and plant phenotypes, further experiments are required to deter-
mine the direction of causation and investigate potential mechanisms by which microbe abundance 
could influence phenotypic changes in the host. We observe that the majority of rhizobiome traits that 
are correlated with canopy coverage are both heritable and associated with one or more microbe-
associated plant loci (MAPLs), and genes linked to variation in rhizobiome traits via GWAS were highly 
expressed in roots across genotypes in multiple independent gene expression datasets. This suggests 
a number of potential mechanisms for host plant genotypes to influence the composition of the 
rhizobiome.

For example, two of the three genes associated with the MAPL highlighted in Figure  5 
(Zm0001d023838 and Zm0001d023839) are preferentially expressed in roots (Figure  5—figure 
supplement 1). According to MaizeGDB, both are protein coding genes that have not yet been 
characterized in maize. Known Zm0001d023838 orthologs in Arabidopsis encode AUXILIN-LIKE1 and 
AUXILIN-LIKE2, and overexpression of auxilin-like proteins in Arabidopsis has been shown to inhibit 
endocytosis in root hair cells (Ezaki et al., 2007). Overexpression of auxilin-like proteins has also been 
shown to confer resistance to root-borne bacterial pathogens in rice (Park et al., 2017). This indicates 
a possible link between root hair physiology and an altered microbiome. Although substantial further 
experimentation and study remains necessary, adjusting the expression of particular MAPL genes 
identified here may be an avenue to directly influence and engineer the abundance of targeted micro-
bial groups in the rhizosphere to the benefit of the plant.

We evaluated associations between rhizobiome traits and a number of whole plant phenotypes. 
The Buckler-Goodman maize diversity panel has been and continues to be utilized in field experi-
ments to determine the genetic basis of many phenotypes across diverse environments. The datasets 
generated here link the abundance of 150 microbial groups in the rhizosphere to genetic variation 
in 230 genotypes across two N treatments. Combining these public datasets with plant phenotypes 
collected from the same genotypes in additional environments may lead to the identification of other 
cases where MAPLs are associated with variation in plant phenotypes or plant performance. The 
results presented in this study add to an increasing body of evidence that microbial communities 
are actively and dynamically shaped by host plant genetic variation and may serve as the foundation 
for future research into particular plant-microbe relationships that may be harnessed to sustainably 
increase crop productivity and resilience to abiotic stress.

Materials and methods
Field and experimental design
In this study, 230 maize (Zea mays subsp. mays) lines from the maize diversity panel (Flint-Garcia 
et  al., 2005) were planted in May of 2018 and 2019 in a rain-fed experimental field site at the 
University of Nebraska-Lincoln’s Havelock Farm (N 40.853, W 96.611). In both years, the experiment 
followed commercial maize. Individual entries consisted of 2 row, 5.3 m long plots with 0.75 m alley-
ways between sequential plots, 75 cm spacing between rows, and 15 cm spacing between sequen-
tial plants. In each year, the experimental field was divided into 4 quadrants and the complete set 
of genotypes was planted in each quadrant following an incomplete block design (Supplementary 
Methods, Appendix 1—figure 1). N fertilizer (urea) was applied at the rate of 168 kg/ha to two diag-
onally opposed quadrants before planting, while two quadrants were left unfertilized (-N treatment).

Rhizobiome sample preparation and sequencing
In 2018, n=304 rhizosphere samples were collected from 28 maize genotypes (2 samples per subplot, 
2 replicated plots per genotype and N treatment); and in 2019, n=3009 samples were collected from 
230 genotypes (3 samples per subplot, 2 replicated plots per genotype and N treatment), listed in 
Supplementary file 1. Eight weeks after planting (2018: July 10 and 11; 2019: July 30, 31 and August 
1), plant roots were dug up to a depth of 30 cm and rootstocks were manually shaken to remove and 
discard loosely adherent bulk soil. For each plant, all roots thus exposed were cut into 5 cm pieces 
and homogenized, and 20–30 ml randomly selected root material (with adherent rhizosphere soil) was 
collected to generate the rhizosphere samples (Supplementary Methods). DNA was isolated using 

https://doi.org/10.7554/eLife.75790
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the MagAttract PowerSoil DNA KF Kit (Qiagen, Hilden, Germany) and the KingFisher Flex Purifica-
tion System (Thermo Fisher, Waltham, MA, USA). DNA sequencing was performed using the Illumina 
MiSeq platform at the University of Minnesota Genomics Center (Minneapolis, MN, USA). In brief, 
2 × 350 bp stretches of 16 S rDNA spanning the V4 region were amplified using V4_515 F_Nextera 
and V4_806 R_Nextera primers, and the sequencing library was prepared as described by Gohl (Gohl 
et al., 2016).

Raw read processing and construction of microbiome dataset
Paired-end 16 S sequencing reads from 3,313 samples were processed in R 3.5.2 using the workflow 
described by Callahan (Callahan et al., 2016a), which employs the package dada2 1.10.1 (Callahan 
et al., 2016b). Taxonomy was assigned to amplicon sequence variants (ASVs) using the SILVA data-
base version 138 (Yilmaz et al., 2014) as the reference. Raw ASV reads were subjected to a series 
of filters to produce a final ASV table with biologically relevant and reproducible 16 S sequences 
(Supplementary file 1). For the constrained ordination (CAP) analysis performed here, the weighted 
Unifrac distance metric was used with model distance ~year + genotype +nitrogen + block +sp + 
spb. Only ASVs that were highly abundant and repeatedly observed in both years of sampling were 
considered for downstream analysis. ASVs were clustered into 150 groups of rhizosphere microbes at 
the family, genus, and species level based on 16 S sequence similarity and the response of individual 
ASVs to experimental factors (see supplementary methods).

Heritability estimation
Heritability (h2) of rhizobiome traits was calculated separately for +N and -N conditions using maize 
genotypes in the 2019 dataset for which balanced data was available. For each of the 150 rhizobiome 
traits, combined ASV counts were normalized by converting to relative abundance and subsequent 
natural log transformation. Using these transformed values, h2 was estimated following Deng et al., 
2021 for each rhizobiome trait using R package sommer 4.1.0 (Covarrubias-Pazaran, 2016). In short, 
h2 is the amount of variance explained by the genotype term (Vgenotype) divided by the variance of the 
genotype and the error (Vgenotype +Verror/n), where n=6 is the total number of samples (i.e., 2 repli-
cates x 3 samples per replicate) used in this dataset. Heritability was tested for significance using a 
permutation test. For each trait, the genotype labels of microbial abundance data were shuffled 1000 
times, and the distribution of heritabilities calculated from these shuffled datasets were used to assess 
the likelihood of observing the heritabilities calculated from the correctly labeled data under a null 
hypothesis of no host genetic control.

Calculation of selection differentials and estimation of genetic 
architecture parameters
We estimated the fitness function relating the fitness-related trait, that is canopy coverage collected on 
August 22 (see section “Phenotyping of plant traits”), to the abundance of the microbial groups with 
a generalized additive model (GAM). To reduce biases due to environmental covariances (Rausher, 
1992), we employed the BLUP values for both the rhizobiome traits and the fitness-related trait. 
Then, we obtained linear and quadratic selection differentials from the fitted GAM models using an 
R package (Morrissey and Sakrejda, 2013). We ran a total of 300 univariate models (150 microbial 
groups x 2 N treatments).

For the rhizobiome traits, a Bayesian-based method (Zeng et  al., 2018) was used to estimate 
genetic architecture parameters simultaneously, including polygenicity (i.e. proportion of SNPs 
with non-zero effects), SNP effects, and the relationship between SNP effect size and minor allele 
frequency. For the analysis, genotypic data of the maize diversity panel was obtained from the Panzea 
database and uplifted to the B73_refgen_v4 (Bukowski et al., 2018; Woodhouse et al., 2021). To 
account for SNP linkage disequilibrium (LD), a set of 834,975 independent SNPs (MAF ≥ 0.01) were 
retained by pruning SNPs in LD (window size 100 kb, step size 100 SNPs, r2 ≥0.1) using the PLINK1.9 
software (Chang et al., 2015). In the analysis, the ‘BayesS’ method was used with a chain length of 
410,000 and the first 10,000 iterations as burnin.

Genome-wide association study
We chose to use the best linear unbiased prediction (BLUP) of the natural log transformed relative 
abundance of ASV counts as the dependent variable for the GWAS analysis. Since only a fraction of 
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genotypes were sampled from the 2018 field experiment, only sample data collected in 2019 was 
used for the BLUP calculation. A BLUP value was calculated for each microbial group and each treat-
ment using R package lme4 (Bates et al., 2015). In the analysis, the following model was fitted to 
the data: Y ~ (1|genotype) + (1|block) + (1|split plot) + (1|split plot block)+error, where Y represents 
a rhizobiome trait (ln(ASV count of a microbial group / total ASV count in sample)) (Supplementary 
Methods, Appendix 1—figure 1). GWAS was performed separately for each rhizobiome trait and 
for both the +N and -N treatment using GEMMA 0.98 (Zhou and Stephens, 2012) with a set of 
21,714,057 SNPs (MAF ≥ 0.05) (Bukowski et al., 2018). In the GWAS model, the first three principal 
components and the kinship matrices were fitted to control for the population structure and genetic 
relatedness, respectively. To mitigate false discoveries of GWAS, Bonferroni corrections were applied 
based on the effective number of independent SNPs (or effective SNP number) (Li et al., 2012). The 
effective SNP number for the genetic marker set and population employed in this study was deter-
mined to be N=769,690 independent markers as described previously (Rodene et al., 2022). Using 
an alpha value of 0.05, we determined a significance threshold of -log10(0.05/769,690)=7.2.

RNA sequence analysis
Gene expression was analyzed using two independent datasets. The first dataset was obtained from 
Kremling (Kremling et al., 2018) and included RNA sequencing data from 7 different maize tissue 
types. The second RNA sequencing dataset was generated from root and leaf tissue collected 14 days 
after germination from both +N and -N treated pots using 4 genotypes from the maize diversity panel. 
Libraries were sequenced using the Illumina Novaseq 6,000 platform with 150 bp paired-end reads. 
Sequencing reads were mapped to the B73 reference genome (AGPv4) (Jiao et al., 2017; Schnable 
et al., 2009) and gene expression was quantified using Rsubread (Liao et al., 2019).

Phenotyping of plant traits
A total of 17 plant traits were measured in the 2019 field experiment. First, 15 leaf physiological traits 
were measured on the same days the rhizobiome samples were collected, and included leaf area 
(LA), chlorophyll content (CHL), dry weight (DW), fresh weight (FW), as well as concentrations of the 
elements B, Ca, Cu, Fe, K, Mg, Mn, N, P, S, and Zn. Measurement of the leaf traits was carried out as 
previously described (Ge et al., 2019). Two aerial imaging traits, canopy coverage (CC) and excess 
green index (ExG), were collected on August 12, 2019, 11–13 days after rhizobiome sample collection 
(Rodene et al., 2022).

Availability of data and materials
The sequencing data reported in this publication (3313samples) can be accessed via the following 
five Sequence Read Archive (SRA) accession numbers: PRJNA771710, PRJNA771712, PRJNA771711, 
PRJNA685208, PRJNA685228 (summarized under the umbrella BioProject PRJNA772177). Scripts 
used to analyze the data are available on GitHub (https://github.com/jyanglab/Maize_Rhizobiome_​
2022; Rhizobiome, 2022).
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Appendix 1
Supplementary Methods
Field and experimental Design
The experimental field was divided into 4 quadrants, which were separated and surrounded by 
a buffer of an industrial hybrid genotype (B73xMo17) (Appendix 1—figure 1). The complete set 
of genotypes was planted in each quadrant where possible. Each quadrant was in turn divided 
into 4 split plots and a subset of the maize association panel was randomly assigned to each split 
plot based on the distributions of flowering time and plant height. Phenotypes were divided at 
the median value to create 4 flowering time / height categories: early/tall, late/tall, early/short, 
and late/short. Each split plot was further divided into 3 split plot blocks, and each split plot block 
was divided into 21 subplots in 3 ranges and 7 columns. Thus 252 subplots were available in each 
quadrant of the field. In each of 12 split plot blocks per quadrant, a t least one subplot was randomly 
selected and assigned the hybrid genotype (B73xMo17) to be used as a check to test for differences 
between geographical field locations. two check genotypes (B73xMo17 and B37xMo17) were used 
in 2018, and a single check genotype (B73xMo17) was used in 2019. Plant growth across the field 
was determined uniform within quadrants using the checks as reported in a sister study on the same 
experimental field (Rodene et al., 2022). Any subplots across the field that remained empty due to 
seed unavailability were filled with the check genotype as well.

Appendix 1—figure 1. Field experimental design. (A) Up to 230 maize genotypes were represented in each of 
4 quadrants in 2 replicate blocks. Quadrants were planted in 6 ranges and divided into 4 split plots. Each split 
plot was divided into 3 split plot blocks, and each split plot block was divided into 21 subplots for a total of 252 
subplots per quadrant. (B) Each 1.5 m (5 ft) x 6 m (20 ft) subplot (experimental unit) consisted of two rows of 36 
maize plants of the same genotype, with a spacing of 75 cm (30 in) between rows and 15 cm (6 in) between plants. 
(C) Photomosaic of the 2019 field at flowering time. N fertilizer was applied to the NE and SW quadrants before 
planting. (D) 128 subplots across the field (marked in red) were planted with a check genotype (B73xMo17) in order 
to be able to quantify and control for spatial variation.

In 2018, dry N fertilizer (urea) was applied to two diagonally opposed quadrants before planting 
at the rate of 140 kg/ha (+N treatment) while two quadrants were left unfertilized (-N treatment). 
In 2019, liquid N fertilizer (urea) was applied at the rate of 168  kg/ha. Both N treatments were 
thus represented in a northern block (NW and NE quadrants) and in a southern block (SW and SE 
quadrant). We assigned the blocks this way because of a 3 m increase in elevation from the north 
end of the field to the south end.

https://doi.org/10.7554/eLife.75790
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Rhizobiome sample preparation and sequencing
In 2018, rhizosphere samples were collected from 28 genotypes. These include, B73, the 
roothairless3 mutant of B73 (Park et al., 2017), two check hybrids (B73xMo17 and B37xMo17) 
and a subset of the Buckler-Goodman panel including 16 parent lines of the nested association 
mapping population (NAM) described by McMullen et  al., 2009. 8  weeks after planting, 2 
subsamples per genotype were collected per quadrant and 12 subsamples for checks, where each 
subsample was taken from the combined root material of two adjacent plants. This resulted in a 
total of 26*4*2+2*4*12=304 samples. In 2019, rhizosphere samples were collected in triplicates 
from all 1,008 subplots within 3 days, 8 weeks after planting, when the majority of plants had 
reached the tasseling stage. One of the two rows in each subplot was randomly selected, and 3 
individual randomly selected plants within the row (subsamples) were sacrificed for rhizosphere 
collection. As a small fraction of subplots had poor germination and/or no surviving plants on 
the day of sampling, the final number of rhizosphere samples collected was 3,009. Rhizosphere 
samples were placed on ice immediately after collection and shipped to the lab to be processed 
on the same day.

To wash the tightly adherent rhizosphere soil layer off the roots, tubes were filled up to the 40 ml 
mark with autoclaved PBS buffer (46 mM NaH2PO4, 60 mM Na2HPO4, 0.02% Silwet-77), and shaken 
horizontally at 8000  rpm for 30  s. Rhizosphere suspension was filtered through a 100  μm nylon 
cell strainer (Celltreat Scientific Products, Pepperell, MA, USA) into a fresh 50 ml tube to capture 
root debris and large soil particles. Rhizosphere samples were frozen in suspension at –20 °C until 
further processing. DNA was isolated from rhizosphere soil using the MagAttract PowerSoil DNA KF 
Kit (Qiagen, Hilden, Germany) and purified using the KingFisher Flex Purification System (Thermo 
Fisher, Waltham, MA, USA) with minor modifications to the protocol: Rhizosphere samples that were 
kept in suspension were thawed on ice, pelleted soil was resuspended by inverting tubes, and 500 μl 
soil suspension was added to the 96-well sample plates. To avoid cross contamination of wells during 
pipetting, plates were sealed beforehand with parafilm and the cover was pierced with the pipette 
tip to transfer the rhizosphere suspension into the intended well. Two plates were prepared at a 
time and centrifuged for 10 min at 4000 x g to pellet soil. Supernatant was carefully removed with 
a multichannel pipette and 96-well plates with approximately 100–250 mg rhizosphere soil per well 
were frozen at –20 °C until further processing. On the day of DNA isolation, the bead mill substrate 
was added to the frozen soil pellets, soil was thawed on ice and the remainder of the protocol was 
followed as per the manufacturer’s instructions. We recommend this modified procedure for large 
numbers of samples as it is cleaner, faster, and better reproducible than scooping soil from pellets in 
sample tubes. Concentration of isolated DNA was measured fluorometrically with the QuantiFluor 
dsDNA System (Promega, Madison, WI, USA) as per the manufacturer’s instructions. DNA isolation 
was repeated for any samples that failed to reach a concentration of at least 1 ng/μl.

A 350 bp stretch of 16 S rDNA spanning the V4 region was amplified using V4_515 F_Nextera (​
TCGT​​CGGC​​AGCG​​TCAG​​ATGT​​GTAT​​AAGA​​GACA​​GGTG​​CCAG​​CMGC​​CGCG​​GTAA​) and V4_806  R_
Nextera (​GTCT​​CGTG​​GGCT​​CGGA​​GATG​​TGTA​​TAAG​​AGAC​​AGGG​​ACTA​​CHVG​​GGTW​​TCTA​​AT) 
primers on several Illumina MiSeq runs. Oligonucleotide PCR blockers (PNA Bio INC, Thousand 
Oaks, CA, USA) targeting mitochondrial and chloroplast sequences were applied in the primary V4 
amplification to reduce amplification of templates derived from the plant host. Up to 128 barcoded 
samples were pooled per sequencing run. In total, 304 samples in 2018 and 3009 samples in 2019 
were sequenced on the same Illumina MiSeq machine.

Raw read processing and construction of microbiome dataset
Cluster computing resources at the UNL Holland Computing Center were used for computationally 
demanding steps. To construct the microbiome dataset, 350 bp raw sequencing reads were trimmed 
using filterAndTrim() at 240 bp (forward reads) and 200 bp (reverse reads), respectively. Amplicon 
sequence variants (ASVs) were inferred using dada() and forward and reverse reads were merged 
with mergePairs(). A sequence table was generated using makeSequenceTable() and chimaeras were 
removed using removeBimeraDenovo(). Taxonomy was assigned to ASVs with assignTaxonomy() 
using the SILVA database version 138 (Yilmaz et al., 2014) as a reference. SILVA was our taxonomy 
of choice because it is a relatively large 16 S sequence database compared to alternative databases, 
it is regularly maintained and updated and it is widely used in ecological research, making our results 
comparable to other 16 S studies. (Balvočiūtė and Huson, 2017). Taxonomic training data formatted 
for DADA2 (​silva_​nr99_​v138_​wSpecies_​train_​set.​fa.​gz) was obtained from https://zenodo.org/​

https://doi.org/10.7554/eLife.75790
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record/3986799#.X3zmypNKh24, as referenced by https://benjjneb.github.io/dada2/training.html 
on GitHub. 16 S reads and sample data were prepared in an R Phyloseq object for further processing.

Raw ASV reads were subjected to a series of filters to produce a final ASV table with biologically 
relevant 16 S sequences:

1.	 Removed chimaeric 16 S reads using removeBimeraDenovo()
2.	 Removed sequences with <20 total observations
3.	 Removed sequences that did not map to either Bacteria or Archaea
4.	 Removed chloroplast sequences
5.	 Removed mitochondrial sequences
6.	 Removed ASVs that were not observed in at least 5% (166) of all samples
7.	 Removed ASVs that were not observed in both years 2018 and 2019
8.	 Removed 53 out of 160 genera and families that had fewer than 5 unique ASVs and 7 samples 

with <100 ASV counts

Step 6 resulted in 4,632 common ASVs that were detected in at least 5% of the samples, representing 
120,004,239 of the raw reads. Constrained ordination and PERMANOVA analyses of the 4,632 ASVs 
identified a strong effect of N treatment as well as other experimental factors on ASV abundance 
(Appendix 1—figure 2). This observation is consistent with previous observations that environmental 
factors play an important role in determining the composition of the root associated microbiome 
diversity (Floc’h et al., 2020; Meier et al., 2021; Schlatter et al., 2020). Of the 4,632 common 
ASVs, 3,728 (or 80.5%) were highly abundant and observed in samples collected from both the 
2018 and 2019 growing seasons (step 7). Removing ASVs that could not be repeatedly observed in 
multiple years reduced the complexity of the data set by 19.5% at the cost of a 2.3% loss in diversity 
(Shannon diversity reduced from 6.4 to 6.3, Appendix 1—figure 2—Figure supplement 1). Finally, 
removing taxa (genus or family) with less than 5 observed ASVs yielded a dataset of 3,626 ASVs, 
3,306 samples, and 105,745,986 total ASV counts. This final core microbiome encompasses <1% of 
initial ASVs and ~50% of initial observations. The ASV table from step 8 was converted to relative 
abundances and values were transformed with the natural logarithm. A phylogenetic tree was 
constructed from the final set of 3,626 ASVs using mafft v. 7.404 (Katoh and Standley, 2013) for 
multiple alignment and fasttree v. 2.1 (Price et al., 2010) and the phylogenetic tree was attached to 
the phyloseq object and plotted using the ggtree R package (Yu, 2020).

https://doi.org/10.7554/eLife.75790
https://zenodo.org/record/3986799#.X3zmypNKh24
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Appendix 1—figure 2. PERMANOVA results. It was calculated from the log(relative abundance) of 4,632 ASVs. 
Each dot represents a sample. Genotypes common to 2018 and 2019 panel are marked in grey.

The online version of this article includes the following figure supplement(s) for appendix 1—figure 2:

Appendix 1—Figure 2 supplement 1. Retaining ASVs observed in both years reduces dataset complexity with 
minimal loss of diversity.

Clustering of ASVs into microbial groups

ASVs were clustered into groups of rhizosphere microbes at the family, genus, and species level using 
a procedure described previously (Meier et al., 2021). First, the 3,626 ASVs in the present study 
were grouped at the family level (the lowest taxonomic rank for which all ASVs were successfully 
annotated) and the phylogenetic tree derived from 16S V4 alignment was plotted alongside 
taxonomic annotation at the genus and species level. Because the ASVs are derived from short 
reads and may constitute variations not covered in the SILVA database, annotation at the genus and 
species level was often not possible. To close these gaps and form biologically meaningful groups 
of ASVs at low taxonomic ranks with better confidence, we examined the overall abundance of each 
ASV as well as the differential abundance in response to the N treatment alongside the sequence-
based clustering. The premise here is that ASVs derived from biologically closely related individual 
microbes are similarly abundant in our dataset and respond similarly to the N treatment imposed 
on the field, in addition to similar 16 S sequences due to common ancestry. An example is given 
in Appendix 1—figure 3 with a subset of ASVs assigned to the Burkholderiaceae family. The plots 
used to determine all 150 microbial groups in this study are available in Supplementary file 6.

https://doi.org/10.7554/eLife.75790
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Appendix 1—figure 3. Microbial groups are derived from taxonomic data and experimental data. An example 
is given using a subset of the ASVs in the Burkholderiaceae family. (A) Phylogenetic clustering of ASVs based on 
16S V4 alignment. ASVs are annotated at the genus and species level using the SILVA database. Note that for 
some ASVs, annotation at the species level is missing, although the phylogenetic tree suggests divergent groups 
at the species level. Overall abundance in the dataset (B) of each ASV and differential abundance in response to 
the N treatment (C) were used in tandem with sequence-based clustering to group ASVs with similar features into 
microbial groups at sub-genus resolution (labeled in green). In this example, the genus Ralstonia constitutes a 
monophyletic cluster of ASVs which were all successfully assigned to the species R. pickettii (A). This uniform group 
is also reflected in relatively uniform abundance (B) and positive response to N treatment (C). On the other hand, 
most ASVs in the Burkholderia genus could not be annotated at the species level, even though the phylogeny 
suggests at least 4 distinct groups below the genus level. The first group, Burkholderia insecticola was identified 
at the species level without fail and once again, this is reflected in uniform abundances as well as a consistently 
negative response to N treatment. Within the next cluster two ASVs are assigned to Paraburkholderia caffeinilytica, 
and we assigned all other ASVs in the same cluster to the same species because they showed consistent 
abundance and response to treatment. In the remaining two clusters, no ASVs could be annotated at the species 
level, hence we assigned a number to the unassigned species (Burkholderia sp 1 and sp 2). Experimental data 
confirms that the two clusters should be treated as separate microbial groups because Burkholderia sp 2 is roughly 
10 times as abundant as Burkholderia sp 1 and we observe opposite responses to N treatment.

Heritability estimation
To calculate heritability (h2), read counts from 3 subsamples were pooled for each subplot. 
Combined counts were then normalized by converting to relative abundance and subsequent 
natural log transformation, which yielded a subplot-level measure of microbial abundance, replicated 
in 2 blocks. The following linear mixed model was used with all random effects: Y=genotype + 
block +error. Y is the log-transformed relative abundance of each microbial group in each subplot-
level sample, the blocks and subplots are as outlined in (Appendix 1—figure 1). Heritability was 
tested for significance using a permutation test in which microbial abundance data for each trait was 
shuffled and heritability calculated anew 1,000 times. p-values indicating heritability were calculated 
by tallying the number of permutation h2 scores exceeding the observed h2 and dividing by the 
number of permutations. Traits with a P-value <0.05 were deemed “heritable” under either or both 
N treatments.

Estimation of genetic architecture parameters
SNPs in high linkage disequilibrium (LD) were pruned using the “indep-pairwise” command of with 
a LD threshold of r2=0.1. In the GCTB analysis, the BayesS model was used with the chain length 
of 410,000 and burnin 10,000. One example command used for the GCTB analysis is “gctb –bfile 

https://doi.org/10.7554/eLife.75790
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282_GCTB_G --pheno ​gctb_​blup_​stdN_​150_​tax_​groups.​txt --mpheno 28 --out Results_HN/
asv_000013 --bayes S --pi 0.05 --hsq 0.5 S 0 --wind 0.1 --chain-length 410000 --burn-
in 10000”.

Genome-wide association study
GWAS was performed using GEMMA 0.98 (Zhou and Stephens, 2012) with the following 
parameters: gemma-0.98 -bfile {snp_file} -k {kinship_matrix} -c {pca_file} -p {traits_file} -lmm 1  n 
{trait_num} -outdir {outdir_path} -o T{trait_num} -miss 0.9 r2 1 -hwe 0 -maf 0.01'. Blup values were 
summarized in a trait matrix (214 genotypes x 150 traits) for all 150 rhizobiome traits and for all 
214 maize genotypes for which high quality SNP data was available. To conserve disk space, SNP 
information was only retained in each ASV if a response at p_wald <10–2 was observed. To identify 
genomic loci with high counts of significant SNPs, the genome was split into bins of 10 kbp, and the 
number of significant SNP signals at a threshold of p_wald <10–5 was counted for each bin.

https://doi.org/10.7554/eLife.75790
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