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Abstract

Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies 

revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family 

of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic 

remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal 

physiological processes like growth, development, and wound healing. During pathophysiological 

conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) 

proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood 

from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs 

dysregulate various normal physiological processes like angiogenesis and neurogenesis, and 

also they participate in the inflammatory and apoptotic cascades by inducing or regulating 

the specific mediators and their receptors. In this review, we explore the roles of MMPs in 

various physiological/pathophysiological processes associated with neurological complications, 

with special emphasis on TBI.
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Introduction

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with multifactorial 

functions in the physiology and pathology of animal body. MMPs are collectively called 

matrixins as they participate mainly in the degradation of the extracellular matrix (ECM) 

[1]. MMPs are implicated to have a significant role in normal growth, development, 

wound healing, angiogenesis, neurogenesis, bone remodeling, ovulation, and implantation. 

However, during pathophysiological conditions, MMPs cause blood-brain barrier (BBB) 

disruption, hemorrhage, neuroinflammation, and cell death in various neurological diseases 

[2]. They are secreted by different cell types including astrocytes, endothelial cells, neurons, 

fibroblasts, osteoblasts, etc. A fair amount of MMPs are also produced by circulating 

leukocytes, including neutrophils, monocytes, and lymphocytes that invade the brain during 
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inflammation. These enzymes are produced as zymogens (pro-MMPs), and they are further 

processed by proteolytic enzymes such as serine proteases, furin, and plasmin to convert 

into active forms [1]. MMPs are finely tuned enzymes, which are strategically regulated at 

the level of transcription, maturation from precursor pro MMPs, interaction with various 

ECM components, and inhibition by endogenous inhibitors [1, 3]. Hormones, growth 

factors, and certain cytokines regulate the activation of MMPs. Endogenous MMP inhibitors 

(MMPIs) and tissue inhibitors of MMPs (TIMPs) specifically control the activities of 

MMPs. Under normal physiological conditions, MMPs are expressed at the modest level. 

Overexpression/activation of MMPs results in an imbalance between the activities of MMPs 

and TIMPs, which is a major mechanism in the pathophysiology of various diseases such 

as arthritis, cancer, atherosclerosis, aneurysms, nephritis, tissue ulcers, fibrosis, and several 

neurodegenerative diseases [4, 5]. Table 1 shows the classification and reported biological 

functions of MMPs with references.

Studies have suggested that MMPs are upregulated during traumatic brain injury (TBI). 

TBI causes upregulation of MMPs, particularly MMP-2, MMP-3, and MMP-9, and MMPs 

are involved in the pathophysiology of TBI including neuroinflammation and cell death. 

Secretion of MMP-2 and MMP-9 (gelatinases) is significantly increased in rat cortical 

neuronal culture, which has been induced by mechanical stretch injury [6]. TBI mediated 

motor deficits have been compared in traumatically injured MMP-9 knockout mice and wild 

mice in which a significant reduction in motor deficits was observed in knockout mice when 

compared with wild mice [7]. Likewise, several studies have suggested that TBI activates 

MMPs, which might play a critical role in the degradation of the extracellular matrix, 

disruption of the BBB, facilitation of leukocyte infiltration, hemorrhage, synaptic plasticity, 

angiogenesis, edema formation, neuroinflammation, and neurodegeneration. Table 2 shows 

the various reports on the roles of MMPs in different models of TBI.

TBI is characterized by physical brain injury associated with a broad spectrum of symptoms 

and disabilities. TBI causes approximately 1.7 million deaths and hospitalizations every 

year in the USA alone. Based on the injury severity, TBI is typically categorized into mild, 

moderate, and severe by using the Glasgow Coma Scale, a system used to assess coma 

and impaired consciousness [8]. Three components such as eye opening, verbal response, 

and motor responses are usually added together to produce a total score in the Glasgow 

Coma Scale. A Glasgow Coma Scale score of 13–15 is defined as mild, 9–12 as moderate, 

and 3–8 as severe [8]. Based on the mechanisms of brain tissue injury, TBI is classified 

as primary and secondary. Primary injury is the result of mechanical forces applied to the 

skull and brain and leads to skull fractures, brain contusions, axonal injuries, rupturing 

of blood vessels, and intracranial hemorrhages [9]. A series of molecular, neurochemical, 

cellular, and pathophysiological mechanisms contributes to secondary injury that leads to 

elevated intracranial pressure, BBB disruption, neuroinflammation, brain edema, cerebral 

hypoxia, ischemia, and delayed neurodegeneration [10–12]. Secondary brain injury may be 

reversible; therefore, the therapeutic intervention can be targeted.
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Classifications of MMPs

To date, 24 different vertebrate MMPs have been identified, of which 23 are found in 

humans and are grouped into different classes. MMPs are broadly divided into two general 

classes: the secreted MMPs and the membrane-type MMPs [13]. They can be grouped 

into collagenases, gelatinases, stromelysins, and matrilysin according to their substrate 

specificity and domain structure (Table 1).

Collagenases

Collagenases are principal neutral proteinases capable of degrading interstitial collagens I, 

II, and III at a specific site [13]. Collagen is a fibrillar protein, the most abundant structural 

component of human connective tissue. The collagenases include collagenase-1 (MMP-1, 

interstitial collagenase), collagenase-2 (MMP-8, neutrophil collagenase), and collagenase-3 

(MMP-13). MMP-18 (Xenopus) is also included in this group.

Gelatinases

The two best studied gelatinases, gelatinase A (MMP-2) and gelatinase B (MMP-9), belong 

to this group. MMP-2 and MMP-9 are found in the extracellular matrix, cerebrospinal 

fluid, and serum. These enzymes digest collagens and gelatins. MMP-2 digests type I, II, 

and III collagens. The activity of MMP-2 and MMP-9 can be easily detected by using 

gelatin-substrate zymography assay.

Stromelysins

This group of stromelysin includes stromelysin 1 (MMP-3) and stromelysin 2 (MMP-10). 

Both have similar substrate specificities, but MMP-3 has a proteolytic efficiency higher 

than that of MMP-10. Besides digesting ECM components, MMP-3 activates a number of 

pro-MMPs. For example, its action on pro-MMP-1 is critical to form active MMP-1.

Matrilysins

MMP-7 (Matrilysin 1) and MMP-26 (Matrilysin 2) are included in this group. The 

matrilysins do not contain hemopexin domain [14]. Matrilysin is preferentially expressed 

by cells of the glandular epithelium, so it is distinct from other known MMPs that are 

expressed in connective tissues [15]. Matrilysin 2 also digests ECM compounds.

Membrane-Type MMPs

Membrane-type MMPs (MT-MMPs) have common structural domains of the MMP family, 

but they have an additional domain that is anchored to the plasma membrane, making them 

important effectors of pericellular ECM degradation and proteolytic activities [16]. There 

are six MT-MMPs, in which four are type I transmembrane proteins (MMP-14, MMP-15, 

MMP-16, and MMP-24) and two are glycosylphosphatidylinositol (GPI) anchored proteins 

(MMP-17 and MMP-25). Except MT4-MMP, all MT-MMPs are capable of activating pro-

MMP-2. These enzymes can also digest ECM molecules and MT1-MMP is capable of 

degrading type I, II, and III collagens [17].
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The actions of MMPs are strictly controlled by endogenous MMPIs and TIMPs. TIMPs are 

specific inhibitors of matrixins that participate in controlling the local activities of MMPs in 

tissues [18].

Role of MMPs in Brain Pathogenesis

MMPs are essential for the normal physiological functions as they are important in the 

dynamic remodulation of ECM. However, dysregulation of MMPs often leads to various 

pathophysiological complications such as BBB disruption, hemorrhage, neuroinflammation, 

and cell death [2]. High-level expression and activities of MMPs are reported in various 

neurological complications and diseases such as stroke, hemorrhage, Alzheimer’s disease, 

and TBI [19–24]. During brain injury or neurological diseases, MMPs are activated by 

various signaling mediators like reactive oxygen species (ROS), transforming growth factor-

β (TGF-β), and inflammatory cytokines [25, 26]. MMPs in turn accelerate inflammation 

by activating inflammatory cytokines such IL-1β and TNF-α. MMP-mediated degradation 

of ECM proteins and tight junction (TJ) proteins of BBB leads to BBB disruption [27, 

28]. MMPs play a key role in angiogenesis by stimulating the production of vascular 

endothelial growth factor (VEGF); however, augmented VEGF level in turn activates 

caspase-1 and causes apoptosis [29]. Further, caspase-1 matures pro-IL1β to active IL-1β 
and leads to neuroinflammation. The neurodegenerative effect of MMPs comes mainly 

through its role in converting pro-caspases to active caspases and paves the way for 

cell apoptosis. In addition, MMPs induce cellular and vasogenic edema during brain 

injury. Figure 1 depicts the schematic presentation of the roles of MMPs in different 

cellular signaling cascades. The following review sessions will discuss the major roles of 

MMPs in neurovascular dysfunction, hemorrhage, angiogenesis, synaptic plasticity, edema 

formation, neuroinflammation, and neurodegeneration in various neurological complications 

with special emphasis on TBI. In the context of TBI, we discuss the roles of MMPs in the 

pathophysiology of neurotrauma by including human cases and animal models.

Blood-Brain Barrier Disruption

During normal physiological conditions, MMPs help to sustain the dynamic integrity of 

BBB through its role in the remodulation of ECM. However, during pathophysiological 

conditions, its upregulation impairs the neurovascular system. Abnormal MMP activation 

causes degradation of microvascular basement membrane proteins, resulting in the loss 

of brain endothelium stability and increases BBB permeability in animal models as well 

as in vitro studies [27, 28]. Several studies reported that oxidative stress is the major 

causative factor that activates MMPs [25]. Inflammatory cytokines and chemokines are also 

reported as MMP activators [30, 31]. Enhanced MMP activity degrades extracellular matrix 

proteins and tight junction proteins such as occludin, claudin-5, ZO-1–5, and it exacerbate 

BBB permeability [1, 29]. Recently, we have reported that blast-induced mild TBI (mTBI) 

enhances oxidative radicals, which activates MMPs, that degrade perivascular units and lead 

to BBB disruption [32]. In this study, we analyzed the different types of MMPs and their 

specific role in the degradation of the BBB in blast-induced mild TBI. We studied three 

types of MMPs such as MMP-2, MMP-3, and MMP-9 and their activation in single or 

repeated mild shock wave exposure in brain microvessels. The levels of MMP-3/−9 protein 
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increased gradually for up to 24 h of blast injury, while upregulation of MMP-2 seems to 

be short durable because the level of MMP-2 gradually decreased after 6 h. It has been 

suggested that MMP-2, MMP-3, and MMP-9 are involved in the degradation of perivascular 

units and TJ proteins, which leads to BBB leakiness and inflammation of cerebral vascular 

unit [32]. Figure 2 shows the expression of MMP-2 in the frontal cortex of rat brain 

exposed to mild primary blast-induced TBI and lateral fluid percussion injury (FPI). Blast 

experiments were conducted by exposing rats to 123 kPa blast wave pressure and subjected 

to analysis for different markers of oxidative stress, MMP expression, neuroinflammation, 

and cell death [32]. Studies show that single mild shock wave exposure elevates MMP-2 

expression after 24 h of blast (Fig. 2, top row). As an Alternative experimental model of 

TBI, FPI also shows elevated MMP-2 expression in the cortical brain tissue after 24 h of 

injury with 15 psi pressure (Fig. 2, bottom row).

There are several other reports on the involvement of MMPs in the degradation of various 

types of ECM proteins and TJ proteins of BBB in brain injury [27, 28]. TBI causes 

upregulation of MMPs, particularly MMP-2, MMP-3, and MMP-9, and leads to disruption 

of BBB, edema formation, and cell death [33, 34]. The role of MMP-9 in BBB disruption 

has been substantiated as the pharmacological inhibitor minocycline significantly attenuated 

TBI-mediated BBB impairment in rats [35].

Cerebral Hemorrhage

Often TBI encompasses hemorrhage in and around the contusion. The BBB becomes 

greatly disrupted during intracerebral hemorrhage; as a result, macrophages and leucocytes 

infiltrate the brain parenchyma and their presence has been proposed to constitute a primary 

mechanism of neuronal death [36]. Activated microglia also aggravates neuronal cell death 

after intracerebral hemorrhage [37, 38]. MMPs play a pivotal role for causing hemorrhage 

in brain injury and stroke. They enhance vascular permeability, which leads to BBB 

disruption and several neurological complications such as brain edema, neuroinflammation, 

and neurodegeneration [39, 40]. A high-level MMP expression is believed to contribute to 

tissue destruction in brain injury and neuronal damage [20–24]. MMPs cause hemorrhage by 

proteolytic degradation of the extracellular matrix and tight junction proteins of BBB, which 

leads to BBB dysfunction and leakage of blood into the brain side in mild TBI (reviewed 

in [41, 42]). Horstmann et al. reported that the level of MMP-2 and MMP-9 in serum of 

patients suffering from subarachnoid hemorrhage was very high compared to normal healthy 

individuals [19]. Recently, we experimentally demonstrated vascular leakage due to BBB 

disruption and increase in vascular permeability in mild blast TBI by infusing high and 

small molecular weight dyes such as Evans blue and sodium fluorescein through the carotid 

artery [32]. During hemorrhagic transformation, MMP-9 participates in BBB dysfunction 

and exacerbates brain injury after cerebral ischemia. There are several other reports in which 

MMPs cause hemorrhage due to BBB damage [43, 44].

Upregulation of MMPs has been reported in various other pathophysiological conditions 

such as hypertension. Several authors reported that the hypertension-inducing hormone, 

angiotensin II (Ang II), is one of main factors leading to hemorrhage [45–47]. In several 

other biochemical mechanisms, Ang II has been reported as a mediator of oxidative 
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stress via activation/induction of free radical-generating enzymes such NOX and NOS 

[48–55]. Ang II stimulates the production of ROS in endothelial cells by upregulating 

NADPH oxidases [56, 57]. These free radicals especially ROS activates TGF-β1 in brain 

microvessels. Ang II induced oxidative stress and TGF-β1 leads to the activation of 

MMPs [49]. The sustained activation of MMPs causes the degradation of TJ proteins such 

as occludin, claudin-5, and ZO-1, thereby impairing BBB and vascular wound healing 

process, that leads to chronic rupture of the capillaries leading to hemorrhagic stroke [58]. 

Degradation of basement membrane and TJ proteins of the BBB by MMPs enhances the 

BBB permeability and immune cell infiltration into the brain [59, 60], which is strongly 

associated with hemorrhagic and ischemic stroke [58, 61].

Angiogenesis

While reviewing the roles of MMPs in association with the pathophysiology of the brain, 

it is imperative to analyze its effect in angiogenesis. Angiogenesis is the physiological 

process in which new blood vessels emerge from existing endothelial-lined vessels [62]. 

Regarding the functional recovery after TBI, angiogenesis is a premier mechanism that 

includes mainly proliferation and migration of vascular endothelial cells. Being an invasive 

process, angiogenesis is always accompanied with degradation of basement membrane 

proteins [63, 64]. Here, the proteolytic activity of MMPs has greater roles to play. 

MMPs strategically degrade and remodulate various components of the extracellular matrix 

and pave the way for the emerging blood vessels [65]. MMP-3 and MMP-10 target 

proteoglycans, fibronectin, and laminin. MMP-8 and MMP-13 selectively target collagen 

I and II, respectively, whereas MMP-1 prefers collagen III. In addition, both MMP-2 and 

MMP-9 degrade denatured collagen (gelatin) [13]. By using both synthetic and endogenous 

MMP inhibitors, researchers inhibited angiogenic responses in vitro and in vivo [66–68]. In 

addition, the delayed or reduced angiogenic responses were reported in MMP-deficient mice 

during development [69, 70].

Apart from this, MMPs have a regulatory effect on the VEGF, one of the integral 

components of angiogenesis. But during pathophysiological conditions, MMPs impair 

angiogenesis through dysregulation of VEGF. VEGF is a ligand to the vascular endothelial 

growth factor receptor 1 or 2 (VEGFR-1 or VEGFR-2) and is a key regulator of angiogenic 

response and endothelium wound healing process [71]. When VEGF binds to VEGFR, 

the receptor dimerization and autophosphorylation occurs and promotes angiogenesis and 

repair damaged microvessels [72, 73]. Brain injury-associated upregulation of VEGF has 

been reported [74]. It has been reported that upregulation of VEGF or experimental 

administration of VEGF leads to induction of MMP-9 activity that causes BBB disruption 

[75]. In our previous study, we experimentally demonstrated that elevation of both MMP-3 

and MMP-9 leads to upregulation of VEGF due to MMP-mediated proteolytic disruption of 

VEGFR-2 [29]. According to the study, sustained activation of MMPs leads to degradation 

of the VEGFR-2 protein, thereby making it difficult to repair injured capillaries. Exposure 

of hBECs to exogenous MMP-3 or MMP-9 leads to dimunition of VEGFR-2 protein, and 

the activation of MMP-3 or MMP-9 in brain microvessels was found to correlate with the 

downregulation of the VEGFR-2 protein [29]. Turk et al. reported the cleavage of VEGFR-2 

by MMP-7 and MMP-9 at multiple positions (e.g., Leu-Ser/Met-Leu, Leu-Ser/Ile-Arg) 
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[76]. In another study, it has been shown that the activation of plasma MMP cleaved the 

extracellular domain of VEGFR-2 on the endothelium [77]. As the receptor gets cleaved and 

becomes functionless, the level of ligand VEGF tends to increase. The upregulated VEGF 

is detrimental as it triggers caspases and aggravates apoptosis [77]. In our previous study, 

we demonstrated that elevated VEGF level could induce caspase-1 (interleukin converting 

enzyme) and cause apoptosis in alcohol-mediated vascular impairment in mice brain 

microvessels [29]. Treatment with the MMP inhibitor doxycycline attenuates VEGFR-2 

cleavage as well as endothelial apoptosis [77]. In TBI, VEGFR-2 signaling blockage using 

the selective inhibitor SU5416 abrogates prosurvival response and induces high activation 

of caspase-3/7 leading to cell death [78]. However, in TBI, MMP-mediated regulation of 

VEGF and the associated biochemical cascades are elusive. Thus, it opens up a subject 

for future research. Angiogenic response is critical for the progression of wound healing 

in hemorrhage, stroke, and associated pathological conditions such as BBB impairment 

or inflammation. Therefore, a thorough understanding on the signaling events involved in 

angiogenesis and its molecular regulation has clinical implications.

Synaptic Plasticity

Impairment of cognitive function is one of the most devastating outcomes of TBI. Cognitive 

impairments often involve cell loss and vulnerability to different brain regions. Recovery 

of lost/impaired cognitive functions typically occurs via adaptive synaptic plasticity, which 

occurs in acute posttraumatic periods [79]. Though several factors contribute to the adaptive 

synaptic plasticity, MMPs have a significant role in posttraumatic synaptic reorganization 

through the dynamic modulation of ECM proteins ([80–84] and recently reviewed in [23, 

85]). Here, we review the roles of MMPs in synaptic plasticity during the physiology and 

pathophysiology of the brain. MMPs play critical roles in neurite growth cone development, 

synaptic transmission, synaptic modification, and neuronal degeneration contributing to 

successful synaptic plasticity [3, 85–90]. In 2005, Mayer et al. reported MMP/substrate 

interaction during lesion-induced synaptogenesis [91]. MMPs influence axonal growth and 

synaptic modification with their regulatory effects on ECM [23, 85]. Redistribution of 

ECM proteins along deafferented dendrites leads to axon sprouting toward postsynaptic 

sites during cortical lesion synaptogenesis [92, 93]. Among the various MMPs, MMP-3 

and MMP-9 are the most studied MMPs in synaptic plasticity. However, their effects in the 

adaptive synaptic plasticity during posttraumatic repair are not conclusively studied. MMP-3 

targets ECM proteins, which are critical to neuronal growth and synaptic reorganization 

[84, 94–97]. Falo et al. reported significant elevation of MMP-3 in injury sites where active 

synaptogenesis is taking place [98]. High-level expression of MMP-2, MMP-3, and MMP-9 

is observed in TBI models (our recent review [99]). An increase in MMP-3 activity has been 

reported as it persists toward the period of synapse regeneration [98]. MMP-9 is largely 

associated with modification of important synaptic receptors and altering the morphology 

of synapses [100]. In addition to these during synaptogenesis, the expression of MT5-MMP 

and ADAM-10 proteins elevates and supports a significant role in synaptic reorganization 

following TBI [101].

Upregulation of MMPs during various pathophysiological conditions of brain causes 

aberrant synoptic plasticity and spine dysmorphology [102, 103]. However, the signaling 
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mechanisms involved in MMP-mediated synaptic dysfunction are largely unknown. Studies 

have suggested the roles of MMP-9 in mediating a typical synaptic plasticity in various 

neurological diseases like epilepsy and Alzheimer’s disease [102, 104]. Michaluk et al. 

reported that beta-dystroglycan (beta-DG), a transmembrane protein, is a synaptic target for 

MMP-9 [105]. They demonstrated it in neuronal cultures; glutamate/bicuculline-mediated 

stimulation of neuronal cultures caused an increase in MMP-9 activity which coincides with 

the cleavage of beta-DG, and this cleavage could be attenuated by the overexpression of 

TIMP-1. Philips et al. reported evidence of the role of MMP in TBI neuroplasticity based on 

studies with targeted hippocampal deafferentation [103]. Thus, it appears that an appropriate 

level of MMP is very critical for the posttraumatic adaptive neuroplasticity; thorough 

understanding would help to develop strategies that can favor for adaptive neuroplasticity 

over maladaptive neuroplasticity.

Edema Formation

Cerebral edema is extra accumulation of fluid in intraor extracellular spaces of the brain. It 

is one of the major factors that leads to high mortality and morbidity in TBI, and it accounts 

for up to half of the mortality in all victims of TBI [106]. Cerebral edema can be classified 

into two types: cellular and vasogenic [107]. Cellular edema is characterized by an increase 

in water content in intracellular compartments and will not be manifested as tissue swelling. 

Vasogenic edema allows intravascular proteins and fluid to penetrate into the parenchymal 

extracellular space and increases tissue water content and leads to swelling. This type of 

edema mainly results from the breakdown of BBB [108]. Usually, cellular edema appears 

after a few days of vasogenic edema, which develops in the first few hours after TBI. 

Cellular edema develops slowly and extends up to 2 weeks [109]. Usually in TBI, edema 

leads to swelling of brain tissue and elevates intracranial pressure (ICP) [110].

MMPs are one of the important mediators of edema formation in TBI. By using 

pharmacological inhibitors of MMPs such as minocycline or TIMP-1, the role of MMPs 

in edema formation has been demonstrated. The use of minocycline and TIMP-1 could 

abrogate TBI-mediated edema formation, BBB impairment, inflammatory responses, and 

cerebral ischemia [7, 43, 111]. In a surgical brain injury, edema is found around the 

surgical resection with simultaneous increases in MMP-9 and MMP-2 activity. In such 

injury, treatment with MMP inhibitor-1 decreased brain edema and attenuated the activation 

of MMP-9 and MMP-2 [112].

Several activators are involved in the formation of edema in TBI. Aquaporins (AQP) 

are one of the main activators that contribute to the development of cerebral edema 

[113]. Several investigators reported the role of AQPs in promoting edema formation 

after brain injury [114–116]. It is evident from the studies that inhibition of AQP4 using 

pharmacological inhibitors could mitigate the formation of edema in TBI [115, 117, 118]. 

AQPs are integral membrane proteins, which form pores in the membranes of mammalian 

cells; they selectively conduct water molecules in and out of the cells while preventing 

passage of ions and solutes [119, 120]. Among the known 13 AQPs, AQP1, AQP4, and 

AQP9 are highly expressed in the brain. AQP4 is mainly expressed in astrocytic end-feet 

[121]. In our previous blast-induced mild TBI study, we reported upregulation of AQP4 
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in the cerebral cortex of injured rats. This AQP4 co-expressed with the astrocytic marker 

GFAP in the perivascular area [32]. There are several reports in which MMPs induce 

or activate AQPs and lead to edema formation [35, 122]. The role of MMP-9 has been 

studied in the pathogenesis of brain edema and its associated neurological complications in 

ischemic and TBIs [21, 123, 124]. In 2000, Asashi et al. conducted a detailed study and 

reported that the brain extravasation significantly abrogated, and cognitive functions were 

protected when they conducted cerebral ischemia or trauma in MMP-9 knockout mice [125]. 

They also noticed similar protective effects when they treated the animals with the MMP 

inhibitor BB-94 [125]. These reports suggest that MMPs have a significant role in brain 

injury-mediated edema formation.

Neuroinflammation

Neuroinflammation is considered as a key secondary injury mechanism that sustains 

the damage long after TBI by exacerbating cerebral edema and intracranial pressure. 

Increasing amounts of evidence suggested that MMPs are instrumental in creating a 

proinflammatory microenvironment [126]. MMPs participate in the inflammatory cascade 

by inducing or regulating various inflammatory mediators and their receptors [127, 128]. 

These inflammatory mediators and receptors include cytokines, interferons, growth factors, 

and other regulatory proteins [128]. Studies show that MMP regulates the activation of 

inflammatory cytokines such as IL-1β, TNF-α, and TGF-β.

The cytokine, IL-1β, is a common inflammatory cytokine, which is significantly elevated 

during neurological complications such as Alzheimer’s disease, TBI, and stroke [129]. This 

is regarded as a major inflammatory biomarker. Activation of IL-1β involves proteolytic 

removal of the N-terminal part from its inactive precursor protein [130]. IL-1-converting 

enzyme (ICE), also called caspase-1, has been identified as the primary IL-1β activator 

[131]. There are several reports on the activation of IL-1β in caspase-1-independent 

pathways in vitro and in vivo [132, 133]. In 1996, Ito et al. first reported the MMP-mediated 

maturation of IL-1β [134]. Further studies suggested that MMPs like MMP-2, MMP-3, 

and MMP-9 are capable for the activation of IL-1β [135]. Converse to this finding when 

MMP-2-positive astrocytes were stimulated with IL-1β, they produced MMP-9 [136]. In 

another study, when IL-1β was injected to MMP-9 knockout mice, it showed reduced 

microglial activation [30] and attenuated BBB degradation [137]. Similarly, MMPs regulate 

the activation of other interleukins such as IL-6 and IL-18. Suehiro et al. reported that 

MMP-9 upregulated the level of IL-6 in systemic arterial and jugular venous blood from 

seven patients with TBI [138]. Thus, it appears that MMPs influence the inflammatory 

process by activating pro-IL or cleaving pro-IL to its active form.

TNF-α sheddase activity of MMPs provides another example on how MMPs influence 

inflammatory reaction by regulating cytokines. MMPs have the ability to release soluble 

TNF from its membrane-bound precursor. TNF-α is a pleiotropic proinflammatory cytokine 

produced by various cell types and is a central mediator of diverse cellular events. TNF-α 
is released from the cell surface by ADAM-17 (a disintegrin and metalloproteinase 17), 

which is also known as TNF-α-converting enzyme (TACE), the main TNF sheddase. It 

has been proven in ADAM-17 knockout mice, where it reduced the release of active 
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TNF-α by 90 % [139]. Macrophage MMP-7 was found to be very important for TNF-α 
release [140]. In addition, several other MMPs such as MMP-1, MMP-2, MMP-3, MMP-9, 

MMP-12, MMP-14, and MMP-17 are reported as having role in releasing active TNF 

from the cell surface [141–143]. MMP-mediated activation of TNF-α has been reported in 

several signaling pathways associated with diseases and disorders. Xie et al. reported that 

MMP induced cerebral hemorrhage and involvement of TNF-α in subarachnoid hemorrhage 

patients [144]. Activated TNF-α in turn activates MMPs, and TNF-α-mediated activation 

of MMP-2 and MMP-9 is well documented. Lee et al. conducted a detailed study on 

the TNF-α-mediated activation of MMP-9 and reported that augmented MMP-9 gene 

expression was mediated through TNFR1/TRAF2/PKCalpha-dependent JNK1/2/c-Jun and 

c-Src/EGFR/PI3K/Akt signaling pathways in human A549 cells [145].

TGF-β is another cytokine with pleiotropic effect on which MMPs have regulatory 

roles. Several investigators reported the functional/regulatory interactions and interplay of 

MMPs with TGF-β. TGF-β has various physiological and pathological functions such as 

tissue wound healing, inflammation, cell proliferation, differentiation, migration, and ECM 

synthesis [146–148]. In addition, TGF-β has a significant role in regulating the immune 

system that controls both pro- and antiinflammatory effects depending on the cell type [146–

148]. In TBI, increased levels of TGF-β have been reported [149, 150]. In initial days of 

head-injured patients, high levels of TGF-β in CSF have been detected [150]. MMP-2 and 

MMP-9 can activate TGF-β through proteolytic degradation of the latent TGF-β complex. 

TGF-β is translated as a precursor protein of 75 kDa, containing a signaling peptide, 

latencyassociated peptide (LAP), and the mature TGF-β. The precursor protein gets cleaved 

intracellularly by furin-type convertases, and upon secretion, the protein remains associated 

with ECM, still as latent TGF-β complex. ECM activation of TGF-β involves proteolytic 

cleavage by MMPs [151, 152]. Wang et al. demonstrated MMP-2-mediated activation 

of TGF-β1 in the arterial walls of aged rats. Recently, several studies have shown that 

TGF-β1 can upregulate MMP-9 expression and activity in different cell types [153, 154]; 

similarly, there are reports on the activation of MMP by TGF-β. Thus, MMPs play a key 

role in the regulation of TGF-β and thereby regulate inflammation, cell proliferation, and 

wound healing. Overall, MMPs modulate the process of neuroinflammation through their 

bidirectional interaction with cytokines.

Neurodegeneration

TBI almost always leads to progressive neurodegeneration depending on the severity. 

Proteases have a major role in cell death and it can trigger cell death by proteolytic damage 

[155]. MMPs upregulate apoptosis of several biologically active intra and/or extracellular 

molecules [156]. The level of MMPs or activation of MMPs, tissue specificity, and the 

balance between MMPs and TIMPs are other important factors which influence apoptosis 

[156]. Studies established the role of MMPs in neuronal apoptosis [156]. Apoptosis is a 

type of programmed cell death, which is triggered mainly by caspase activity [155]. In 

response to injury stimuli, MMPs get activated and induce apoptotic caspase enzymes [156]. 

In our recent study, in blast-induced mild TBI, we illustrated MMP-mediated induction of 

caspase-3 and apoptosis [32]. Using the MMP inhibitor, TIMP-1, the role of MMPs in 
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apoptosis has been demonstrated. In another study, we demonstrated MMP-3 and MMP-9 as 

the main contributors for the caspase-1-dependent cell death in human endothelial cells [29].

MMPs have role in cleaving pro-IL-1β to active IL-1β [135], the key component of the 

cytokine network involved in apoptosis. Another class of nonmatrix proteins cleaved by 

MMP is the cleavage of stromal cell-derived factor-α (SDF-α), a chemokine converted to 

a neurotoxic protein causing neurodegeneration after precise processing by active MMP-2 

[157]. In 2005, Copin et al. reported the roles of MMPs in cerebral ischemia-induced 

apoptosis and studied the specific role of MMP-9 in cell death mechanism. They also 

analyzed the pro and cleaved forms of PARP (poly (ADP) ribose polymerase) and α-spectrin 

and investigated DNA fragmentation in rats treated with MMP inhibitor and in MMP-9 

knockout mice [158]. MMPs can inactivate PARP in a time-dependent manner similar to 

caspase-3 and cause harmful effects by hampering DNA strand break repair [159].

MMPs act on Proneurotrophins (i.e., nerve growth factor and brain-derived neurotrophic 

factor) and cleave extracellularly. Proneurotrophins are known growth factors that regulate 

cell survival but also promote neuronal cell death [160]. In the cerebellum and retinal 

ganglion cells, MMP-9 is involved in apoptosis through precise degradation of ECM 

proteins [161]. In addition, MMPs stimulate apoptosis by interacting with cell surface 

receptors. For instance, MMP-9 activates neuronal cell death through the association with 

lipoprotein receptor-related protein [162] and MMP-1 interacts with α1β2-, αvβ3-, and 

α5β1-integrins and is involved in apoptosis [163]. MMP-12 may cleave other cell surface 

receptors including proteinase-activated receptors and involve in the apoptosis of endothelial 

and epithelial cells [164].

Regarding TBI, the most reported MMPs are MMP-2 (gelatinase A) and MMP-9 (gelatinase 

B). In our recent work, we demonstrated the roles of MMP-2, MMP-3, and MMP-9 in 

neuroinflammation and neurodegeneration after blast-induced mild TBI in rats [32]. The 

other MMPs such as MMP-1 [163], MMP-7 [165], and MMP-11 [166] are also involved in 

apoptosis in various cell death mechanisms. Thus, the protein levels and activities of various 

MMPs have a regulatory role in the transition between physiology and pathophysiology.

Endogenous and Exogenous MMP Inhibitors

MMP inhibitors include natural endogenous tissue inhibitors and exogenous synthetic 

pharmacological inhibitors. Two major endogenous inhibitors of MMPs are TIMPS and 

α2 macroglobulin. TIMPs are the most thoroughly studied class of endogenous MMP 

inhibitors. Four TIMPs (TIMP-1, TIMP-2, TIMP-3, and TIMP-4) have been identified 

in vertebrates [18]. These inhibitors bind MMPs in a 1:1 stoichiometry. This family of 

inhibitors has been extensively reviewed by several authors [167–169]. TIMPs inhibit all 

MMPs tested so far, except that TIMP-1 fails to inhibit MT1-MMP [168]. The human 

TIMP proteins contain 184 to 194 amino acids that form an N-domain and a C-subdomain 

that are stabilized by six disulfide bonds [169]. TIMPs are 40 % identical in structure 

and have similar characters to inhibit individual MMPs. The expression of TIMPs is 

tissue-specific and is regulated at the level of transcription. TIMP-1 is widely expressed 

in many mammalian tissues, especially in the reproductive organs. In the brain, expression 
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of TIMP-1 is restricted to the hippocampus, olfactory bulb, and cerebellum [170]. TIMP-2 

is the most common tissue inhibitor and is expressed in most of the organs and tissues. 

TIMP-3 is expressed in many tissues and especially in the basement membranes of the eye 

and kidney. TIMP-4 is relatively restricted in the heart, kidney, ovary, pancreas, colon, testes, 

brain, and adipose tissue [171].

Plenty of exogenous synthetic inhibitors of MMP (MMPIs) have been developed and most 

of them were formulated by incorporating zinc-binding globulin (ZBG). ZGBs inactivate 

MMPs by displacing zinc-bound water molecule [172]. Classically, MMPIs include 

hydroxamic acids (ZBG1), carboxylates (ZBG2), thiols, and phosphonic acids (phosphorus-

based ZBGs). Most of the first-generation MMPIs are broad spectrum inhibitors with 

nontargeted effects. Attempts are ongoing regarding the development of active site-directed 

MMPIs with high specificity. Apart from these, there are natural MMP inhibitors derived 

from various resources such as herbs, plants, fruits, and other agriculture products. These 

natural MMP inhibitors include long chain fatty acids, epigallocatechin gallate (EGCG) and 

other polyphenols, flavonoids, and a variety of other natural compounds. A detailed account 

of the various classes of MMPs and their chemical structure and effects was reviewed by 

several authors [167, 173].

MMPs as Therapeutic Targets

Regulation of MMPs is generally considered as an ideal target for developing therapeutic 

strategies against various diseases and disorders including brain injuries because of their 

role in mediating pathophysiology. Experimental lines of evidence suggested that MMP 

inhibition can be an effective strategy to treat such diseases. MMP inhibitor-mediated 

attenuation of brain edema resulting from the BBB disruption during postsurgical brain 

injury by using MMP inhibitor has been reported by several investigators [112, 174]. 

Lines of evidence on the involvement of MMP-2 and MMP-9 on various neurovascular 

complications including TBI persuaded to target these MMPs to develop a successful 

therapeutic strategy. MMP-2 inhibition reversed sepsis-induced BBB permeability and 

reduced brain inflammation and oxidative damage in an animal model of sepsis [175]. 

Similarly, treatment with MMP-9 and MMP-2 inhibitors and dual MMP-2 and MMP-9 

inhibsitor could prevent BBB breakdown in Wistar rats subjected to pneumococcal 

meningitis [176]. A competitive, mechanism based dual inhibitor of MMP-2 and MMP-9, 

SB-3CT, successfully attenuated MMP-9 activity, reduced brain lesion volumes, and 

prevented neuronal loss and dendritic degeneration in an experimental mouse model of 

TBI [177]. A novel MMP inhibitor (Ro 28–2653) inhibits MT1-MMP (also known as 

MMP-14), MT3-MMP (also known as MMP-16), MMP-2, MMP-8, and MMP-9 and 

significantly reduced brain injury when administered in the first 2 days after focal cerebral 

ischemia [178]. The available animal data has shown that therapeutic MMP inhibition in 

acute brain injury and stroke has considerable potential [179]. Despite these promising 

results supporting MMP-based clinical trials, it is imperative to consider the apparent 

positive effects of MMP; both MMP-9 and MMP-2 are thought to be involved in repair 

and regeneration after nervous system injury [180]. Furthermore, the availability of a 

suitable noninvasive method of drug delivery through the BBB remains as a challenge for 
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undertaking a successful MMP inhibitor-based clinical trial against brain injury and other 

disorders.

Although the use of pharmacological inhibitors against MMP seems a straightforward 

approach, there is only limited clinical success achieved so far. Regarding the clinical 

trials of MMP inhibitors, most of the attempts were carried out in the area of cancer 

therapy. Despite the fact that a number of preclinical data support the application of MMP 

inhibitors as anticancer drugs, all of these trials failed [179]. Failure of first-generation 

MMP inhibitors diminishes enthusiasm for MMP inhibitor-based drugs. Regardless of these 

disappointments, investigations on inhibiting MMP activity is still a rational therapeutic 

approach, particularly for inflammatory disorders in which MMPs often activate the 

signaling cascades leading to inflammation [181]. Several reasons are highlighted for the 

failure of clinical trials including poor knowledge of the complexity of MMP function, 

nonspecificity, and instability of inhibitors used. Broad spectrum MMP inhibitors like 

hydroxamate-based inhibitors are useful in a way because of their nontargeted undesirable 

effects. Investigating the precise isoform of MMP associated with specific pathological 

condition and spatiotemporal expression and functional diversity of the particular MMP 

involved is important in the design and development of highly specific inhibitors against the 

crucial MMP target.

Apart from the use of inhibitors, antibody-based biotherapy is also found to be promising 

as it can assure more selectivity and potency [182]. Devy et al. have identified a highly 

selective antibody-based MMP inhibitor (DX-2400) against MMP-14, which displays anti-

invasive, antitumor, and antiangiogenic properties and blocks pro-MMP-2 processing and 

was suggested for breast cancer patients [183, 184]. The use of functional blocking 

antibodies often enables inhibition of specific functions of the MMP rather than their general 

proteolytic activity [179]. REGA-3G12 is a monoclonal antibody developed as a selective 

inhibitor against MMP-9 that specifically targets the catalytic domain, but the fibronectin or 

zinc-binding domains remain unaffected by it [182]. Similarly, the mouse 9E8 monoclonal 

antibody targets only the MMP-2 activating function of cellular MT1-MMP rather than the 

general proteolytic activity of this MMP [185].

Reestablishing the delicate normal balance between MMPs and their endogenous inhibitors 

to recoup the optimum MMP activity for normal physiological processes is another 

approach. Despite the disappointments from the clinical trials of first-generation MMP 

inhibitors, researchers are still hoping in the rise of MMP inhibition as a therapeutic 

approach by including more specific and precise inhibitory methods. Strategic upregulation 

of natural inhibitors, development of peptide inhibitors including functional blocking 

antibodies, optimization of available MMP inhibitors, and development of highly specific 

and stable pharmacological inhibitors with minimal adverse effects are the goals of future 

MMP targeted therapeutic trials. Third-generation and highly specific MMP inhibitors 

designed to block only the target MMPs are currently being evaluated [186].
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Conclusion and Perspectives

MMPs play significant roles in various physiological processes primarily through their 

effects on ECM remodeling. However, their elevated levels and activities are largely 

associated with several neurological complications that include neurovascular dysfunction, 

hemorrhage, neuroinflammation, neurodegeneration, and impairment in angiogenesis and 

neurogenesis. The current review focused mainly on the role of MMPs in accomplishing 

the specific pathophysiology of TBI. Among the different types of MMPs studied so 

far, gelatinases (MMP-2 and MMP-9) are highly referred by associating with various 

neurological complications including TBI. Our previous findings on the augmented levels 

and activities of MMP-2, MMP-3, and MMP-9 in blast-injured rats and the critical 

roles of MMPs in various neuronal signaling mechanisms reported by several other 

investigations persuade us to undertake a more comprehensive study in this topic. A detailed 

study will delineate the molecular aspects of MMP regulation in post-TBI including the 

potential epigenetic changes that can bring about rapid modulation in the MMP levels and 

activities. By exploring the signaling mechanism that could regulate MMPs in TBI, we are 

anticipating the possibility of developing it as a valid therapeutic strategy against mTBI. The 

conventional therapeutic approaches using endogenous and synthetic MMP inhibitors are 

usually unsuccessful mainly due to the lack of efficacy and specificity or due to untoward 

side effects. Thus, gene therapy-based interventions seem more promising as they have the 

potential to ensure specificity and efficacy with minimum risk factors. We can accomplish 

this in two ways: either through the downregulation of MMPs or by the overexpression of 

TIMPs after deciphering the precise mechanisms of MMP regulation in mTBI. Since MMPs 

are indispensable in various normal physiological processes, regulatory strategies need to be 

adopted in a highly judicious manner.
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Fig. 1. 
Schematic representation of the role of MMPs in traumatic brain injury. Brain injury 

activates the expression of MMPs either directly or via other mediators like oxidative 

stress (reactive oxygen species, ROS). MMPs exacerbate the inflammatory cascades by 

activating inflammatory cytokines such as IL-1β and TNF-α. MMPs degrade ECM proteins 

and tight junction proteins of BBB lead to BBB disruption. In addition, MMPs involve in 

neurodegeneration by activating cell death inducing caspase enzymes and causing apoptosis. 

Similarly, MMPs induce cellular and vasogenic edema during brain injury
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Fig. 2. 
Activation of MMP-2 in mild traumatic brain injury: Immunofluorescent staining of MMP2 

in rat brain cortex of primary blast (123-kPa peak overpressure) induced mTBI [32] (a) and 

mild fluid percussion injury (15 psi) and compared with control (b). Scale bar (yellow bar in 

the last panel)=20 μm in all panels
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