Skip to main content
. 2022 Sep 6;2022:9966750. doi: 10.1155/2022/9966750

Table 4.

Antibacterial actions of flavonoids.

Flavonoid Experimental
Model
MIC Mechanism of action or main results Author/year
3′,3′,4-trihydroxyflavone In vitro
Pathogens: E. faecalis, S. aureus, E. coli, E. aerogenes, S. epidermidis, K. pneumoniae S. haemolyticus, and P. aeruginosa
32 μg/mL (E. faecalis and S. aureus)
64 and 128 μg/mL (K. pneumoniae, E. aerogenes, and E. coli)
(i)Killing bacteria from diabetic wounds [153]

3′,4′,7-trihydroxyflavone In vitro
Pathogens: E. coli, E. aerogenes, K. pneumoniae, P. stuartii, and P. aeruginosa
MIC values ranging from 4 to 128 μg/mL (i)Antibacterial and antibiotic sensitizing activity against MDR gram-negative enteric bacteria
Substrates for efflux pump
[166]

Isoquercitrin In vitro
Pathogen: E. coli
MIC 4.64 μg/mL MBC 18.56 μg/mL Membrane alterations, a rapid increase in DNA fragmentation, and caspase activation [167]

Baicalin In vitro
Broth-microdilution method
Sub-MIC 256 μg/mL (i)Anti-QS activity against P. aeruginosa
(ii)Marked reduction in inflammation indicated by reduced accumulation of cellular infiltration in peritoneal tissue
Significant decrease in IL-4 in the peritoneal flushing fluid
Significant increase in INF-γ production
[160]
In vivo
Mouse intraperitoneal foreign-body biofilm infection model
100 mg/kg subcutaneous

Rutin In vitro
AI-2 bioluminescence assay APEC-O78 strain (CVCC141)
12.5, 25 and 50 μg/mL (i)Inhibition of QS gene expression in P. aeruginosa
(ii)Decreased production of the signaling molecule AHL by P. aeruginosa
(iii)Reduction in CFU count of P. aeruginosa
[162]