
ARTICLE

Epidemiology

A metabolomic analysis of adiposity measures and pre- and
postmenopausal breast cancer risk in the Nurses’ Health
Studies
Kristen D. Brantley 1✉, Oana A. Zeleznik2, Barbra A. Dickerman1, Raji Balasubramanian3, Clary B. Clish4, Julian Avila-Pacheco4,
Bernard Rosner 2,5, Rulla M. Tamimi6 and A. Heather Eliassen1,2

© The Author(s), under exclusive licence to Springer Nature Limited 2022

BACKGROUND: Adiposity is consistently positively associated with postmenopausal breast cancer and inversely associated with
premenopausal breast cancer risk, though the reasons for this difference remain unclear.
METHODS: In this nested case–control study of 1649 breast cancer cases and 1649 matched controls from the Nurses’ Health Study
(NHS) and the NHSII, we selected lipid and polar metabolites correlated with BMI, waist circumference, weight change since age 18,
or derived fat mass, and developed a metabolomic score for each measure using LASSO regression. Logistic regression was used to
investigate the association between this score and breast cancer risk, adjusted for risk factors and stratified by menopausal status at
blood draw and diagnosis.
RESULTS: Metabolite scores developed among only premenopausal or postmenopausal women were highly correlated with
scores developed in all women (r= 0.93–0.96). Higher metabolomic adiposity scores were generally inversely related to breast
cancer risk among premenopausal women. Among postmenopausal women, significant positive trends with risk were observed
(e.g., metabolomic waist circumference score OR Q4 vs. Q1= 1.47, 95% CI= 1.03–2.08, P-trend= 0.01).
CONCLUSIONS: Though the same metabolites represented adiposity in pre- and postmenopausal women, breast cancer risk
associations differed suggesting that metabolic dysregulation may have a differential association with pre- vs. postmenopausal
breast cancer.
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INTRODUCTION
Body mass index (BMI) is a recognised risk factor for
postmenopausal breast cancer, with higher adiposity associated
with increased risk [1–4]. However, evidence consistently shows
higher BMI is associated with a decreased risk of premenopausal
breast cancer [3–5], though the reasons for these conflicting
relationships remain unclear. There are several different ways to
examine adiposity among women. Measures of waist circum-
ference and weight change in adulthood have been used to
capture adiposity [6, 7]; in addition, fat mass, while difficult to
collect directly, may represent adiposity in adulthood better
than BMI alone [8]. It is also possible that none of these
measures adequately provides insight into one’s underlying
metabolic health, which may be a more robust overall indicator
of risk.
To better understand the relationship between adiposity and

breast cancer we need to explore the biological mechanisms that

potentially underlie the associations. Metabolomic analyses allow
us to evaluate the contribution of metabolites, small molecules
that are breakdown products within blood or urine, to various
phenotypes. Several studies have identified metabolites that are
associated with adiposity measures, such as BMI or waist
circumference [9–13]. While one has explored the association
between BMI-related metabolites and postmenopausal breast
cancer [10], none to date have used metabolomic data to develop
adiposity scores reflective of metabolic health. Here, we derived a
metabolomic score for different adiposity measures and examined
the association between this score and breast cancer risk, by
menopausal status. We seek to add knowledge about the
metabolic profiles of these adiposity measures, determine if
metabolomic scores can be used to assess risk, and to explore how
metabolic state is associated with the development of breast
cancer and whether these associations differ by menopausal
status.
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METHODS
Study population
Participants included women in the Nurses’ Health Study (NHS) and NHSII
who were part of breast cancer nested case–control study. Both the NHS
and the NHSII are long-running prospective cohorts, started in 1976 and
1989, respectively. Case–control participants included 1186 NHS women
who provided a blood sample (collected 2000–2002), and 2117 NHSII
women who provided a blood sample (collected 1996–1999) and had
metabolites profiled. Cases were women with a breast cancer diagnosis
after blood collection and before 2010 (NHS) or 2011 (NHSII); controls were
matched to cases by menopausal status at diagnosis (pre/post/unknown),
and age (±1 year), date (±1 month), time of day (±2 h), fasting status (≥8 h
since a meal vs. <8 h or unknown), menopausal status and hormone use
(premenopausal, postmenopausal, hormone user, postmenopausal, non-
user, unknown) at blood draw. Risk-factor information is collected in both
cohorts via biennial questionnaires. Breast cancer cases were identified by
self-report and confirmed by medical record review. Deaths were captured
by next of kin, postal service, or review of the National Death Index.

Metabolomic profiles
Metabolites were profiled by Dr. Clary Clish’s lab at the Broad Institute of
MIT and Harvard (Cambridge, MA) using liquid chromatography-tandem
mass spectrometry (LC/MS-MS) platforms designed to measure polar
metabolites and lipids [14–17]. Matched case–control pairs were dis-
tributed randomly within batches. Pooled reference samples were
included every 20 samples and blinded quality control samples were also
randomly distributed. Measures were standardised using the ratio of the
value of the sample to the value of the nearest pooled reference multiplied
by the median of all reference values for the metabolite. Metabolites
impacted by delayed sample processing were removed (ICC and Spearman
rho <0.75 comparing immediately vs. within 24–48-h post collection, N=
37 in NHS, N= 65 in NHSII). After this step, there were 321 metabolites
measured in NHS and 382 metabolites measured in NHSII [17]. For the
primary analysis, metabolites were excluded if the blinded quality control
samples CV was ≥25% (NHS N= 47, NHSII N= 46), though all metabolites
were included in a sensitivity analysis. Metabolites with 0-<10% missing-
ness (N= 21 in NHS, N= 321 in NHSII) were imputed with ½ the minimum
value; metabolites with ≥10% missingness were excluded (N= 2 in NHS, N
= 15 in NHSII). Finally, all metabolites that were included in both NHS and
NHSII (N= 263) were assessed in analyses.

Exposure and covariate measurement
Adiposity measures assessed included BMI (kg/m2), waist circumference
(cm), weight change since age 18 (kg), and derived fat mass. BMI and
weight change were assessed at blood draw. Waist circumference was
assessed in 2000 for NHS and in 1993 for NHSII. Fat mass was derived from
measures of age, weight, height, waist circumference and race, through
the National Health and Nutrition Examination Survey (NHANES)-devel-
oped equation for women which strongly predicts dual-energy X-ray
absorptiometry (DXA)-measured fat mass (R2= 0.90) [8].
Additional covariates included standard breast cancer risk factors,

selected at the time of blood draw from corresponding questionnaires or
prior reports for non-time-varying covariates: age at menarche, age at first
birth and parity combined (nulliparous, 1–2 kids & <25 y, 1–2 kids & 25+ y,
3+ kids & <25 y, 3+kids & 25+ y), breastfeeding history (yes/no), history of
benign breast disease (yes/no), family history of breast cancer (yes/no), BMI
at age 18 (kg/m2), alcohol consumption (g/day) at blood draw, and
physical activity level (MET-h/week) at blood draw. We additionally
adjusted for type of hormone use at blood draw (oestrogen alone,
oestrogen+ progesterone, other) among postmenopausal women and
oral contraceptive use at blood draw for premenopausal women. Less than
2% of the sample was missing values for BMI or for alcohol intake; where
this occurred, values were imputed with median values.

Statistical methods
Derivation of metabolomics score for adiposity measure. A metabolomics-
based score was derived for each adiposity measure separately. First, all
individuals missing the adiposity measure of interest were removed from
the analysis. BMI analyses further excluded extreme outliers: women with
BMI > 60 or <15 kg/m2. Spearman correlations between probit-transformed
metabolites and the adiposity measure, adjusted for case–control status and
age at blood draw, were calculated. Metabolites with a correlation ≥ |0.15|
with the adiposity measure, and a Benjamini Hochberg FDR P value <0.05

were selected to be carried forward in model development [18]. LASSO
regression with tenfold cross-validation to select the optimal tuning
parameter, lambda, was used to select metabolites for inclusion in each
model, resulting in a metabolomic adiposity score with LASSO-penalised
coefficients.
Sensitivity analyses were also conducted by limiting derivation of the

metabolomic equation to controls-only and comparing selected metabolites
with those derived using both cases and controls. In addition, the derivation
of metabolomic scores was done among women premenopausal at blood
draw and postmenopausal at blood draw separately and compared with the
results using all women.

Association of adiposity measures (self-reported/derived and metabolomic
scores) with breast cancer. Unconditional logistic regression with adjust-
ment for breast cancer risk factors and matching factors were used to
assess the association between quartiles of self-reported adiposity
measures and metabolomic adiposity scores and breast cancer risk, with
quartile cutpoints determined among the full population. For comparison,
a sensitivity analysis tested the use of quartile cutpoints based on controls
only and defined by menopausal status at diagnosis. For breast cancer
subtypes (ER+/PR+, ER−/PR−), tertiles were used due to the smaller
sample size. All analyses were stratified by menopausal status at blood
draw, and secondarily by menopausal status at diagnosis. Trends for
quartile analyses were calculated by modelling the median of each quartile
as a continuous variable. P values <0.05 (two-sided) were considered
statistically significant. The risk of oestrogen receptor (ER) positive and
negative breast cancer were assessed separately, using relevant ER
subtype cases and all controls. We formally tested whether the association
between self-reported adiposity and breast cancer risk is independent of
metabolomic score using the mediation package in R [19]. We evaluated if
ORs for self-reported adiposity measures changed comparing the model of
self-reported adiposity measures on breast cancer risk alone to the model
of self-reported adiposity measures on breast cancer risk, including
metabolomic scores. We also tested whether the association between
metabolomic adiposity scores and breast cancer was statistically sig-
nificantly different by BMI group (defined dichotomously as <25 kg/m2 vs.
>=25 kg/m2) using the likelihood ratio test.

RESULTS
Descriptive characteristics
The analysis cohort included 1649 cases and 1649 controls.
Descriptive characteristics are included in Table 1. The average
age at blood draw was 52.3 y (SD= 11.7) for cases and 52.6 y (SD
= 11.7) for controls. Most participants were fasting at blood draw
(75% of cases, 81% of controls). About half of the participants
(51%) were premenopausal at blood draw, and 27% were
premenopausal at diagnosis. Missingness varied by adiposity
measures, with <2% for BMI, and <4% for weight change since age
18. However, approximately one-third of the participants were
missing waist circumference and predicted fat mass measures.
Women missing these measures were more likely to be in NHS2
and premenopausal at blood draw but otherwise were similar to
women not missing these measurements.

Metabolomic scores for adiposity measures
Selection of metabolites. Out of 263 metabolites measured, a
large proportion were selected as significantly correlated with
each adiposity measure: 106 for BMI (N participants= 3245), 108
for weight change (N= 3194), 84 for waist circumference (N=
2209), and 96 for fat mass (N= 2137) (Fig. 1). Overlaps in selected
metabolites for each adiposity measure were substantial. All
metabolites with a significant Spearman correlation with waist
circumference were also correlated with FM and BMI. All but one
metabolite (C36:4 PC-A) correlated with waist circumference were
also correlated with weight change. For fat mass-correlated
metabolites, all were also significantly correlated with BMI, and
all except for carnitine and C36:4 PC-A were significantly
correlated with weight change. Only three metabolites selected
for BMI did not overlap with other adiposity measures (C2
carnitine, C16:0 Ceramide, C14:0 SM), and seven metabolites were
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significantly correlated with weight change but no other adiposity
measures. Metabolites with the highest correlations with adiposity
measures tended to be consistent across all adiposity measures.
Among the top ten correlated metabolites for each adiposity
measure, overlapping metabolites included several triacylglycerols
(TAGs) and diacylglycerols (DAGs) with 0–2 double bonds, such as
C52:2 TAG, C50:1 TAG, C50:2 TAG, C32:1 DAG, C34:1 DAG, C34:2
DAG, as well as uric acid and valine. For example, C52:2 TAG was
strongly correlated with BMI (r= 0.39), weight change (r= 0.39),
waist circumference (r= 0.33), and fat mass (r= 0.37). Directions
of correlations for metabolites were consistent across adiposity
measures as well; for example, cholesteryl ester C18:2 CE was
inversely correlated with all measures.
LASSO selection of these significantly correlated metabolites

resulted in 81 metabolites for BMI, 51 for waist circumference, 73
for fat mass, and 73 for weight change (Supplemental Table 1).
Variability in adiposity measures explained by metabolite scores
was generally high, as evidenced by R2 values from each equation:
BMI= 0.53; weight change= 0.44; fat mass= 0.46; waist circum-
ference= 0.33. The majority of selected metabolites were lipids.
Metabolites with large coefficients for a one-SD change in BMI

included the glycerophosphocholines C38:3 PC and C34:3 PC
plasmalogen, and sphingolipids C18:1 SM and C14:0 SM (Supple-
mental Table 1). The top metabolites associated with weight
change also included glycerophosphocholine C38:3 PC, sphingo-
lipid C18:1 SM, as well as cholesteryl esters C20:4 CE and C20:5 CE.
Top metabolites selected for waist circumference were glycer-
ophospholipids C38:3 PC and C34:3 PC plasmalogen, sphingolipid
C18:1 SM, and cholesterol ester C20:4 CE. Fat mass metabolomic-
score creation relied most heavily on glycerophosphocholines
C38:3 PC and C34:3 plasmalogen, sphingolipid C18:1 SM, fatty acyl
C34:3 DAG, and cholesterol ester C20:4 CE. Notably, glyceropho-
sphocholines C38:3 PC and C34:3 PC plasmalogen, sphingolipid
C18:1, and cholesteryl ester C20:4 CE were strongly predictive of
all adiposity measures.

Sensitivity analyses—selection of metabolites in different popula-
tions. Metabolites identified as well-correlated with adiposity
measures (r ≥ |0.15|) were very similar when examining only the
controls compared to all participants. For BMI, 102 of 106
metabolites with correlations ≥|0.15| in the full participant group
also had correlations ≥|0.15| among controls only. Six unique
metabolites had correlations ≥|0.15| when examining controls
only (r= |0.15–0.17|); the correlation coefficients were not
materially different when examining contributions for the full
participant dataset for these metabolites (r in the full group
ranged from 0.12 to <0.15). In addition, metabolomic scores
derived among controls only vs. cases and controls were strongly
correlated, with Pearson correlations ≥0.94 for metabolic scores
for BMI, weight change, waist circumference and fat mass.
Some minor differences were noted in metabolite correlations

when examining women's premenopausal and postmenopausal
at blood draw separately (Supplemental Table 2). Among
participants premenopausal at blood draw, 116 metabolites were
correlated with BMI (r > |0.15|); among participants postmenopau-
sal at blood draw, 95 metabolites were correlated with BMI.
However, 84 metabolites overlapped between both groups, and
had similar correlation strengths with BMI, with the average
difference in correlations between pre- and postmenopausal
groups equal to 0.05 (range for difference= 0.003–0.15) for
overlapping metabolites.
For those metabolites with strong correlations with BMI in

women premenopausal at blood draw, but not in women
postmenopausal at blood draw, the absolute value of the
difference between correlations ranged from 0.03 to 0.27. Those
with the largest differences in BMI correlations between groups

Table 1. Descriptive characteristics of participants in the Nurses’
Health Studya.

Characteristic Case Control

N participants 1649 1649

NHS2 1057 (64%) 1057 (64%)

NHS 592 (56%) 592 (56%)

Age at blood draw (mean (SD)) 52.32 (11.73) 52.57 (11.72)

Fasting at blood draw (N (%)) 1241 (75%) 1337 (81%)

Menopausal status and PMH use at blood draw (N (%))

Premenopausal 829 (50.3%) 826 (50.1%)

Postmenopausal—no
hormone use

223 (13.5%) 231 (14.0%)

Postmenopausal—yes
hormone use

547 (33.2%) 542 (32.9%)

Unknown 50 (3.0%) 50 (3.0%)

OC use (N (%))b

No 8 (0.5%) 7 (0.4%)

Yes 670 (40.6%) 672 (40.8%)

Unknown 151 (9.2%) 147 (8.9%)

Type of PMH use (among users) (N (%))

Oestrogen alone 200 (24.4%) 240 (29.2%)

Oestrogen+ Progesterone 223 (27.2%) 174 (21.1%)

Progesterone alone/other 124 (15.1%) 128 (15.6%)

Age at diagnosis (mean (SD)) 59.0 (10.6) NA

Menopausal status at diagnosis (N (%))

Premenopausal 452 (27.4%) 452 (27.4%)

Postmenopausal 1069 (64.8%) 1080 (65.5%)

Unknown 128 (7.8%) 117 (7.1%)

Age at menarche, years
(mean (SD))

12.46 (1.35) 12.52 (1.42)

Nulliparous (N (%)) 274 (16.6%) 230 (13.9%)

Parity, children (mean (SD))c 2.56 (1.16) 2.69 (1.34)

Age at first birth, years (mean
(SD))c

25.90 (4.09) 25.52 (4.11)

Breastfeeding history (N (%))c 1066 (64.6%) 1068 (64.8%)

History of benign breast disease
(N (%))

617 (37.4%) 511 (31.0%)

Family history of breast cancer
(N (%))

319 (19.3%) 201 (12.2%)

BMI at age 18 in kg/m2 (mean (SD)) 20.84 (2.79) 21.20 (3.03)

Alcohol consumption at blood
draw, g/day (mean (SD))

4.85 (7.90) 4.19 (6.51)

Activity level at blood draw, MET-
hours/week (mean (SD))

20.73 (28.23) 20.04 (22.81)

BMI, kg/m2 (mean (SD))

Premenopausal 24.8 (5.2) 25.5 (6.1)

Postmenopausal 26.5 (5.0) 26.3 (5.5)

Missing (N (%)) 26 (1.6%) 14 (0.8%)

Weight change since age 18, kg
(mean (SD))

12.96 (12.61) 13.02 (13.21)

Missing (N (%)) 57 (3.5%) 47 (2.9%)

Waist circumference, cm
(mean (SD))

81.83 (13.21) 82.10 (13.72)

Missing (N (%)) 537 (32.6%) 534 (32.4%)

Fat Mass (kg) (mean (SD)) 26.79 (8.87) 26.86 (8.95)

Missing (N (%)) 578 (35.1%) 568 (34.4%)
aAll measures taken at blood draw unless otherwise noted. Blood draw
2000–2002 for NHS, 1996–1999 for NHS2.
bAmong premenopausal women.
cAmong parous women
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(>0.15) included sphingolipid C20:0 SM, C14:0 SM, and several
glycerophospholipids. For these metabolites, correlations were
null among postmenopausal women (e.g.: for C20:0 SM r= 0.25
among premenopausal women vs. −0.02 among postmenopausal

women). For metabolites strongly correlated with BMI in
postmenopausal women but not in premenopausal women, the
absolute value of the difference between correlations ranged from
0.01 to 0.24. Metabolites with differences above |0.15| in
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Fig. 1 Spearman correlations of metabolites with adiposity measures, by class of metabolite. Correlations adjusted for age and
case–control status. BMI body mass index, FM fat mass, Waist waist circumference, Wtchg weight change from age 18. Asterisks (*)
represent the metabolites selected in LASSO regression for metabolite adiposity score creation.
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correlation coefficients were both glycerophospholipids: C38:6 PC,
and C40:10 PC, with correlations of −0.16 and −0.18 among
postmenopausal women, and null correlations among premeno-
pausal women. Despite these noted differences, none of the non-
overlapping metabolites was significantly associated with breast
cancer.
Importantly, the impact of these uniquely selected metabolites

to the prediction of BMI was minimal. For example, with respect to
BMI, the correlations with derived scores separately by menopau-
sal status at blood draw vs. all women combined were 0.96 for
premenopausal and 0.93 for postmenopausal women.

Sensitivity analysis—including metabolites with high CVs. Several
metabolites with high CVs (≥25%) were identified as being
correlated with adiposity scores, though these metabolites were
highly correlated with metabolites identified in the original set
with low CVs. For example, C54:1 TAG and C52:0 TAG correlated
with BMI (r= 0.27 and r= 0.25); these metabolites are highly
correlated with TAGs with few double bonds, several of which
were identified in the original correlation analysis. The metabo-
lomic score derived using the larger set of metabolites, including
those with CVs ≥25%, was strongly correlated with the score
created when excluding these metabolites (e.g., for BMI, r= 0.97).
Due to the similar nature of findings, all analyses reported exclude
metabolites with high CVs.

Sensitivity analysis—comparing selection algorithms. As an alter-
native to LASSO regression, we performed stepwise selection with
minimisation of Akaike’s information criterion (AIC) to obtain
metabolomic scores for adiposity measures. Stepwise selection
resulted in a model with fewer metabolites selected for each
adiposity measure (e.g., for BMI, stepwise selection chose 50
metabolites as opposed to LASSO’s 81) (Supplemental Table 3).
Only two metabolites (pseudouridine, C36:4 DAG) were selected in
stepwise but not selected via LASSO. Further, the correlation
between the metabolomic score for BMI using stepwise regression
vs. LASSO was >0.99. Overall, results did not differ based on the
selection algorithm used to produce the metabolomic score. Here
we present results for the LASSO-derived models.

Association of metabolomic scores with breast cancer risk
Premenopausal women. Quartile cutpoints were defined in the
overall population for consistency, as the metabolomic score was
developed in all participants, and are given in Supplemental
Table 4. A sensitivity analysis using quartile cutpoints defined by
controls only, and separately by menopausal status, yielded similar
results. Among women premenopausal at blood draw (N cases for
BMI= 826, waist circumference= 508, weight change= 823, FM
= 498), self-reported adiposity measures were generally inversely,
though non-significantly, associated with breast cancer risk. For
example, comparing quartile 4 with quartile 1, the BMI OR= 0.96
(95% CI= 0.68–1.35), and weight change OR= 0.89 (95% CI=
0.66–1.21). Metabolomic scores for all adiposity measures were
also inversely, though non-significantly, associated with risk. Odds
ratios were similar for women premenopausal at blood draw for
lean and non-lean women (lean defined as BMI < 25 kg/m2).
Inverse trends remained for ER+ breast cancers for both self-
reported and metabolomic-score measures, with self-reported fat
mass being significantly inversely associated with breast cancer (P-
trend= 0.004) though no significant trends were noted for ER-
breast cancer (Supplemental Table 5a, b). Although the associa-
tions for self-reported measures were generally attenuated with
the addition of metabolomic score, there was no evidence that the
association between self-reported measure and breast cancer was
dependent on the metabolomic score (P > 0.05).
When considering women who were premenopausal at both

blood draw and diagnosis, associations with breast cancer were
more strongly inverse than among women premenopausal at

blood draw only. For example, comparing quartile 4 with quartile
1, the BMI OR= 0.69 (95% CI= 0.43–1.11). However, the inverse
trends for this group were not significant, apart from self-reported
derived fat mass (P-trend= 0.04) (Table 2). This pattern was also
observed in ER+ breast cancers (Supplemental Table 5a).
Among women with menopausal status at both blood draw and

diagnosis known (N= 2560), approximately 23% (N= 582) were
premenopausal at blood draw and postmenopausal at diagnosis.
Among these women, self-reported and metabolomic-score
weight change were associated with inverse risk of breast cancer;
this was significant for metabolomic score (Q4 vs. Q1 OR= 0.53,
95% CI= 0.31–0.89, P-trend= 0.02). All ORs for the association
between metabolomic score and breast cancer were <1, while
self-reported BMI, weight change, and fat mass were positively
associated with breast cancer risk (though this was non-
significant) (Supplemental Table 6).

Postmenopausal women. For women postmenopausal at blood
draw, higher self-reported adiposity measures were associated
with higher breast cancer risk, though these relationships were
non-significant (Table 3). For example, self-reported BMI was
associated with a 17% increase in breast cancer risk (95% CI=
0.84–1.64, P-trend= 0.07), and self-reported weight change was
associated with a 34% increase in breast cancer risk (95% CI=
0.97–1.85, P-trend= 0.08). All metabolomic scores for adiposity
were positively associated with breast cancer risk, with significant
trends observed for BMI (Q4 vs. Q1 OR= 1.33, 95% CI= 0.98–1.82,
P-trend= 0.05), waist circumference (Q4 vs. Q1 OR= 1.47, 95% CI
= 1.03–2.08, P-trend= 0.01), and fat mass (OR= 1.62, 95% CI=
1.13–2.33, P-trend= 0.01). The association between metabolomic
score and breast cancer risk was more positive among women in
the non-lean group compared to the lean group, though there
was no significant interaction of adiposity metabolomic score and
BMI group.
For ER+ cases, self-reported and metabolomic-score measures

were more strongly positively associated with breast cancer risk
compared to overall cases, and positive associations were
particularly strong for metabolomic-score measures (e.g.: BMI OR
Q4 vs. Q1 among ER+ cases= 1.98, 95% CI= 1.37–2.88, P-trend <
0.001). In opposition, ORs comparing tertiles of metabolomic
scores for adiposity and risk of ER- breast cancer were generally
inverse. Metabolomic-score BMI and weight change were
significantly inversely associated with ER− breast cancer among
women postmenopausal at blood draw (Supplemental Table 5b).
Among postmenopausal women, the association between self-
reported adiposity and breast cancer was generally not statistically
accounted for by metabolomic score. An exception occurred with
waist circumference, although in this case, the contribution of
metabolomic score to the association remained quite small.
Generally, the ORs for the associations of self-reported adiposity
measures with breast cancer risk were only slightly attenuated
when adding metabolomic score to regressions among post-
menopausal women (e.g., BMI OR Q4 vs. Q1 before adjustment for
a metabolomic score vs. after adjustment= 1.17 (0.84–1.64) vs.
1.07 (0.69–1.65), P-value statistical mediation > 0.05). The attenua-
tion was stronger for waist circumference (OR Q4 vs. Q1 before
adjustment for a metabolomic score vs. after adjustment= 1.19
(0.76–1.88) vs. 0.91 (0.55–1.51), P-value statistical mediation=
0.02), though in this case the contribution of metabolomic score
to the association remained quite small (statistically mediated
effect size= 0.0002).

DISCUSSION
We generated metabolomic scores for adiposity measures
including BMI, waist circumference, weight change since age 18,
and fat mass, to gain insight into the relationship between
adiposity and pre- and postmenopausal breast cancer. With a
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panel of 263 metabolites, including lipids and amino acids and
derivatives, we identified many metabolites associated with
adiposity measures. Metabolomic scores for adiposity measures
were representative of the most predictive metabolites. The scores
were generally associated with a lower risk of breast cancer
among premenopausal women, and a higher risk among
postmenopausal women. Classes of metabolites positively asso-
ciated with adiposity included branched-chain amino acids
(BCAAs), TAGs and DAGs with a low number of double bonds,
and glycerophosphocholines. The individual metabolites selected
for adiposity scores are reflective of metabolic dysregulation,
providing insights into the complex relations between adiposity
and breast cancer risk among premenopausal and
postmenopausal women.
A large proportion of the metabolites measured were sig-

nificantly associated with adiposity measures. Notably, the
composition of metabolites for each metabolomic score was
largely overlapping. This provides evidence that self-reported
measures we typically use, whether it be BMI, waist circumference,
fat mass or weight change, are similar in their underlying biology
with respect to metabolomics.
Branched-chain amino acids (BCAAs) had particularly strong

positive associations with adiposity measures in our study, and
have been associated with BMI in prior literature [12, 20]. A study
within the Prostate, Lung, Colorectal, and Ovarian Cancer Screen-
ing Cohort (PLCO), the Navy Adenoma Study, and the Shanghai
Physical Activity study, that assessed pre-diagnostic serum
metabolites, also found significant positive associations between
valine and isoleucine and BMI [11]. The relationship between
BCAAs and adiposity may be driven in part through insulin
resistance, a key marker of metabolic dysregulation [21, 22].
Lipids, including triacylglycerols (TAGs) and diacylglycerols

(DAGs) with low numbers of double bonds were strongly
associated with adiposity measures. Our finding of TAGs and
DAGs as key contributors to adiposity measures is consistent in
the literature [11]. In diabetes literature, the structure of TAGs
appears important for determining the influence on insulin action
[12, 23]; TAGs with fewer double bonds are associated with insulin
resistance. Thus, as with BCAAs, TAGs and DAGs with few double
bonds may represent metabolic dysregulation.
Glycerophosphocholine metabolites, notably C38:3 PC, were

strongly associated with adiposity measures in our study and may
reflect metabolic dysregulation. A recent study compared meta-
bolic profiles in individuals who were classified as metabolically
healthy vs. unhealthy (defined as having one or more abnormal
metabolic indexes: hyperglycaemia, hypertension, dyslipidemia).
Metabolite profiles were distinct between groups, and featured
glycerophosphocholines, along with BCAAs, and metabolites
involved in phenylalanine metabolism and fatty acid biosynthesis
[24]. Carnitines, essential for fatty acid β-oxidation and therefore
energy production [25], were also positively and relatively strongly
associated with adiposity measures, a finding consistent with
other literature [11, 26]. Chen et al.’s study of metabolically healthy
vs. unhealthy individuals also demonstrated a different acylcarni-
tine profile between the two groups [24]. Moreover, acylcarnitine
metabolism has been linked to obesity and insulin resistance [27].
Because, after menopause, stronger associations with breast

cancer risk were observed for some metabolomic adiposity scores
compared to self-reported measures, metabolic dysregulation may
be an important underlying contributor to adiposity as a breast
cancer risk factor. Evidence suggests metabolic syndrome (MetS),
defined as a combination of factors including obesity (waist
circumference or BMI), triglyceride levels, high-density lipoprotein
(HDL) levels, hypertension, and hyperglycaemia [28], contributes
more than adiposity alone to risk and progression of the disease.
For example, in the National Institute of Health-American
Association of Retired Persons (NIH-AARP) Diet and Health Study,
MetS increased breast cancer risk in postmenopausal women byTa
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13%, and women with more components of MetS had a higher
risk of breast cancer compared to those with only one component
(HR= 1.45, 95% CI= 0.99–2.13) [29].
Notably, we observed similar metabolites associated with

adiposity in premenopausal and postmenopausal women. Thus,
the different association between adiposity and breast cancer risk
in premenopausal and postmenopausal women is not due to
different metabolite profiles themselves, but perhaps to the
distinct roles these metabolites, and more broadly, metabolic
dysregulation, play at different stages in a woman’s life. Inclusion
of metabolomic scores in regressions generally resulted in a
greater change in OR between self-reported adiposity measures
and breast cancer risk among women premenopausal at blood
draw compared to postmenopausal women, with the exception of
waist circumference, though the change was minimal in both
groups.
BCAAs, which, as noted, are closely linked to insulin resistance,

have been associated with breast cancer risk. Within PLCO, an
increased risk for postmenopausal breast cancer was observed
with higher postmenopausal levels of isoleucine and valine [10].
This finding was replicated in the NHS, with the same participants
as in the present study, with a 63% higher risk of breast cancer for
top vs. bottom quartile of isoleucine (P-trend= 0.01) among
women postmenopausal at blood draw [30]. On the other hand,
among women who were premenopausal at blood draw, BCAA
levels were associated with a lower risk of breast cancer,
demonstrating that the same metabolites may have differential
associations pre- vs. post-menopause. There is some discrepancy
in the literature, as BCAAs in the Women’s Health Study (WHS)
were not associated with risk, with the exception of leucine
[30, 31]. C-peptide, a byproduct of insulin processing, and
therefore closely linked to BCAAs, is also associated with breast
cancer risk [32], though this relationship may differ by menopausal
status. Within the European Investigation into Cancer and
Nutrition (EPIC), investigators found that serum C-peptide levels
were inversely associated with breast cancer before age 50 (OR=
0.70, 95% CI= 0.39–1.24, P-trend= 0.05), but positively associated
with breast cancer for women above age 60 (OR= 2.03, 95% CI=
1.20–3.43, P-trend= 0.01) [33]. Similarly, in the NHSII we observed
that C-peptide was inversely associated with risk for premeno-
pausal women with fasting blood samples [34].
Glycerophosphocholines have also been associated with breast

cancer risk, though it is unclear whether the risk differs between
pre- and postmenopausal women. For example, C32:1 PC was
associated with higher breast cancer risk in the Cancer Prevention
Study II, a cohort of postmenopausal women [9]. However, within
EPIC, a cohort including approximately 25% premenopausal
women at blood draw, glycerophosphocholines C38:3 PC and
C18:2 LPC were both associated with lower breast cancer risk (e.g.:
OR for a 1 SD change in C18:2 LPC= 0.89, 95% CI= 0.81–0.96)
[35].
Carnitines have been implicated in breast cancer risk as well.

However, it does not appear that carnitines are driving the
differential association between pre- and postmenopausal breast
cancer risk, as acylcarnitine levels were associated with elevated
breast cancer risk in both pre- and postmenopausal women in
EPIC [35].
The differential associations observed between levels of

adiposity-related metabolites and pre vs. postmenopausal breast
cancer risk may be explained in part by the role of oxidative stress
associated with MetS. Oxidative stress is related to metabolic
disorders, such as cardiovascular disease development and
obesity [36, 37]. Thus, it is posited that adiposity-related
metabolite profiles contributing to metabolic syndrome (MetS)
may also be informative of overall oxidative stress levels. In
premenopausal women, some effects of oxidative stress have
been shown to prevent cancer [38], and higher oxidative stress
has been suggestively associated with lower breast cancer risk in

premenopausal women in prospective studies [39–41]. In contrast,
levels of oxidative stress have been associated with higher breast
cancer risk in postmenopausal women [42]. Thus, different
functions of oxidative stress in pre- vs. postmenopausal breast
cancer development may contribute to the observed differences
of these metabolites on breast cancer risk before and after
menopause.
It is possible that the relationship between adiposity and breast

cancer, and the differential associations among pre-and post-
menopausal women, may be due, in part, to hormonal influence.
Adiposity in postmenopausal breast cancer is associated with
higher levels of circulating oestrogens [43]. Aromatase, active in
adipose tissue, contributes to breast cancer development through
the conversion of androgens to oestrogens in postmenopausal
women [44, 45], and changes in aromatase expression in breast
tissue are related to metabolic dysregulation markers such as
insulin resistance [46]. Thus, higher adiposity may increase the risk
of breast cancer for postmenopausal women through higher
aromatase levels. In premenopausal women, the relationship
between adiposity and oestrogen is less clear. At the extreme,
adiposity may cause anovulatory cycles and lower hormone
exposure [47]. There is further evidence that BMI is inversely
related to oestrogen levels in premenopausal women, even in
normally ovulating individuals, suggesting another potential
mechanism of risk reduction [48, 49]. This may be related to the
correlation between current BMI and BMI in young adulthood.
Body fatness at younger ages, measured up to age 20, is
associated with lower levels of urinary parent oestrogens [50]. It
is possible that the impact of early life adiposity on circulating
oestrogens may have the longevity that allows for continued
lower oestrogen levels in premenopausal women with higher BMI
overall. Given that associations we found in pre- and postmeno-
pausal women are stronger in ER+ cases compared with ER−
cases, the metabolomic scores may represent the correlation
between adiposity and oestrogen levels. This makes it difficult to
tell if the mechanisms driving adiposity-related associations are
metabolic or oestrogenic. Because dietary and other factors may
impact metabolomic profiles, including those metabolites we
selected based on their correlation with adiposity [51], it is
possible that the metabolites included in our adiposity scores are
not specific to adiposity. As such, the observed associations of
metabolomic scores with breast cancer may be due to factors
other than adiposity.
Previously, we established metabolomic scores for fat mass, BMI

and waist circumference among men in the Health Professionals
Follow-Up Study (HPFS) [26]. While fewer adiposity-related
metabolites were identified compared to our study, there was
high overlap between metabolites identified for each adiposity
measure, consistent with our findings among women. Classes of
metabolites associated with adiposity measures did not differ
between men and women.
This study has several strengths. The use of both the NHS and

NHSII allowed us to thoroughly investigate adiposity and
metabolomics in both premenopausal and postmenopausal
women, particularly important given the complicated relationship
between adiposity and breast cancer risk by menopausal status.
We leveraged metabolomics to evaluate associations between
measures of metabolic health and breast cancer risk and had large
numbers of breast cancer cases to evaluate these associations.
Despite the advantages of this study, there are also limitations. We
did not have a large subset of women who were premenopausal
at blood collection and postmenopausal at diagnosis, and ER−
cases were limited, which limited the precision of these estimates.
Importantly, because the metabolomic scores for adiposity
measures were developed based on the most predictive
metabolites, they may not represent the most biologically
important metabolites, and individual metabolite contributions
should be interpreted with caution.
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In this study of 3298 premenopausal and postmenopausal
breast cancer cases and controls, we identified many metabolites
associated with adiposity measures of BMI, waist circumference,
weight change since age 18, and derived fat mass, the majority of
which overlapped significantly between adiposity measures. Some
metabolomic scores for adiposity were more predictive of breast
cancer than self-reported measures, suggesting metabolomics
may better capture metabolic dysregulation and improve our
understanding of breast cancer risk. Because the association
between metabolomic score and breast cancer risk appeared
stronger among women with a BMI > 25 kg/m2 compared to
women with a BMI < 25 kg/m2, the metabolomic score may prove
more useful for predicting risk among this subgroup of women,
though further investigation is needed. Further, we found that the
metabolic composition of adiposity did not differ between
premenopausal and postmenopausal women. This suggests that
the opposing associations for adiposity and breast cancer risk by
menopausal status reflect the differential associations between
metabolic dysregulation and breast cancer risk over the life
course. Further exploration of how metabolic dysregulation
intersects with menopausal status to differentially predict breast
cancer risk is warranted.
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