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BACKGROUND: Fibroblast growth factor receptor (FGFR) signaling influenced tumour occurrence and development.
Overexpression of FGFR had been observed in many types of cancers, including colon cancer. FGFR inhibitor is considered to be
effective in treating colon cancer patients.
METHODS: First, the kinase inhibition rate was determined. MTT, western blotting, colony formation, EdU and comet assays were
performed to evaluate the anti-tumour effects of F1-7 in vitro. RNA-seq and bioinformatics analysis were used for further
verification. Additionally, a xenograft model was generated to investigate the anti-tumour effect of F1-7.
RESULTS: F1-7 can inhibit the proliferation of colon cancer cells in vitro. It could significantly inhibit FGFR phosphorylation and its
downstream signaling pathway. Whole-genome RNA-seq analysis found that the changed genes were not only functionally focused
on MAPK signaling pathway but also related to cell apoptosis and ferroptosis. Experimental evidence demonstrated that F1-7 can
directly increase the level of cellular DNA damage. The occurrence of DNA damage led to cell cycle arrest and inhibition of cell
metastasis and cell apoptosis. Mouse model experiments also confirmed that F1-7 could inhibit tumour growth by inhibiting the
FGFR pathway.
CONCLUSIONS: F1-7 exhibits anti-tumour activity by inhibiting the FGFR pathway. It could be a novel therapeutic agent for
targeting colon cancer cells.
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BACKGROUND
Colon cancer is a prevalent malignancy in people with irregular
eating habits and is harmful to the digestive tract. In 2012, more
than 1.4 million patients were diagnosed with colon cancer, and
more than 700,000 patients died as a result. Some people have
predicted that by 2030, the overall situation will worsen: its
incidence is expected to increase by 60%, with 2.2 million cases of
colon cancer per year worldwide [1]. Today, surgical resection or
chemotherapy drugs are used to treat colon cancer. However,
surgical resection may cause a series of complications and is only
suitable for early-stage tumours [2]; chemotherapy drugs are
unique in treating cancers that have spread and prevented
tumour recurrence, but their usage is limited due to their toxicity
to normal cells. Therefore, it is vital to develop a new targeted
drug to specifically target colon cancer cells [3].
The fibroblast growth factor/fibroblast growth factor receptor

(FGF/FGFR) signaling pathway is widely involved in cell metabo-
lism regulation, including proliferation, differentiation, migration
and survival [4]. Mutations in the FGFR genome have been
reported in a variety of tumour types, especially in colon cancer.
Some colon cancer patients harbour FGFR genetic alterations,

such as copy number gain, mutation and mRNA overexpression.
These mutations usually lead to tumour formation and resistance
to some tyrosine kinase inhibitors [5]. As a result, colon cancers
characterised by FGF/FGFR mutations are often challenging to
treat and have a poor prognosis. FGFR is a potential new target for
treating colon cancers [6].
Previously, researchers have tried tyrosine kinase inhibitors

(TKIs), such as ponatinib [7], dovtinib [8] and lucitanib [9] to treat
FGFR-deregulated tumours. Although these inhibitors have good
kinase inhibitory activity against FGFR, the toxicity profiles of
those inhibitors relative to their on-target activity against other
kinases have restricted their further development for the
treatment of cancer [10]. In the past few years, several selective
FGFR inhibitors have been reported, and some of them have been
used in clinical studies to evaluate their therapeutic effect on
patients. Most of them, such as AZD4547 [11], NVP-BGJ398 [12],
LY2874455 [13], competitively bind the ATP-binding pockets of
FGFR in a noncovalent form, thereby preventing receptor
phosphorylation and blocking signal transmission. However, these
inhibitors are only effective for FGFR1-3 and do not show much
selectivity for FGFR4. In addition, these drugs are mainly used to
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treat cholangiocarcinoma and breast cancer but are rarely used for
colon cancer. Consistent with this, it is urgent to develop more
selective FGFR inhibitors.
In this article, we report a novel inhibitor of FGFR, F1-7, which is

subtly selective for FGFR. It inhibits the FGFR pathway in colon
cancer cell lines in a dose-dependent manner, thereby causing
DNA damage in cells, inhibiting cell growth and metastasis and
eventually leading to cell apoptosis.

METHODS
Antibodies and reagents
F1-7 was synthesised in the laboratory, and AZD4547 was purchased from
Sigma, which was used as a positive control. The cell culture DMEM was
purchased from Gibco. The antibody of GAPDH (5174), p-FGFR (3476), FGFR1
(9740), FGFR4 (8562S), p-AKT (4060), AKT (9272), p-MAPK (4370), MAPK (4695),
cleaved-PARP (5625), Bcl-2 (15071), BAX (5023), γ-H2AX (80312), CyclinB1
(4135) and α-Tubulin (2144) were purchased from Cell Signaling Technology
(Danvers, MA, USA). The antibody of c-Myc (AF6489) and CDK1 (AF0111) was
purchased from Beyotime Biotechnology (Shanghai, China). The antibody of
MDM2 was purchased from Santa Cruz Biotechnology Inc. (Dallas, TX, USA).
Anti-rabbit IgG (H+ L), Biotinylated Antibody (14708) and Anti-mouse IgG (H
+ L), Biotinylated Antibody (14709) were purchased from Cell Signaling
Technology (Danvers, MA, USA). FITC Annexin V Apoptosis Detection Kit I and
Propidium Iodide (PI) were purchased from BD Pharmingen (Franklin Lakes,
NJ). BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor 488 was purchased
from Beyotime Biotechnology (Shanghai, China).

Cell lines and culture
The human colon cancer cell lines HCT-116, RKO and SW620 were
purchased from the Cell Resources Center of the Shanghai Institutes for
Biological Sciences (Chinese Academy of Sciences, Shanghai, China). All cell
lines were identified by STR profiling and tested for mycoplasma
contamination. The three cell lines were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% FBS. All of the cells were
incubated at 37 °C in an atmosphere of 5% CO2.

Methyl thiazolyl tetrazolium (MTT) assay
The MTT experiment was performed as described in the previous report [14].
Colon cancer cells were seeded in 96-well plates at 3000–5000 cells per well.
After cells adhered to the wall, the tested compound (F1-7 and AZD4547)
was dissolved with DMSO and added to the well. After 48 h of reaction, MTT
was added to wells for 4 h for reaction crystallisation. After that, DMSO was
used to dissolve crystals, the absorbance of the solution at a wavelength of
490 nm was measured with a microplate reader. The half-maximal inhibitory
concentrations (IC50) value was calculated by GraphPad 7.0.

Western blot
The western blot (WB) assay experiment was performed as described in the
previous report [15]. Cells were seeded in a six-well plate and treated with
different concentrations of the compound for 24 h. Then the cells were
lysed with a low-temperature lytic solution. Tissue and cellular proteins
were extracted by protein lysate buffer (Total Protein Extraction Kit).
Proteins were separated with a 10% sodium dodecyl sulfate-
polyacrylamide gel (SDS-PAGE). The protein was then transferred to a
polyvinylidene fluoride (PVDF) membrane and blocked with 5% skim milk
for 1.5 h. The blots were incubated with specific primary antibodies. The
membranes were incubated with the antibodies, visualisation of bands was
recorded by enhanced chemiluminescence.

mRNA library construction and sequencing
Total RNA was isolated and purified using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s procedure to construct
mRNA library. The average insert size for the final cDNA library was 300 ±
50 bp. We performed the 2×150 bp paired-end sequencing (PE150) on an
Illumina Novaseq™ 6000 (LC-Bio Technology CO., Ltd., Hangzhou, China)
following the vendor’s recommended protocol.

Colony formation assay
Colon cancer cells were seeded in six-well plates at 10000 cells per well. F1-
7 and AZD4547 were added to cells with different concentrations for 24 h.

Then culture medium was replaced with a fresh medium for 7 days. The
colonies were washed with PBS, fixed at room temperature with 4%
paraformaldehyde, washed and dyed with 0.1% crystal violet for 15min.

Flow cytometry
Cells were treated with different concentrations of F1-7 for about 48 h.
Flow cytometry for detection of apoptotic cells using the apoptosis
detection kit I. All samples were analysed in flow cytometry (BD
Biosciences) and the data were evaluated using FlowJo software.

Comet assay
The comet assay method has been described in a previously published
article [16]. Cells were cultured with a medium and treated with different
concentrations of F1-7 for 24 h. 1% normal melting point agarose was
spread on the rough surface of a slide, curing it for 8 h. Next, single-cell
suspending with 0.7% low melting point agarose spread on the gel and
was covered with a coverslip, after curing it at 4 °C for 30min, removed the
coverslip. Slides were placed in the pre-cool lysate for 8 h then moved to a
horizontal electrophoresis tank containing electrophoresis liquid and
equilibrated for 40min at room temperature. Electrophoresis was carried
out for 15min at 20 V, following that the slides were washed with
neutralisation buffer, water and alcohol for 10min and then stained with PI
and viewed under a fluorescence microscope.

5-Ethynyl-20-deoxyuridine (EdU) incorporation assay
Colon cancer cells were seeded at a density of 1 × 105 cells per well in six-well
plates and cultured overnight. The newly synthesised DNA of the cells was
assessed by the EdU incorporation assays using a Cell-Light EdU DNA Cell
Proliferation Kit (Beyotime Biotechnology, China), following the manufac-
turer’s instructions. The EdU incorporation rate was expressed as the ratio of
EdU-positive cells (red cells) to total Hoechst33342 positive cells (blue cells).

Cell adhesion assay
Cell adhesion assay was performed as described previously. Briefly, cells
were pretreated with different concentrations of F1-7, and then
trypsinised. Cells (5 × 105 cells/well) were added into 96-well plates which
were precoated with fibronectin (Sigma). Plates were incubated for 1 h at
37 °C, then nonadherent cells were removed by a gentle washing three
times with PBS, and the remaining cells were stained with 0.1% crystal
violet for 15min. After washing, the precipitates were dissolved with the
addition of 30% acetic acid, and the absorption was obtained at 590 nm.
The percentage of inhibition was expressed using control wells as 100%.

Immunofluorescence assays
The comet assay method has been described in a previously published
article [17]. Cells were seeded in six-well plates with a density of 1 × 106

cells/well, treated with different concentrations of F1-7 for 12 h, then
washed three times with PBS and fixed in 4% paraformaldehyde for 20
min, washed three times with PBS, permeabilised with 0.5% Triton-100 for
20min and blocked in 5%. BSA for 90min. Primary antibodies (α-Tubulin,
diluted at 1:25) were incubated with cells overnight at 4 °C, washed three
times with PBS and incubated with fluorescent secondary antibodies at
room temperature for 60min. Then the cells were co-stained with DAPI to
visualise the nuclei. All fluorescent samples were captured using a confocal
fluorescence microscope.

Transwell assay
Transwell chambers (Corning, Corning, NY, USA) equipped with 8 μm pore
insets were used for the invasion assay. The insets were coated with 70 μL
of 1:8-diluted Matrigel (BD Biosciences), and 1 × 105 cells were plated in
the serum-free medium described above for an incubation period of 48 h.
Quantities of 600 μL of culture medium containing 20% FBS (Invitrogen)
were added to the lower chamber. No-invaded cells were removed, and
the cells that were attached to the bottom of the membrane were fixed
with 4% paraformaldehyde, stained with 5% crystal violet (Sigma–Aldrich),
crystals dissolved with 150 μL acetic acid and analysed in a Microplate
Reader at 560 nm.

Animal model
All animal care and experiments were performed according to the
guidelines and approval of the Wenzhou Medical University Animal Policy
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and Welfare Committee. Female BALB/c (nu/nu) mice (4–6 weeks) were
purchased from the Vital River Experimental Animal Center (Beijing, China)
and maintained at the animal experimental centre at Wenzhou Medical
University. All the mice were housed under 12 h light–dark cycles at 25 °C
and free of water and diet. HCT-116 cancer cells were planted (5 × 106 cells
in 100 μL of PBS) into the back of mice. Once tumour volumes reached
~100mm3, mice were divided into three different groups (no differences in
mean body weights or tumour volumes between the groups, and the
investigator was blinded to the group allocation). The treatment groups
(six mice per group) were treated with F1-7 20mg/kg or 40mg/kg by
intraperitoneal injection every day. The tumour volumes were measured in
length (L), width (W) and calculating volume (V= 0.5 × L ×W2) before
every injection. After 2 weeks, all mice were executed. The tumours were
removed and prepared for western blot analysis and IHC. Tumour weight
was measured.

Immunohistochemistry (IHC)
Tumour tissue sections (4 μm) were deparaffinised, rehydrated and
incubated with primarily Ki-67 and γH2AX antibodies. HRP-conjugated
secondary antibodies were used for detection. Images were obtained with
Leica microscope.

Apoptosis assay (TUNEL staining)
The cell apoptosis in vivo was assessed by the ONE STEP TUNEL Apoptosis
Assay Kit (Beyotime, China), following the manufacturer’s instructions. Cell
nuclei was stained with DAPI, and fluorescence was evaluated by
fluorescence microscopy.

Haematoxylin and eosin staining
The hearts, lungs, kidneys and livers of animals were fixed in 4%
paraformaldehyde and embedded in paraffin. The paraffin tumour tissue
sections (5 μm) were deparaffinised and rehydrated and then stained with
eosin and haematoxylin. The images were captured using a light microscope.

Bioinformatic analysis and data visualisation
All statistical analyses were performed with R software (version 4.0.4). The
genes were ordered according to log2 (Foldchange), and the gene list was
subjected to gseGO function from clusterProfiler [18] package for KEGG
and GO analysis. Data visualisation was performed based on ggplot2 and
pheatmap packages.

Statistical analysis
All experiments were assayed as three independent experiments. Unpaired
Student’s t-tests were used to compare the means of two groups. One-way
analysis of variance (ANOVA) was used for comparison among the different
groups by GraphPad Prism 7.0 (GraphPad Software, CA, USA). P-value <0.05
was considered statistically significant. For every figure, statistical tests are
justified as appropriate. We did not exclude samples or animals. All data
meet the assumptions of the tests. No statistical methods were used to
predetermine sample sizes, but our sample sizes are similar to those
generally used in the field.

RESULTS
F1-7 is a potent FGFR inhibitor and exhibits anti-tumour
activity in colon cancer
FGFR1-4 are receptor tyrosine kinases (RTKS), which consist of
extracellular regions, transmembrane domains and intracellular
tyrosine kinase regions [19]. In a previous study, we designed and
synthesised F1-7 using computer-aided drug design (CADD) and
structure-based design strategies (Fig. 1a and additional file 1). F1-
7 shows potent inhibition of the kinase of recombinant FGFR1, 2, 3
and 4 in a dose-dependent manner, with half-maximal inhibitory
concentration (IC50) values of 10, 21, 50 and 4.4 nmol/L,
respectively (Fig. 1b). Since FGFRs are generally overexpressed in
patients with colon cancer, we carried out an MTT assay to test the
anti-tumour activity of F1-7 in colon cancer. The data demon-
strated that F1-7 inhibited colon cancer cell (HCT-116, RKO and
SW620) viability in a concentration-dependent manner, with an
IC50 of 1–2 µM. Compared to the positive control AZD4547, a

novel and selective inhibitor of the FGFR1, 2 and 3 tyrosine
kinases, F1-7 showed greater cytotoxicity to colon cancer cells
(Fig. 1c).
Next, we examined the effect of F1-7 on FGFR phosphorylation

and signaling in colon cancer cells by western blotting (Fig. 1d).
Treatment of the HCT-116, RKO and SW620 cell lines with
increasing doses of F1-7 for 12 h resulted in dose-dependent
inhibition of FGFR phosphorylation, while the total amounts of
their target proteins remained unchanged. However, AZD4547 at
the same concentration did not significantly change the
phosphorylation of FGFR (Supplementary Fig. 1A). The same
decreasing trend was also observed in protein kinase B (AKT) and
mitogen-activated protein kinase (MAPK) phosphorylation levels.
Both of these proteins are downstream of FGFR signaling and
have a vital effect on the development of cancer [20].
Together, these data indicated that the possible mechanism by

which F1-7 inhibits colon cancer cell proliferation is potentially
related to the inhibition of FGFR and/or downstream pathway
phosphorylation by F1-7.

F1-7 affects the physiological processes of cancer cells at the
transcriptomic level
In the present study, we treated HCT-116 with F1-7 for 12 h and
then performed RNA-seq. The results showed that 187 mRNAs
were significantly upregulated and 130 mRNAs were significantly
downregulated (≥2.0-fold) in the dosing group compared to the
vehicle control group (Fig. 2a). The heatmap showed the top 50
most significantly different genes (Fig. 2b). Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) is a database
predicting functional associations between proteins [21]; we used
the functional protein association network to show how these
genes interact (Supplementary Fig. 1B). The specific functions of
these genes require further research.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed on the genes in the last
transcriptomic analysis to predict metabolism and signal transduc-
tion pathways. In the KEGG report (Fig. 2c), the top 20 enriched
pathways of the genes were presented. Coincidentally but not
surprisingly, the most significantly enriched pathway was MAPK,
which is located downstream of FGFR. This finding further
validated the pharmacological effect of F1-7. These genes were
also enriched in pathways associated with apoptosis. Interestingly,
ferroptosis-related gene expression was also altered, as shown in
Fig. 2c and Supplementary Table 1. These results suggest that F1-7
can induce apoptosis and ferroptosis by inhibiting FGFR.

F1-7 induces apoptosis and ferroptosis in colon cancer cells
To verify the previous hypothesis, we performed a series of
fundamental experiments. Compared to AZD4547 (positive
control) at 4 µM, F1-7 more efficiently reduced the colony
formation of three colon cancer cell lines in a dose-dependent
manner (Fig. 3a). Next, we treated the three cell lines with the
positive control (4 µM) and F1-7 at different concentrations (0, 1, 2
and 4 µM) for 48 h and then analysed apoptosis by flow cytometry
(FCM). Treatment with F1-7 increased the proportion of apoptotic
cells in a dose-dependent manner (Fig. 3b, c). Since the protein
expression levels of cleaved-PARP, Bcl-2 and Bax are associated
with apoptosis activity in tumour cells, a western blot assay was
performed to assess the effects of F1-7 on these proteins. As
shown in Fig. 3d, the expression of cleaved-PARP [22] and Bax [23]
(apoptotic markers) clearly increased, while the expression of Bcl-2
[24] (a proto-oncogene that protects against Bax-induced
apoptosis) decreased.
Ferroptosis is a new form of cell death which has different

properties and functions in physical conditions or various diseases
including cancers. It points to a new future for developing new
generation small molecule compounds. RNA-seq indicated F1-7
may influence ferroptosis by FGFR pathway. To further verify
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whether F1-7 can induce cell ferroptosis, we added inhibitors of
ferroptosis (ferrostatin-1) and apoptosis (Z-VAD) to F1-7-treated
cells and then assessed cell death (PI staining, which only stained
dead cells). The results (Fig. 3e) showed that cell death was
reduced after the addition of ferroptosis and apoptosis inhibitors,
indicating that cell death occurred via ferroptosis and apoptosis.
However, it is not clear how F1-7 affects ferroptosis through FGFR,
further research is needed to determine.
Together, these results confirmed that F1-7 significantly

promotes apoptosis and ferroptosis in colon cancer cells.

F1-7 induces DNA damage-mediated cell death in colon
cancer cells
To further investigate the molecular mechanism of F1-7 in colon
cancer, we used an in silico GO-BP analysis to predict and score
the physiological changes that occurred after the addition of the
drug. As a result, cells mainly focused on apoptosis and DNA
damage (Fig. 4a). We assumed that F1-7 induces DNA damage-

mediated apoptosis in colon cancer cells. Consequently, we
treated HCT-116 and RKO cells with different concentrations for
24 h and then checked the expression of γ-H2AX (which is a DNA
damage biomarker [25]) by immunoblotting. The results showed
that with increasing F1-7 concentrations, the expression of γ-H2AX
was significantly increased (Fig. 4b). Next, a comet assay was used
to quantify DNA damage in vitro. The results showed that the
comet tail of F1-7-treated cells was much longer and had higher
DNA intensity with increasing doses (Fig. 4c), and quantitative
analysis for the comet assay exhibited significantly increased
comet tail formation after F1-7 treatment (Fig. 4d), suggesting the
substantial accumulation of fragmented DNA due to F1-7. Finally,
we used an EdU experiment to evaluate cell proliferation ability by
measuring the DNA synthesis function of cells. As shown in Fig. 4e
and Supplementary Fig. 2A, with increasing drug concentrations,
the number of EdU-positive cells decreased. Together, these data
suggested that inhibition of FGFR activation induces the death of
colon cancer cells due to DNA damage.
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Effect of F1-7 on cell cycle distribution
The above research proved that F1-7 can induce cell DNA damage
and block synthesis, and the expression of some factors that drive
the normal cell cycle might be affected. We first used FCM to
examine its effect on cell cycle distribution. Treatment with
different concentrations of F1-7 increased the number of cells in
the G2/M phase (Fig. 5a, b). Next, the expression of G2/M phase
cell-cycle-associated proteins was detected by western blotting.
When cells were incubated with F1-7 for 24 h, the expression of
cyclin B1, MDM2 and CDK1 decreased with increasing treatment

concentration (Fig. 5c). Some researchers reported that c-Myc,
which was regulated by MAPK, could regulate G2/M cell cycle
progression [26]. We thought maybe it is c-Myc that caused cell
cycle arrest. To clarify the above conclusion, we conducted an
overexpression of c-Myc and the results showed that over-
expressed c-Myc did have an antagonistic effect on F1-7 induced
G2/M arrest (Supplementary Fig. 2B, C). Therefore, we affirmed
that F1-7 regulates the expression of G2/M cell-cycle-related
proteins and induces G2/M cell cycle arrest by down-regulating
the expression of c-Myc.
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Fig. 3 F1-7 induced colon cancer cells apoptosis and ferroptosis. a Colony forming assay of colon cancer cell lines. Cells were incubated
with different concentrations of F1-7 for 24 h. On day 7, colonies were fixed and photographed. b, c Colon cancer cells were treated with F1-7
and AZD4547 for 48 h. Cells were stained with Annexin V and propidium iodide (PI), and then analysed by flow cytometry. Samples were
measured in triplicate and experiments were independently repeated three times d Cells were incubated with F1-7 at different concentrations
as indicated for 24 h, the cell lysates were prepared for western blot analysis to determine protein expression of cl-PARP, Bcl-2, Bax and
GAPDH. e PI staining of HCT-116 cells with and without f1-7 with inhibitors of apoptosis and ferroptosis. The positive of cells were calculated.
Data are expressed as mean ± SD (n= 3).
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F1-7 inhibits colon cancer cell invasion
FGFR-dependent signaling pathways involve cell invasion,
migration and proliferation [27]. Several experiments were
performed to assess the effect of F1-7 on colon cancer cell
migration and invasion. α-Tubulin, as a part of microtubules,
serves as an essential component of the cell cytoskeleton. It
plays a vital role in maintaining cell shape, cell division and
invasion [28]. We stained colon cancer cells with α-tubulin
antibodies to observe the morphological changes after treating
them with F1-7. The results indicated that after F1-7 treatment,

the size and state of the cells changed after being stimulated by
the drug, the area of the cells decreased and the cells gradually
aggregated rather than spread out (Fig. 6a, Supplementary
Fig. 2B). The adhesion of metastatic cancer cells to the target
organ vascular endothelium is critical in transendothelial
migration [29]. In this study, an adhesion assay was performed
to test whether F1-7 could reduce cell adhesion. As shown in
Fig. 6b, compared to the control, F1-7 significantly reduced the
adhesion ability of colon cancer cell lines. Furthermore,
Transwell invasion assays were used to explore the effect of
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F1-7 on the invasion ability of colon cancer cells. Compared to
the control, F1-7 at different concentrations (0, 1, 2 and 4 µM)
significantly inhibited colon cancer cell invasion (Fig. 6c, d).

F1-7 inhibited colon tumour growth in a xenograft model
It was confirmed that F1-7 has an anti-tumour effect in vitro. Then,
we established xenograft models to identify the activity of F1-7
in vivo. Eighteen BALB/c (nu/nu) mice (4–6 weeks) were
maintained at the animal experimental centre until they reached
18 g in weight. HCT-116 cancer cells were plated (5 × 106 cells)
into the backs of mice. Once tumour volumes reached ~100mm3,
the mice were intraperitoneally injected with F1-7 (20 mg/kg and
40mg/kg) once daily for two weeks. Over time, the volume of
tumours treated with F1-7 was markedly reduced compared to
that of tumours treated with vehicle control (Fig. 7a, b).
Additionally, tumour tissues were weighed 2 weeks after
intraperitoneal injection, and we observed that the weight of

tumours decreased after treatment with F1-7 (Fig. 7c). Next,
tumour phosphorylation of FGFR, MAPK and some apoptosis
markers was measured by western blotting. As shown in Fig. 7d,
F1-7 exhibited a dose-dependent inhibition of FGFR and MAPK
phosphorylation in HCT-116 tumours. Dose-dependent changes in
Bcl-2 and Bax expression were also observed. These phenomena
indicated that FGFR phosphorylation and downstream signaling
were inhibited in xenograft models, thus inducing cancer cell
apoptosis.
To investigate DNA damage in vivo after F1-7 treatment, we

took advantage of immunohistochemical analysis of γ-H2AX and
Ki-67 (a well-known marker for the evaluation of cell prolifera-
tion); the results showed that tumour cells suffered serious DNA
damage with drug treatment (Fig. 7e). TUNEL staining showed
increased cell death in vivo with F1-7 treatment (Fig. 7f), and
hematoxylin and eosin (H&E) staining (Supplementary Fig. 3)
indicated cell deformation and shrinkage. Together, these data
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showed that F1-7 is a promising drug that exhibits potent anti-
tumour activity by inhibiting the FGFR signaling pathway.

DISCUSSION
FGFRs play an irreplaceable role in the occurrence and progression
of tumours, particularly colon cancer. The current priority is to

develop a novel and highly effective FGFR inhibitor for the
treatment of colon cancer. Some FGFR inhibitors are being
investigated. PRN1371 showed strong FGFR1-3 inhibitory activity
in preclinical trials but has limited activity against common
resistant gatekeeper mutants (V561M) of FGFR1 [30]. FINN-2 and
FINN-3 irreversibly inhibit FGFR and have also been confirmed to
be effective against FGFR1 and FGFR2 mutations but have no
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Fig. 6 F1-7 showed promising efficacy to suppress colon cancer cells proliferation. a RKO were incubated with the F1-7 at different
concentrations for 24 h. The expression of α-Tubulin (green) in RKO cells was determined by immunofluorescence assay. DAPI-stained nuclei
blue. b Cell adhesion assay was performed to evaluate the migration impact of F1-7 on colon cancer cells. The results were representative of
three replicate experiments and data are expressed as mean ± SD. c, d Transwell assay was performed to evaluate the migration impact of F1-7
on HCT-116 and RKO. The violet was dissolved by 30% acetic acid and detected absorbance at 590 nm, the percentage of inhibition was
expressed using control wells as 100%. Data are expressed as mean ± SD (n= 3).

Y. Liu et al.

1022

British Journal of Cancer (2022) 127:1014 – 1025



similar effects on clinical testing [31]. Other inhibitors under
development, such as BLU9931 and BLU554, inhibit FGFR4 by
targeting Cys522 in the hinge region but have weak inhibitory
activity against FGFR1-3 [32]. More efforts are needed to develop
FGFR inhibitors.
In previous experiments, we synthesised a novel FGFR inhibitor

(F1-7) by using CADD and structure-based design strategies. In the
kinase experiment, F1-7 showed potent inhibition of four FGFR
isoforms. Considering that approximately one-third of colon
cancer patients carry FGFR gene alterations and may benefit from
FGFR inhibitors [33], we assessed the anti-tumour effect of F1-7 in
colon cancer.
Since the FGFR signaling pathway mainly regulates the

migration and invasion of cancer cells [34], when cells are treated
with F1-7, FGFR signaling is inhibited, and the ability of cell
migration and invasion were suppressed. F1-7 inhibited cell
polarisation and thus affected cell migration. Also, we proved that
F1-7 could restrict tumour growth in vivo. When injected with F1-
7, the FGFR pathway in the tumour was inhibited, DNA damage

occurred in the cells, the expression of some apoptotic-related
proteins was changed and the cells lost growing activity.
Compared with the control group, the tumour volume increased
slowly at the low concentration (20 mg/kg), and the tumour barely
grew at a high concentration (40 mg/kg). These consequences
indicated that F1-7 has a terrific anti-tumour effect on colon
cancer.
However, F1-7 still has great prospects for development. Its

exploitation strategy is to be able to competitively bind to the
ATP-binding pocket, thereby inhibiting FGFR phosphorylation and
blocking the activation of the downstream signaling pathway. It is
a second-generation TKI, so there will inevitably be off-target
effects that lead to decreased inhibition effects and toxicity to the
body. FGFR structural mutations may also lead to decreased
efficacy. Therefore, its application still needs to be further
optimised.
In conclusion, F1-7, a novel small molecule pan-FGFR inhibitor,

inhibits FGFR and its downstream pathways and inhibits colon
cancer cell migration and apoptosis by causing DNA damage (Fig. 8).
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Our results clearly show that F1-7 could be developed as a novel
anticancer drug to treat colon cancer. These studies can clarify the
anti-tumour mechanism of FGFR inhibitors and provide a new
strategy for colon cancer treatment.

DATA AVAILABILITY
The data used to support the findings of this study are available from the
corresponding author upon request.
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