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ID‑RDRL: a deep reinforcement 
learning‑based feature selection 
intrusion detection model
Kezhou Ren, Yifan Zeng, Zhiqin Cao & Yingchao Zhang*

Network assaults pose significant security concerns to network services; hence, new technical 
solutions must be used to enhance the efficacy of intrusion detection systems. Existing approaches 
pay insufficient attention to data preparation and inadequately identify unknown network threats. 
This paper presents a network intrusion detection model (ID‑RDRL) based on RFE feature extraction 
and deep reinforcement learning. ID‑RDRL filters the optimum subset of features using the RFE 
feature selection technique, feeds them into a neural network to extract feature information and then 
trains a classifier using DRL to recognize network intrusions. We utilized CSE‑CIC‑IDS2018 as a dataset 
and conducted tests to evaluate the model’s performance, which is comprised of a comprehensive 
collection of actual network traffic. The experimental results demonstrate that the proposed ID‑RDRL 
model can select the optimal subset of features, remove approximately 80% of redundant features, 
and learn the selected features through DRL to enhance the IDS performance for network attack 
identification. In a complicated network environment, it has promising application potential in IDS.

The accurate transmission of network traffic and the dependable operation of network systems are essential to 
economic development and growth. Modern networks are getting increasingly information-dense and compli-
cated, and new networks such as the Internet of Things and the Internet of Vehicles are  emerging1. Simultane-
ously, network assaults are getting increasingly diversified and covert, and resolving this issue has become a 
serious challenge for network security. An intrusion detection system (IDS) is a researcher-proposed and utilized 
tool for monitoring, detecting, and resolving network security issues. IDS has a positive influence on network 
security and cannot be  ignored2–4.

In 1987, Denning developed an early intrusion detection system based on audit data and statistical 
 approaches5. Based on their detection methodologies, IDS may be roughly divided into two categories: misuse-
based and anomaly-based. The former uses a database of identified harmful patterns as its own detection method 
and identifies network attacks by comparing the input traffic with a database of known network attacks, but it 
cannot identify unknown network attacks due to the emergence of new network attacks such as zero-day attacks 
and DDoS; The latter identifies unknown harmful traffic using machine learning models trained on the dataset’s 
characteristics and the related labels, however the vast amount of redundant features and class imbalance in the 
intrusion detection dataset likely to result in a high false alarm rate for the models.

Some researchers have concentrated on standard machine learning approaches, such as support vector 
machines (SVM), artificial neural networks (ANN), and decision trees (DT)1,6,7. Although these methods are 
fast, they cannot extract the deep information inside network data and cannot effectively identify new network 
 attacks8. Deep learning (DL) is a recently developed machine learning technology that can learn the profound 
properties of the original data using multi-layer neural networks and identify network assaults through con-
tinuous iterative  training9,10. However, it is ineffective at recognizing undiscovered network attacks. Recursive 
feature elimination (RFE) and other feature removal approaches are claimed to be capable of obtaining the most 
valuable portion of the original data and enhancing the efficacy of network attack identification while lowering 
computing  effort11–13.

Reinforcement learning (RL) is a suggested approach for machine learning that enables robots to reason and 
make decisions like  humans14. It models issues using the Markov decision process (MDP), is capable of learning 
by active exploration and interaction with the environment, and is helpful in unfamiliar and hostile contexts. In 
recent years, some studies have combined deep learning and reinforcement learning to create deep reinforcement 
learning (DRL), which is capable of solving many complex practical problems using neural networks to fit the 
MDP process and is applicable in IDS, where cyber-attacks are becoming increasingly  complex15–17.
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This paper proposes ID-RDRL, an intrusion detection method with feature selection based on deep rein-
forcement learning, as a solution to the current issues faced by intrusion detection systems (IDS), such as large 
computation and poor recognition of unknown network attacks. ID-RDRL is a method for detecting intrusions 
based on deep reinforcement learning. Using RFE and DT, we first pick the ideal feature subset that best captures 
the deep information of the original data set, and then we utilize the Mini-Batch module to generate the data 
to accommodate the DRL model. Then, we create an effective network intrusion detection model. We utilize 
the CSE-CIC-IDS2018 dataset to train and evaluate the performance of ID-RDRL, and the experimental results 
demonstrate that our proposed strategy can successfully pick the best feature subset of the original dataset and 
further enhance the model’s performance.

The described ID-RDRL model for intrusion detection has several benefits over previous ML models. The 
advantages include the following: (1) the neural networks used to implement the model: policy, value function, 
and Q function, which enable the network to adapt to new networks accurately and quickly; (2) the generated 
neural network models are suitable for distributed high-performance computing environments (e.g., Tensor-
flow, Pytorch); (3) the parameters are significantly reduced compared to deep learning networks with substan-
tially fewer parameters, thereby reducing the complexity of the model; and (4) used for unsupervised learning 
applications.

The following are the primary contributions of this paper:

1. We present an intrusion detection system (IDS) based on feature selection and reinforcement learning, which 
can effectively pick the best subset of features and enhance the performance of the IDS for network attack 
identification, in particular identification of unknown network attacks.

2. We filter the most valuable subset of features using RFE and DT classifier to eliminate approximately 80% 
of duplicated features. Simultaneously, we apply DRL to supervised IDS, recode the data using Mini-Batch, 
make the supervised dataset relevant to the DRL model, and extract the profound link between features to 
increase the accuracy and efficiency of supervised IDS.

3. We built a comprehensive simulation experiment using Python and tested the performance of the model 
using the CSE-CIC-IDS2018 dataset, achieving an accuracy of 96.2% and an F1-score of 94.9%, respectively. 
In addition, we compare the proposed model to other prevalent ML models.

This paper is structured as follows: The “Related Works” Section describes the work related to feature selec-
tion methods for intrusion detection systems. The Work description presents the ID-RDRL model, the CSE-
CIC-IDS2018 dataset, and data preparation methods. The ’Results” Section evaluates the model’s performance 
using the dataset, while comparing the results of other ML models, and the “Conclusion” Section presents the 
discussion and conclusions. The abbreviated words and their corresponding full names appear in Table 1 and 
are arranged in the order in which they appear in the text.

Related works
This section includes the most illustrative contemporary IDS research and a broad discussion on machine learn-
ing in network security research, particularly recent research on reinforcement learning and RFE feature extrac-
tion in IDS.

In the era of big data, machine learning approaches have been widely implemented in intrusion detection 
systems (IDS), and part of the research has employed classic machine learning algorithms or their enhance-
ments, such as SVM, K-means, KNN, RF, and so  on1,18–20, and deep learning algorithms, such as ANN, CNN, 

Table 1.  List of abbreviations. Sorting according to the order of appearance in the text.

Abbreviation Full form Abbreviation Full Form

IDS Intrusion Detection System DRL Deep Reinforcement Learning

DDoS Distributed Denial of Service SVM Support Vector Machine

CNN Convolutional Neural Network KNN K-Nearest Neighbor

KDD99 KDD CUP 99 Dataset RF Random Forest

DARPA98 DARPA Intrusion Detection DataSet(1998) JSMA algorithm Jacobian Saliency Map Attacks algorithm

ML Machine Learning LSTM Long Short Term Memory

RFE Recursive Feature Elimination DL Deep Learning

DT Decision Tree ANN Artificial Neural Network

IoT Internet of Things DoS Denial of Service

IVN In-vehicle Networking DM Data Mining

DQN Deep Q-Network DDQN Double Deep Q-Network

PG Policy Gradient AC Actor Critical

MLP Multilayer Perceptron MDP Markov Decision Process

Conv-AE Convolutional AutoEncoder Network ROC Receiving Operating Characteristics Curve

AUC Area Under the ROC Curve RL Reinforcement Learning

GBM Gradient Boosting Machine – –



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15370  | https://doi.org/10.1038/s41598-022-19366-3

www.nature.com/scientificreports/

LSTM,  etc21–27. In the  literature28, the authors suggest an IDS based on spark and Conv-AE that employs public 
datasets such as KDD99 for performance evaluation, and the findings indicate that imbalanced datasets affect 
model performance. Ali et al.29 offer a novel intrusion detection system (IDS) based on fast learning networks 
(FLN) and the harmonic search algorithm (HSO) for IDS optimization, claiming that the IDS provides efficient 
and quick intrusion detection. Qureshi et al. proposed a novel adversarial intrusion detection system based on 
random neural networks (RNN-ADV). However, the perturbation environment significantly affects the perfor-
mance of this model, which performs better in terms of accuracy and F1-score compared to deep neural networks 
when using the JSMA  algorithm30. In the  literature31, Safa et al. proposed a joint reinforcement learning-based 
intrusion detection system (FRL-IDS) for Internet of Things (IoT) networks in healthcare infrastructure. Their 
results demonstrated that the proposed model outperformed SVM-based IDS and was capable of identifying 
unknown network attacks.

Akhtar provided a CNN-based DoS intrusion detection model that got good results in DoS using the NSL-
KDD dataset, but could only detect DoS network assaults and not unknown  intrusions9. Mehedi et al.10 suggested 
an IDS model based on deep transfer learning with IVN, claiming the IDS was equivalent to a number of other 
current models. Compared to several other current models, its performance is superior.  Fernando32 proposed a 
class rebalancing strategy based on a class balancing dynamic weighted loss function for the problem of uneven 
distribution of network attacks, claiming that experiments conducted using this method on highly unbalanced 
data demonstrated robust generalization, but the method did not include machine learning.

The CSE-CIC-IDS dataset family, proposed by the Canadian Cyber Security  Laboratory33, has been exten-
sively utilized in recent IDS research and is a family of intrusion detection datasets encompassing new forms of 
cyber threats. Thakkar et al. enumerate the many IDS datasets used to test IDS models, define the ML and DM 
approaches employed by IDS, and focus on two datasets, CIC-IDS-2017 and CSE-CIC-IDS-20182, and study 
the performance of certain research on this dataset. It is difficult to visually compare the efficacy of individual 
research works on the dataset at IDS due to the fact that different classification criteria and validation methods 
were used. However, it has been determined that accuracy rates of 92% (multiclassification) and 94% (binary-
classification) are the most desirable to date. In CIC-IDS201716, Kamalakanta Sethi et al. introduced a novel IDS 
based on Deep Reinforcement Learning for IDS by merging Deep Q-Network and attention mechanism to detect 
and identify unidentified cyber assaults.

Some researchers have focused on the feature selection of the dataset, stating that preprocessing procedures, 
such as the feature selection of the data, are essential for the efficiency and performance of model training. Ons 
Aouedi et al. stated that determining the most significant characteristics to define network traffic is vital and 
conducted an in-depth analysis utilizing decision trees and feature selection  techniques34. Wan et al. developed 
a robust fuzzy rough approximation space-based feature grouping and selection strategy utilizing graph theory 
(FGS-RFRAS), which was evaluated on 21 datasets to demonstrate that the method may enhance the model’s 
 robustness12. Methods for feature selection may be categorized into three groups: filtering, embedding, and wrap-
per. Comparatively to the aforementioned feature selection methods, the wrapper method RFE may iteratively 
choose feature subsets and is better appropriate for IDS datasets with a huge data volume and numerous features. 
Yin et al.11 introduced IGRF-RFE for intrusion detection, which is regarded as a feature reduction strategy based 
on the filter feature selection method and packed feature selection method, and half of the features are filtered 
out by RFE while the multi-classification accuracy increases by 2%. Ripon presented a random forest and support 
vector machine (SVM) in combination with recursive feature elimination (RFE) to choose features for IDS, and 
the model was assessed using the NSL-KDD  dataset35.

Reinforcement learning emphasizes the model’s capacity to investigate the problem and is frequently imple-
mented within decision models; IDS has been the subject of extensive research. Shi Dong et al. presented an 
optimization technique for network anomaly detection based on semi-supervised double-depth Q networks 
(SSDDQN), employing NSL-KDD and AWID datasets for training and attaining excellent  results19. Lopez-Martin 
modified the classical DRL  paradigm36 (based on the interaction with the environment) by replacing the envi-
ronment with a sampling function of the recorded training invasion and applied it to the NSL-KDD and AWID 
datasets, as well as to the Deep Q Network (DQN), Double Deep Q Network (DDQN), the Policy Gradient (PG) 
and Actor-Critical (AC) were experimentally compared, and the experimental results indicated that the DDQN 
algorithm achieved the best  results37. Meanwhile, Scott Emmons et al. researched offline reinforcement learning 
using supervised learning (RvS)  techniques17. Their opinion that the optimal goal and reward settings are crucial 
to DRL success inspired us to set the reward to 0 or 1 in our simulation tests.

Work description
This section describes the many components of the entire effort, including the datasets and model components. 
Specifically, CSE-CIC-IDS2018 data is shown in the Intrusion detection dataset. At the same time, the suggested 
algorithm and framework are detailed in-depth in the Model description. Figure 1 depicts the overall architec-
ture of the proposed reinforcement learning-based feature selection intrusion detection model (ID-RDRL). The 
strategy consists of two major components: feature selection and deep reinforcement learning. First, we preproc-
ess the dataset and then enter the preprocessed data into the feature selection section to determine the optimal 
subset of features using DT + RFE. Next, in the Mini-Batch portion, the dataset is recoded by deleting redundant 
features based on the best feature subset, and the recoded data is put into the DRL model. Using reinforcement 
learning, the classifier is taught to categorize the traffic. The implementation of the technique is as detailed below.

1. The dataset is initially preprocessed, which consists of data integration, cleaning, transformation, and stand-
ardization. The processed data are transferred to the Feature selection stage in order to determine the ideal 
subset of features.
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2. Using RFE and DT as classifiers, the input data are analyzed, sorted according to the relevance of the features, 
and the optimal subset of features is chosen.

3. The subset of selected characteristics is retained in the dataset, while redundant features are removed. Simul-
taneously, the data set is recoded based on Mini-Batch, and the recoded data samples are fed into the DRL 
model.

4. The data input to the DRL model will be retrieved by the neural network with feature information, followed 
by the DQN training of the classifier and the model predicting whether the input traffic is normal traffic or 
attack traffic.

Intrusion detection dataset. CSE-CIC-IDS2018 is one of the most recent IDS datasets. It includes seven 
distinct attack scenarios, including Brute-force, Heartbleed, Botnet, DoS, DDoS, Web assaults, and network 
penetration from within. The attacking infrastructure consists of 50 machines, whereas the infrastructure of 
the victim firm consists of 420 machines and 30 servers across five departments. The dataset contains each 
computer’s network traffic and system logs, as well as eighty characteristics collected from the recorded network 
traffic using CICFlowMeter-V3. Figure 2 depicts the proportion and distribution of each traffic category. The 

Figure 1.  ID-RDRL Model schematic.

Figure 2.  Frequencies for intrusion categories.
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CSE-CIC-IDS2018 dataset has an unequal distribution of positive and negative samples, which is brought near 
to 50% by under-sampling Benign; the proportion of all classes before and after sampling is depicted in blue and 
orange, respectively, in Fig. 2. Since the dataset has 80 features, only a subset of them are displayed in Table 2, 
where the first column contains the feature’s name and the second column contains a brief explanation.

Model description. This section describes the feature selection RFE method and the DRL model investi-
gated in this study. DRL is widely reported in the  literature14. First, the CSE-CIC-IDS2018 dataset is preproc-
essed with data, then the optimal feature subset of the dataset is extracted using the RFE feature selection method 
combined with DT algorithm, the data is encoded and processed by the Mini-Batch module, and the encoded 
and processed data is input to CNN for additional feature extraction, and the DRL for final feature extraction. 
The processed data is fed into CNN for additional feature extraction, the training of the classifier enables the 
model to recognize network threats using DRL, and the performance of this IDS is then assessed.

Dataset preparation. Data integration. The CSE-CIC-IDS2018 dataset is a raw data file comprised of 
10 days of traffic collected from ten genuine networks. It contains 15 network assaults, including Slowloris DoS, 
SQL injection, and novel network attacks such as SSH Brute Force and DDoS. We combine the ten raw files to 
create a file containing 16,233,002 traffic samples for later training. As demonstrated in Fig. 2, by undersampling 
the dataset so that the normal: attack ratio is 1:1, the dataset comprises around 8,876,032 samples.

Data maintenance. Due to the fact that the samples in the original data set contain either missing values or 
duplicate values, about 2000 invalid samples were eliminated. Following data cleansing, a dataset with 77 col-
umns of characteristics and 8,874,005 samples was produced.

Data transformation. Based on Fitni’s  work15, we translated the 15 traffic attack categories in the original file 
into 7 types, including Benign, BruteForce, DoS, Bot, DDoS, Web Attacks, and Infiltration, as depicted in Fig. 2 
for the 7 types of network traffic, where Benign is normal traffic.

Data normalization. Since some of the characteristics have a vast range of values and fluctuate dramatically 
from one feature to the next, e.g., “Port Number” runs from 1 to 65,535, while “Packet Size” goes from 1 to 5000, 
this impacts the model’s performance and necessitates additional computational power. This impacts the perfor-
mance of the model and necessitates more mathematical work. Using the normalizing procedure, we transform 
all original characteristics to 0 or 1 values.

where x′ represents the normalized eigenvalue, x represents the initial eigenvalue, xMin represents the minimal 
eigenvalue, and xMax represents the maximum eigenvalue.

Feature selection method. There is frequently more than one type of feature in a dataset, and the combination 
of these features can represent the essence of the data. However, selecting these features and removing unneces-

(1)x′ =
x − xMin

xMax − xMin

Table 2.  A part of features in the dataset. The first column is the name of the feature. The second column is 
the description corresponding to the feature.

Feature name Feature short description

Dst Port Destination port of connection

Protocol Protocol used during connection

Timestamp Time that connection occured

Flow duration Duration that connection occurred

Tot Fwd Pkts Total number of forward packets

Tot Bwd Pkts Total number of backward packets

TotLen Fwd Pkts Total length of forward packets

Fwd Pkt Len Max Maximum length of forward packets

Bwd Pkt Len Mean Mean size of packet in backward direction

Flow IAT Std Standard deviation time between two packets sent in the forward direction

Fwd Seg Size Min Minimum segment size observed in the forward direction

… …

Active mean Mean time a flow was active before becoming idle

Idle Std Standard deviation time a flow was idle before becoming active

Idle Min Minimum time a flow was idle before becoming active

Label Describes if file is Attack or Benign
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sary and redundant features that do not affect the model’s performance is often crucial to improving the model’s 
performance and ensuring its efficient operation.

Feature selection is a method of data dimensionality reduction that can increase the accuracy of machine 
learning (ML) models by identifying a subset of features that really contribute to the sample to represent the 
sample, as well as minimize the training time and computing cost of the model. Additionally, it should be empha-
sized that feature selection is distinct from feature extraction. The primary distinction is that the former (e.g., 
RFE algorithm) attempts to discover the best subset of features from the original feature set, whereas the latter 
removes the features and produces a new set of features (e.g., CNN extracted features).

In this study, we begin by de-fitting the DT to the dataset, continually repeat the DT using the RFE method, 
and then rank each feature according to its relevance. Algorithm 1 describes the process of RFE to select the 
optimal feature subset in DT model by defining Fi as the optimal feature subset (F1 > F2 > F3 > . . .) , retaining 
the top-ranked Fi feature subset each time, repeatedly fitting the model and evaluating the model’s accuracy, 
and locating the Fi feature subset with the optimal accuracy to be applied to the subsequent model as the feature 
selection result.

Model detail. This section describes the process of Mini-Batching the feature-selected dataset and feeding 
it into DRL, where the data will first be fed into a CNN + MLP model for feature extraction, followed by train-
ing the model using reinforcement learning to enhance the performance of the IDS. Then the identification of 
network attacks will be completed.

Mini‑Batch. DRL is often employed for unsupervised learning, however, the CSE-CIC-IDS2018 dataset is a 
supervised dataset with labels. To imitate the process of DRL, we attempt to treat all characteristics outside 
labels as states and labels as actions. Batch samples consisting of (1) feature states St , (2) label actions At , and (3) 
St+1 are used in the training procedure. It should also be mentioned that the Mini-Batch Dataset is a subset of 
randomly selected samples from the dataset that are used as input data for the training model, and that the Mini-
Batch Dataset is updated each time it is trained by randomly picking samples from the dataset.

Figure 3 depicts the structure of the Mini-Batch employed by ID-RDRL, which consists of St ,At , St+1 as the 
fundamental input data, with each batch is consisting of n+ 1 instances of the structure described above. Each 
Mini-Batch consists of n+ 1 consecutive samples chosen by indexing t  , while the dataset is randomly disturbed 
before each training.

DQN model. Reinforcement learning is a machine learning technique based on the Markov decision process 
(MDP), which is a function consisting of S, A, T, and R, where S is a set of states, A is a set of actions, T is a map-
ping function for each state-action pair to transition to a new state, and R is the reward function obtained from 
this process. In the MDP, the transition from the current state-action pair to the next state is entirely determined 
by T, which possesses the Markov property. Therefore, once the MDP is defined, its policy is a one-to-one map-
ping of each state to action, and the MDP enables learning the optimal policy corresponding to each state and 
the best action it should take to maximize the total expected reward R.

The optimality criterion is frequently linked through the value function V  , which is an estimate of the value of 
each state, and the strategy, according to the valuation of the action in the current state Q can be obtained, with 
V  representing the valuation of each state and Q representing valuation of each state-action pair.

To obtain the best model policy, observe the state-action space as much as possible and use the ε-greedy 
algorithm to explore the actions to be executed in the present state. The agent will choose the current state with 
probability p and will choose random actions with probability 1− p . Continuously interacting with the environ-
ment and adjusting its own V  and Q functions, the agent approximates the actual V  and Q functions. Q function, 
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so that the action predicted by the Q function and selected by the model in the present state can get the most 
significant expected total reward.

The primary objective of the DQN algorithm is to match the Q function, which reflects the greatest expected 
reward the environment may provide in a given condition and activity. The Q function is determined by the state 
and activity of the system. After obtaining Q(s, a) , we may obtain the policy function. Policy(s) = argamax(Q(s, a)) 
is a state-dependent policy function that selects the action that maximizes the value of Q.

Figure 4 depicts the fundamental flow of the DQN algorithm, in which a sample of the Mini-Batch defined 
in the previous paragraph is fed into the model, and all Mini-Batches are regenerated at each iteration. The 
equivalent Q(st , a) and Q(st+1, a) are computed based on the present respective states and ât . By submitting those 
as mentioned above, the primary fitted Q function to the Policy function, the maximum Q value in the current 
state is then determined.

Q(st , a) is further computed through the Policy function to obtain the maximum Q value, while the next 
action (label) to be attempted is selected using the ε-greedy algorithm with the probability and passed into the 
Reward section to compare with the actual action (label) to compute the reward value, while the Q(st+1, a) is 
also computed through the Policy function.

The qt , qt+1 are then computed by the respective selected at and at+1 , and the rt calculated by qt+1 and reward 
is acquired by the reward function as qref = rt + � ∗ qt+1 , where the reward is set to a deduction factor of 0.01, 
which demonstrates that there is no relationship between st and st+1 . Next, we will get  qt and qref  . To calculate 
the Loss value and back propagate through the training network in order to update the DQN model’s parameters.

Algorithm 2 describes the process of RFE to select the optimal feature subset in DQN model by defining Fi 
as the optimal feature subset (F1 > F2 > F3 > . . .) , retaining the top-ranked Fi feature subset each time, repeat-
edly fitting the model and evaluating the model’s accuracy, and locating the Fi feature subset with the optimal 
accuracy to be applied to the subsequent model as the feature selection result.

Figure 3.  Mini-Batch data encoding schematic for DQN model.
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Figure 4.  Schematic diagram of DQN model structure.
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DRL model. Figure 5 depicts how the DRL model was generated using the DQN method, as described in the 
previous section. The Mini-Batch samples selected by features are used as the model’s input, and the feature 
values are extracted after convolutional layers. The feature values are then Flattened as the input data into the 
3-layer fully connected layer, and the activation function of each layer in the fully connected network is then 
evaluated. Each layer’s activation function in a fully linked network is the ReLU function, which ensures that all 
Q values calculated are positive.

The DQN algorithm is primarily applied to the fully connected layer of the DRL model, and the model will 
calculate the prediction ât and ât+1 corresponding to st and st+1 states respectively, then the predicted action a 
hat t and the state st correct action at continue to compare, if they are the same then the reward is 1; otherwise 
it is 0, and the reward value is obtained as rt.

Notably, the reward discount factor of the model is set to 0.01 in order to get the most excellent performance 
and encourage the model to focus on the present learning reward, given that the dataset is labeled and the labels 
are uncorrelated.

Figure 5.  Schematic diagram of DRL model structure.
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Performance metrics. In IDS, correctly identifying attack traffic is more crucial than validating regular 
traffic. In addition to accuracy, one of the metrics to be considered when assessing the model’s performance, we 
also analyze the model’s performance using F1-score, precision, recall, and ROC metrics.

These metrics are produced using confusion matrices, consisting of TP, TN, FP, and FN with a grid structure 
that enables the visualization of the model’s performance. TP stands for true positives, which indicate correctly 
predicted attack traffic; TN stands for true negatives, which indicate correctly predicted normal traffic; FP stands 
for false positives, which indicate normal traffic that is predicted as attack traffic; and FN stands for false nega-
tives, which indicate attack traffic that is predicted as normal traffic. FN is the essential element; the lower it is, 
the less likely IDS is to misjudge attack traffic, and our methodology aims to minimize its value.

The basic notation of the metrics as mentioned above is described below.
Accuracy the number of correct predictions made by the model as a percentage of the total number of 

predictions.

Precision this metric measures the percentage of attack traffic correctly predicted as attack traffic and is 
mathematically defined as follows.

F1‑Scores This metric is a combined form of model accuracy and sensitivity, and is a reconciled average of 
model accuracy and sensitivity. In an unbalanced dataset, better F1-Scores indicate fewer misclassified flows, 
and this metric is the focus of our study.

Receiving operating characteristics curve (ROC): ROC is a combination of response sensitivity and continu-
ous specificity variables that may indicate the link between sensitivity and specificity; the greater the area of the 
curve, the better the model’s performance.

Results
This section will first provide the results of feature selection and the optimal subset of features used to extract 
the data while comparing the performance of the ID-RDRL model with the MLP, CNN, Logistic Regression, 
DDQN, and SVM ML models that have been applied to the CSE-CIC-IDS2018 dataset. The multiple models 
were executed on the same test set of the CSE-CIC-IDS2018 dataset without sampling the training data or 
modifying the original dataset, indicating the generalization of the IDS in terms of its capacity to recognize 
novel network traffic.

F1-score, accuracy, precision, and recall are the measures used to assess the performance of IDS. Since the 
CSE-CIC-IDS2018 dataset is uneven in terms of the number of samples from different kinds of cyber-attacks, 
we focus more on the performance of the F1-score, which is more suited to unbalanced datasets. Moreover, to 
demonstrate the performance of ID-RDRL in recognizing network traffic attacks, we identify the seven kinds 
of data traffic in the dataset depending on whether the network traffic is normal traffic or attack traffic (Binary).

Feature selection results. We select the feature in the dataset using the DT + RFE model, where the num-
ber of RFE features picked ranges from 1 to 78, the display is spaced by five features, and the ideal number of 
features and feature subset is determined based on the F1-score and accuracy, as seen in Fig. 6. RFE ranks the 
specified characteristics based on their significance in assessing whether the traffic is attack traffic. The features 
picked by RFE are ordered according to their relevance in identifying whether the data is attack traffic, and the 
best number of feature subsets is determined to be 13 based on Fig. 6 and Table 3, respectively.

For the CSE-CIC-IDS2018 dataset, we have a problem with multiple classifications. The results of multiclas-
sification can be presented in two ways: aggregated or one versus the rest.

In the instance of one vs. the rest, each individual class (label) is compared to all other classes, resulting in a 
sequence of binary classifications (one for each specific class). In aggregated instances, we return a single result 
that represents the average (aggregate) of all classes. Also aggregated employs several averaging techniques 
(micro, macro, weighted, sampling) that provide distinct outcomes. Unless otherwise specified, the performance 
measures (F1, accuracy, and recall) presented in this work were compiled using the weighted weighting approach, 
as demonstrated by Pedregosa et al.38.

Due to the small number of categories, a total of 1000 data are picked, and each type of data is chosen based 
on the ratio in the dataset description part, as seen in Fig. 7. Although only three dimensions cannot represent 
the complete data, we can see the distribution of different network traffic in the potential space. We can also 
observe that most of the normal traffic data is on the left side of the figure, whereas most of the network attack 
data is on the right side of the figure, indicating that the subset of features selected by RFE can distinguish nor-
mal traffic from network attack traffic, which is the interpretability. We also discover that there is some overlap 
between different forms of network attacks and normal network traffic (the right side of the diagram), which 
might provide difficulties for our model to recognize network assaults.

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision =
TP

TP + FP

(4)F1 =
TP

TP + 1
2 (FP + FN)
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Table 4 displays the Results of DT with the given characteristics, where the "13" in DT + RFE (13) refers to 
the optimum subset of features selected. The confusion matrix and ROC of feature selection for DT are depicted 
in Figs. 8 and 9, respectively.

We found that the performance of the DT classifier improved when the RFE-selected features were applied to 
the model. The overall accuracy and F1-score increased by 1.3% and 1.4%, respectively, compared to the model 

Figure 6.  The results of Decision Tree with RFE (Accuracy and F1-Score).

Table 3.  Top-ranked selected features in the dataset.

SN Features SN Features

1 Dst Port 8 Fwd Act Data Pkts

2 Init Fwd Win Byts 9 Bwd IAT Mean

3 Fwd Seg Size Min 10 Bwd IAT Std

4 Bwd IAT Tot 11 Bwd IAT Max

5 Fwd Pkts/s 12 Bwd IAT Min

6 Bwd Pkts/s 13 Pkt Len Std

7 Bwd Seg Size Avg – –

Figure 7.  Visualization of dataset with top 3 features. Dst Port, Init Fwd Win and Fwd Seg Size features.
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without feature selection. However, it did not improve in terms of AUC, which increased by only 0.6%, which 
may be as the RFE feature selection approach has reached its maximum level of model improvement.

Figure 8 illustrates the confusion matrix for multiple classes with 13 features. The model accurately predicts 
the regular, DoS/DDoS, and Bot categories, but poorly predicts the Infulteration category and mistakenly clas-
sifies them all as normal traffic. Figure 7 reveals that all network assaults in this category overlap with normal, 
which may contribute to the model’s inability to identify this category accurately.

We used the one vs. one method to generate ROC images for two types of data, normal data and attack traffic, 
with different numbers of features, which helps us analyze the quality of the prediction probability. We discovered 

Table 4.  Results of DT with the selected features.

Evaluation metrics DT DT + RFE(13)

Accuracy 0.9312 0.9447

F1-score 0.9223 0.9354

AUC 0.9671 0.9742

Figure 8.  Multi-category confusion matrix (DT). The numbers in the confusion matrix indicate the proportion 
of samples that are classified from the original category represented by the horizontal axis to the category 
represented by the vertical axis.

Figure 9.  ROC of the DT with RFE. AUC is shown on the right.
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that as the number of selected features increases, the closer the ROC image is to the upper left, the larger its AUC 
value, and that when the number of selected features reaches 13, the AUC value remains essentially the same 
indicating that the prediction probability is stable. Meanwhile, we observe that the AUC achieves its maximum 
value when the number of features is three, contrary to our forecast that the highest AUC would be thirteen. 
Overall, the ROC curve demonstrates the effective detection capabilities of the DT model.

DRL result. We altered the performance of the classifier by including reinforcement learning (RL) into the 
model, as explained in detail in the former part results. We achieved varying results using the subset of features 
filtered in the previous section as input data. As demonstrated in Table 5, the combination of the RFE feature 
selection approach with the application of RL increases the DT classifier’s accuracy and F1-score relative to other 
classifiers in the following ways: DRL + RFE achieves 96.18% accuracy and 94.89% F1-score, respectively.

Figure 10 illustrates the impact of the number of features on the model’s accuracy and F1-score after RFE 
ranked the significance of the characteristics for recognizing attack traffic. We can determine that the trend is 
comparable to the influence of the number of features on the model’s performance in the previous section, with 
the most excellent performance for the subset of 13 features. Additionally, we observe that the trend from 3 to 
13 features is climbing and then decreasing, which differs from the trend at the exact location in the preceding 
section, which is likely because the enhanced DT classifier via RL can learn the previously disregarded data more 
precisely. Figure 11 depicts a comparison of the outcomes of the two models of DT and DQN utilizing the RFE 
feature selection approach. We can see that the Accuracy and F1-score of both models are enhanced when RFE 
feature selection is used.

To further examine the impact of the discount factor in the DRL algorithm on the performance of the 
model, we tested the DRL model with sets to 0.01 and 0.99, respectively. As anticipated, Fig. 12 depicts the effect 
of employing different discount factors in the DRL model, and we achieved the most significant results with 
extremely low discount factors, which is mostly due to the fact that the DRL model learns relatively little from 
the context for the supervised learning dataset, which has low data correlation.

Figure 13 depicts the confusion matrix plots for (a) multiclassification prediction under DQN-RFE and (b) 
biclassification prediction under DQN-RFE. The multiclassification is comparable to the confusion matrix plot 
of multiclassification prediction of DT in section DT + RFE result, and the confusion matrix plot of biclassifica-
tion prediction demonstrates that all normal traffic is correctly predicted. In contrast, the probability of correctly 
predicting network attacks is 0.93.

Figure 14 depicts comparison between the obfuscation matrix plots of the proposed DQN + RFE model 
and the DT + RFE model. The figure on the left depicts the actual number of obfuscation matrix plots for each 
category, with Normal having the most, DoS/DDoS having the second most, and Web and Injection having 
extremely few samples, with Injection having just 11 examples. The middle and right graphs compare the confu-
sion matrices of the two models. The overall prediction results of DQN for many categories are comparable to 

Table 5.  Results of DRL with the selected features.

Evaluation metrics DT DRL DRL + RFE(13)

Accuracy 0.9312 0.9408 0.9618

F1-score 0.9223 0.9246 0.9489

AUC 0.9615 0.9746 0.9839

Figure 10.  The results of the DQN Model with RFE (Accuracy and F1-Score).
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Figure 11.  Comparison of the results of two models.

Figure 12.  The impact of different discount factors (λ).
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those of DT, however for the Infilteration category, the prediction accuracy of our suggested model has increased 
from 0.14 to 0.31, indicating that our proposed model is superior.

Comparison of different methods. In this section, the performance of the ID-RDRL model is compared 
with some ML models that have been applied to the CSE-CIC-IDS2018 dataset, such as MLP, CNN, Logistic 
Regression, DDQN and SVM ML models.

The performance of our proposed model compared to other ML methods on the CSE-CIC-IDS2018 dataset 
is displayed in Table 6. Our suggested DQN-RFE technique outperforms the competition, increasing accuracy 
by 2% and F1-score by 1.6% compared to the second-best performing approach XGBoost, where the Naive Bayes 
model is separated into Gaussion-NB, Bernoulli-NB, and MultinomialNB models. Their results are all dismal, 
whilst the other models perform rather well; XGBoost is a new ML model introduced in the past few years, and 
its performance is second only to our suggested model.

In the final column of Table 5, we compare the running time of each model and find that the performance of 
models with short running times is generally poor, whereas the performance of models with lengthy running 
times is significantly better. The Random Forest model has the longest duration at 300 ms, which is two orders 
of magnitude larger than the NB series model with the smallest runtime, indicating that the longer the runtime 
of a model, the better its performance. Our suggested model utilizes around the average of all compared models 
or 32.9 ms. This is mostly due to the implementation of the RFE feature selection approach, which eliminates 
80% of duplicate features and drastically reduces the computation required for the model prediction process.

Figure 13.  Confusion matrix diagram of the model. (a) Multi-category confusion matrix. (b) Binary confusion 
matrix.

Figure 14.  Comparison chart of the two models’ multi-category confusion matrix. The left graph shows the 
actual number of predictions for each classification. The right plot shows the DQN and DT multi-category 
confusion matrix, respectively.
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Conclusion
In this paper, we propose an ID-RDRL method based on the feature selection (RFE) method and deep reinforce-
ment learning, validate the model’s performance using the CSE-CIC-IDS2018 dataset, and compare ID-RDRL 
with traditional machine learning methods in terms of accuracy, F1-Score, and running time. First, RFE can 
choose the ideal feature subset of the original data and eliminate around 80% of the redundant features in the 
CSE-CIC-IDS2018 dataset meanwhile combining DT and RFE can accelerate the feature selection process; 
Second, the reward setting R and the learning discount factor are critical to the performance of the model in 
deep reinforcement learning; Third, our suggested ID-RDRL model can be useful, and our model enables IDS 
to work more effectively than standard machine learning approaches.

Since feature selection approaches are critical to the performance of IDS, the initial results indicate various 
possibilities for future research. However, how can automatically and dynamically select feature combinations 
be determined? Can a DRL with several bits of intelligence facilitate a more robust interaction between the 
cyber-attack classifier and the surrounding environment? Future research will address these issues to enhance 
the performance of IDSs and their applicability to datasets.

Data availability
The dataset investigated for this work is the public CSE-CIC-IDS2018 dataset, which can be downloaded from 
IDS 2018|Datasets|Research|Canadian Institute for Cybersecurity|UNB at https:// www. unb. ca/ cic/ datas ets/ ids- 
2018. html.

Code availability
The computer algorithms originated during the current study can be made available from the corresponding 
author Y.Z. on a reasonable request.
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