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ABSTRACT

Objective: To provide a scoping review of papers on clinical natural language processing (NLP) shared tasks
that use publicly available electronic health record data from a cohort of patients.

Materials and Methods: We searched 6 databases, including biomedical research and computer science litera-
ture databases. A round of title/abstract screening and full-text screening were conducted by 2 reviewers. Our
method followed the PRISMA-ScR guidelines.

Results: A total of 35 papers with 48 clinical NLP tasks met inclusion criteria between 2007 and 2021. We catego-
rized the tasks by the type of NLP problems, including named entity recognition, summarization, and other NLP
tasks. Some tasks were introduced as potential clinical decision support applications, such as substance abuse
detection, and phenotyping. We summarized the tasks by publication venue and dataset type.

Discussion: The breadth of clinical NLP tasks continues to grow as the field of NLP evolves with advancements
in language systems. However, gaps exist with divergent interests between the general domain NLP commu-
nity and the clinical informatics community for task motivation and design, and in generalizability of the data
sources. We also identified issues in data preparation.

Conclusion: The existing clinical NLP tasks cover a wide range of topics and the field is expected to grow and at-
tract more attention from both general domain NLP and clinical informatics community. We encourage future
work to incorporate multidisciplinary collaboration, reporting transparency, and standardization in data prepa-
ration. We provide a listing of all the shared task papers and datasets from this review in a GitLab repository.

Key words: natural language processing, clinical informatics, electronic health records, systematic review, clinical decision sup-
port

INTRODUCTION Language Processing (NLP) Clinical Challenge (n2c2), the field of
Since the inception of the first Integrating Biology and the Bedside clinical NLP has advanced in clinical applications that rely on text
(i2b2) shared task in 2006, currently known as the National Natural from the electronic health record (EHR). Tasks with publicly avail-

©The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.
All rights reserved. For permissions, please email: journals.permissions@oup.com

1797


https://orcid.org/0000-0002-9341-7360
https://orcid.org/0000-0003-0828-1102
https://orcid.org/0000-0003-4513-403X
https://orcid.org/0000-0001-8011-9850
https://academic.oup.com/
https://academic.oup.com/

1798 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 10

able data (eg, shared tasks) provide a new avenue for advancing the
state-of-the-art using publicly available datasets in a sector that is
otherwise heavily regulated and protected from sharing patient data.
In an editorial approximately a decade ago, Chapman et al® identi-
fied the major barriers to clinical NLP developments where shared
tasks may provide a solution. Some of the challenges were a lack of
data resources, including annotation tools, benchmarking and stan-
dardized metrics, reproducibility, and collaboration between the
general NLP communities and health research communities.

Over the past decade, strides have been made with an increasing
number and heterogeneity in clinical NLP tasks, and many organiz-
ers are leveraging publicly available EHR notes like the Medical In-
formation Mart for Intensive Care (MIMIC).> MIMIC along with
clinical notes from other health systems has overcome privacy and
regulatory hurdles to enable the growth of language tasks to address
important clinical problems with NLP solutions. The benefits of
publicly available language tasks have become apparent with an op-
portunity for both clinical informatics (CI) and general domain NLP
communities to tackle problems together and develop systems that
may translate into applied tools in health systems. The body of lan-
guage tasks continues to enable the growth with complex informa-
tion extraction tasks ranging from early diagnoses (eg, substance
abuse detection, phenotyping®™) to clinical language understanding
(eg, natural language inference®”).

However, several challenges remain as transparency in the meth-
ods, clinical motivation, and standardization across annotation tech-
niques and sample size determination remain highly variable. Our
objective is to review papers describing clinical NLP shared tasks
that use publicly available EHR data from a cohort of patients. We
aim to examine the progress over the years and describe both bar-
riers that we have overcome as well as challenges that remain in ad-
vancing clinical NLP. This scoping review will serve as a resource,
accompanied by a GitLab repository (https://git.doit.wisc.edu/
YGAO/public-available-clinical-nlp-tasks/-/tree/main/), for organiz-
ers and participants in the clinical NLP domain to quickly retrieve
details on publicly available clinical tasks as well as identify gaps
and opportunities for future tasks.

MATERIALS AND METHODS

The methods to conduct this scoping review adhered to standards
described in the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines for Scoping Reviews (PRISMA-ScR).®
The search design identified new language tasks for clinical NLP us-
ing publicly available EHRs from a cohort of patients. The task re-
quired expert annotations to build a labeled corpus of data. The
comparator is a test dataset with an evaluation metric for the task.
The goal of the task was to provide a benchmark and enable the de-
velopment of state-of-the-art (STOA) models for the task.

Literature search

The librarian (LC) performed a full, systematic review of the litera-
ture between January 1985 and September 2021. The search com-
bined controlled vocabulary and title/abstract terms related to the
shared language tasks in clinical NLP, focusing on publicly available
datasets. The search was developed in PubMed, tested against a set
of exemplar articles, and then translated into the following data-
bases: (1) Embase (Scopus); (2) The Association for Computing Ma-
chinery (ACM) Guide to Computing Literature (ACM Digital
Library); (3) Science Citation Index Expanded (Web of Science); (4)

Conference Proceedings Citation Index-Science (Web of Science);
and (5) Emerging Sources Citation Index (Web of Science). The
metadata from the Association for Computational Linguistics (ACL)
Anthology was downloaded separately and searched based on the
database search strategies. The search strategies were peer-reviewed
by 2 University of Wisconsin (UW)-Madison Science and Engineer-
ing librarians. All searches were performed on September 8, 2021
except for ACL, which was on September 1, 2021. No publication
type, language, or date filters were applied. Results were down-
loaded to a citation management software (EndNote x9, Clarivate
Analytics, Philadelphia, PA, USA) and underwent manual deduplica-
tion by the librarian. Unique records were uploaded to Rayyan
screening platform® for independent review. The full query with
search terms and Boolean operations for each database is detailed in
Supplementary Appendix C.

Study selection

Study inclusion criteria were the following: (1) publicly available data-
set for the shared task; (2) clinical NLP task; (3) novel benchmark met-
ric; (4) models that were built and tested to establish state-of-the-art
results for the novel benchmark metric; and (5) English-language re-
search articles and tasks. Articles were excluded if the tasks were fo-
cused on the biomedical domain (genomics data, nonpatient data,
data from clinical research databases including PubMed articles),
subject-matter specific tasks without publicly available data, preprints
or nonpeer-reviewed, and individual use-case systems not designed as
a shared task. Multiple papers shared a data challenge with multiple
tracks. For example, the 2014 i2b2/UTHealth shared task had 2
tracks, protected health information (PHI) deidentification and tempo-
ral identification of risk factors for heart disease. We analyzed each
track as its own task, and some tasks consisted of multiple subtasks. If
the subtask focused on a distinct clinical problem, we also considered
each subtask its own task. We excluded subtasks when the data were
not clinical text, and it was not related to clinical NLP.

Researchers with expertise in NLP and CI (YG and MA) per-
formed a review of titles and abstracts for inclusion into full-text ar-
ticle review. The first 400 titles/abstracts were reviewed by the 2
reviewers in a blinded fashion and the Cohen’s Kappa score for
interannotator agreement was 0.83. The subsequent papers were di-
vided and reviewed by each reviewer independently. Any disagree-
ments or indeterminate decisions were resolved through discussion
and consensus.

Data synthesis and summarization

Among the papers included in the scoping review, characteristics of
the shared tasks were described and the data corpus metrics were
summarized into tables. The following characteristics were pro-
vided: (1) publication date and location; (2) the type of NLP task
and data source; (3) level of annotation; (4) participant details; (5)
data corpus details; (6) number of citations for the task; and (7)
evaluation metrics. Depending on where the task was published, we
categorized each task as originating from the CI or general domain
NLP community. Most papers explicitly defined the type of NLP
problems the task addresses. For these papers, we followed their
task definitions. For the remaining papers, we categorized the types
based on the type of input and output, following the conventional
definition in the general NLP domain. Therefore, we acknowledge
that named entity recognition (NER) is a type of information extrac-
tion (IE), but we separated them because of how it appeared in the
shared task paper. A systematic review protocol for our study was
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submitted a priori to the PROSPERO database for prospectively reg-
istered systematic reviews. Our protocol was deemed as a scoping
review because of the heterogeneity in tasks and evaluation metrics;
therefore, protocol registration was not required, and we followed
the guideline and checklist from the 2018 PRISMA-ScR (Supple-
mentary Appendix B).®

RESULTS

Search results

Our search results identified 4489 abstracts for review after dedupli-
cation. After the first review phase with title/abstract screening, 99
papers met inclusion criteria for full-text review. During the full-text
review phase, 68 papers were excluded and the most common rea-
son for exclusion was not having publicly available data (7 =24).
During the full-text review, another 5 papers were identified that
were not part of the original query results. Thirty-five papers span-
ning 48 clinical NLP tasks between 2007 and 2021 were ultimately
included for analysis. Figure 1 illustrates the selection process and
results. All of the included papers were published in peer-reviewed
CI and general domain NLP journals and conference proceedings.

General characteristics of included papers

The majority of tasks appeared in CI journals including the Journal
of the American Medical Informatics Association (JAMIA;
n=11),"92° the Journal of Biomedical Informatics (JBl; n=>5),>'"*
and the Journal of Medical Internet Research (JMIR; n=2).>>° The
remaining papers were distributed across other health/clinical infor-
matics journals and conference proceedings, including Artificial In-
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telligence in Medicine,® Journal of Biomedical Semantics,>” Drug
Safety,”® and American Medical Informatics Association Sympo-
sium (AMIA, 7=2)*>° and World Congress on Medical and
Health Informatics (MEDINFO).?! In the general domain NLP com-
munity, the major proceedings included the Association of Compu-
tational Linguistics (ACL, 7 =2),3%3% International Conference on
Language Resources and Evaluation (LREC, 7 =2),*3*
cal Methods in Natural Language Processing (EMNLP, n=2),
International Conference of the Cross-Language Evaluation Forum

and Empiri-
7,35

for European Language (or known as Conferences and Labs of Eval-
uation Forum, CLEF, 7 =3),3% and International World Wide
Web Conference (WWW).>* Some tasks were published in work-
shops such as the International Workshop on Semantic Evaluation
(SemEval, 7=2),"**" Biomedical Natural Language Processing
Workshop (BioNLP, #=2),>** and Workshop on Natural Lan-
guage Processing for Medical Conversations.*> One paper was pub-
lished in the Journal of Language Resources and Evaluation.**
Authorship in the papers published in the CI and general domain
NLP community did occasionally overlap, but we showed results
separately for the 2 communities for the following reasons: (1) the
peer review process and target audiences between CI and NLP publi-
cations were considerably different; (2) the 2 communities did not
share the same publication index catalog; and (3) we aimed to un-
cover the differing motivations and goals for building clinical NLP
systems. Several differences existed in the types of tasks shared be-
tween these 2 communities. Figure 2 illustrates the type of tasks and
counts between 2007 and 2021 from the 2 communities. Overall, 28
of the tasks were published by the CI community, and 20 tasks were
published by the general domain NLP community. The earliest
shared task was published in a CI journal in 2007 (i2b2 Protected
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Figure 1. PRISMA diagram of our paper review process.


https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac127#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac127#supplementary-data

1800

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 10

[ Journal/Conference Papers in Clinical Informatics
Journal/Conference Papers in General Domain NLP

2007
2008 Doc Class

2009 Doc Class

2010 IE

2011 n=

2012 Coref. |IE
2013 NER, IE
2014
2015
2016
2017
2018
2019
2020
2021

NER

ElSE:

NER (n=2), Doc Class

Sent Class, |IE
Doc Class, IE, STS, EL

Doc Class, |E. NER

0 1 2

NER, EL

SR

NER (n=2), Parsing (n=2)

IE

MRC, QA, NLI
QA, NLI
Text2SQL, Doc Class

Sent Class, Summ, IE

3 4 5 6

NER: Name Entity Recognition
DocClass: Document Classification
1E: Information Extraction
SentClass: Sentence Classification
STS: Semantic Textual Similarity

EL: Entity Linking

Coref: Coreference Resolution

SR: Speech Recognition
TN: Text Normalization and Disambiguation
Summ: Summarization

Parsing: Syntactic Parsing

MRC: Machine Reading Comprehension
QA: Question Answering

NLI: Natural Language Inference
Text2SQL: Text to SQL

Figure 2. Types of tasks published in general domain NLP and clinical informatics journals and conference venues across years.

Health Information [PHI| De-Identification'®)
tory of developing clinical NLP tasks among the CI community. Six
years later, the NLP community published its first clinical NLP task
in the 2013 CLEF eHealth Task 2 Disorder Mention.?” Interests

from the general domain NLP community have increased over the
42

showing a longer his-

years, representing the majority of tasks in 2021 (Summarization,
Action Item Extraction,>” Assertion Detection*?).

NER represented nearly a quarter of all tasks (25%, n=12) with
18.75% (n=9) and 6.25% (n=3) in CI>>!0:16:17:2122.2428 4, gen.

43744 respectively. Other tasks that occurred

13-16,19,28,31,36,41,43

eral domain NLP papers,
frequently in CI were the broader IE tasks (n=11),
Document Classification (DocClass; 7= 6).11:1220:23253% 1y the gen-
eral domain NLP community, the types of tasks were distributed rela-
tively evenly across Sentence Classification (SentClass; 7=2),>%*?
Entity Linking (EL; n= 4),17:18,37:40 Syntactic Parsing (Parsing;
n=2),*** Natural Language Inference (NLL 7=2),*" and Question
Answering (QA).% Tasks that required text understanding and gen-
eration were proposed by general NLP community, such as Machine
Reading Comprehension (MRC),*® Summarization (Summ),** and
Coreference Resolution (Coref)."> A full description of the tasks and
their definitions are detailed in Supplementary Appendix A.

Descriptions of included tasks and data
The characteristics of the tasks are shown in Table 1. We found that
38% of the NLP tasks were introduced with an intent for clinical de-
cision making. Most of the clinical applications were NER tasks, in-
troducing detection and
conditions,'” substance abuse,’> medical risk factors,”’ medical
16,19 : YT 10,22,24 . 44 .

and PHI deidentification. Phenotyping™ intro-

identification of various medical

events,

duced a corpus annotated with NER without identifying a specific

clinical intent. Inconsistencies in defining NLP tasks occurred with 2
papers®® that described phenotyping as an NER task and others>*>*
described it as a document classification task. IE was the second
most frequent NLP task after NER (13.89%, n=9), with some tasks

focusing on time relation extraction,'*'®*" and concept extrac-

13,1419 5thers focusing on mention of substance uses,”® and dis-

156,7

tion,
order.>® Tasks without specific clinical applications were NL
MRC,> QA,** Summ,*” Semantic Textual Similarity (STS),2°
Coref,15 Parsing,*** Text2SQL,>* and Speech Recognition (SR).>*
Most of these tasks were introduced by the general domain NLP
community, except STS*® and Coref.15

The data sources used to build the corpora were frequently de-
rived from single health systems. Among them, the most frequent
was from MIMIC,* which was from a large tertiary academic center
represented  31.91% (n=15) of the
6.7,19,25,27,32,34,36,37,39.404243  ythor urban and  academic

in Boston and
tasks.
health systems also contributed by releasing their data in a deidenti-
fied format including the following: Partners HealthCare (PHC,
n=8)10-13:1618,23.24.33. Bath TIsrael Deaconess Medical Center
(BIDMC, n=7)"1%1833; University of Pittsburg Medical Center
(UPMC, n=35)*153% University of Texas Health System
(UTHealth, 7n=4)'*!%33; Mayo Clinic (Mayo, n=23)>?%* and
University of Washington Harborview Medical Center (UW Har-
borview, n=3).*?* All these data sources represented single centers
that were tertiary academic medical centers.

Several papers were general in describing the note types as
“EMR” or “EHR” without further specifying the type of note (eg,
progress note, discharge summary, radiology report, etc.). For those
papers, we denoted the type as “clinical notes” only (n=14).2%"
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22,24.26,28,31,33,40.41.44 yther papers gave clear specifications and dis-
charge summary was the most frequent note type (35.41%.
n=17),10716:18,19,25,27,32,34,36.37:43 golowed by radiology reports
(14.58%, n=7).273%3%%2 Other note types included history and
physical admission, daily progress notes, electrocardiogram, echo-
cardiogram, pathology reports, and psychiatric evaluation
records.>7?327:3%3¢ Tywo tasks had note types that were different
from all other tasks: Text2SQL included structured data with a goal
of converting the tabular data into SQL language®®; SR included au-
dio records from nursing handover sessions with the intent of devel-
oping written text from spoken language.*®

We found that more than a half of the tasks used data annotated
at the token level (56.25%, n=27).351013-
19,21,22,24,27,28,37.40.44 1 these tasks, tokens served as the basis for
assigning labels. Tasks like NLL®” STS,2 Parsing,*** and Sent-
Class®*? had annotations at the sentence level. Document-level an-
notation occurred for tasks in DocClass,!!!1220:23:2534 MRC,33
QA,* and Summ.*

Descriptions of task participation, data size, and
evaluation
We report details on participation, data split, and evaluation in Ta-
ble 2. Among all tasks where participation information was avail-
able (when the task was hosted as a shared task), the number of
participants ranged from 5 to 35 teams. Summ was only hosted once
but published in 2021 as the task with the greatest number of teams
(n=35) submitting their systems.** The other 2 tasks with the most
participants were the following: STS, published in 2020 and
attracted 33 teams®®; and DocClass with an average of 29.33 teams
across 4 shared tasks.!112:20:23

Sample sizes across the labels were highly variable and ranged
from a few hundred manually annotated labels to semiautomated
methods that produced several-fold more labels. None of the papers

justified their sample size and they were simply reported as conve-
nience samples. Further, not all tasks reported their data splits in the
papers. 1939 The units of dataset size were also heterogeneous, and
sometimes not consistent with the annotation. For instance, annota-
tion for EL tasks were created at lexical level, yet few papers
reported the size regarding number of words and tags.'® The task
with the biggest corpora was QA, using the emrQA dataset.>® Their
annotation was generated semiautomatically on all i2b2 data. NLI
also had large sets of sentence pairs, ranging between 11 000 and
14 000 for the train set, and 405 to 1400 for the test set.®”
Accuracy and F1 were the 2 most frequent evaluation metrics.
These 2 metrics focused on evaluating if predicted labels were cor-
rect against a gold standard, such as EL and NER. Most tasks in
DocClass applied the F1 score with the exception of Mean Absolute
Error reported in Ref.23 Some metrics were used for a specific NLP
task, such as ROUGE* and BERTScore*® for summarization evalu-
ation*?; Pearson Correlation for STS task.?® Tasks in parsing used
F1 as well as Unlabeled Attachment Score (UAS) and Labeled At-
tachment Score (LAS), 2 standard metrics evaluating predicted

parsed labels.***

DISCUSSION

Lessons learned from past community interests and
efforts

Our scoping review identified a total of 35 papers spanning multiple
NLP tasks across both CI and general domain NLP communities.
Among the oldest and most frequent tasks across both communities
were NER, a token level task. A shift from token-level tasks (NER,
EL, etc.) to document-level tasks (MRC, QA, Summ, etc.) was ob-
served across the years with a growing interest for language under-
standing and text generation problems. As the NLP field continues
to evolve since the introduction of transformers*’ and the capacity

Table 2. Overview of tasks, average number of participants across years, years range for publications, and evaluation metrics (n=number

of tasks)
NLP task Avg. number Publication Data split range Evaluation metric
of participants years
Training Test
Entity linking 25.33 (n=4) 2014-2020 50-199 notes 50-133 notes Acc.
Natural language inference 17 (n=1) 2018-2019 11k-14k pairs 405-1.4k pairs Acc
Text disambiguation and S5(n=1) 2016 199 notes 99 notes Acc
normalization
Machine reading NA 2020 91k queries 9.9k queries Exact match, F1
comprehension
Question answering NA 2018-2021 658k—1M pairs 188k-296k pairs Acc.
Summarization 35(n=1) 2021 91k notes 600 notes ROUGE,* HOLMS,*
BERTScore,*” CheXBert*®
Named entity recognition 15.57 (n=7) 2007-2021 99-3.1k notes 117-896 notes F1, Acc.
Information extraction 17.43 (n=7) 2011-2019 300-876 notes 100-574 notes Acc., F1
Semantic textual similarity 33(n=1) 2020 1.6k pairs 412 pairs Pearson correlation
Coreference resolution 20 (n=1) 2012 590 notes 388 notes F1
Syntactic parsing NA 2016 NA NA F1, UAS, LAS
Sentence classification NA 2011-2021 518 notes 100 notes F1
Document classification 29.33 (n=3) 2008-2020 202-11k notes 86—-8k notes F1, MAE
Others (Text2SQL, 11.67 (n=2) 2013-2020 Text2SQL: 37k Text2SQL: 4k records Error rate percentage, Acc.

speech recognition)

records SR:
100 cases

SR: 100 cases

NA: Statistics Not Available; Acc.: Accuracy; F1: F-measure; UAS: Unlabeled Attachment Score; LAS: Labeled Attachment Score; MAE: Mean Absolute Er-

ror; SR: Speech Recognition.
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breadth of tasks is expected to grow. In recent years, the general do-

to build large pretrained neural language systems increases,

main NLP field has contributed natural language understanding and

30-5% but the CI domain remains primarily focused

generation tasks,
on NER>*?* and DocClass.2%2> This may represent a divergence in
focus between the general domain community but is also due to the
availability of data, which are larger and more accessible in the gen-
eral domain.

The first publicly available task appeared in a CI journal by clini-
cal NLP experts working at health systems affiliated with acade-
mia.'? Several reasons for the earlier appearance by the CI
community may include the difficulties in extracting clinical notes
and privacy laws protecting patient data for sharing, which requires
individuals with direct access to the EHR. The CI community of NLP
experts brings together similar computational linguistic knowledge
but they collaborate with healthcare providers to tackle the linguistic
challenges in EHR data with a better understanding of the medical
terms and clinical problems. This is also reflected in the longer history
of shared tasks with a focus into a clinical problem (eg, deidentifica-

10.22.24 clinical trial recruitment,®® etc.). In general domain NLP,

4,44

tion,
tasks organizers focused more on fundamental tasks like Parsing,
and NLL®” The general domain NLP tasks were typically authored
by nonclinical experts with different motivations to develop new tech-
nologies in clinical text understanding and less attention to the clinical
needs of health systems. To further advance the field of clinical NLP,
both communities may benefit in designing tasks that are needed to
advance the science in NLP but also delineate how it may be applied
in clinical practice, such as a generation task to build a medical scribe
that can reduce documentation burden for the provider.

Another major gap we identified is the limitations in generaliz-
ability of the data sources. The data are relatively homogeneous, de-
riving from mainly large, urban tertiary academic centers and
mainly from single centers with a biased representation of the US
population. Further, the notes derived from academic centers also
contain a large proportion of notes in the EHR written by trainees,
and may not be representative of community hospitals and health
systems without trainees. The current environment with HIPAA pri-
vacy laws and resources for an Enterprise Data Warehouse largely
limit the availability of data to centers. Currently, centers with infor-
matics and computational expertise and resources support the data
needed for public tasks and these remain limited to well-resourced
academic centers. Moving forward, a concerted effort should be
placed into sourcing data across the larger community of nonaca-
demic centers from rural and urban demographics with a larger case
mix and multicenter representation.

Selection of notes and benchmarks

Time-series data such as daily progress notes are rarely investigated
in existing tasks. The discharge summary is the most frequent note
type and typically the most detailed about hospital events and final
diagnoses and treatments provided. While these may be useful for
accomplishing certain NLP tasks, their clinical application in real-
time remains limited. Augmented intelligence via clinical decision
support systems frequently ingest data as events happen or use note
types with time-sensitive appearance or repeated measures. Dis-
charge summaries are typically the last documentation to resolve
what happened during a hospital stay and may not be useful for aug-
mented decision making. Other note types such as radiology and
emergency department notes that are time-sensitive or daily progress
notes that track disease and treatment plans each day are potentially

more useful for real-time NLP applications, which is a goal for
many researchers in the field.

F1 scores and overall accuracy are the most frequently used eval-
uation metrics, but they are only one component in reliability and
validity testing. The extent to which a system measures what it is
intended to measure requires multiple validity metrics. Criterion va-
lidity metrics with accuracy and correlation scores against reference
standards are the de facto standard in tasks. However, construct and
content validity are also important. Construct validity is needed
when no universally accepted criterion exists to support the concept
(or construct) being measured. This may require human evaluation
to provide more than just frequentist statistics and better report
benchmarks for natural language understanding and generation
tasks. Content validity (or face validity), the extent to which the sys-
tem predicted key words represents the gold standard concepts re-
quire more sophisticated approaches that can evaluate semantics
and word order like the BERTScore.*” In the clinical domain, meet-
ing all the validity metrics may not be enough. Pragmatic testing
through clinical applications with practice simulations that examine
the system’s effectiveness should also be considered in future tasks.

Issues in task/data preparation

Introducing, preparing, and releasing data for a new task requires
complex thoughts and actions, yet details on data preparation are
often neglected. In this review, we identified some issues above that
may help to improve future task presentation. Additionally, a small
number of papers presented results from pretrained models without
explaining the training set which hinders reproducibility. We also
found that the data split sizes reported for most papers did not
match with the annotation units. Finally, none of the papers
reported how they determined the minimum size of annotations
needed to adequately train a model. Recall that even within the
same type of tasks, the data size could range substantially from hun-
dreds to thousands (eg, DocClass). Although it is widely known that
annotations are limited to the resources (time, budget, etc.), not
knowing the minimum sample size raises a crucial question about re-
sult reliability: will the model performance trained on this dataset be
trust-worthy? Models developed for tasks like NLI, MRC, and QA
are data hungry and the minimum sample size should be determined
a priori, as these tasks require deeper understanding in semantics
and relations. We believe by addressing these issues, researchers
could make more robust contributions to clinical NLP.

Several limitations occurred in our study. First, our literature
search may have missed shared tasks that were in preprint and
awaiting acceptance into peer-review. We hope to share more recent
tasks as they become available in our GitLab repository. Second, we
focused only on English language tasks but the NLP community
may be further along in certain tasks for other languages. Lastly, our
focus is on the original publication that proposed a task with a
STOA model; therefore, the work that improves the STOA perfor-
mance is not in the scope of this work.

CONCLUSION

The interest in introducing and participating in clinical NLP tasks
grows as more tasks surface each year. The breadth of tasks is also
increasing with topics varying from tasks with specific clinical appli-
cations to those facilitating clinical language understanding and rea-
soning. Undoubtedly, the field will continue to grow and attract
more researchers from both general NLP domain and the CI com-
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munity. We encourage future work on proposing shared tasks to
overcome barriers in community collaboration, reporting transpar-
ency, and consistency of data preparation. As a resource to the com-
munity, we provide a listing of all the publicly available tasks from
this review in our GitHub repository at (https://git.doit.wisc.edu/
YGAO/public-available-clinical-nlp-tasks).
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