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A B S T R A C T   

This paper explores the impacts of the COVID-19 pandemic on the global green bond and con
ventional assets, including commodity, treasury, stock and clean energy markets, using Diebold 
and Yilmaz (2012) and Baruník and Křehlík, 2018b spillover framework. The results show that 
spillover transmitted from COVID-19 is relatively strong over a medium- and long-term horizon, 
and the spillover effects sharply increased when the pandemic became severe. Furthermore, green 
bonds are most affected by the COVID-19 pandemic, followed by the treasury, while the other 
conventional assets are only slightly affected. Additionally, our findings also contain a low-risk 
portfolio during COVID-19 pandemic.   

1. Introduction 

The COVID-19 pandemic has spread to over 200 countries and has damaged global public health and economy since it outbroke in 
December 2019. Studies show that COVID-19 pandemic significantly affects the stability of financial markets (Adekoya and Oliyide, 
2021; So et al., 2021; Zhang et al., 2020), making them strongly volatile and unpredictable. Specifically, according to Moody’s, the 
pandemic made the total amount of green bond decrease by 32% compared with 2019. Meanwhile, the return of American treasury set 
the new lowest record in history (0.318%), and the price of global commodity market decreased by 10% (as reported in China Foreign 
Exchange Trade System), which illustrates the importance of exploring the performance of different financial markets under the 
pandemic. This paper aims to complete related studies by comparing the different impacts of COVID-19 on green bond market and 
conventional financial markets. 

The two most related studies are Naeem et al. (2021) and Arif et al. (2021). Specifically, Naeem et al. (2021) use asymmetric 
multifractal analysis to investigate the comparative efficiency of green bond and conventional asset markets pre-and during the 
COVID-19 pandemic. However, this paper only focuses on the time domain, lacking information on the frequency domain. Arif et al. 
(2021) explored the dynamics of connectedness between conventional and green investments in fixed income, equity, and energy 
markets in the time-frequency domain to fill this gap. However, the study focused on connectedness, not to further explore the impact 
of COVID-19 on green bond and conventional assets and make comparative analysis. 

To fill the gap, this paper analyzes the different impacts of the COVID-19 pandemic on the green bond market and conventional 
financial markets through the spillover frameworks proposed by Diebold and Yilmaz (2012), Diebold and Yılmaz (2014) (hereafter, 
DY) and Baruník and Křehlík (2018a) (hereafter, BK). In addition, portfolio analysis is conducted to work out an investment strategy 
during COVID-19. 
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We contribute to the existing literature in three ways. First, this study conducts comparative analysis of the different reactions of 
the green bond market and conventional markets to the COVID-19 pandemic in time-frequency domain. Second, we apply portfolio 
analysis and work out a good investment strategy during the COVID-19 period. Third, to our knowledge, this is probably the first paper 
to take a comprehensive consideration of time-frequency return spillovers and portfolio analysis in a single study for evidence of 
impacts brought by the pandemic. 

2. Methodology and data 

2.1. Framework of spillover effects in the time domain 

In order to investigate the connectedness among ID-EMV index, Green bond market and conventional bond markets in the time 
domain, we apply the methodology of Diebold and Yilmaz (2012), the DY method, which mainly uses the variance decomposition of 
the VAR model. The DY method first builds a VAR(p)model below: 

Xt = Φ(L)Xt + εt =
∑p

h=1
ΦhLhXt + εt (1)  

in which X(t) = (X1t,X2t,…, Xnt) stands for a variable vector at time t, Φ(L) is a pth lag order matrix measuring the autoregressive 
coefficients, L is the lag operator, Φh is the moving average coefficient matrix with the hth lag order, εt stands for a white noise vector 
with zero mean, whose covariance matrix is Σ. 

The moving average form can be presented as 

Xt = Ψ(L)εt =
∑∞

i=1
Ψiεt− i + εt, (2)  

in which Ψ(L) stands for the moving average coefficients. 
In the DY method, the generalized forecast error variance decomposition, i.e., GFEVD, at forecast horizon H is shown as 

θjk(H) =
σ− 1

kk
∑H

h=0

(
(ΨhΣ)jk

)2

∑H
h=0

(
ΨhΣΨ

′

h

)

jj

(3)  

in which σkk is the diagonal element matrix Σ. In addition, we can also standardize θjk(H) as 

θ̃jk(H) =
θjk(H)

∑n
k=1θjk(H)

(4) 

θ̃jk(H) stands for the directional spillover from variable k to j at forecast horizon H. 
The overall spillover is represented as follows: 

CH = 100 ×

∑n
j,k=1,j∕=kθ̃jk(H)
∑n

j,k=1 θ̃jk(H)
, (5) 

The TO spillover is to measure the directional spillover from variable j to all other indices in the system: 

(CH)⋅←j = 100 ×

∑n
k=1,k∕=j θ̃kj(H)

∑n
j,k=1 θ̃kj(H)

(6) 

The FROM spillover is defined as follows: 

(CH)j←⋅ = 100 ×

∑n
k=1,k∕=j θ̃jk(H)

∑n
j,k=1 θ̃jk(H)

. (7) 

The net directional spillover of variable j is: 

(CH)j = (CH)⋅←j − (CH)j←⋅. (8) 

At last, the net pairwise spillover between index j and k is computed as follows: 

(CH)jk = 100 ×
θ̃kj(H) − θ̃jk(H)

n
(9)  

2.2. Framework of spillover effects in the frequency domain 

Based on the DY model, Baruník and Křehlík (2018a) worked out a new method to measure the connectedness among several 
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indices in the frequency domain. The proportion of index j’s information transmitted from index k at frequency ω can be defined as: 

θjk(ω) =
σ− 1

kk

⃒
⃒
⃒(Ψ(e− iω)Σ)jk

⃒
⃒
⃒

2

∑H
h=1(Ψ(e− iω)ΣΨ− 1(eiω))jj

. (10) 

The standardized θjk(ω) is described as: 

θ̃jk(ω) =
θjk(ω)

∑n
k=1θjk(ω)

. (11) 

In addition, we can furtherly extend frequency ω to a frequency band as d = (a, b); thus, the directional spillover at frequency band 
d is 

θ̃jk(d) =
∫b

a

θ̃jk(ω)dω. (12) 

In a similar way, we can calculate the directional spillover and net spillover in the same way indicated in Eqs. (5) - (9). 
We construct a multivariate (6 factors) model that includes ID-EMV index (It), the price indices of green bond (Gt), commodity (Ct), 

treasury (Tt), stock (St) and clean energy bond (Et) as endogenous variables. The order of the 6 factors is as follows. 

Xt = [It, Gt, Ct,Tt, St,Et] (13)  

2.3. Data 

To measure the extent of the COVID-19 pandemic, this paper introduces Infectious Disease Equity Market Volatility Tracker (ID- 
EMV) constructed by Baker et al. (2020). For Green bonds, we use the S&P Green Bond Index to describe the global green bond’s price 
changes. As to the conventional financial markets, S&P GSCI Commodity Index, Barclays Bloomberg Global Treasury Index, S&P 500 
Composite Index and S&P Clean Energy Index are chosen to reflect the circumstances in commodity, treasury, stock and clean energy 
markets. The data that is used to describe financial markets is collected from DataStream. In this paper, the returns are calculated as the 
first difference of the natural logarithms of the original prices. Our study considers the daily data ranging from January 1, 2020, to 
September 4, 2020 (totally 179 observations), covering the very beginning and severe periods of COVID-19 pandemic. All series are 
global indices, except for the S&P 500 Composite Index. The S&P 500 Composite Index is used as a proxy for global stock market 
because of its high weight (about 65%) in the MSCI World Index (Nguyen et al., 2021). 

Table 1 presents the descriptive statistics of the data we use. The augmented Dickey-Fuller (ADF) test and Phillips-Perron (PP) test 
tell us that the original return series are not stationary. The ADF, PP and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests further 

Table 1 
Descriptive statistics of the series.   

In level       
ID-EMV Green bond Commodity Treasury Stock Clean energy 

Mean 20.6453 143.5026 1819.717 651.817 6296.015 1070.341 
Std. Dev. 15.2113 4.7526 370.4905 14.2482 581.5979 179.4944 
Maximum 68.37 152.3595 2642.496 679.6429 7358.49 1495.519 
Minimum 0 133.1446 1249.251 621.684 4559.5 707.074 
Skewness 0.7649 0.2193 0.8079 0.3597 − 0.7927 0.4417 
Kurtosis 3.3579 2.383 2.4288 2.1506 3.0691 2.7045 
Jarque-Bera 18.3063 4.2502 21.785 9.1889 18.6753 6.4352 
ADF 0.1068 0.7928 0.1928 0.3722 0.7135 0.9287 
PP 0.0057 0.8109 0.2171 0.4224 0.7041 0.9007 
KPSS 0.2742 0.934 0.8663 1.3927 0.4526 0.8333  

In 1st difference      
ID-EMV Green bond Commodity Treasury Stock Clean energy 

Mean 0.0118 0.0004 − 0.0024 0.0003 0.0002 0.0018 
Std. Dev. 0.5052 0.0047 0.0241 0.0046 0.0249 0.0275 
Maximum 1.8293 0.0201 0.0712 0.0176 0.0898 0.1103 
Minimum − 1.8294 − 0.0242 − 0.1252 − 0.0201 − 0.1276 − 0.125 
Skewness 0.1634 − 1.3815 − 1.4838 − 0.7728 − 0.7637 − 1.2952 
Kurtosis 2.1453 9.1229 7.8396 6.267 6.6735 6.3202 
Jarque-Bera 32.203 638.3844 494.1319 291.4114 327.8927 327.8043 
ADF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
PP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
KPSS 0.1806 0.1837 0.39 0.0237 0.174 0.1954 

Notes: The Jarque-Bera statistics tests the null hypothesis of the normality of the sample return distribution. ADF and PP are the statistics of the unit 
root test based on the least AIC criterion, respectively. Kwiatkowski-Phillips-Schmidt-Shin is a test of the null hypothesis of stationary. The values in 
ADF and PP tests are p-values. KPSS is a test of the null hypothesis of stationary. 

T. Cui et al.                                                                                                                                                                                                             



Finance Research Letters 49 (2022) 103095

4

confirm the first difference of the natural logarithms of the original prices are stationary, which indicates the series are DS processes 
(Dickey and Fuller, 1979; Kwiatkowski et al., 1992; Laurent and Shi, 2020, 2022; Phillips and Perron, 1988). 

3. Empirical analysis 

In this section, we present the empirical results from DY, BK methods, and portfolio analysis, based on our price indices and ID-EMV 
index samples during COVID-19 pandemic, with a focus on the comparative study of green bond and conventional markets. 

3.1. Dynamic net return spillovers 

Fig. 1 shows the dynamic total spillovers between ID-EMV and the five analyzed markets in time and frequency domains, and the 
line chart of ID-EMV index as a reference. As to the time domain, the total return spillover is around 75% at most times, reaching the 
peak of nearly 85% in some cases, indicating that the internal relationship between ID-EMV, green bond and conventional bond 
markets during the period of COVID-19 is significantly strong (Altig et al., 2020), the reason of which may be that COVID-19 drives 
stronger fear in financial markets than the period before (Adekoya and Oliyide, 2022). 

As to the frequency domain, which contains three different scales, the level of total spillovers is significantly higher in the short 
term than in the medium and long term in most time, consistent with the findings of Bai et al. (2021). However, the situation is opposite 
when ID-EMV index experienced a sudden surge, because the COVID-19 pandemic always exploded out of a sudden and is hard to 
control over a medium or long term, as described by WHO. 

3.2. Dynamic directional pairwise return spillover 

The empirical results of the DY spillover test are reported in Table 2. These results show that the proportion of the spillover effect 
caused by the ID-EMV index differs dramatically across the five asset markets analyzed during the COVID-19, especially between green 
bonds and conventional bonds. The highest contribution of the ID-EMV index appears from its returns to the returns of the green bond 
price index, followed by treasury market (2.057%, 1.779%, respectively). It indicates that the green bond market is most affected by 
COVID-19, consistent with the circumstance in China (Yi et al., 2021), which can be explained that green bond, as a newly-rising bond 
first proposed formally in 2014, still lacks stability through crisis. The directional return spillovers from all markets to one specific 
market show that the green bond market is the most affected of all, especially by treasury and clean energy market, further confirming 
our analysis above. Also, it proves that the relationship between green bonds and conventional bonds is sensitive to external changes 

Fig. 1. Time-varying total spillovers in time and frequency domains. 
Note: The data presented in Fig. 1 is daily data ranging from January 1, 2020, to September 4, 2020 (totally 179 observations). 
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(Broadstock and Cheng, 2019). 
To get a deeper insight into the direction and size of return spillovers, we decompose the time series into different frequencies and 

work out the net pairwise spillovers. Generally speaking, the return spillover from the ID-EMV index to green bond and treasury price 
index stay relatively strong in the short, medium and long term. In contrast, the spillover effects from ID-EMV to other markets are 
mostly around 0.01%, which means our application of the DY-BK method reveals more information we cannot find out in time domain. 

Table 3 represents the net pairwise spillover results. The green bond index plays the role of a net spillover receiver from all the 
analyzed markets, while similarly, the treasury market serves as another main net spillover receiver. Additionally, the ID-EMV index 
serves as a net spillover transmitter in the frequency domain, because the influence of the burst of the COVID-19 pandemic may be 
more robust in the short run (Zhang and Wang, 2021). 

To reveal the influence of the COVID-19 pandemic on the markets analyzed, we should pay more attention to the results in the 
frequency domain. From the results, in short, medium, and long terms, it is apparent to tell that the shock from ID-EMV to the green 
bond market is generally stronger than that to conventional bond markets, except treasury market. It may be because the treasury is 
mainly managed by governments, thus revealing the influence of the COVID-19 pandemic when governments globally were induced to 
shutter major parts of their economies in order to deal with the outbreak of pandemic . 

3.3. Return spillover network 

In this section, the information transmitted through the whole system is investigated. The spillover return connectedness network 
in Fig. 2 shows the net directional connectedness between the six indices in our study. 

Table 2 
Return spillover results.  

DY spillover results          
ID-EMV Green bond Commodity Treasury Stock Clean energy from 

ID-EMV 85.365 2.979 3.379 2.027 2.955 3.295 2.439 
Green bond 2.057 38.064 7.839 23.557 11.441 17.042 10.323 
Commodity 0.182 2.029 62.463 1.707 15.186 18.434 6.256 
Treasury 1.779 30.184 4.700 43.399 8.655 11.382 9.433 
Stock 0.272 7.379 9.661 2.419 46.223 34.045 8.963 
Clean energy 0.115 4.952 13.852 0.667 34.024 46.391 8.935 
To 0.734 7.920 6.572 5.063 12.043 14.016 46.349 
Net − 1.705 − 2.402 0.316 − 4.371 3.081 5.081  
BK spillover results        
Frequency 1         

ID-EMV Green bond Commodity Treasury Stock Clean energy from 
ID-EMV 81.948 2.862 3.120 1.829 2.445 2.955 2.202 
Green bond 1.480 27.943 3.973 18.102 4.975 7.299 5.972 
Commodity 0.149 2.023 53.061 1.262 13.088 15.774 5.383 
Treasury 1.365 23.118 3.795 35.651 6.624 7.442 7.057 
Stock 0.268 7.071 7.539 2.362 41.008 29.125 7.728 
Clean energy 0.094 4.582 10.184 0.587 27.626 37.576 7.179 
To 0.599 6.609 4.769 4.024 9.126 10.432 35.520 
net − 1.642 0.638 − 0.614 − 3.034 1.399 3.254  
Frequency 2         

ID-EMV Green bond Commodity Treasury Stock Clean energy from 
ID-EMV 2.658 0.099 0.190 0.157 0.377 0.250 0.179 
Green bond 0.432 7.579 2.840 4.152 4.727 7.139 3.215 
Commodity 0.025 0.005 7.207 0.339 1.597 2.026 0.665 
Treasury 0.313 5.328 0.684 5.943 1.529 2.865 1.787 
Stock 0.004 0.223 1.558 0.050 3.840 3.599 0.906 
Clean energy 0.015 0.266 2.728 0.065 4.748 6.543 1.304 
To 0.132 0.987 1.333 0.794 2.163 2.646 8.055 
net − 0.047 − 2.228 0.668 − 0.993 1.257 1.343  
Frequency 3         

ID-EMV Green bond Commodity Treasury Stock Clean energy from 
ID-EMV 0.759 0.018 0.069 0.040 0.133 0.090 0.058 
Green bond 0.144 2.542 1.026 1.304 1.739 2.604 1.136 
Commodity 0.008 0.000 2.195 0.106 0.501 0.635 0.208 
Treasury 0.101 1.737 0.221 1.805 0.502 0.975 0.589 
Stock 0.000 0.085 0.564 0.007 1.375 1.321 0.330 
Clean energy 0.006 0.104 0.940 0.015 1.650 2.271 0.453 
To 0.043 0.324 0.470 0.245 0.754 0.937 2.774 
net − 0.015 − 0.812 0.262 − 0.344 0.425 0.485  

Notes: Return spillovers following Diebold and Yilmaz (2012). The index in the lower right corner is the total connectedness index. The “from” 
column, “To” row and “net” refer to the from connectedness “To” connectedness and net connectedness. The jkth value is the directional connect
edness from variable k to variable j. The results are expressed as percentages. 
Note: Return spillover, the frequency domain connectedness following Baruník and Křehlík (2018a). 
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It is apparent from the DY graphs that the spillover between clean energy and green bond, between clean energy and treasury play 
the leading role in this connectedness network. 

The results of the BK graphs significantly differ from those of the DY graphs. To specify, the ID-EMV index contributes more in low 
frequency than in high frequency, which further confirms our opinion that the influence of COVID-19 pandemic is more robust in short 
run because of its uncontrolled feature. Another noticeable change takes place in the green bond where the direction of return spillover 
from ID-EMV to green bond changes in medium and high frequencies. It can be interpreted that the poor stability of green bond mainly 
appears in medium- and short-term when exposed to crisis. 

Additionally, the change of the role of ID-EMV in DY and BK graphs further confirms our findings in the last section that the impact 
of the COVID-19 pandemic is mainly reflected in the frequency domain than in the time domain. 

3.4. Portfolio analysis 

The empirical results provide the conditions of the return spillovers across the green bond and conventional financial markets 
analyzed. The results are meaningful for investors to decide on diversified portfolios and risk management efficiently. To manage the 
portfolio, we use the estimated results of the multivariate DCC-GARCH model, which helps investors make optimal portfolio allocation 
decisions by constructing dynamic risk-minimizing hedge ratios. 

First, we assume that an investor holds a set of commodity assets and seeks to hedge their position against unfavorable effects using 
green bond assets. Specifically, we follow Kroner and Ng (1998) to compute the portfolio weight of the green bond asset holdings as: 

wG =
hC

t − hG,C
t

hG
t − 2hG,C

t + hC
t
, with wG

t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 wG
t < 0

wG
t 0 ≤ wG

t ≤ 1

1 wG
t > 1

(14) 

Following Kroner and Sultan (1993), we quantify the beta hedge to minimize the risk of this commodity-green bond portfolio. The 
hedging ratio βG

t (HR) can be calculated as follows: 

βG
t =

hG,C
t

hG
t

(15) 

The hedging effectiveness (HE) of the constructed portfolios can be assessed by comparing the realized hedging errors (Ku et al., 
2007) computed as: 

Table 3 
Net pairwise returns spillover results.  

DY ID-EMV Green bond Commodity Treasury Stock Clean energy 

ID-EMV 0 0.154 0.533 0.041 0.447 0.530 
Green bond  0 0.968 − 1.104 0.677 2.015 
Commodity   0 − 0.499 0.921 0.764 
Treasury    0 1.039 1.769 
Stock     0 0.004 
Clean energy      0 
BK1 ID-EMV Green bond Commodity Treasury Stock Clean energy 
ID-EMV 0 0.222 0.500 0.073 0.373 0.483 
Green bond  0 0.403 − 0.868 − 0.228 0.641 
Commodity   0 − 0.433 0.933 0.917 
Treasury    0 0.755 1.225 
Stock     0 0.209 
Clean energy      0 
BK2 ID-EMV Green bond Commodity Treasury Stock Clean energy 
ID-EMV 0 -0.052 0.026 -0.025 0.057 0.036 
Green bond  0 0.439 -0.183 0.701 1.066 
Commodity   0 -0.052 -0.004 -0.115 
Treasury    0 0.223 0.426 
Stock      -0.166 
Clean energy      0 
BK3 ID-EMV Green bond Commodity Treasury Stock Clean energy 
ID-EMV 0 − 0.016 0.008 − 0.008 0.016 0.010 
Green bond  0 0.126 − 0.053 0.204 0.308 
Commodity   0 − 0.014 − 0.008 − 0.038 
Treasury    0 0.061 0.118 
Stock     0 − 0.040 
Clean energy      0 

Note: Net pairwise return spillover, following Diebold and Yilmaz (2012). The meanings of the indices are the same as those in Table 2. 
Note: Net pairwise return spillover, the frequency domain connectedness following Baruník and Křehlík (2018a). 

T. Cui et al.                                                                                                                                                                                                             



Finance Research Letters 49 (2022) 103095

7

HE = 1 −
Varhedged

Varunhedged
(16) 

Table 4 shows the optimal portfolios’ weights, hedge ratios (HR) and hedge effectiveness (HE) of portfolio pairs analyzed. The 
optimal weight of green bonds in almost all the portfolio pairs is higher than 0.9, which implies that the investment of green bond 
should take up a larger part in portfolio pairs including green bond, indicating that the hedging characteristic of green bond in normal 
time (Glomsrød and Wei, 2018; Jin et al., 2020; Kanamura, 2020) does not decay under COVID-19 pandemic. 

To compare the effectiveness of each portfolio pair, we introduced hedge effectiveness (HE). It is noticeable that the HE ranges from 
a maximum of 97.34% in clean energy-treasury pair to a minimum of 5.42% in treasury-green bond pair. It is also remarkable that the 
hedge effectiveness of almost every portfolio pair that includes green bonds is over 90%, except the treasury-green bond pair. It infers 
that an effective investment strategy could consist of one kind of traditional assets and green bond. Furthermore, the HE of stock- 
treasury and clean energy-treasury pair is over 95%, proving the similarity of green bond and treasury markets that they are both 
good hedging investments during COVID-19. However, the effectiveness of treasury-green bonds is only 5.42%, the reason of which 
may be that the characters of treasury and green bonds are so similar that they cannot reach a complementation. 

4. Conclusion 

This paper aims to investigate the different impacts of the COVID-19 pandemic on the green bond market and conventional 
financial markets, including commodity, treasury, stock, clean energy markets, in time-frequency domain. 

The empirical findings can be listed as follows. First, according to the return spillovers between the ID-EMV index and asset 
markets, the findings show that the influence of COVID-19 on the green bond is greatly more substantial than that to conventional bond 

Fig. 2. Network analysis of pairwise net spillovers. 
Note: Each node represents a subject analyzed. The colours of the nodes represent the role this subject plays in the system. For example, red nodes 
represent net spillover receivers, while blue nodes represent net spillover contributors. Also, the closer to blue the color is, the more significant 
proportion the subject takes in this system. The edges between the two nodes reveal the spillover relationship between the two issues. The arrows 
represent the direction of information transmission. Furthermore, the thicker the line, the stronger the spillover effect is between these two subjects. 
All the results can be referred to in Table 3. 
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markets. Second, we find that COVID-19 has a medium-term and long-term impact on the asset markets from the angle of the frequency 
domain. Third, during every little burst of the COVID-19 pandemic, the price indices of markets analyzed fluctuate significantly along 
with the ID-EMV index. Fourth, the findings also show that green bond and treasury markets have similar characteristics. Finally, for 
international investors and portfolio managers, our portfolio analysis finds that a good investment strategy during the COVID-19 
pandemic should include one kind of conventional asset and one kind of green bond, thus minimizing the risk. 
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