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A B S T R A C T   

In the post-COVID-19 epidemic era (PCEE), the supply of empty containers will face stronger uncertainty. 
Estimating the amount of self-owned and leased empty containers that need to be allocated to each inland freight 
station in a specific area becomes a critical issue for liner companies in PCEE. However, owing to the high degree 
of unpredictability of the demand and the limited flexibility of empty container relocation, the abovementioned 
issue has not been fully addressed. This paper provides a model for empty container allocation without knowing 
the probability distribution function of empty container demand in advance. The abovementioned model can 
jointly optimize the quantities of self-owned empty containers and leased containers allocated to each inland 
freight station. To solve the model, a largest-debt-first policy is adopted to simplify the complicated model, and a 
differential evolutionary (DE) algorithm is developed to solve the simplified model. Compared with some 
commonly used algorithms, DE has advantages considering the ability to explore the optimal solution. In 
addition, the utility of the largest-debt-first policy proposed in this paper is compared with that of the traditional 
method. Experimental results show that in the case of high demand fluctuations, the proposed policy is better in 
controlling the operational and management costs. Overall, the theory and method proposed in this paper can 
effectively help the carrier set a reasonable regional empty container stock level and determine the number of 
self-owned and leased empty containers.   

1. Introduction 

Although the COVID-19 epidemic has been gradually controlled, the 
‘sequelae’ in the container shipping industry caused by the pandemic 
still show no sign of abating. As the epidemic has seriously affected the 
efficiency of port and inland operational systems, the task of empty 
container replenishment at inland container freight stations is facing a 
series of thorny challenges. On the one hand, affected by the fluctuation 
of market capacity, the worldwide container transportation demand 
shows great fluctuation. This leads to fluctuations in the empty 
container demand at relevant inland freight stations. On the other hand, 
because the total amount of empty containers transported cannot meet 
the actual demands of inland container freight stations, carriers have to 
find a variety of ways to make up for the gap so that the supply structure 

of empty containers has become increasingly diversified. At present, the 
supply structure of empty containers has gradually changed from 
traditional self-owned containers to a combination of self-owned con-
tainers, leased containers and newly built containers. Considering the 
two changes mentioned above, the traditional empty container man-
agement methods and decision-making models have exposed many de-
ficiencies, which may lead to the excessive setting of safety stock levels 
at inland freight stations. In addition, the existing theories pay less 
attention to the optimization of the empty container supply structure. 

Motivated by this realistic background, our paper focuses on an in-
ventory and transport problem in the inland empty container storage 
and transshipment system (IETS). An IETS (Fig. 1) is typically developed 
and operated by a liner company and consists of a container yard near a 
port and multiple inland freight stations. The role of a container yard is 
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to store and transship empty containers. Inland freight stations are used 
to provide containerizing and unpacking services to shippers. IETS can 
be classified into two groups based on their functional characteristics: 
output type and input type. The former category includes the IETS 
required to export empty containers for an extended period, such as 
those in North America or Western Europe, while the latter category 
includes the IETS required to import empty containers for an extended 
period, such as those in China or Southeast Asia. In this paper, we focus 
on input type IETS to carry out specific research. 

One of the key features of the input IETS is the necessity to have a 
certain number of empty containers on stock to deal with the uncer-
tainty demand of empty containers. This storage is required to improve 
transit reliability, but it comes with significant storage and administra-
tive costs (Griffiths et al., 2020; Shintani et al., 2019). As a result, 
determining the optimal quantity of empty containers to store in 
container yards has become a critical concern for liner companies. In 
practice, a solution to this problem has long been available. In a 
container yard, liner companies regularly overstock empty containers, 
which means that liner companies will store excess empty containers to 
fully meet demand. Although overstocking is a simple and straightfor-
ward process, it results in increased expenditures due to excess storage. 
As a result, an increasing number of liner companies are partnering with 
container rental companies (or other liner companies, the same below). 
Their partnership spawns another operation strategy known as the 
combination of storage and renting (Braga et al., 2020; Wang et al., 2008; 
Yu and Li, 2020). Under this strategy, liner companies can rent empty 
containers for temporary use in addition to storing and transporting 
their own empty containers (Lin, 2020; Yun et al., 2011b), and rental 
companies deliver empty containers to demand nodes in line with liner 
company specifications. 

Clearly, there are several advantages of this strategy, including 
assisting liner companies in reducing the stock level of empty con-
tainers, compressing empty container administrative and transportation 
costs, and enhancing liner companies’ ability to deal with fluctuations in 
empty container demand. However, it may also result in hefty rental 
bills. This compels liner companies to consider the following two 
operational decisions carefully and simultaneously: 1) How can the empty 
container stock level in the container yard be determined according to the 
fluctuation of demand? 2) How can the number of empty containers be 
determined to be leased? In this paper, we address this combined opti-
mization problem of self-owned empty container storage and leased 
container utilization (ECIP). 

ECIP is not straightforward and easy. There are two challenges 
inherent in the decision-making process. First, if the overstocking strat-
egy is to be abandoned, a more precise estimate of empty container 

storage is necessary. However, random fluctuations in empty container 
demand have increased in recent years, which could be attributed to the 
increased frequency of noncyclical adjustment of container shipping 
networks, the increasing prevalence of shippers returning empty con-
tainers interregionally, and the rapid growth of intercontinental rail 
container transportation. It has proven challenging to quantify the sto-
chastic nature of empty container demand using a definite probability 
distribution function. In such circumstances, when the demand proba-
bility distribution function is virtually unknown, determining the 
appropriate amount of empty container storage is a difficult challenge. 
Second, the cost of transporting for self-owned containers and leased 
containers may vary greatly by area. For instance, an inland freight 
station may be closer to the rental company’s container yard than to the 
liner company’s container yard, resulting in a reduced operational cost 
when renting containers. This creates a mutually reinforcing and 
interdependent link between self-owned container volume and leased 
container volume. Due to the complexity of this connection, optimizing 
the empty container inventory becomes a difficult task. To the best of 
our knowledge, previous research has not been able to provide optimal 
answers to the abovementioned two challenges. 

Therefore, in this paper, we propose a model for solving ECIP 
considering stochastic empty container demand based on inventory 
control theory to fill the abovementioned research gap. In the model, we 
allow liner companies to use leased empty containers at any time and 
fully consider the difference in transportation costs of different types of 
containers. Three major contributions are made by this paper.  

(1) A novel model for container inventory management is developed. 
We loosen the requirement that the probability distribution 
function of empty container demand should be known in this 
model and do not employ the traditional overstock inventory 
optimization principle, allowing liner companies to utilize leased 
containers more frequently to reduce operational costs.  

(2) A new resource allocation approach for empty containers is 
proposed, dubbed the largest-debt-first policy. On the one hand, 
this policy is straightforward and simple to apply for liner com-
panies; on the other hand, it has the potential to cut liner com-
panies’ operational expenses while still optimizing their use of 
self-owned and leased containers.  

(3) Numerical experiments demonstrate that our proposed method 
can accomplish collaborative optimization of self-owned 
container inventory control and leased container utilization 
when a variety of practical factors are considered. 

The remainder of this paper is organized as follows. Section 2 re-
views the literature related to IETS. Our ECIP is then described in two 
phases in Section 3. We begin by defining the operation mode of the 
inland empty container storage and transshipment system. Then, we 
describe the assumptions and notations used in ECIP. Section 4 develops 
a stochastic decision model for ECIP. Although this model is difficult to 
solve directly, it can be transformed equivalently by implementing the 
largest-debt-first policy. After the transformation, the new model can be 
solved using a heuristic algorithm. We present this algorithm in detail in 
Section 5. In Section 6, numerical experiments are conducted to evaluate 
the effectiveness of the model and algorithm. Finally, Section 7 sum-
marizes the paper and makes several recommendations for further 
research. 

2. Literature review 

In essence, ECIP can be viewed as a problem combining container 
transportation with inventory management. Representative studies can 
be found in Shintani et al. (2007), Deidda et al. (2008), Song and Dong 
(2015) and Abdelshafie et al. (2022). According to existing research, this 
section conducts a literature review from two aspects: the empty 
container allocation problem (Section 2.1) and the empty container 

Fig. 1. A typical inland empty container storage and transshipment system.  
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inventory management problem (Section 2.2). 

2.1. Research on the empty container allocation problem 

Research related to the empty container allocation problem can be 
further divided into two major categories: deterministic and stochastic. 
In the context of deterministic studies, Wang and Jing (2020) considered 
container transshipments. They assumed that empty containers could be 
delivered to hubs first and then dispersed to inland freight stations, 
which significantly reduces transportation costs by taking advantage of 
the economies of scale of centralized transportation. Similarly, Vojdani 
et al. (2013), Bell et al. (2013), Ambrosino and Sciomachen (2014), and 
Yu et al. (2018) performed in-depth studies on ECIP in a port’s hinter-
land. Meanwhile, other scholars conduct deterministic research on ECIP 
in conjunction with other aspects of shipping management. For example, 
Jeong et al. (2018) designed a shipping line network considering empty 
container management, and an empty container management strategy 
for bilateral trade was proposed. Dong et al. (2020) addressed a com-
posite problem of ECIP and marine fleet deployment in the context of 
roll-on/roll-off shipping. The authors created large-scale linear pro-
gramming by converting ECIP to numerous inventory management 
constraints. Du et al. (2021) discussed a composite problem combining 
the schedule of vessels, cargo routing and ECIP. The above problem 
aimed to minimize the total cost (including transportation cost, in-
ventory holding cost, container leasing cost, and container repositioning 
cost) under the alliance cooperation situation. Hu et al. (2021) consid-
ered the balance between repositioning empty containers and leasing 
containers and constructed a two-stage model. The first stage of the 
model implemented the allocation of empty containers. In the second 
stage, inverse optimization theory was introduced to determine the 
rental guide price. 

As Kamal (2021) pointed out, the structural trade imbalance has an 
impact on the fluctuation of demand in ECIP. Thus, it is not surprising 
that a growing number of scholars have focused on the unpredictability 
of empty container demand and have attempted to address stochastic 
ECIP in recent decades. For example, Song (2007) investigated a shuttle 
service system with unpredictable demand and limited repositioning 
capacity. Chou et al. (2010) considered the uncertainties of empty 
container demand, transportation costs, operational costs, and other 
factors when evaluating empty container relocation between several 
ports. They highlighted that the changing patterns of these factors are 
difficult to grasp and characterize. As a result, the authors applied fuzzy 
decision theory to conduct the uncertainty analysis of the problem, and a 
two-stage fuzzy optimization framework was developed. Lu et al. (2020) 
investigated simultaneous pricing and ECIP decisions considering sto-
chastic demand in two-depot shipping services. They solved the problem 
by developing a large-scale dynamic programming model. The authors 
analyzed several complicated elements in the model, including price, 
empty container storage, empty container leasing, and empty container 
transportation. Lee and Moon (2020) proposed a robust optimization 
model to deal with an ECIP with foldable containers. To solve the model, 
a tractable approximation method was introduced to reformulate the 
multistage stochastic programming model. Since empty container re-
quirements are random, limited information about the distribution 
function of demand was still needed. 

2.2. Research on the empty container inventory management problem 

Most of the literature related to the empty container allocation 
problem makes use of a mathematical programming methodology. 
However, mathematical programming models are inevitably sophisti-
cated and computationally intensive, making them difficult to execute in 
practice because their underlying logic is concealed from the liner 
company (Du and Hall, 1997). To remedy this shortcoming, a school of 
researchers has attempted to investigate the container inventory man-
agement problem using classic inventory management theory. 

A stream of research is the use of lean management ideas. Lean 
management is an important theory in supply chain management. In 
recent years, many scholars have carried out studies on the furniture 
industry (Chebet and Kitheka, 2019), manufacturing firms (Opoku et al., 
2020), and small business warehouses (Maldonado Román, 2022). 
There are also many empirical studies to prove the validity of the above 
theory (e.g., Ramos et al. (2020), Odhiambo and Kihara (2018) and 
Khan (2020)). In the shipping field, Praharsi et al. (2021) applied the 
lean six sigma theory to the maritime industry during the era of the 
COVID-19 pandemic and developed a suitable continuous improvement 
method for the industry. Frontoni et al. (2020) took an Italian shipping 
company as an example to conduct a case study and introduced its 
method of combining lean thinking principles with the concept of In-
dustry 4.0 to achieve cargo safety improvement and container inventory 
implementation status detection. The above concepts and methods help 
to avoid various wastes in the process of container inventory manage-
ment and reduce management costs. 

The second stream of research aims to help carriers develop an in-
ventory management model. Some scholars are committed to designing 
a straightforward policy for empty container management. Typically, 
such a policy includes an upper and lower bound for the empty container 
inventory. When an empty container yard’s inventory falls below the 
lower bound, empty containers should be shipped in. Conversely, when 
the inventory exceeds the upper restriction, empty containers must be 
transported out. As a result, this policy is typically referred to as an X- 
threshold policy. For example, Yun et al. (2011a) discussed the 
decision-making problem of a two-threshold policy in the hinterland of 
ports. Although the authors considered the time-varying characteristics 
of transportation demand, they did not present a quantitative optimi-
zation decision-making method but employed simulation for analysis. Li 
et al. (2004) proposed a two-threshold policy for the issue of single-port 
empty container shipping. Song and Carter (2008) developed a 
three-phase threshold policy for empty container repositioning. Zhang 
et al. (2014) investigated the repositioning problem of empty containers 
in a stochastic and dynamic environment characterized by lost sales to 
determine an optimal two-threshold policy. From a mathematical 
standpoint, their approach is novel in that it was the first to incorporate 
stochasticity, dynamics, and lost sales into an optimal control problem. 
The authors validated the existence of the optimal policy and created a 
model of dynamic stochastic programming to find it. Other scholars 
directly develop inventory management models to determine optimal 
inventory levels and inventory cycles. For example, Rajeswari et al. 
(2021) discussed an ECIP with a non-vessel operating common carrier 
considering the leasing option and fuzzy environment. A fuzzy inventory 
model that optimizes the empty container repositioning scheme and the 
leasing scheme was established to minimize the expected total cost. In 
Cai et al. (2022), two different inventory control strategies (i.e., the 
quantitative and periodic inventory control strategies) are applied to 
solve a multiperiod empty container repositioning problem between 
public hinterlands and ports. 

2.3. Research gap 

Based on a review of the above literature, we find that the preceding 
studies conducted extensive studies on ECIP under stochastic demand 
from a variety of perspectives, yielding several significant conclusions. 
However, most of the abovementioned deterministic studies assume that 
the transportation demand for empty containers is known and constant, 
making the approaches provided in our paper inapplicable to the ECIP. 
For stochastic studies, the authors assumed that if self-owned containers 
are not accessible, rental companies can always provide infinite empty 
containers to fulfill demand (see the assumptions in Li et al. (2007) and 
Song and Zhang (2010), Didenkulova (2020)). This further motived the 
authors share the same assumption: the probability distribution function 
of empty container demand is certain and known. As previously indi-
cated, this assumption no longer meets the actual requirements for 
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empty container management. Therefore, our paper fills the above-
mentioned research gap by deviating from this assumption and pro-
posing a new method that combines storage and renting strategies for 
optimizing empty container management policies without knowing the 
probability distribution function of empty container demand in advance. 

3. Problem description 

To adequately explain the ECIP addressed in this paper, a more 
complete explanation of the input IETS operation mode is required (see 
Fig. 2). A liner company is the decision maker of the system, and it can 
use both self-owned containers and leased containers to meet shippers’ 
demand. Among them, leased containers are provided by rental com-
panies, while self-owned containers have two sources. One is steady 
supply, i.e., empty containers are carried into the container yard on a 
regular basis and in a predefined number by the liner company. The 
second source is containers that the consignee returns after usage. 
Because the return time and quantity of these empty containers are 
difficult to predict accurately, this supply source is referred to as random 
supply. 

When empty containers are required for an export operation (as 
illustrated in Fig. 2(a)), the shipper must first make an application to the 
liner company for the reservation of shipping slots. The liner company 
then decides where to obtain empty containers based on available stock 
and related costs. If the liner company uses self-owned containers, then 
it is responsible for transporting the empty containers from the container 
yard to the inland freight station, as well as for transportation costs. 
When leased containers are used, the liner company rents empty con-
tainers from the rental company, which carries them to the inland 
freight station. Then, the consigner loads cargoes into empty containers 
and transports them to the container yard. The container import pro-
cedure is depicted in Fig. 2(b). After unloading from a ship, laden con-
tainers are delivered to the consignee’s designated location. The steady 
supply of empty containers arrives at the port periodically and is 
transported to the container yard. The consignee then unloads the 
containers and delivers the empty containers to the liner company’s 
appointed destination. 

Based on the above discussions, the ECIP is described as follows. 
Under the premise that the empty container demand should be fully 
satisfied, the decision maker must optimize the following issues 
throughout a decision period to minimize the expected operational cost: 
the quantity of self-owned empty containers from the steady supply 
source and the utilization rate of self-owned empty containers at each 
inland freight station. The random supply probability information, the 
empty container leasing fee, and the freight rate of empty container 
transportation are known, but the probability distribution function of 
random demand for empty containers is unknown. 

To facilitate the modeling, we introduce the following assumptions 
for the abovementioned operation mode (see Fig. 3). 

Assumption 1. Only inland freight stations are used to load con-
tainers. In other words, we consider inland freight stations to be demand 
nodes for empty containers in this paper. We assume that the demand for 
empty containers at each inland freight station is independently and 
normally distributed. It should be noted that the loading operation is not 
allowed at the container yard in our model. This assumption is used to 
simplify the model. To allow the loading operation at the container yard, 
we can set a dummy inland freight station in the yard and set the 
transportation cost as zero between the yard and freight station. Note 
that we do not require the probability information of demand. 

Assumption 2. Only the container yard has the capacity to keep empty 
containers. The container yard’s operational cost is a strictly monotonic 
function of the total number of empty containers stored in the yard. This 
assumption is also introduced to simplify the problem. 

In practice, inland freight stations usually have some capacity to 
store empty containers. However, this capacity is usually very limited. In 
addition, these empty containers are usually used immediately or 
transported to the designated yard for inspection, cleaning or mainte-
nance in practice. In view of this, we assume that only the container yard 
near the port can be used to store empty containers to simplify the 
problem. 

In addition, we assume that the container yard’s operational cost is a 
strictly monotonic function of the total number of empty containers 
stored in the yard. This is because, in practice, the larger the empty 
container storage inventory in a region, the related expenses that a 
carrier usually needs to pay (for example, operational expenses, empty 
container depreciation and management costs) will also rise. 

Assumption 3. The whole demand for empty containers must be met. 
For each inland freight station, the liner company must determine the 
proportion (called the ‘utilization rate’) of self-owned empty containers 
to the total supply of empty containers. The utilization rate is also the 
basis for determining the number of leased containers. 

This assumption derives from operational practices. In practice, all 
empty container demands are generated based on the fact that the car-
rier has accepted the booking. To implement the transportation contract, 
the carrier has no choice but to ensure that the cargo owner can obtain 
the necessary empty containers. 

Assumption 4. The liner company is responsible for transporting self- 
owned empty containers from the container yard to the freight station. 
Accordingly, the liner company is liable for the transportation costs 
connected with this. In addition, if self-owned empty containers are 
utilized, the consignee is responsible for returning the emptied con-
tainers to the container yard, including all the related transportation 
costs. In practice, the carrier will make an agreement with the consignee 
on the place of returning empty containers. When calculating the cor-
responding fees, the carrier will usually charge the consignee for the 
maintenance, cleaning and transfer of empty containers. For this reason, 

Fig. 2. The process of the container export and import scenario.  
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we introduce the above assumption. 

Assumption 5. Shippers can obtain leased empty containers from the 
freight station, and consignees must return the leased empty container 
to the freight station. The utilization of leased empty containers incurs 
no transportation costs; nonetheless, leasing fees are incurred, which are 
paid by the liner company. This assumption still comes from operational 
practice. In practice, carriers are the main customers of a container 
renting company, which can use leased empty containers to deal with 
temporary shortages of empty containers. This method is usually 
referred to as temporary short-term container leasing in the industry. 
The extra cost due to leasing containers is usually borne by the carrier. 
For this reason, the cost of this method can also be regarded as the 
shortage cost of empty container resources. Of course, in practice, there 
is also a wide range of long-term empty container leases. Empty con-
tainers obtained by carriers in this way can be regarded as empty con-
tainers owned by the carrier, so we will not discuss this situation in 
depth. 

Assumption 6. We presume that the probability distribution infor-
mation for the random supply is known. For steady supply, we assume 
that the liner company can use this supply once in a time interval to 
replenish the empty containers in the container yard. Both the random 
and the steady supply determine the periodically empty container stock 
of the container yard together. Based on operational practice, random 
supply is usually stable and predictable. This is because the consignee 
needs to inform the carrier of the specific time of returning empty 
containers. 

For the convenience of the reader, the arrangements for subsequent 
sections and notations frequently used in this paper are shown in Fig. 4 
and Table 1, respectively. 

4. Model development 

4.1. Proposal of the model 

In this section, a nonlinear stochastic programming empty container 
restoration model (ECRM) is constructed with the objective of mini-
mizing the sum of the expected storage operational cost of self-owned 
containers, the expected transportation cost of self-owned containers 
and the expected rental cost of leased containers. The model can realize 

Fig. 3. Suppliers and consumers of empty containers in the input IETS.  

Fig. 4. Arrangements for subsequent sections.  
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the synchronous optimization of the steady supply quantity (S), the 
utilization rate (β), and the self-owned containers supplied to each 
inland freight station in each interval (Qo(t)). The proposed ECRM is as 
follows. 

min
(S,β,Qo(t))

o1 =Ch(S+E[Y])+ ρD[Y]

+
∑N

i=1
limsup

T→∞

(∑T
t=1Qo

i (t)
T

Cf
i +

∑T
t=1Qr

i (t)
T

Cr
i

)

(1)  

s.t. liminf
T→∞

∑T
t=1Qo

i (t)
∑T

t=1Xi(t)
≥ βi a.s., ∀i = 1,⋯,N (2)  

Qo
i (t)+Qr

i (t) = Xi(t) ∀i = 1,⋯,N, t = 1,⋯, T (3)  

∑N

i=1
Qo

i (t)≤ S + E[Y] ∀t = 1,⋯, T (4)  

S≥ 0,Qo
i (t) ≥ 0,Qr

i (t) ≥ 0 ∀i = 1⋯N, t = 1,⋯,T (5)  

0≤ βi ≤ 1 ∀i = 1,⋯,N (6) 

Equation (1) is the objective function of the proposed ECRM. The 
first item is the expected value of the storage operational cost of the 
container yard, which is determined jointly by the expected values of 
steady supply S and random supply Y. The second item represents the 
cost incurred by the liner company to cope with the fluctuation of 
random supply. In reality, the number of empty containers returned by 
the consignee is random. This characteristic requires the liner company 
to take special measures to handle the randomness (for example, reserve 
some containers and temporary rental containers for such situations). 
These measures increase the operational cost at the container yard. The 
resulting influence is characterized by ρ. The third item represents the 
expected sum of the transportation cost of self-owned containers and the 
rental cost of leased containers. Notably, since it is impossible to 
determine whether the limit exists at this time, we use the supremum in 
the function. The left part of inequality (2) represents the ratio of self- 
owned containers supplied by the liner company to the total empty 
container supply at inland freight station i. This ratio is almost surely not 
less than βi. Equation (3) indicates that for any time interval t ∈ {1,2,⋯,

T}, the empty container demand of inland freight station i must be met. 
Equation (4) indicates that the total quantity of self-owned containers 

supplied by the liner company to all inland freight stations in any time 
interval shall not exceed the sum of steady supply and random supply 
obtained in that time interval. 

The conventional way to handle stochastic variables in a stochastic 
programming model is to replace them with the mathematical expres-
sion of the expected value. However, even if we obtain the expression of 
E[Qo

i ], it is unreasonable to write E[Xi] at the right end of the equation 
because IETS requires Qo

i (t) + Qr
i (t) to be equal to Xi(t), not E[Xi]. Thus, if 

Xi(t) is replaced with E[Xi], a gap will exist between the actual empty 
container transportation volume and the real demand. This is different 
from the original intention of our research and the requirements of IETS 
operation. Therefore, how to describe and characterize Qo

i (t) becomes 
key to solving ECRM. We may circumvent this issue by learning from the 
research on X-threshold policy settings. 

The common practice in research on X-threshold policy settings is to 
introduce a policy for Qo

i (t) i to convert the formation process of Qo
i (t)

into a stochastic process connected to Xi(t) and thereby simplify the 
model. In general, such a generation policy should meet the following 
two criteria: 1) convenience, i.e., the strategy should make it simple for 
decision makers to generate random variable samples; in other words, 
the logic for generating random variable samples should be simple and 
straightforward to apply in practice; 2) feasibility, i.e., the random 
variable samples generated by the strategy should satisfy the model’s 
constraints. To create Qo

i (t), we employ the largest-debt-first policy. This 
strategy enables us to convert the ECRM model to a more manageable 
stochastic programming model. 

4.2. Largest-debt-first policy 

The largest-debt-first policy allocates self-owned containers based on 
the gap between past demand for empty containers and historical 
replenishment. Specifically, we let the vector Δ(t) = (Δi(t)), i = 1, ...,N 
represent the cumulative shortage of self-owned containers at all inland 
freight stations in time interval t, that is, the cumulative ‘debt’. Therein, 
Δi(t) represents the shortage of self-owned containers of inland freight 
station i at time interval t, and the calculation method is shown in for-
mula (7). Δi(t) equals the accumulation of the difference between the 
number of required self-owned empty containers (βiE[Xi]) and the actual 
cumulative number of supplied containers (Qo

i (t)) before time interval t. 

Δi(t)=
∑t− 1

s=1

[
βiE[Xi] − Qo

i (s)
]
∀i= 1,⋯,N (7) 

Notably, when all βi values are known, equation (7) depicts only the 
theoretical value of the cumulative shortage of inland freight station i 
from interval 1 to t-1. We assume that once a shortage occurs in an 
inland freight station, we will use leased containers to compensate for 
the shortage; therefore, there is no actual shortage at any inland freight 
station in any interval. According to the accumulated debt of each inland 
freight station in interval t (Δi(t)), we determine the priority of empty 
container allocation of each inland freight station in descending order. 
An inland freight station with larger accumulated debt will have priority 
to obtain self-owned containers from the liner company. Specifically, we 
assume that the allocation order at time interval t (P(t)) is 
[1] < [2] < ⋯ < [N], where [i] represents the supply order of inland 
freight station i at time interval t. If [1] < [2], the requirement of inland 
freight station 1 should be satisfied prior to that of inland freight station 
2. Based on the above symbols, the method for allocating empty con-
tainers can be written as equation (8). 

∑n

k=1
Qo

[k](t) =min

{

S+E[Y],
∑n

k=1
X[k](t)

}

∀n= 1,…,N (8) 

According to Equation (8), empty containers available at the 
container yard are allocated to the inland freight station with the largest 
accumulated debt (Δi(t)) at present. After the demands are satisfied, if 
there are still self-owned containers left, they will be allocated to the 

Table 1 
Parameters and variables.  

Parameters 

N Number of inland freight stations 
T Length of observed period (number of weeks), t ∈ {1, 2,⋯,T}
i No. of inland freight stations, i = 1, 2,⋯,N 
ρ Adjustment coefficient for the operational cost at the container yard 
Xi(t) Empty container demand at inland freight station i, the stochastic 

variable about t ∈ {1, 2,⋯,T}
Xi Empty container demand at inland freight station i, regardless of 

time interval 
Y(t) Random supply, the stochastic variable about t ∈ {1, 2,⋯,T}
Y Random supply of empty containers, regardless of time interval 
Ch( ⋅) Function for calculating the storage operational cost at the container 

yard (RMB/TEU) 
Cf

i 
Transportation cost per TEU from container yard to inland freight 
station i (RMB/TEU) 

Cr
i Rental fee per TEU at inland freight station i (RMB/TEU) 

Variables 

S The amount of steady supply obtained at the container yard in each 
interval 

β = (βi) The utilization rate of self-owned empty containers to the total 
supply at inland freight station i 

Qo(t) =

(Qo
i (t))

The quantity of self-owned containers provided by the liner 
company at inland freight station i in interval t, where t ∈ {1, 2,⋯,T}

Qr(t) =

(Qr
i (t))

The quantity of leased containers at inland freight station i in 
interval t, where t ∈ {1, 2,⋯,T}
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inland freight station with the second largest accumulated debt, and so 
on. In interval t, if the liner company allocates all self-owned empty 
containers according to the above principles and the empty container 
demands of the inland freight stations are still not met, additional empty 
containers are leased. The implementation process can be summarized 
as follows. 

Step 1: Set the time interval as t = 1, and sort all N inland freight 
stations in descending order according to the container demand at 
t = 1. Thus, we can obtain P(t). 
Step 2: Based on P(t), the liner company determines the quantity of 
self-owned containers supplied to each inland freight station ac-
cording to Equation (8), and the insufficient part is supplemented by 
leased containers. 
Step 3: Set t = t+ 1, and update the accumulated debt values (Δi(t)) 
according to Equation (7) and the available quantity of self-owned 
containers. 
Step 4: Update P(t) based on the accumulated debt values of all the 
inland freight stations. 
Step 5: Return to Step 2 until t = T. 

4.3. Model transformation 

According to Theorem 1 in Zhong et al. (2018), for a given β = {βi}, 
the ECRM can be equivalently transformed into model ECRM-1. 

ECRM-1: 

min
S

o2 =Ch(S+E[Y])+ ρD[Y]

+
∑N

i=1
limsup

T→∞

(∑T
t=1Qo

i (t)
T

Cf
i +

∑T
t=1Qr

i (t)
T

Cr
i

)

(9)  

s.t.
∑

i∈U
βiE[Xi] ≤E

[

min

{

S+E[Y],
∑

i∈U
Xi

}]

∀U ⊆ {1, 2,⋯,N} (10)  

S ≥ 0 (11)  

lim
T→∞

∑T
t=1Qo

i (t)
T

= βiE[Xi] ∀i = 1,⋯,N (12)  

lim
T→∞

∑T
t=1Qr

i (t)
T

=(1 − βi)E[Xi] ∀i= 1,⋯,N (13) 

Based on the analysis of ECRM-1, we find that when β = {βi} is 
known, under the influence of the largest-debt-first policy, the steady 
supply S at the container yard in each interval satisfies Constraints (10)– 
(11) if and only if Constraints (4)–(5) are satisfied. More importantly, 
according to the proof process of the theorem, when observed period T 
approaches infinity, the quantities of self-owned containers and leased 
containers obtained by each inland freight station in each interval 
should satisfy Equations (12) and (13). In other words, by using the 
largest-debt-first policy, the quantities of self-owned containers and 
leased containers obtained by each inland freight station in each interval 
converge to βi times and 1 − βi times the expected value of the actual 
demand at inland freight station i in the long run. This conclusion is 
interesting; it means that we can eliminate variables Qo

i (t) and Qr
i (t) from 

the model. Based on this idea, we substitute Constraints (12) and (13) 
into objective function (9); then, the ECRM can be further simplified to 
ECRM-2. 

ECRM-2: 

min
(S,β)

o3 =Ch(S+E[Y])+
∑N

i=1

[
βiC

f
i +(1 − βi)C

r
i

]
E[Xi] + ρD[Y] (14)   

s.t. (10), (11)                                                                                         

Due to the presence of constraint (10), ECRM-2 is still difficult to 
solve directly. However, when β is known, objective function (14) in-

creases in a strict monotonic manner with respect to S. As a result, if β is 
known, the minimum S satisfying constraints (10) and (11) is the 
optimal solution to ECRM-2. Thus, we can obtain S with high efficiency 
through binary search and simulation. Based on this feature, we design 
an effective heuristic algorithm for ECRM-2 in Section 5. 

5. Algorithm design 

In Section 4, we obtain a concise ECRM-2 based on model trans-
formation. However, due to constraint (10), ECRM-2 cannot yet be 
solved directly at this time. This is because both Y and Xi in Equation 
(10) are stochastic variables, and S is essentially the stochastic variable 
determined by Y and Xi. Equation (10) is equivalent to the following 
Equation (15) after transformation. 

∑

i∈U
βiE[Xi] ≤

1
2

E[S] +
1
2

E[Y] +
1
2
∑

i∈U
E[Xi] −

1
2

E

[⃒
⃒
⃒
⃒
⃒
S+E[Y] −

∑

i∈U
Xi

⃒
⃒
⃒
⃒
⃒

]

(15) 

We find that the right side of the above inequality consists of the 
estimated value of decision variable S of demand Xi and 

⃒
⃒S + E[Y] −

∑
i∈UXi

⃒
⃒. In traditional research, one can still handle this inequality 

because the distribution situation of Xi is assumed to be known. How-
ever, that is not applicable in this paper, as we do not know the distri-
bution situation of Xi. This leads to the fact that we cannot obtain the 
estimated analytic function of the related variables, making analysis 
rather difficult. 

As a result, we have to devise heuristics based on the differential 
evolution (DE) framework to solve ECRM-2. DE is a population-based 
adaptive global optimization algorithm that is characterized by a sim-
ple structure, easy implementation and fast convergence (Fleetwood, 
2004; Price, 2013). However, different from the traditional DE algo-
rithm, we incorporate the inventory optimization method originating 
from Zhong et al. (2018). The basic flowchart of the proposed algorithm 
is shown in Fig. 5. It shows that the solution of the decision variables 
(S, β) is divided into two parts. First, β is coded (details in Section 5.2), 
and S can be obtained by the largest-debt-first policy (details in Section 
5.1). Afterwards, the fitness value of every individual is calculated ac-
cording to β and S (details in Section 5.2). Finally, a differential oper-
ation is adopted according to the fitness value (details in Section 5.3). 

5.1. Determination of empty container stock level based on binary search 

Based on the research by Zhong et al. (2018), under the premise of a 
known β, the ideal stock level can be calculated. The largest-debt-first 
policy can ensure that all inland freight stations receive the required 
empty containers. The execution logic of the method is as follows. First, 
we set an upper and lower bound of the stock level. Then, the binary 
search is used to gradually explore the minimum inventory that can 
satisfy the demands. Repeat the binary search. 

In the above process, the most critical one is to judge whether the 
inventory obtained by the binary search satisfies the demands. To solve 
this problem, the proposed process for the judgment can be described as 
follows. First, for a given stock level (N), randomly generate the empty 
container demands of every inland freight station (D(t)). Then, use the 
proposed largest-debt-first policy to supply for D(t). The priority to 
supply for D(t) is recorded as P(t). Finally, a priority list is randomly 
selected from P(t), t = 1,2, ...,T with equal probability, and β is calcu-
lated. If β is obviously lower than the predetermined target, it means that 
N cannot satisfy the demands; otherwise, N is acceptable. The detailed 
process for the method is as follows. 

Step 1: According to Equation (16), calculate the upper and lower 
bounds of the optimal empty container stock S+ E[Y]. Therein, M is a 
very large positive value. 
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[
∑N

i=1
βiE[Xi],

∑N

i=1
βiE[Xi] +M

]

(16)   

Step 2: Adopt binary search. Take the midpoint of the upper and 
lower bounds obtained in the previous step as the stock level 
required for the simulation operation process and perform the 
following steps: 

Step 2.1: Randomly generate the empty container demand of 
every inland freight station in all T intervals. Based on the largest- 
debt-first policy, the priority of each interval t (P(t)) is generated, 
the self-owned empty containers available are allocated to each 
inland freight station in each interval according to the priority list 
P(t), and the inland freight stations that do not have their de-
mands fully satisfied are allocated an appropriate quantity of 
leased containers. 

Step 2.2: Randomly select a priority list from P(t), t = 1,2, ...,T 
with equal probability. Based on the selected priority list, 
calculate the utilization rate of self-owned containers obtained by 
each inland freight station i (β̃i). 

Step 3: If for all ̃βi, i ∈ N are no less than βi, the algorithm terminates; 
otherwise, set the value of the midpoint as the upper bound in the 
next iteration process, and return to Step 2. 

5.2. Coding design and fitness calculation 

In this section, we use the real number coding method to characterize 
β, as shown in Fig. 6. The coding of each individual is composed of 
several genes, and the length of the genes is equal to the number of 
inland freight stations. For example, if the number of inland freight 
stations is 20, then the length of the individual is 20. The value of each 
gene indicates the utilization rate of self-owned containers at inland 
freight station i (where i is the location value of the gene number), and 
the range of the value is [0,0.99]. For example, the first gene in an in-
dividual represents the utilization rate of allocated self-owned empty 
containers at the container yard to inland freight station No. 1. The 
fitness calculation includes two steps. First, according to β (determined 
by the code), the algorithm in Section 5.1 is used to obtain the optimal 
value of S. Then, S and β are substituted into equation (14) to obtain the 
fitness value. 

5.3. Differential operator 

The basic idea of the difference operator is as follows. First, in a 
randomly generated initial population, two individuals are arbitrarily 
selected (A and B), and their vector difference is multiplied by a decimal 
in the range of [0,1) (we call this decimal the ‘differential mutation 
factor’) and added to another individual vector (C) to generate a new 
individual (D). Second, the crossover operation is performed on in-
dividuals D and A to generate child individual (E). Third, the fitness 
values of individuals E and A are compared. If the fitness value of in-
dividual E is better than that of individual A, individual E replaces in-
dividual A in the next generation; otherwise, individual A is retained. 
Through continuous iteration, the search results approach the optimal 
solution. The operation flow of the differential operator is shown in 
Fig. 7 (Price et al., 2006). 

Taking Fig. 8 as an example, we further illustrate the individual 
generation process based on the differential evolution operation (except 
the crossover and selection operations). First, the values of each gene in 
parents A and B are subtracted to obtain differential individual 1, which 
is multiplied by the mutation factor to obtain differential individual 2. 
Then, differential individual 2 is added to parent C to obtain new indi-
vidual A after the differential operation. Notably, during the operation 
shown in Fig. 7, the gene value of the last gene point in new individual A 
is 1.38, which exceeded the upper limit. In this case, we randomly 
generate an effective value within the limits to replace the original gene 
value. 

Then, the new individual A and the parent individual A are subjected 
to the traditional crossover operation, and part of the genes of the new 
individual A are randomly replaced with genes at the corresponding 

Fig. 5. Basic flowchart of the proposed algorithm for solving ECRM-2.  

Fig. 6. Individual coding.  
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gene points of parent A according to the crossover probability (as shown 
in Fig. 9). 

6. Numerical experiments 

To verify the advantages of the proposed model in its effectiveness 
and application value in the post-COVID-19 epidemic era, three exper-
iments are designed in this section. In Experiment 1, we focus on testing 
the computational efficiency of the method proposed in this paper and 
verifying the effectiveness of this method compared with other tradi-
tional methods. In Experiment 2, some special phenomena in the 
container shipping market influenced by the outbreak of COVID-19 are 
analyzed. We carry out sensitivity analysis on different proportions of 
self-owned containers and temporary leased containers. In Experiment 
3, the influence of the fluctuation degree of transportation demand on 
the results is discussed in detail. The remainder of this section is 

organized as follows. Section 6.1 introduces the data and relevant set-
tings used in the experiment, and sections 6.2-6.4 discuss the specific 
steps and calculation results of experiments 1–3, respectively, in detail. 

6.1. Experimental parameter setting 

To simplify and analyze the investigated problem, we consider the 
stochastic container demands of 20 inland freight stations in the hin-
terland and analyze the changes in related indicators, such as the ex-
pected total cost of the liner company and the empty container stock 
level at the container yard. 

Regarding the empty container demands of every inland freight 
station, we use the same setting rules unless special explanations are 
provided. Specifically, we assume that the container demand of each 
inland freight station is independent and follows a normal distribution. 
The expected values of the demands are shown in Table 2, and the 

Fig. 7. Flowchart of the differential operator.  

Fig. 8. Generation method of a new individual.  

Fig. 9. The crossover operation.  
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variance is a parameter that needs discussion in the sensitivity analysis. 
In addition, the random empty container supply Y (empty containers 
that the consignee returns after usage) also obeys the normal distribu-
tion, and the expected value and variance of Y are 30% of the total 
number at each freight station. 

Regarding the empty container storage operational cost, the math-
ematical expression of the cost function is defined as follows, where α =

20, b = 150, and λ = 1.05. 

Ch(S+E[Y]) =

⎧
⎪⎨

⎪⎩

α(S + E[Y]), 0 < (S + E[Y]) ≤ 500

(S + E[Y] − 500)λ

b
+ α(S + E[Y]), S + E[Y] > 500 

Regarding the empty container transportation cost and rental cost, 
we require that each inland freight station has a varied location, as well 
as a different time for cargo owners to use empty containers. Therefore, 
the unit empty container rental fees paid by the liner company vary 
depending on different inland freight stations. Thus, we can obtain the 
average demand of each inland freight station in each interval, the unit 
empty container rental cost of the liner company in each inland freight 
station and the unit empty container transportation costs from the 
container yard to each inland freight station, as shown in Table 2. 

6.2. Experiment 1: efficiency analysis of the proposed method 

Experiment 1 includes two stages. In the first stage, we focus on the 
effectiveness of the algorithm proposed in this paper. Specifically, based 
on the parameters given in Table 2, we use the genetic algorithm (GA), 
particle swarm optimization (PSO) and differential evolution algorithm 
(DE) proposed in this paper to carry out the comparative experiment. 
Due to the pretest for the parameter setting, the mutation factor F and 
crossover probability are set as 0.1 and 0.9, respectively, to obtain the 
optimal convergence characteristics. To avoid the randomness of the 
experimental results, we use the three algorithms to carry out the ex-
periments with five different observed periods (T = 60, 90, 120, 150, 
180). At the same time, the average of the fitness values obtained with 
different observed periods in every iteration are used to measure the 
advantages and disadvantages of the algorithm. During the calculation 
process, we assume that empty containers are allocated based on the 
principle of maximum debt priority proposed in this paper at all freight 
stations. In this experiment, the demand variance is set to 20% of the 
expected value of each inland freight station. 

The calculation results are shown in Fig. 10. It can be seen from the 
figure that the performance of PSO in solving ECRM is far inferior to that 
of GA and DE. It has no advantage in convergence speed. In addition, 
there is a large gap between the expected total costs from PSO and those 
from the other two algorithms. GA is superior to DE in computational 
convergence speed but slightly inferior to DE in computational quality. 
In summary, the DE proposed in this paper has a certain degree of 
improvement in the calculation quality compared with the traditional 
GA and PSO and can solve ECRM more effectively. 

In the second stage, we compare the results of the proposed method 

in solving ECRM with the solutions of the traditional inventory man-
agement method (3 − σ, we call it the classic method afterwards) to 
verify the effectiveness of our proposed method. According to the ex-
pected value and variance data of the demand of each inland freight 
station, we use formula (17) to calculate the container inventory level at 
the container yard. 

S=
∑N

i=1
(ui + 3σi)βi − E[Y] (17) 

There are two points that need to be emphasized: 1) in this stage of 
the experiment, βi is still a decision variable that needs to be optimized. 
In (17), β is the only decision variable, and ui and σi are the mean and 
variance of the demand samples for empty containers at inland freight 
station i. 2) In the traditional 3 − σ method, empty containers are allo-
cated by the traditional principle of maximum comprehensive cost (that 
is, the sum of transportation cost and container rental cost), instead of 
the largest-debt-first policy proposed in this paper. In other words, empty 
containers will be preferentially allocated to inland freight stations with 
higher comprehensive costs. Since leasing empty containers is allowed, 
we can ensure that each inland freight station receives the necessary 
empty container resources. At this time, the cost of renting empty con-
tainers at each station can be regarded as the shortage cost. 

Similar to the process in the first-stage experiment, we also set five 
observed periods (T = 60, 90, 120, 150, 180) to carry out experiments to 
analyze the effect of the largest-debt-first policy on medium- and long- 
term empty container inventory control. The calculation results of the 
two methods are shown in Fig. 11. It can be found that the method 
proposed in this paper is significantly better than the traditional method 
in controlling operational cost with different observed periods. 

To further investigate the effectiveness of the proposed ECRM, we 
carry out a simulation test based on the above calculation results. The 
test process is as follows: 1) based on the problem hypothesis, we 
generate a group of empty container demand sample sequences at all 
inland freight stations; 2) obtain the optimal S by solving the ECRM and 
allocate empty containers by the largest-debt-first policy; 3) according to 

Table 2 
Demands and related costs for each inland freight station.  

No. of inland 
freight station 

Average demand 
(TEU/interval) 

Rental rate 
(RMB/TEU) 

Transportation rate 
(RMB/TEU) 

No. of inland 
freight station 

Average demand 
(TEU/interval) 

Rental rate 
(RMB/TEU) 

Transportation rate 
(RMB/TEU) 

1 62 500 381 11 35 480 165 
2 27 340 150 12 57 380 541 
3 18 360 113 13 39 450 300 
4 65 300 102 14 75 340 225 
5 77 480 260 15 52 420 468 
6 66 460 265 16 57 460 273 
7 59 380 282 17 64 360 450 
8 44 400 272 18 33 440 201 
9 16 460 159 19 40 400 241 
10 44 420 247 20 73 440 506  

Fig. 10. Comparison of the convergence characteristics of the proposed DE 
with GA and PSO. 
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the sample and allocation policy, calculate the average self-owned 
empty container utilization rate of each inland freight station (βi) dur-
ing the observed period. 

Table 3 shows the optimal results of βi (the optimized value of the 
decision variable) compared with βi when the observed period T is 180. 
Table 3 shows that βi and βi are quite similar. This means that the largest- 
debt-first policy can help decision-makers easily achieve the optimiza-
tion target. 

Of course, the difference between βi and βi is closely related to the 
length of the observed period. Thus, we show the difference (root mean 
square error, RMSE) between βi and βi under ECRM with different 
observed periods in Fig. 10. The results show that RMSE decreases with 
the increase in the length of the observed period. Therefore, for the 
scheme given by ECRM, the longer the observed period is, the closer the 
value of β, and the utilization rate of self-owned containers can be. 

6.3. Experiment 2: sensitivity analysis in the post COVID-19 epidemic era 

In experiment 2, we focus on the characteristics of the container 
shipping market in the context of the post-COVID-19 epidemic. This 
experiment consists of two scenarios.  

1) In scenario 1, each inland freight station only uses its own containers 
for replenishment, and leasing containers cannot be obtained. This 
scenario corresponds to the container shipping market before the 
outbreak of COVID-19. βi = 0.99(∀i = 1,2,⋯,N), and S is the only 
decision variable. Liner companies allocate empty containers based 
on the largest-debt-first policy.  

2) In scenario 2, we consider the circumstance that only leased empty 
containers can be obtained while a self-owned container is not 

available. This scenario corresponds to the situation that in the post- 
COVID-19 epidemic era, liner companies have to obtain empty 
containers through other ways because the return of self-owned 
empty containers is rather difficult. In this scenario, βi = 0(∀i =
1, 2, ...,N), S = 0. 

By comparing the optimal solution obtained by solving ECRM in 
Section 6.2 with those from scenarios 1 and 2, Fig. 12 can be obtained. 

Similar to the previous subsection, we also carry out several tests for 
different observation periods (T = 60, 90, 120, 150 and 180). The results 
show that the cost given by ECRM is lower than that of scenario 1 with 
any observed period. This means that there are deficiencies in 
completely using self-owned empty containers to meet market demand. 
Reasonably optimizing βi and controlling the empty container stock 
level S can obviously reduce empty container storage and management 
costs. 

In addition, it should be noted that although there is little difference 
in expected costs between scenarios 1 and 2, the result is of no practical 
significance. This is because the results are closely related to the setting 
of empty container rental fees. If we increase the empty container rental 
fee to simulate the carrier’s behavior of manufacturing new empty 
containers to meet the demand for empty containers in practice, the 
expected costs will inevitably rise significantly. 

On the other hand, the expected cost of the solution given by ECRM is 
significantly lower than that of scenario 2, which has some managerial 
implications. This means that within the range of normal operating cost 
parameters, it is impractical to completely use leased containers instead 
of self-owned containers. Liner companies must reasonably consider the 
utilization rate of self-owned empty containers and leased empty con-
tainers to control their own costs. 

6.4. Experiment 3: sensitivity analysis of variance of the demands for 
inland freight stations 

In experiment 3, we test the influence of a change in variance in 
inland freight stations’ demand on the liner company’s expected total 
cost with the observed period T = 180. For comparison, we take the 
ratio of the variance-to-mean of empty container demand (σi/μi) as the 
parameter of the sensitivity analysis. This parameter describes the 
fluctuation situation of empty container demand of inland freight sta-
tions. The greater this value is, the greater the volatility of demand. 
Table 4 and Fig. 13 show the results under the four scenarios. 

When the variance-to-mean ratio increases, the expected total costs 
of the classic method and scenario 1 show a significant upward trend 
because the liner company must prepare more empty containers to avoid 

Fig. 11. Expected costs with changes in the observed period for Experiment 1.  

Table 3 
Values of βi and βi for each inland freight station (T = 180).  

No. of inland freight 
station 

βi βi No. of inland freight 
station 

βi βi 

1 0.93 0.93 11 0.96 0.97 
2 0.97 0.96 12 0 0.02 
3 0.98 0.99 13 0.96 0.97 
4 0.93 0.91 14 0 0.02 
5 0.92 0.91 15 0 0.02 
6 0.93 0.94 16 0.94 0.95 
7 0 0.02 17 0 0.02 
8 0.95 0.95 18 0.97 0.99 
9 0.98 0.97 19 0.96 0.98 
10 0.95 0.95 20 0 0.02  
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a possible shortage of empty containers due to an increase in demand 
fluctuation. In contrast, the expected total costs of the ECRM result and 
scenario 2 are almost unaffected. The results of scenario 2 are in line 
with our expectations, as the expected total cost of scenario 2 is related 
to only the expected value of empty container demand. However, for 
ECRM, the results are surprising. The ECRM model, based on the largest- 
debt-first policy, can not only effectively reduce the safe empty container 
stock level but also effectively handle the adverse impact of the increase 
in demand fluctuation. 

To explain the reason for this stability under ECRM, we further 
analyze the difference in empty container stock levels between ECRM 
and the classic method with different variance-to-mean ratios, as shown 

in Fig. 14. 
With the classic method, to cope with the increasing fluctuation of 

empty container demand, the liner company must increase the empty 
container stock (even if β has been optimized). This action directly leads 
to a significant increase in empty container storage operational costs in 
the classic method. In ECRM, because the largest-debt-first policy is 
adopted to allocate empty containers, the liner company can take 
advantage of the offset effect of demand fluctuation to effectively 
address the impact caused by the increase in demand fluctuation. 
Therefore, we can ensure that the empty container stock at the container 
yard is always maintained at a stable level and does not increase 
significantly with an increase in the variance-to-mean ratio, so the ex-
pected total cost does not change significantly. In addition, as the fluc-
tuation range of empty container demand increases, the expected cost of 
ECRM is always lower than that of the other schemes. The above results 
again confirm that our proposed allocation policy is significantly better 
than the traditional policy. 

7. Concluding remarks 

To address the new combination of storage and rent container 
management modes, this paper considers the empty container allocation 
optimization problem for inland freight stations under the background 
of stochastic demands. By constructing a stochastic programming model 

Fig. 12. Expected costs with changes in the observed period for Experiment 2.  

Table 4 
Influence on the expected total cost with different values of the variance-to- 
mean ratio of demand.  

σi/μi ECRM result 
(10000 RMB) 

classic method 
(10000 RMB) 

Scenario 1 
(10000 RMB) 

Scenario 2 
(10000 RMB) 

0 24.43 26.20 29.11 31.91 
1/5 24.73 31.07 31.29 31.91 
1/4 24.81 32.75 32.59 31.91 
1/3 24.95 36.48 35.56 31.92 
1/2 25.24 44.86 45.39 31.93  

Fig. 13. Influence on the expected cost with different values of the variance-to-mean ratio of container demand.  
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with the minimum expected total cost of the liner company as the goal, 
the collaborative optimization of (1) the allocation of empty containers 
at container yards; (2) the transportation scheme of self-owned empty 
containers from container yards to every inland freight station; and (3) 
the proportion of self-owned containers to the total demands in each 
inland freight station can be realized. We also offer the largest-debt-first 
policy, which takes into account the model’s complexity. From the 
standpoint of the long-term supply of empty containers, the liner com-
pany can attain the lowest expected total cost under this policy. The 
contribution of this paper can be summarized into two aspects, theo-
retically and practically. 

Theoretically, in the traditional empty container inventory optimi-
zation problem, the distribution information of empty containers is 
usually assumed to be known. Our proposed empty container inventory 
optimization model does not need the empty container demand distri-
bution information, which means that our model is more applicable. In 
addition, we discuss the optimization of the supply structure of empty 
containers for the first time. To the best of our knowledge, this paper is 
the first to discuss the collaborative optimization of the above two types 
of problems. Therefore, the model and method we propose have certain 
value for enriching the theory and methods of container management. 

Practically, the model and approach proposed in this paper can 
significantly reduce the operational costs of liner companies. On the 
other hand, it is essentially an online inventory control management 
method. In the daily operation of liner companies, the model and 
approach proposed in this paper can be used repeatedly based on data 
accumulation to maintain the optimal empty container inventory level 
and empty container supply structure. This is of great practical signifi-
cance to deal with the uncertainty of empty container demand and to 
improve the efficiency of liner route network operation. 

In addition, by analyzing the calculation results, we can also obtain 
the following important managerial implications. First, the traditional 
empty container resource inventory management method based on the 
overstocking strategy has great limitations. For that reason, liner com-
panies believe that in the face of volatile demand for empty containers, 
the stock level of empty containers is bound to increase. However, our 
experimental results show that with the offset effect of multi node de-
mand fluctuations, liner companies only need low empty container 
storage to meet their demands. The fluctuation of demand at a node is 
not the only factor affecting the scale of empty container inventory. 

The follow-up research directions of this paper include the following 
three aspects. First, we consider only the storage, transportation and 
rental costs of empty containers. However, the composition of empty 
container management costs is usually complicated in practice. How to 

fully consider the actual operational factors and include appropriate cost 
elements in the model framework is a future research direction. Second, 
we assume that each inland freight station’s empty container demand is 
independent and identically distributed, ignoring the correlation of the 
empty container demands of inland freight stations. Therefore, the 
correlation of empty container demands of different inland freight sta-
tions should be considered in future research. Third, we use a differen-
tial evolution algorithm to solve the model. The algorithm can only 
obtain a satisfactory solution of the model. Improving the precision of 
the solution is also a fascinating study topic. 
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