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BACKGROUND: The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimen-
tal and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ∼ 0:075–0:1 mg=kg). At
these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death.

OBJECTIVES: This study aimed to identify adverse effects on the nervous system from prolonged, dietary DA exposure in adult, female Macaca fasci-
cularis monkeys.

METHODS: Monkeys were orally exposed to 0, 0.075, and 0:15 mg=kg per day for an average of 14 months. Clinical blood counts, chemistry, and
cytokine levels were analyzed in the blood. In-life magnetic resonance (MR) imaging assessed volumetric and tractography differences in and
between the hippocampus and thalamus. Histology of neurons and glia in the fornix, fimbria, internal capsule, thalamus, and hippocampus was eval-
uated. Hippocampal RNA sequencing was used to identify differentially expressed genes. Enrichment of gene networks for neuronal health, excitotox-
icity, inflammation/glia, and myelin were assessed with Gene Set Enrichment Analysis.

RESULTS: Clinical blood counts, chemistry, and cytokine levels were not altered with DA exposure in nonhuman primates. Transcriptome analysis of
the hippocampus yielded 748 differentially expressed genes (fold change≥1:5; p≤ 0:05), reflecting differences in a broad molecular profile of inter-
mediate early genes (e.g., FOS, EGR) and genes related to myelin networks in DA animals. Between exposed and control animals, MR imaging
showed comparable connectivity of the hippocampus and thalamus and histology showed no evidence of hypomyelination. Histological examination
of the thalamus showed a larger microglia soma size and an extension of cell processes, but suggestions of a GFAP+astrocyte response showed no in-
dication of astrocyte hypertrophy.

DISCUSSION: In the absence of overt hippocampal excitotoxicity, chronic exposure of Macaca fascicularis monkeys to environmentally relevant levels
of DA suggested a subtle shift in the molecular profile of the hippocampus and the microglia phenotype in the thalamus that was possibly reflective
of an adaptive response due to prolonged DA exposure. https://doi.org/10.1289/EHP10923

Introduction
Domoic acid (DA) is a common marine algal toxin produced by
some species of Pseudo nitzschia1,2 and other marine macroal-
gae, such as Chondria armata.3,4 When present in the water, DA
can contaminate shellfish and other types of seafood, including
razor clams, scallops, oysters, mussels, anchovies, sardines, and
crabs.5 Consumption of contaminated shellfish can induce neuro-
toxicity in humans and in a variety of wildlife species, including
sea lions,6 whales, sea otters, and sea birds.7 The only known
acute DA poisoning event in humans occurred in 1987 when the
consumption of blue mussels (Mytilus edulis), contaminated with
∼ 70 mg DA/100 g of tissue weight, resulted in >200 cases of
illness.8 Of these, 107 patients had confirmed cases of a severe
neurotoxic syndrome, later named amnesic shellfish poisoning

(ASP), with an estimated exposure of ∼ 270–290 mg of DA per
person. Clinical presentation of ASP was characterized by gastro-
intestinal symptoms (gastrointestinal distress, vomiting, diarrhea)
within 24 h of consumption and accompanying neurological
symptoms within 48 h. Neurological symptoms were wide rang-
ing and included headache, coma, seizures, and memory loss,
harkening to the “amnesic” label of ASP.9

In a follow-up of 14 patients with pronounced neurological
dysfunction, the initial response to DA poisoning occurred
between 4 and 72 h postexposure, with a general recovery within
24 h to 12 wk.10 In patients with prolonged memory loss, brain
imaging revealed reduced glucose metabolism in the hippocam-
pus and medial temporal lobe.10 Although a long-term follow-up
of these patients was not formally conducted, 1 patient with an
initial severe case of ASP presented 1 y later with complex partial
seizures involving clonic movements of the arm and leg that
were accompanied by severe memory impairment.11 Imaging in
this patient revealed marked atrophy in the hippocampus; this
pattern of neurodegeneration was supported by posthumous his-
tological examination. This detailed symptomology and neuropa-
thology that has been previously observed in humans with acute
poisonings has also been observed in wildlife12–14 and experi-
mental animal models.15–18

To protect people from severe, excitotoxic neurological effects,
the U.S. Food and Drug Administration established an action level
of 20 ppm of DA in shellfish tissue.19 The regulatory limit is equiv-
alent to ∼ 0:075–0:1 mg=kg body weight ðBWÞ per day and is set
to protect people from acutely toxic exposures.20–23 However, con-
cerns for the health effects due to prolonged low-level exposure
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have been raised by recent epidemiological studies, which have
suggested an association betweenmemory deficits and repeated di-
etary exposure to DA at levels below the regulatory limit.24–27

Specific populations that are of highest risk of this type of exposure
are both coastal subsistence shellfish harvesters28 and consumers
in Native American communities29 who are economically and cul-
turally reliant on defined food sources. A more recent concern has
also been raised for populations who are in situations of increas-
ingly repeated intermittent exposures as a result of global climate
shifts in the occurrence of algal blooms.30,31

With the hippocampal excitotoxicity induced by acute DA ex-
posure, various injury-induced responses associated with neuronal
damage have also been reported, including astrocyte and microglia
reactions.32,33 Experimental rodent studies examining the neuro-
toxic effects of low-level DA exposure have reported subtle effects
on the nervous system in the absence of typical DA excitotoxic-
ity.34,35 It is thought that at these lower exposures, DAmay act as a
glutamate agonist, altering normal neuronal and synaptic function
and promoting inflammatory responses in the absence of overt neu-
ronal death. In mice, a prolonged, low-level DA exposure resulted
in spatial memory deficits in the absence of hippocampal neuropa-
thology.36 Subtle differences were, however, observed in vesicular
glutamate transporter 1 (VGluT1) expression within hippocampal
cornu ammonis area (CA) 1 excitatory boutons, representing a pos-
sible alteration of glutamatergic transmission in CA1 that was
linked with the disruption of spatial memory.37 In adult nonhuman
primates, it was not thought that these lower exposures resulted in
toxic effects38 until recently.39 In a translational study designed to
capture the structural and functional similarity between monkey
and human brains,40,41 as well as the similarities with contempo-
rary human exposures to DA,26,28,42 exposedmonkeys had tremors
and targeted effects on myelination from whole-brain magnetic
resonance (MR) imaging.43 AlthoughMR imaging can be an effec-
tive translational tool in describing and identifying neurotoxic
injury,44 paired histopathological and MR imaging studies can
have discordant findings, especially at lower resolution.45,46 Thus,
subsequent studies employing immunohistochemical assessments
and targeted MR imaging analysis can help validate findings or
offer alternative explanations. Given the growing concerns from
low-level DA exposure scenarios, detailed studies of cellular
responses in a model closely related to humans, and with an oral
exposure paradigm, could help identify the potential neurotoxic
mechanisms of low-level exposure to DA.

The present study assessed the cellular-level effects after pro-
longed, oral exposure to low levels of DA in a nonhuman primate
model by expanding on previous assessments in a cohort of female
Macaca fascicularis monkeys exposed to DA, daily, for an average
of 14 months (at 0.075 or 0:15 mg=kgBW per day).39 These oral
exposures were selected to closely resemble both the maximum
allowable regulatory limit (20 ppm in shellfish meat, which was esti-
mated to be 0.075–0.1mg/kg for an average adult)20–23 and contem-
porary exposures based on the consumption of contaminated
razor clams in Washington State (0.003–0:09 mg=kgBW per day,
depending on DA concentrations in shellfish).28 As previously
reported in this cohort of monkeys, daily DA exposure did not result
in altered BWs or induce alterations in general observational clinical
health assessment, but tremors were reported after as little as
2 months of DA exposure.39 In-life, whole-brain MR imaging of
these animals showed no evidence of overt damage or disorganiza-
tion; however, lower brain-wide fractional anisotropy (FA) was cor-
related with tremors.43 These specific differences were suggestive of
a subtle alteration inwhitematter integrity in the fornix, internal cap-
sule, brainstem, and corpus callosum.43 Using this same cohort of
animals, the present study used region-specific MR imaging techni-
ques, histological assessments, and RNA sequencing (RNAseq) to

assess DA-related evidence of hippocampal excitotoxicity or neuro-
nal death, differences in myelination, and responses of astrocytes
andmicroglia.

Methods

Animals
Adult female Macaca fascicularis monkeys between 5.5 and
11 years of age (average = 6:9 y) and 2:8–4:2 kg in BW
(average = 3:6 kg) were originally obtained from Charles River
Laboratory, Alpha Genesis Incorporated, and Valley Biosystems
(Table S1). Animals were housed in the Infant Primate Research
Laboratory at the Washington National Primate Research Center
in Seattle, Washington, USA. Females were individually housed
with grooming bars that allowed contact and communication with
an adjacent female social partner, 24 h/d. Environmental enrich-
ment (e.g., frozen treats, fresh fruit and vegetables, music, puzzle
toys) was provided daily. The roomwasmaintained at 24± 4�C on
a 12-h light/dark schedule. Animals were provided High Protein
Monkey Diet biscuits (Lab Diet) twice a day and filtered drinking
water ad libitum. All research protocols adhered to the guidance of
the Animal Welfare Act47 and the Guide for Care and Use of
Laboratory Animals from the National Research Council48 and
were approved by the University of Washington Institutional
Animal Care andUse Committee.

Study Periods
The study represents five key periods: Baseline (2 months, where
training occurred); Initial Dosing (2 months); Breeding (1–7 months,
average= 2:7months, dependent on how many timed cycles until
pregnancy); Pregnancy (6 months); and Postpartum (1–8 months,
average= 6:3months). Animals underwent necropsy at the end of
the Postpartum period (8–23 months, average = 14:0months). A
schematic of the timeline of exposure and assessments is provided in
Figure 1. Previously reported results of this cohort have been pub-
lished in several articles already, including ones detailing pharmaco-
kinetic outcomes in the Initial Dosing and Pregnancy periods,49–51

reproductive outcomes in the Breeding and Pregnancy periods,39

whole-brain MR imaging in the Postpartum period,43 and electro-
physiology in the Postpartum period.52 The present article describes
the continued investigation of an unexpected clinical sign of neuro-
toxicity (tremor) that was associatedwith chronicDAexposure.39

All investigator interactions with the animals were conducted
under coded conditions to maintain experimental blinding across
the study. During Baseline, standard positive reinforcement techni-
ques were used to train animals to drink 1 mL of solution from a
3-mL syringewithout restraint to facilitate oral dosing of DA in the
study. Animals were acclimated to aspects of the study: weekly
weighing; a series of tasks designed to assess clinical toxicity; and
unsedated, intravenous (IV) blood draws from the saphenous vein
in a procedure cage attached to their home cage. All acclimation
procedures were conducted prior to DA exposure.

DA Exposure
DAwas purchased fromBioVectra. Certified calibration solution for
DA was purchased from National Research Council Canada.
Individual dosing solutions were prepared weekly, according to ani-
malweight and dose group, in afiltered, 5% sucrose solution inwater
and stored in 16-mL glass vials at 4°C until use. Each solution was
prepared with sonication for 15 min. Concentrations of DA doses
were confirmed by high-performance liquid chromatography with
tandem mass spectrometry (HPLC-MS/MS).49,50 In brief, samples
were measured using an AB Sciex 5500 qTrap Q-LIT mass spec-
trometer (AB Sciex), equipped with an Agilent 1290 ultra-HPLC

Environmental Health Perspectives 097003-2 130(9) September 2022



(Agilent Technologies) and a Synergi Hydro-RP 100-Å liquid chro-
matography column (2.5 mm, 50× 2 mm; Phenomenex). Samples
were placed in the 4°C autosampler and 10 lL of sample was
injected for analysis. Gradient elution, 95% for 1 min to 0% over
3min and then to 95% for 3min, with a flow rate of 0.5mL/min, was
conducted usingwaterwith 0.1% formic acid (A) and using 95% ace-
tonitrile with 5% water and 0.1% formic acid (B). Analytes were
detected using positive ion electrospray ionization mode. MS/MS
transition for DA was m/z 312:2> 266. All reagents (optima grade
water, methanol, acetonitrile, and formic acid) were purchased from
ThermoFisher Scientific.

Adult females were pseudo-randomly assigned to either the
control, 0.075, or 0:15-mg=kgBW per day group, controlling for
differences in weight and age. Dose groups weremaintained across
social partners. Animals received daily, oral doses of a 1-mL solu-
tion of either 5% sucrose vehicle (n=10), 0.075 mg DA/kg BW
(n=11), or 0.15 mg DA/kg BW (n=11) at ∼ 0900 hours, 7 d/wk.
Food biscuits were provided at ∼ 2 h before and 5 h after DA
exposure.

During the Initial Dosing period, one control animal and
one animal in the 0:075-mg=kgBW per day group were
excluded from the study because of health conditions unre-
lated to exposure. This resulted in a total sample size of 30
(n=9 controls; n=10 0:075-mg=kgBW per day animals;
n=11 0:15-mg=kgBW per day animals). Daily, oral exposures
of the females continued during the Breeding period, when females
underwent timed-breeding with males not exposed to DA. Twenty-
eight females successfully conceived and carried a full-term preg-
nancy (Table S1). Dosing during pregnancy was based on the indi-
vidual animal’s last prepregnancy BW. Originally, the study was
designed to have exposure cease on partition; however, upon the ob-
servation of tremor in 3 animals in the 0:075-mg=kgBW per day
group and 4 animals in the 0:15-mg=kgBW per day group (who
had exposure cease at partition),39 the remaining females were
maintained on DA exposure until necropsy. The 2 animals
(A15248, control; A16107, 0:075-mg=kgBW per day group) who
did not conceive remained in the study, were maintained on dose,
and included in end point assessment where noted (Table S1).

Blood Levels of DA
Blood was collected via restrained, unsedated blood draws from
the great saphenous vein, biweekly at 24 h postexposure. A 2-mL

volumewas collected into 4-mL sodium heparin vacutainer collec-
tion tubes (Greiner Bio-One). After collection, blood was centri-
fuged at 3,000× g for 15 min to isolate plasma and then stored at
−20�C until analysis. DA was measured via HPLC-MS/MS meth-
ods similar to those outlined above but optimized for nonhuman
primate plasma.49,50 In nonhuman primate plasma, the lower limit
of quantification was 0:31 ng=mL and the limit of detection (LOD)
was 0:16 ng=mL.Anymeasure that was detected but below the limit
of quantification was imputed with 0:24 ng=mL (halfway between
the limit of quantification and LOD). Prior to the Pregnancy period,
average blood levels were 0:93 ng=mL (range: 0:24–2:36 ng=mL)
and 2:93 ng=mL (range: 0:24–5:26 ng=mL) for the 0.075- and
0:15-mg=kgBW per day DA exposure groups, respectively, and
were similar during pregnancy.39

Clinical Monitoring
Throughout the study, general health was monitored daily by vet-
erinary clinical staff and BWs were recorded weekly.39 Clinical
exams were conducted by experimentally blinded, trained person-
nel three times a week, ∼ 5 h after dosing, to evaluate visual
functioning and motor coordination. The observational tests were
adapted from previously developed clinical observation tests53,54

and designed to detect behavioral changes in nonhuman primates.
Animals were scored using a rating scale on reactivity toward the
human tester [neutral, in front or middle of homecage (1); neu-
tral, in back of cage (2); fear grimace (3); threat face (4); displays
of aggression (5)] and visual orientation and tracking of a small
treat [odd numbers represent right direction; even numbers repre-
sent left direction: full track (1 or 2); partial track (3 or 4); orient,
but does not track (5 or 6); does not orient (7 or 8)]; and reaching
and grabbing the treat [full reach to treat (1); partial reach to treat
(2); no reach, but still takes treat from tester (3); will not reach or
take treat from tester (4)]. The presence of tremors of the hand
or arm during the reach were scored as either absent (0) or
present (1).

Complete Blood Counts and Serum Chemistry
To generally monitor health, blood was collected twice for com-
plete blood counts (CBCs) and serum clinical chemistry via
restrained, unsedated blood draws from the great saphenous vein:
once at the beginning of the Baseline and once at the end of the

Figure 1. Timeline of study. Representation of the five stages of the study: Baseline (prior to dosing), Initial Dosing (∼ 2 months prior to breeding), Breeding
and Pregnancy, Postpartum. Necropsy occurred in the Postpartum period. Daily, oral domoic acid (DA) dosing began in the Initial Dosing period and continued
through Breeding and Pregnancy. A subset of animals was continued on daily dosing in the Postpartum period (see Table S1 for details). Blood samples for
complete blood counts (CBCs) and serum chemistry were collected at the beginning of study (Baseline) and at the end of the Initial Dosing period (average:
day 73). Blood levels of cytokines and chemokines were analyzed twice during Baseline, twice during Initial Dosing (average: day 15, day 43), and at necropsy
(average: month 14 or 425 d). Magnetic resonance (MR) imaging was conducted during the Postpartum period. Tissue was collected at necropsy for histologi-
cal assessment and RNA sequencing (RNAseq). Body weights, behavioral assessments, and DA exposure assessments were collected throughout the entire
study.
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Initial Dosing period (at 10 wk of exposure, prior to pregnancy).
For CBCs, 4mL of blood was drawn from the great saphenous vein
into ethylenediaminetetraacetic acid (EDTA) microtainer tubes
(Greiner Bio-One). For chemistry, 4mLwas drawn into preservative-
free serum microtainer tubes (Greiner Bio-One). Samples were im-
mediately transported to the University of Washington Medical
Center’s LaboratoryMedicine facility for processing and analysis.

CBC measures of white blood cell (WBC) count, red blood
cell (RBC) count and percentage nucleated RBCs, platelet count,
hemoglobin, hematocrit, and counts for neutrophils, lympho-
cytes, monocytes, eosinophils, and basophils were determined
using a Sysmex XN-10 analyzer (Sysmex America, Inc.) accord-
ing to established human clinical protocols. Cell counts were
obtained using impedance technology, enhanced by a sheathed
stream with hydrodynamic focused in the RBC/platelet channel
and with floating thresholds in the WBC channel to accurately
discriminate cell population. Hemoglobin was measured with the
sodium lauryl sulfate (SLS) reagent and measured photometri-
cally at 555 nm. One animal in each of the control and the
0:15-mg=kgBW per day groups had a clotted sample that could
not be processed (Table S1).

Concentrations of chemistry analytes [sodium, potassium,
chloride, blood urea nitrogen, total protein, albumin, globulin,
bilirubin, calcium, phosphate, cholesterol, alkaline phosphatase,
alanine transaminase (ALT), aspartate aminotransferase (AST),
and gamma-glutamyl transferase (GGT)] were determined using
a Beckman AU 680/5,812 system (Beckman Coulter, Inc.), fol-
lowing the manufacturer’s protocols (see the section “Serum
Chemistry Reactions on the Beckman Coulter AU System” in the
Supplemental Material).

Cytokine and Chemokine Panels
To assess systemic pro-inflammatory status following DA exposure,
inflammatory cytokine and chemokine levels in the bloodwere deter-
mined in nine DA-exposed animals showing evidence of tremor
(0:075-mg=kgBW per day group, n=3; 0:15-mg=kgBW per day
group, n=6); and controls, n=7 (Table S1). A 4-mL sample of
blood was collected from the great saphenous vein in a restrained,
unsedated blood draw into sodium heparin vacutainer tubes
(Greiner Bio-One) twice prior to DA exposure, once each at 2 and
6 wk of DA exposure (prior to pregnancy), and once at necropsy
(post-pregnancy). Samples were rocked by hand and immediately
transported to the Interdisciplinary Center for Exposures, Diseases,
Genomics and Environment (EDGE) laboratory at the University of
Washington. Plasma was separated and stored in 2-mL cryostat
tubes at−80�C until analysis.

TheV-PLEXNonHuman Primate (NHP) Cytokine 24-Plex Kit
from Meso Scale Discovery (Meso Scale Discovery; Catalog#
K15058D)was used to determine levels of eotaxin-3, granulocyte–
macrophage colony-stimulating factor (GM-CSF), interferon
gamma (IFN-c), interleukin ðILÞ-1b, IL-2, IL-5, IL-6, IL-7, IL-8,
IL-8 human antibody (HA), IL-10, IL-12/IL-23p40, IL-15, IL-16,
IL-17A, C-X-C motif chemokine ligand 10 [CXCL10 (interferon
gamma-induced protein or IP10)], monocyte chemoattractant
protein (MCP)-1, MCP-4, macrophage-derived chemokine (MDC),
macrophage inflammatory protein ðMIPÞ-1a, MIP-1b, the thy-
mus- and activation-regulated chemokine [CCL17 (thymus- and
activation-regulated chemokine or TARC)], tumor necrosis factor
ðTNFÞ-b, and vascular endothelial growth factor A (VEGF-A).
Assays were performed according to the manufacturer’s protocol
(Meso Scale Discovery), using a serial dilution of purified ana-
lyte (Cytokine 24-Plex Kit) as a standard curve. The electro-
chemiluminescent signals were detected using aMeso QuickPlex
SQ 120 instrument and associated analysis software [Meso Scale
Discovery Workbench software (version 4.0)]. Samples were

assayed in duplicate and average levels were used for analysis.
Individual Baseline levels prior to exposure were averaged across
the two Baseline samples. Any sample with an intensity that was
not within the linear portion of the standard curve was imputed
with the half of the lowest fitted value detected on the Meso Scale
DiscoveryWorkbench software.

MR Image Acquisition
Tomeasure region-specific differences in brain volume and connec-
tivity, 12 animals representing 6 control animals and 6 DA-exposed
animals showing evidence of tremoring (0:075-mg=kgBW per day
group, n=2; 0:15-mg=kgBW per day group, n=4) were selected
for imaging in the Postpartum period (Table S1). Animals were
sedated with ketamine [5–10 mg=kgBW intramuscular (IM)] and
atropine (0.04 mg/kg IM), then intubated andmaintained on inhaled
sevoflurane (0.8%–2.5%) and 100% oxygen throughout the acquisi-
tion period (∼ 1 h). Vitals (heart rate and saturated oxygen) were
closely monitored for the duration. MR scans were acquired during
a single scan using a 3T Scanner (version 5.17; Philips) with a
custom-made 8-channel radiofrequency head coil that was devel-
oped and optimized for the nonhuman primate head by C. Hayes at
theUniversity ofWashingtonDepartment of Radiology.55

High-resolution, three-dimensional, T1-weighted magnetiza-
tion-prepared 180 degrees radio-frequency pulses and rapid gra-
dient-echo (MPRAGE) images were acquired using a multi-shot
turbo field echo (TFE) pulse sequence and an inversion pre-
pulse (1,151 ms delay); repetition time (TR)/echo time ðTEÞ=
14ms=7:1ms; 130 axial slices; acquisition matrix 208 × 141×
130; acquisition voxel size 0:48× 0:53× 1:0 mm; reconstructed
voxel size 0:39× 0:39× 0:5 mm; slice over sample factor = 2;
sense factor = 2 in the foot–head direction; turbo factor = 139;
number of signaling averages = 1; TFE shots = 65, and acquisition
time= 3min 14 s. Diffusion-weighted imageswere acquiredwith the
following parameters: spin-echo echo-planar pulse sequencewith dif-
fusion gradients, repetition time=5,500 ms, echo time= 77:98 ms,
reconstructedmatrix 128× 128, number of slices 44, resolution/voxel
size 0:78× 0:78× 1:5 mm, 64 different diffusion-weighted direc-
tions and one nondiffusion volume at Blip right, b value of 1,500, 5
different diffusion-weighted directions and one nondiffusion volume
at Blip left, which were compatible with FSL’s (FMRIB Software
Library; version 6.0) topup and eddy software.56

T1 Image Processing
In FSL, FMBIR’s Linear Image Registration Tool (FLIRT;
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT)57–59 was used to cor-
egister all T1 images from the animals to a single target brain ran-
domly selected from the group of images. The buildtemplate and
WarpImageMultiTransform command from ANTs (Advanced
Normalization Tools; version 2.3.2), were used to coregister all
T1 images in common space,60 along with a labeled Macaca
mulatta T1 atlas.61 Labeled atlases were then inverse transformed
into the original space of the 12 individual animals, using
nearest-neighbor options. In individual space, FSLmaths was
used to extract each region of interest (ROI) from the individual
atlases. ROI volumes from the left and right hippocampus and
thalamus were extracted using FSLstats.

Diffusion Tensor Image Processing
Diffusion tensor images (DTIs) were processed using FSL’s
topup software and FSL’s eddy software to minimize distortion
from eddy currents and head motion.56,62 The FSL program, dtifit
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT), was used to recon-
struct the diffusion tensor for each voxel, and the matrix was dia-
gonalized to obtain tensor eigenvalues, L1, L2, L3. ANTs’s

Environmental Health Perspectives 097003-4 130(9) September 2022

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT


buildtemplate60 was used to coregister individual FA maps to a
target brain. Seed points were hand drawn in the hippocampus
and thalamus in the viewing system, FSLeyes (version 0.30.0),
and masks of the common space seed points were inverse trans-
formed into original space. Using these seed points, probtrackx in
FSL was used to generate probabilistic diffusion tractography to
assess connectivity between the hippocampus and thalamus.63

This measure takes into account intra-voxel crossing fibers and
allows for an estimate of the myelin pathways that originate at any
specific voxel and pass through any specific other voxel.63

MR Imaging Analysis
Volumes from each brain ROI were exported to R (version 4.0; R
Development Core Team). Comparisons of volume were con-
ducted on control vs. DA-exposed animals, using a two-tailed
Student’s t-test, to maximize statistical power. A Bonferroni cor-
rection was applied to the p-values to account for the multiple
comparisons made for the number of brain regions assessed.
Significance was set at a corrected p<0:05. Connectivity between
the hippocampus and thalamus was compared using FSL software
randomise, a method that uses 500 random permutations and
threshold-free cluster enhancement (TFCE) to correct for multiple
voxel comparisons.64,65 Permutations were used to compare con-
nectivity between groups. Any significant alterations in region-
specific connectivity, as identified with a p<0:05, were visually
identified in the brain as a cluster in FSLeyes.

Tissue Collection
Animals were fasted for 12 h prior to sedation under ketamine
(20 mg/kg IM), before transportation to the necropsy room at the
University of Washington National Primate Research Center
(WaNRPC). Sedated animals were euthanized with an overdose of
sodium pentobarbital (390 mg IV), as per the American Veterinary
Medical Association Panel on Euthanasia recommendations.66

Euthanasia was confirmed by veterinary staff. The brain was
quickly excised from the skull and bisected along the midsagittal
plane. Distinct brain regions containing the fimbria, internal cap-
sule, hippocampus, fornix, and thalamus were identified by a certi-
fied veterinary pathologist for collection. Sections from the right
hemisphere were immersion fixed in 10% formalin. From the left
hemisphere, dissected tissuewas sliced into small, ∼ 3-cm sections
(representing 1–3 sections/region), placed in a 5-mL tube, immedi-
ately frozen in liquid nitrogen, and stored at−80�C.

Histology and Immunohistochemistry
To maintain tissue handling consistency, formalin-fixed sections
containing the fimbria, internal capsule, hippocampus, fornix,
and thalamus from 28 animals (control group, n=8; 0:075-mg=
kgBW per day group, n=11; 0:15-mg=kgBW per day group,
n=9; see Table S1 for details), were processed through a graded
series of ethanol and embedded in paraffin. To standardize timing
and processing across animals, the order of sectioning, clearing,
and staining followed a counterbalanced paradigm for exposure
to ensure uniform handling of sections representing any one
region. Paraffin-embedded sections were serial sectioned at
10 lm. Sections were deparaffinized in xylene, rehydrated in dis-
tilled water, and stained for general cellularity with hematoxylin
and eosin (H&E). Cytoplasmic staining of Nissl substance in neu-
ronal cytoplasm was conducted with cresyl violet (CV; Poly
Scientific). Myelin was stained with Luxol fast blue (LFB;
Rowley Biochemical Inc.), a copper phthalocyanine dye attracted
to bases found in the lipoproteins of the myelin sheath.67 Myelin
fibers appear blue and the stain is commonly used to detect demy-
elination or hypomyelination in the central nervous system

(CNS) based on staining intensity.68 Sections were incubated
overnight at 57°C with 0.1% LFB solution followed by a 95%
alcohol rinse and a distilled water rinse, then differentiated with
0.05% lithium carbonate (Poly Scientific) and 70% alcohol, and
counterstained with CV. Sections were dehydrated through
graded ethanol, cleared in xylene, and coverslipped.

For immunohistochemistry, endogenous peroxidase was blocked
using 3% hydrogen peroxide followed by heat-induced epitope re-
trieval using a 10mM citrate buffer solution, pH 6.0, in a Decloaker
pressure chamber (Biocare Medical) for 15 min at 110°C.
Nonspecific staining was blocked using 10% normal goat serum
(Jackson Immunoresearch) for 20 min at ∼ 23�C [room temperature
(RT)] and an avidin/biotin blocking kit (Vector Laboratories). To
identify microglia, sections were incubated with rabbit monoclonal
anti-ionized calcium binding adaptor molecule 1 (Iba-1) (1:2,000;
Cat# 019-19,741, Lot# CAL0291,WakoChemicals USA) for 60min
at RT followed by incubation with biotinylated goat anti-rabbit IgG
antibody (1:300; Vector Laboratories) 30 min at RT. To identify
astrocytes, sections were incubated with an antibody to the structural
protein, glial fibrillary acidic protein (GFAP), rabbit anti-GFAP
(1:7,000, Cat# X0936, Lot# 200256262, Dakocytomation Corp.), for
30 min at RT then incubated with biotinylated goat anti-rabbit IgG
(Vector Laboratories) at a 1:500 dilution. Antigen–antibody com-
plexes were visualized with a Vectastain Elite ABC R.T.U. label
(Vector Laboratories,) and 3,30-diaminobenzidine (Dakocytomation
Corp.). Iba-1– controls were stained with normal rabbit IgG (1:400;
Calbiochem/EMDMillipore) and GFAP– controls were stained with
rabbit immunoglobulin fraction (solid phase adsorbed) control
(Dakocytomation Corp.). Sections were counterstained with hema-
toxylin and coverslipped.

Sections for each animal and region were scanned under 40×
magnification using an Aperio ScanScope AT2 DX System (Leica
Biosystems Imaging Inc.) and viewed using Aperio ImageScope
(version 6.25.0.1117). The hippocampus (CA1, CA3–4, and den-
tate gyrus), thalamus, fornix, fimbria, and internal capsule were
identified using the Macaca mulatta BrainMaps labeled atlas.69

These regionswere selected to include specific target regions known
to be vulnerable to DA neurotoxicity and white matter tracts previ-
ously shown by MR imaging of these animals to have lower struc-
tural integrity.43 Hippocampal coordinates were identified on
coronal sections as A0.4–A15.0, at 27:5–36:5 mm deep, and
8:5–21:5 mm from the midsagittal plane. The fornix coordinates
were P1.7–A16.1, at 16–30 mmdeep and 0–16:5 mm from themid-
sagittal plane. The internal capsule coordinates were A1.3–A20.6,
at 15–26:5 mm deep and 3:5–20 mm from the midsagittal plane.
Atlas coordinates for fornix connections to the hippocampus were
A0.4–A0.6, and for fimbria connections, A0.9–A12.0. The fornix
and fimbria were visually differentiated by the corresponding shape
of the dentate gyrus and surrounding CA1–4 regions. Images were
evaluated across 4 × − 40× magnifications to capture overall re-
gional staining.

Immunoreactivity Assessment
Following visual examination of immunostaining for Iba-1 and
GFAP in the fimbria, internal capsule, hippocampus, fornix, and
thalamus, sections from three controls and four DA-exposed ani-
mals were selected and confirmed for match to orientation of cut
by distinct anatomical features.69 A defined ROI (800lm2) was
identified, and, within each ROI, 20 microglia were randomly
selected, representing cells displaying the cell soma and proc-
esses. Cell soma area was determined using the Aperio software
program for quantification (Leica Biosystems). The morphologi-
cal phenotype of these 20 microglia was ranked using a rating
scale reflective of surveillant to ameboid reactive phenotypes
(Figure 2). To address issues of possible selection bias of the
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matched sections of the thalamus, sections from additional animals
containing the thalamus in a different plane of cut were randomly
examined and comparable cell soma size was confirmed.

GFAP+astrocytes were evaluated for cell soma staining using a
morphological ranking pattern outlined in human aging studies.70

Assessment of astrocytes within an ROI (500lm2) was limited to
morphological ranking only.70 Cells were classified as type 1 for
cells with light cytoplasmic staining and slender processes, type 2
for cells with visually higher levels of GFAP immunoreactivity,
larger soma, and slightly thick processes, or type 3 for cells show-
ing hypertrophy andwith larger soma and prominent GFAP immu-
noreactivity. In the hippocampus, subregional representation of the
dentate gyruswas available across all sections.

RNAseq
Total RNA was isolated from the hippocampus of the left hemi-
sphere from six control animals and five DA-exposed animals
(0:075-mg=kgBW per day group, n=2; 0:15-mg=kgBW per day
group, n=3; see Table S1 for details), using a Qiagen miRNeasy
Kit (Qiagen) according tomanufacturer’s protocol. RNA purity was
assessed using a NanoDrop ND-1000 Spectrophotometer (Thermo
Fisher Scientific) and RNA integrity was determined using the
Agilent RNA 6000 Nano Kit with an Agilent 2100 Bioanalyzer.
RNA samples with RNA integrity number (RINÞ>7 were used for
RNA-Seq analysis.

Complementary DNA cDNA libraries were prepared from
1 lg of polyA RNA using the TruSeq Stranded mRNA kit
(Illumina) and the Sciclone NGSx Workstation (Perkin Elmer).
Prior to cDNA library construction, ribosomal RNA was removed
by means of poly A enrichment. Each library was uniquely bar-
coded and subsequently amplified over a total of 13 cycles of poly-
merase chain reaction (98°C for 10 s, 60°C for 30 s, 72°C for 30 s;
following the final cycle, samples were kept at 72°C for 5 min and
then held at 10°C). Library concentrations were quantified using
Qubit fluorometric quantitation (Life Technologies). Average frag-
ment size and overall quality were evaluated with the DNA1000
assay on an Agilent 2100 Bioanalyzer. Each library was sequenced
with paired-end 100-bp reads to a minimum depth of 30 million
reads on an Illumina NovaSeq 64000 sequencer. Sequences were
aligned with the National Center for Biotechnology Information
(NCBI) M. fascicularis genome (Macaca_fascicularis_5.0) by the
salmon aligner (version 1.2.1) with the following parameters: –
validateMappings –incompatPrior 1 –p 30 –useVBOpt –gcBias –
posBias –biasSpeedSamp 10. Transcript counts were read into R
using the Bioconductor tximport package, summarizing transcript
(NCBI RefSeq transcript) counts at the gene (NCBI Gene identifier)
level using length-scaled transcript permillion (TPM) abundances.

The differences in gene expression between exposed and con-
trol conditions were assessed using limma-voom pipeline from the
Bioconductor limma package71 in R (version 4.0; R Development
Core Team). Counts were scaled by effective library size and then
log2 transformed (log counts per million), after which a mean-
dependent variance estimate was computed for each observation,
the inverse of which was used as an observation-level weight to
control for the mean–variance dependence structure. There were
incomplete replicate measures for each animal, so data were ana-
lyzed using a weighted linear mixed model to account for intra-
animal correlations.72 Comparisons between groups (limited to
exposed or control groups, owing to the low sample size avail-
able) were made using empirical Bayes adjusted contrasts, and
the resulting p-values were adjusted using the Benjamini and
Hochberg method to control the false discovery rate (FDR).73

Genes with log2 fold change ðFCÞ>1:5 and p<0:05 were con-
sidered as significantly differentially expressed genes (DEGs),
and the most significant genes were identified with the additional
consideration of an FDR q-value of 0.05. The sequencing data
were deposited to Gene Expression Omnibus with the accession
number GSE163026.

To compare results across other published data, two compari-
sons were made: one for DEGs related to DA exposure, and one
for DEGs known to be associated with neuronal and glial cells. A
literature search was conducted to identify any genome-wide
studies reporting DEGs in the CNS. Three studies that met these
criteria were identified: one with acute DA exposure in mice74

and two others with acute75 or chronic76 exposure in zebrafish.
Genes linked to neural cells (including neurons and astrocytes)
were taken from the transcriptome database outlined by Cahoy
et al.77 Coefficients from other studies’ DEGs were extracted and
directionally compared with matching orthologs in the present
study.

Functional Enrichment Analysis for RNAseq
Gene Set Enrichment Analysis (GSEA; version 4.1) was performed
to assess functional enrichment in significant genes.78,79 Targeted
gene sets were developed (Table S2). Genes involved in neuronal
health, inflammation, or white matter and myelin as generated
from a published transcriptional database on these cell types,77

and excitoxicity genes were based on results from Pappas et al.80

RNAseq data and from literature searches were assembled and
input into GSEA. Using all ranked transcripts, 1,000 permuta-
tions were applied to assess the significance of gene sets. As rec-
ommended by the GSEA User Guide (https://www.gsea-msigdb.
org/gsea/doc/GSEAUserGuideFrame.html), gene sets with FDR
q<0:25 were considered as significantly enriched.

Figure 2. Representative rating scale (1–5) for Iba+microglia morphology, as collected across the experimental brain regions examined. Images represent ske-
letonized Iba-1+microglia and their assigned rating score as it related to the progressive change in morphology. Briefly, stage 1 represents cells that had light
cytoplasmic staining and limited branched processes; stage 2 represents cells that showed longer process and more branching; stage 3 represents cells that
showed denser staining morphology but maintained long processes; stage 4 represents cells that showed thicker and shortened processes; stage 5 represents
ameboid microglia that were almost globose and bore limited short processes. Note: Iba-1, ionized calcium binding adaptor molecule 1.
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Statistical Analyses
Quantified CBC measures and chemistry analytes were imported
into R (version 4.0; R Development Core Team). Individual ani-
mal relative changes of initial exposure and baseline were calcu-
lated for each analyte to account for individual animal variances.
Bartlett’s test was used to determine homogeneity of variance.
Dose effects of relative changes from baseline for CBCs and clin-
ical chemistry analytes, and microglia soma size, were analyzed
using a one-way analysis of variance (ANOVA). Dose effects
and the interaction effects of dose over time of relative changes
from Baseline for the cytokine and chemokines were analyzed
using a one-way, repeated-measures ANOVA. The categorical
rating scale data were analyzed by a chi-square test. Significance
was set at a Bonferroni-corrected p<0:05 using two-tailed tests.
Group n sizes are provided in figure legends or tables.

Results

Previously Reported General Health Assessments
As previously reported,39 the DA exposure schedule and dose did
not result in differences in BWs or general observational clinical

health assessments. There was no effect on conception or suc-
cessful pregnancy. No differences were observed in reactivity,
visual orientation, visual tracking, and reaching. Tremors with
reaching were associated with DA exposure.

CBC and Clinical Chemistry
CBC and serum chemistry values were examined by WaNRPC
veterinarians and determined to be within normal, healthy ranges.
Detection of nucleated RBCs was limited, and this measure was
excluded from the analysis. Levels of detection for all other CBC
and serum chemistry measures were acceptable in all samples.
No differences in changes of CBC (Table 1) and clinical chemis-
try measures (Table 2) were observed between DA-exposed
groups and controls.

Cytokine and Chemokine Blood Levels
Thirteen analytes [Eotaxin-3, GM-CSF, IFN-c, IL-1b, IL-2, IL-5,
IL-6, IL-8, IL-8 (HA), IL-10, IL-17A, TARC, and TNF-b] had
>80% of samples below the LOD and were not statistically ana-
lyzed. Levels of IL-7, IL-12/IL-23p40, IL-15, IL-16, CXCL10

Table 1.Median complete blood count measures (range).

Baseline Initial exposure

Controls
(n=8)

0:075 mg=kg per day
(n=10)

0:15 mg=kg per day
(n=10)

Controls
(n=8)

0:075 mg=kg per day
(n=10)

0:15 mg=kg per day
(n=10)

WBC (thousand=lL) 11.1 (7.1–12.3) 9.3 (6.6–12.5) 9.5 (5.7–13.2) 9.5 (5.7–13.2) 9.0 (6.3–15.7) 9.0 (4.5–13.2)
RBC (million=lL) 5.3 (5.2–5.7) 5.2 (4.8–5.7) 5.0 (4.2–5.5) 5.3 (4.6–6.0) 5.4 (4.5–5.9) 4.8 (4.6–5.7)
HGB (g=dL) 12.5 (11.2–14.0) 11.9 (10.2–13.5) 12.1 (10.7–13.4) 12.2 (10.6–15.0) 11.9 (10.6–13.6) 12.0 (9.3–14.4)
HCT (%) 42.0 (37.0–45.0) 40.0 (33.0–44.0) 39.0 (34.0–45.0) 41.0 (35.0–47.0) 39.0 (35.0–43.0) 40.0 (32.0–46.0)
MCV (fL) 78.0 (72.0–80.0) 75.0 (66.0–79.0) 81.0 (74.0–83.0) 78.0 (73.0–80.0) 74.5 (66.0–77.0) 79.0 (70.0–83.0)
MCH (pg) 23.8 (21.6–24.6) 23.4 (20.2–24.7) 24.5 (22.1–31.9) 23.5 (21.5–24.9) 22.8 (20.2–24.2) 23.8 (20.1–25.6)
PLT (thousand=lL) 389.0 (256.0–540.0) 503.5 (270.0–569.0) 393.0 (338.0–526.0) 385.0 (290.0–529.0) 461.0 (263.0–601.0) 432.0 (304.0–506.0)
Neut (thousand=lL) 5.0 (2.7–8.0) 4.4 (2.2–6.5) 3.7 (2.2–7.9) 5.2 (1.6–8.6) 3.4 (2.1–9.1) 2.8 (1.5–5.3)
Lymph (thousand=lL) 4.5 (2.7–8.0) 3.8 (2.8–6.5) 3.9 (1.4–6.7) 3.8 (2.0–7.5) 3.9 (3.0–6.2) 5.5 (2.0–8.1)
Mono (thousand=lL) 0.3 (0.3–0.6) 0.5 (0.3–0.9) 0.5 (0.2–1.1) 0.5 (0.3–1.6) 0.5 (0.2–0.8) 0.4 (0.2–0.9)
Eos (thousand=lL) 0.1 (0.0–0.4) 0.1 (0.0–0.5) 0.1 (0.0–0.4) 0.1 (0.0–0.5) 0.2 (0.0–1.1) 0.1 (0.1–0.4)

Note: Median complete blood count measures plus range in parentheses. Initial exposure time point was at day 73 of exposure. Basophils were counted for all animals and recorded at
0 thousand=lL. No significant changes were observed across dose groups when comparing individual differences in measures using a one-way ANOVA. ANOVA, analysis of var-
iance; Eos, eosinophil, HCT, hematocrit; HGB, hemoglobin; Lymph, lymphocytes; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; Mono, monocytes; Neut,
neutrophils; PLT, platelet blood count; RBC, red blood cells; WBC, white blood cells.

Table 2.Median serum chemistry measures (range).

Baseline Initial exposure

Controls
(n=7)

0:075 mg=kg per day
(n=10)

0:15 mg=kg per day
(n=9)

Controls
(n=7)

0:075 mg=kg per day
(n=10)

0:15 mg=kg per day
(n=9)

Sodium (mEq=L) 143.0 (141.0–146.0) 143.0 (141.0–148.0) 144.0 (141.0–147.0) 144.5 (141.0–148.0) 144.0 (143.0–148.) 145.0 (144.0–146.0)
Potassium (mEq=L) 3.6 (3.3–4.0) 3.7 (3.2–4.7) 3.6 (3.3–4.1) 3.8 (3.0–5.2) 3.6 (3.0–4.2) 3.8 (3.1–4.6)
Chloride (mEq=L) 105.0 (103.0–107.0) 105.5 (102.0–109.0) 107.0 (104.0–109.0) 107.5 (106.0–113.0) 109.0 (105.0–112.0) 109.0 (107.0–113.0)
Calcium (mg=dL) 9.8 (9.6–10.0) 10.0 (9.5–10.3) 9.3 (8.8–10.4) 9.6 (9.2–10.6) 9.6 (8.9–10.6) 9.3 (8.1–10.1)
Phosphate (mg=dL) 4.7 (2.9–5.8) 4.9 (2.9–6.2) 4.2 (2.0–5.1) 3.6 (2.4–5.3) 3.8 (1.8–5.3) 3.2 (2.1–4.4)
Cholesterol (mg=dL) 119.5 (96.0–167.0) 129.5 (81.0–167.0) 124.5 (76.0–154.0) 125.0 (116–223.0) 148.5 (105.0–201.0) 132.5 (112.0–181.0)
ALT (U/L) 31.5 (20.0–46.8) 32.0 (20.0–51.0) 33.5 (10.0–51.0) 36.0 (25.0–126.0) 28.5 (20.0–69.0) 34.5 (16.0–44.0)
AST (U/L) 36.0 (29.0–48.0) 38.5 (28.0–57.0) 39.5 (26.0–61.0) 37.0 (26.0–74.0) 30.0 (16.0–67.0) 38.5 (26.0–81.0)
GGT (U/L) 52.5 (39.0–71.0) 46.0 (36.0–61.0) 51.5 (24.0–73.0) 50.0 (37.0–62.0) 41.5 (33.0–58.0) 45.0 (22.0–69.0)
Glucose (mg=dL) 61.0 (49.0–77.0) 65.5 (51.0–73.0) 61.0 (41.0–81.0) 47.0 (13.0–75.0) 55.5 (24.0–91.0) 55.0 (15.0–76.0)
Blood urea nitrogen (mg=dL) 22.0 (17.0–28.0) 20.5 (19.0–26.0) 21.0 (14.0–27.0) 20.5 (15.0–24.0) 21.0 (13.0–25.0) 20.5 (17.0–30.0)
Creatinine (mg=dL) 0.7 (0.6–1.0) 0.7 (0.6–0.8) 0.7 (0.6–0.9) 0.7 (0.6–0.8) 0.8 (0.6–0.9) 0.6 (0.6–0.8)
Total protein (g=dL) 7.0 (6.3–7.6) 7.2 (6.6–7.5) 7.1 (6.0–7.8) 6.7 (6.1–7.8) 7.0 (6.2–8.0) 6.8 (5.3–7.5)
Albumin (g=dL) 4.0 (3.5–4.3) 4.0 (3.8–4.1) 3.8 (2.9–4.7) 3.8 (3.4–4.0) 3.9 (3.6–4.2) 3.7 (2.2–3.9)
Globulin (g=dL) 3.0 (2.7–3.3) 3.3 (2.5–3.5) 3.2 (2.5–4.3) 3.0 (2.4–3.9) 3.1 (2.6–4.1) 3.2 (2.4–3.8)
Total bilirubin (mg=dL) 0.2 (0.1–0.3) 0.2 (0.1–0.2) 0.2 (0.1–0.3) 0.2 (0.1–0.2) 0.2 (0.1–0.2) 0.2 (0.1–0.3)
Alkaline phosphatase (U/L) 122.5 (107.0–354.0) 174.5 (87.0–328.0) 119.0 (67.0–204.0) 116.5 (73.0–213.0) 147.0 (96.0–199.0) 108.5 (68.0–134.0)

Note: Median serum chemistry measures plus range in parentheses. Initial exposure time point at day 73 of exposure. No significant changes were observed across dose groups when
comparing individual differences in measures using a one-way ANOVA. ALT, alanine transaminase; ANOVA, analysis of variance; AST, aspartate aminotransferase; GGT, gamma-
glutamyl transferase.
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(IP10), MCP-1, MCP-4, MDC, MIP-1a, MIP-1b, and VEGF-A
were similar across groups prior to the start of exposure. There
were no effects of changes in levels that were associated with
dose or with dose over time, relative to Baseline at 2 wk, 6 wk, or
necropsy (Table 3).

MR Volume and Tractography
MR T1-weighted images were used to calculate the volume of key
gray matter structures associated with DA neurotoxicity, including
the hippocampus and thalamus. Results from the volumetric analy-
ses did not indicate significant differences in total cellular volume
in either the left or right hemisphere of gray matter structures in
DA-exposed animals as compared with control animals. Mean hip-
pocampal volume of the right hemisphere was 393.4± 14:3 cc
for the vehicle controls, 385:8± 12:5 cc for DA-exposed animals;
left hippocampal volume was 402:6± 15:8 cc for controls and
381:0± 15:6 cc for DA-exposed animals; right thalamic volume
was 496:1± 14:8 cc for controls and 513:8± 17:9 cc for DA-
exposed animals; and left thalamic volume was 501:2± 18:3 cc
for controls and 515:8± 20:2 cc for DA-exposed animals (Figure 3).
DTI tractography, a measure of the strength and direction of the
white matter fibers, between the hippocampus and thalamus
was assessed using a threshold clustering permutation to com-
pare exposure differences. Comparison using 500 permutations
and TFCE suggested that the strength and direction of the white
matter fiber tracts between these structures were not signif-

icantly different across groups (i.e., no clusters were identified
at a cutoff of p=0:05).

Histology and Immunohistochemistry
General examination of the brain indicated no overt signs of
gross pathology or abnormal color or differences in tissue size.
Histological examination of the fimbria, internal capsule, fornix,
nucleus accumbens, hippocampus, and thalamus showed a nor-
mal pattern of H&E staining with no evidence of eosin+cells that
would be indicative of cell death (Figure 4). Additional examina-
tion of CV staining showed Nissl granules dispersed throughout
the cytoplasm, with no indication of central chromatolysis (Figures
4–7). The overall LFB staining patterns of myelin in the fimbria,
fornix, and internal capsule were qualitatively similar across all ani-
mals, suggesting no evidence of demyelination (Figure 4).

Iba-1 immunoreactivity in the fimbria and internal capsule
suggested a normal pattern of microglia, showing a similar level
of complexity ranking at stage 1 across all animals (Figure 4). In
the fornix, Iba-1+cell bodies appeared more prominent in the
DA-exposed animals than in the controls; however, the cell proc-
esses of both groups all had a similar morphological ranking of
stage 1. Given the sparse number of cell bodies throughout the
fornix, we were unable to confidently quantitate the representa-
tive soma size of these cells. In other regions, microglia were
quantified in ROIs with ImageScope and rated according to the
scale in Figure 2, and group differences were assessed using a

Table 3.Median cytokine and chemokine measures (range).

Dose groupa Baseline Initial exposure 1 Initial exposure 2 Necropsy

IL-7 Controls (n=7) 0.74 (0.35–1.86) 0.90 (0.27–2.31) 0.38 (0.19–1.15) 0.37 (0.20–13.29)
0.075 (n=3) 0.75 (0.61–1.68) 1.08 (0.61–1.38) 0.98 (0.91–3.68) 1.22 (0.63–1.49)
0.15 (n=6) 0.92(0.27–6.95) 1.67 (0.38–9.93) 1.13 (0.57–2.32) 0.80 (0.21–2.27)

IL-12p40 Controls (n=7) 96.40 (52.79–182.60) 126.78 (48.60–179.33) 121.26 (50.47–227.91) 66.87 (32.20–125.55)
0.075 (n=3) 49.31 (36.24–80.50) 39.28 (38.38–92.43) 60.61 (42.62–70.51) 48.04 (27.45–64.73)
0.15 (n=6) 89.53 (37.85,159.21) 107.10 (44.16–140.18) 85.09 (31.77–204.71) 97.66 (51.94–158.40)

IL-15 Controls (n=7) 5.31 (4.86–7.12) 5.73 (5.31–7.29) 5.75 (4.65–8.47) 5.84 (4.50–6.71)
0.075 (n=3) 5.30 (4.90–6.20) 4.31 (4.06–5.15) 5.15 (3.98–5.17) 5.34 (4.18–6.85)
0.15 (n=6) 4.74 (3.95–8.31) 4.97 (3.59–7.04) 4.44 (3.81–9.13) 4.65 (4.08–5.07)

IL-16 Controls (n=7) 13.68 (8.50–28.33) 15.37 (14.13–24.24) 19.53 (7.81–24.39) 17.93 (8.02–83.41)
0.075 (n=3) 13.67 (8.21–39.48) 16.32 (6.36–46.63) 7.33 (5.91–15.70) 38.70 (23.54–54.61)
0.15 (n=6) 6.60 (2.99–22.72) 9.66 (7.78–852.96) 5.31 (3.64–18.65) 7.18 (2.10–13.11)

IP-10 Controls (n=7) 154.19 (110.02–261.05) 165.03 (106.36–188.35) 151.78 (120.88–253.95) 190.08 (120.63–384.88)
0.075 (n=3) 226.48 (182.16–279.34) 154.23 (132.17–192.74) 247.80 (168.34–558.66) 166.03 (121.70–497.51)
0.15 (n=6) 215.82 (113.25–1542.30) 169.61 (112.39–2870.78) 227.48 (96.50–285.18) 187.04 (150.55–847.08)

MCP-1 Controls (n=7) 35.88 (24.06–55.10) 38.12 (24.96–51.04) 36.21 (24.07–44.63) 27.61 (14.52–42.46)
0.075 (n=3) 40.48 (33.29–56.33) 31.80 (26.31–40.68) 32.57 (31.63–49.92) 31.50 (26.97–45.60)
0.15 (n=6) 33.41 (21.12–43.88) 33.10 (26.61–37.81) 38.32 (19.71–46.20) 29.01 (21.17–51.44)

MCP-4 Controls (n=7) 74.50 (11.73–152.45) 58.32 (8.82–105.24) 57.23 (5.07–91.75) 69.65 (9.69–92.85)
0.075 (n=3) 76.00 (61.01–94.94) 74.79 (52.28–87.74) 106.27 (58.30–112.84) 50.90 (41.03–56.22)
0.15 (n=6) 57.09 (19.57–71.52) 40.85 (24.89–70.42) 37.69 (24.89–110.81) 36.06 (14.90–67.41)

MDC Controls (n=7) 252.33 (189.63–699.38) 220.24 (197.12–652.52) 279.85 (178.23–546.13) 301.72 (216.92–466.46)
0.075 (n=3) 287.99 (261.95–298.91) 281.24 (243.00–294.76) 292.54 (277.88–357.63) 399.55 (300.25–554.81)
0.15 (n=6) 292.98 (103.34–364.60) 271.85 (136.10–373.51) 230.18 (107.71,351.27) 258.49 (162.63–283.38)

MIP-1a Controls (n=7) 8.85 (5.73–21.81) 10.84 (0.83–21.15) 8.11 (0.83–25.11) 9.04 (0.83–38.70)
0.075 (n=3) 13.50 (7.05–22.42) 19.69 (17.95–34.28) 16.67 (6.61–27.89) 14.10 (9.65–23.91)
0.15 (n=6) 7.32 (1.54–25.97) 8.77 (0.83–25.40) 5.16 (0.83–22.71) 10.66 (0.83–20.81)

MIP-1b Controls (n=7) 49.59 (34.70–70.27) 43.58 (34.99. 66.16) 34.08 (30.65–60.87) 52.32 (27.03–62.75)
0.075 (n=3) 45.24 (41.79–83.86) 61.88 (37.57–64.54) 45.81 (42.02–70.68) 48.61 (37.48–49.80)
0.15 (n=6) 32.33 (30.00–78.56) 34.81 (29.69–77.07) 33.04 (28.78–63.91) 35.04 (28.38–47.14)

VEGF-A Controls (n=7) 3.89 (2.70–4.52) 3.41 (2.40–4.90) 3.16 (1.62–4.34) 5.47 (4.17–7.27)
0.075 (n=3) 5.81 (3.62–6.45) 6.65 (3.16–7.88) 6.17 (3.45–8.81) 11.94 (5.15–13.58)
0.15 (n=6) 4.48 (1.45–139.73) 5.46 (2.35–109.55) 5.71 (2.53–150.65) 8.28 (4.62–97.73)

Note: Units for all analyte data are in picograms per milliliter (pg=mL). Median cytokine and chemokine measures plus range in parentheses. Initial exposure 1 was at day 15 of expo-
sure; Initial exposure 2 was at day 43 of exposure; necropsy was at an average of 425 d of exposure. Analytes with <20% of samples below the limit of detection are not included
[eotaxin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-c), interleukin ðILÞ-1b, IL-2, IL-5, IL-6, IL-8, IL-8 (HA), IL-10 IL-17A, CCL17
(TARC), tumor necrosis factor ðTNFÞ-b]. No significant changes were observed across dose groups when comparing individual differences in measures using a repeated-measures
one-way ANOVA. ANOVA, analysis of variance; IP, interferon gamma-induced protein; MCP, monocyte chemoattractant protein; MDC, macrophage-derived chemokine; MIP, mac-
rophage inflammatory protein; TARC, thymus- and activation-regulated chemokine; VEGF-A, vascular endothelial growth factor A.
aDomoic acid exposure in milligrams per kilograms body weight per day (mg=kgBW per day).
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chi-square test. In the hippocampus, Iba-1+microglia staining
within an 800-lm2 ROI ranked similarly between controls and
DA-exposed animals. Iba-1+microglia displayed a normal pattern
of cells with small soma and fine processes across all groups, rep-
resentative of a stage 1 morphology (Figure 5).

In the thalamus, Iba-1+microglia showed the characteristic
morphology of small cell bodies with fine ramified processes in
controls. However, in DA-exposed animals, a general morpho-
logical phenotype was characterized by larger cell soma and
extended primary processes (Figure 6). In the control thalamus
ROIs (800 lm2); the average cell body size was 5:1 lm2, with a
range of 2.6–7:6lm2. In DA-exposed animals, an average soma
size of 7:2lm2, with a range of 4.6–10:2 lm2, was observed. Of
the 20 cells evaluated for soma size in controls, the morphologi-
cal phenotype followed a pattern of small cell bodies with limited
fine processes (100% of cells stage 1). In DA-exposed animals,
the cells displayed an extension of processes and ramifications.
Most DA-exposed examined cells showed stage 2, representative
of the extended processes (80% or 16/20 cells per ROI). The
remaining 20% of cells (4/20 cells per ROI) displayed stage 1.
There was no evidence of a microglia morphology normally asso-
ciated with acute neuronal injury.

GFAP+astrocytes showed similar morphology in controls and
DA-exposed animals (Figure 4), characterized by small cell soma
with thin processes in the fibrous astrocytes of the white matter
or by shorter and thicker processes characteristic of protoplasmic
astrocytes in the gray matter. In the internal capsule, the staining
pattern was similar between control and DA-exposed animals. In
the fimbria and fornix, both fibrous and protoplasmic astrocytes
were observed. In the thalamus of DA-exposed animals, >50%
(range: 10–15 of 20) of the cells examined within the ROI
showed denser staining in the cell soma; only in 10% (range: 2–6
of 20) of the cells examined in the controls had similar staining.
In the hippocampus, GFAP immunostaining suggested a denser

staining pattern in the DA-exposed animals as compared with
controls (Figure 7). Assessment of astrocytes within an ROI
(500 lm2) was limited to morphological ranking and compared
using a chi-square test. In vehicle controls, GFAP+astrocytes dis-
played long processes and light staining of the soma (type 1). In
the DA-exposed animals, GFAP immunostaining of the cell soma
was prominent and representative of type 2. Although the cell body
of GFAP+astrocytes in the dentate gyrus of the hippocampus were
more prominent with DA exposure, there was no indication of reac-
tive astrocytosis or astrocyte hypertrophy (type 3) (Figure 7).

Sites of Incidental Microglia Reactivity
When reviewing all histology slides, isolated focal events ofmicroglia
reactivity/activationwere noted in some animals (Figure 8). Identified
clusters of Iba-1+microglia showed morphological differences in the
fornix, fimbria, thalamus, and nucleus accumbens. Three clusters
were in the thalamus of three animals (0:075-mg=kgBW per day
group, n=1, 0:15-mg=kgBW per day group, n=2), one of which
also showed a cluster in the fornix (0:15-mg=kgBW per day group).
Other individual animals each showed one additional cluster in the in-
ternal capsule (control), fimbria (0:075-mg=kgBW per day group),
and nucleus accumbens (0:075-mg=kgBW per day group). The
prominent morphology was consistent with a rating of between stages
3 and 5, aswould be expectedwith a focal response to injury. The asso-
ciated hematoxylin counterstain showed no indication of ongoing cel-
lular degeneration, and comparable examination in adjacent sections
showed no evidence of ongoing localized cell death or astrocyte hyper-
trophy. H&E staining of these areas in subsequent sections showed no
evidence of ongoing congestion ormeningeal hemorrhage (Figure S1).

RNA-Seq Transcriptome of the Hippocampus
A global profiling of the 17,734 Macaca fascicularis transcripts
from the hippocampus of DA-exposed animals (control, n=6;

Figure 3. Hippocampus and magnetic resonance (MR) image. A representative coronal slice of an animal with the transformed macaque atlas overlayed in the
same space.69 Highlighted regions show the hippocampus (yellow, solid) in the lower portion of the image and the thalamus (blue, hatched) located within
the middle of the image. Inserted data represent the mean volume±SEM from vehicle control (VC; n=6) and domoic acid-exposed groups (DA; n=6, 2 from
the 0:075-mg=kgBW per day group and 4 from the 0:15-mg=kgBW per day group) for each of the sites, as indicated by arrows. No significant differences
were observed across the VC and DA groups, using a two-tailed t-test. Units are in cc. Note: SEM, standard error of the mean.
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0:075-mg=kgBW per day group, n=2; 0:15-mg=kgBW per day
group, n=3; see Table S1) detected 291 up-regulated and 457
down-regulated transcripts that were suggestive of differential
expression (log-FC≥1:5 and p≤ 0:05), mapping to 547 unique
genes (Figure 9A,B; see Excel Table S1 for unique genes). Of
these, 9 DEGs also had an FDR q<0:05 (Figure 9C). Four genes
were up-regulated, including chitinase 3 like 1 (CHI3L1), early
growth response (EGR) 1 (EGR1), phospholipid phosphatase 2
(PLPP2), and CDC42 effector protein 1 (CDC42EP1). Another
five genes were down-regulated: phytanoyl-CoA dioxygenase
domain containing 1 (PHYHD1), integrin subunit beta like 1
(ITGBL1), transmembrane protein 100 (TMEM100), dopamine
receptor D2 (DRD2), and vestigial like family member 3
(VGLL3).

To compare DEGs (log-FC≥1:5 and p≤ 0:05) in the present
study to those that have been previously reported, we conducted
a literature search for genome-wide studies reporting DEGs in
the CNS, ultimately identifying three relevant studies: one with
acute DA exposure in mice74 and two others with acute75 or
chronic76 exposure in zebrafish. We identified 14 overlapping
DEGs between these studies and our data (Figure 9D). Three of
these overlapping DEGs were expressed in the same direction as
previously reported: fos proto-oncogene (FOS) and EGR4 were
up-regulated; regulator of G protein signaling 9 (RGS9) was
down-regulated. DEGs that have previously been implicated in
models of DA toxicity,74–76 including the early response proto-
oncogene, JUNB, glutamate receptor genes (of the GRIA and
GRIK families), and genes related to inflammation [genes for

Figure 4. Representative images of staining of 10% formalin-fixed, paraffin-embedded, 10-lm sections of the fimbria, fornix, and internal capsule for general
cellularity by hematoxylin and eosin (H&E); myelin by Luxol fast blue (LFB); microglia by ionized calcium binding adaptor molecule 1 (Iba-1; 1:2,000;
Wako Chemicals, see arrow); and astrocytes by glial fibrillary acidic protein (GFAP; 1:7,000, Dakocytomation, see arrow) from female Macaca fascicularis
following prolonged exposed to domoic acid (0:15-mg=kgBW per day) or vehicle (5% sucrose). Scale bar:100 lm.
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cyclooxygenase (COX), S100B, and nuclear factor kappa B
(NFjB)], were notably absent from the present study’s list of
DEGs. There were some suggestions of an up-regulation of genes

for the surface receptor expressed by myeloid cells and immune
response regulator, CD300E, and the glucagon like peptide 2 re-
ceptor, GLP2R, but these did not meet the FDR q-value cutoff of
0.05. A similar suggestive down-regulation was observed in adeno-
sine receptor gene, ADORA2A, insulin-like growth factor 2 (IGF2),
and IGF binding protein 5 (IGFBP5). One glutamate receptor gene
for N-methyl-D-aspartate (NMDA)-type receptors (GRIN2B) was
identified as an up-regulated DEG. No glutamate transporter genes
(including SLC1A1, SLC1A2, SLC1A3, SLC1A6, and SLC1A7)
were identified as DEGs.

To gain a better representation of the overall gene profile differ-
ences in the hippocampus with DA exposure, GSEA was con-
ducted to identify the pathways represented across the four author-
curated lists of genes related to a) general neuronal health, b) exci-
totoxicity, c) inflammation/glia, and d) myelin, axons, and white
matter (Table S2). From these curated gene lists, three sets trended
toward down-regulation in DA-exposed animals (neuronal health,
excitotoxicity, inflammation), but they did not meet the FDR cutoff
of 0.25 (Table 4). The myelin, axons, and white matter set was
found to be significantly up-regulated in DA-exposed animals
(q<0:25). This suggests that the set of genes in the myelin, axons,
and white matter list were overly represented in the highest FC
ranking of all transcripts examined (Figure 10A). Localized LFB
staining for myelin indicated no histological evidence for hypo-
myelination (Figure 10B). Of the genes in this list, five were
expressed with a log-FC≥1:5 and p≤ 0:05 (Figure 10C), including
kallikrein related peptidase 6 (KLK6), myelin associated glycopro-
tein (MAG), galactose-3-O-sulfotransferase 1 (GAL3ST1), and
myelin and lymphocyte protein (MAL). Conversely, a down-
regulation was observed for neuregulin 1 (NRG1).

Discussion
Although the excitotoxic properties of acute DA exposure have
been well established in the nonhuman primate model,16,17,81–87

lower levels of exposures had not been associated with signs of tox-
icity38 until more recently.39,43,52,88 Now, subtle effects resulting
from prolonged exposures are of increasing concern.89,90 Using
exposures equivalent to the human regulatory limit20–23 and

Figure 5. Hippocampal Iba-1 immunoreactivity. Representative images of im-
munostaining of 10% formalin-fixed, paraffin-embedded, 10-lm sections for
Iba-1+ (1:2,000; Wako Chemicals) microglia in the hippocampus of female
Macaca fascicularis following prolonged exposed to domoic acid
(0:15-mg=kgBW per day) or vehicle (5% sucrose). Images represent the hip-
pocampus (scale bar: 2,000 lm) and specific hippocampal regions, including
the dentate gyrus (scale bars: 200 and 100 lm) and the CA3 and CA1 pyrami-
dal cell layers (scale bar: 100 lm). Immunoreactivity was visualized with
Vectastain Elite and shows as darker process-bearing cells within the image.
Sections were counterstained with cresyl violet (CV). Note: CA, cornu ammo-
nis area; Iba-1, ionized calcium binding adaptor molecule 1.

Figure 6. Differences in glial morphology in the thalamus. Representative images of staining of 10% formalin-fixed, paraffin-embedded, 10-lm sections of the
thalamus for cresyl violet (CV) and immunohistochemistry ionized calcium binding adaptor molecule 1 (Iba-1; 1:2,000; Wako Chemicals) microglia; and glial
fibrillary acidic protein (GFAP; 1:7,000, Dakocytomation) astrocytes from female Macaca fascicularis following prolonged exposed to domoic acid
(0:15-mg=kgBW per day) or vehicle (5% sucrose). Immunoreactivity was visualized with Vectastain Elite and sections were counterstained with CV. CV
staining showed no evidence of differences in the distribution of Nissl substance. Representative immunoreactive cells for Iba-1 or GFAP display as darker
stained cells. Scale bar: 100 lm.
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contemporary human exposures,28 previous experimental work
with macaques found unexpected clinical effects manifesting as
increased intention tremors after prolonged, daily exposure toDA.39

Additional work with this cohort suggested that there were also
subtle differences in in myelin tract integrity that were related to
tremor frequency43 and differences in the electrophysiology52 of
exposed animals. In the present study, the overall pattern obtained
from the data from blood chemistry and cytokine levels suggested a
lack of any overt systemic damage after low-level prolongedDAex-
posure. Yet data obtained by histological examination and RNAseq
suggested a possible adaptative response in the brain to combat the
subtle effects from DA. Thus, it is likely that the mild differences

observed were a manifestation of compensatory responses or sur-
vivalmodalities against neurodegeneration.

Myelinated axons in the CNS are the “highways” of communi-
cation across cortical and subcortical regions, and healthy myelin
sheathes facilitate this communication. The importance of myelin
integrity is evident in various types of brain insults, multiple scle-
rosis, and age-related functional cognitive decline.91 White matter
FA is a measure fromDTI that is related to structural integrity and,
in humans, is often used as an index of white matter health.92

Earlier work with the current cohort of monkeys assessed the
whole-brain relationship to the DA-related tremors and suggested
a negative correlation between tremors and voxel-wise FA in the

Figure 8. Focal sites of microglia reactivity. Representative images of Iba-1 immunopositive microglia in 10% formalin-fixed, paraffin-embedded, 10-lm sec-
tions at focal sites of reactivity in the thalamus, fornix, fimbria, internal capsule, and nucleus accumbens of female Macaca fascicularis following prolonged
exposed to domoic acid (0:15-mg=kgBW per day) or vehicle (5% sucrose). Representative image of the nucleus accumbens in vehicle control is included for
comparison. Representative images for the vehicle control fornix, fimbria, internal capsule, and thalamus are provided in Figures 4 and 6. Numbers correspond
to Animal Numbers in Table S1. A15244 and A16106 were in the 0:15-mg=kgBW per day group; A15249, A16107, and A16106 were in the
0:075-mg=kgBW per day group; and A15428 was in the control group. Microglia were immunostained with antibody to Iba-1 (1:2,000; Wako Chemicals) fol-
lowed by IgG antibody, visualized with Vectastain Elite (brown), and counterstained with cresyl violet (CV). Scale bar: 100 lm.

Figure 7. Immunohistochemistry for GFAP+astrocytes in the hippocampus. Representative images of immunostaining of 10% formalin-fixed, paraffin-embedded,
10-lm sections for GFAP+astrocytes (1:7,000; Dakocytomation) in the hippocampus of female Macaca fascicularis following prolonged exposed to domoic acid
(0:15-mg=kgBW per day) or vehicle (5% sucrose). Images represent the hippocampus (scale bar: 2,000 lm) and the dentate gyrus (scale bar: 100 lm). Note:
GFAP, glial fibrillary acidic protein.
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fornix and internal capsule (major white matter tracts connecting
the hippocampus and thalamus to other parts of the brain).43 Low
FA scores are indicative of either direct damage to the myelin/axo-
nal tracts or the replacement of axonal bundles with other cells
(i.e., glia).93,94 The absence of differences currently observed with
region-specific tractography and LFB staining for myelin suggests
that the whole-brain differences in white matter integrity were not
reflective of overt demyelination/hypomyelination. Instead, previ-
ously reported whole-brain FA differences may be related to an al-
ternative mechanism, such as an inflammatory response or a
response of the axon itself.95

An adaptive process in the myelin can also represent a form
of neural plasticity, with ongoing activity-dependent changes to
myelin, which may be influenced by the underlying axon.96

RNAseq analyses from the hippocampus suggested an overall
up-regulation of genes related to white matter, myelin, and axons,
but whether this represented differences within the myelin sheath
or the underlying axon is not known, especially given that genes
for structural myelin proteins were similar between control and
exposed animals. This evidence does, however, provide addi-
tional support for the earlier finding in these monkeys of an
altered white matter integrity on MR imaging.43 Myelination can

Figure 9. RNAseq transcriptional profiling of the hippocampus from female Macaca fascicularis following prolonged exposed to domoic acid (DA) or vehicle
(5% sucrose). (A) Volcano plot shows differential expression between DA-exposed and unexposed groups. Each dot represents one gene. As indicated by the
text, significantly down-regulated genes are highlighted on the left side and up-regulated gene are highlighted on the right side (log2-FC >1:5 and p≤ 0:05).
Genes along the middle indicate that expression was not significantly changed. (B) Heatmap shows significantly differentially expressed genes in both the
exposed animals (left) and control animals (right). Each column represents an individual animal. A14392, A15244, and A15234 were in the
0:15-mg=kgBW per day group, and A14400 and A16113 were in the 0:075-mg=kgBW per day group. Blue highlighting indicates lower expression level and
is observed in the upper two-thirds of the distribution for DA-exposed animals as compared with the lower one-third of the vehicle control animals. The red
indicates high expression level and is an inverse distribution to those genes showing lower expression levels. The key in the upper right corner of the image
provides the density gradient for the blue (lower) and red (upper). (C) Significant genes with a false discovery rate (FDR) of <0:05. All genes in this table had
a p<0:001. (D) Significant genes previously reported to be differentially expressed in either a) mice,74 b) acute zebrafish,75 or c) chronic zebrafish76 after DA
exposures. Bolded values indicate genes that were differentially expressed in the same direction across the previous studies. *Denotes unspecified homologous
RAB gene identified in zebrafish. Note: FC, fold change; RNAseq, RNA sequencing.

Table 4. Gene set enrichment results.

Gene set Number of genes in set Enrichment score Normalized enrichment score Normalized p-value FDR

Up-regulated
Myelin and white matter 33 0.65 2.06 <0:001* <0:001*

Down-regulated
Neuronal health 17 −0:46 −1:12 0.46 0.68
Excitotoxicity 57 −0:42 −1:23 0.50 0.45
Inflammation and glia 27 −0:36 −0:96 0.52 0.89

Note: Results from Gene Set Enrichment Analysis (GSEA) using four gene sets (listed in Table S2). Enrichment score reflects degree to which a defined gene set is overrepresented at
the top or the bottom of total ranked data set of transcripts. Normalized enrichment score accounts for differences in the size of gene set and can be used to compare across gene sets of
interest.78,79 Significantly enriched set is denoted by an asterisk. FDR, false discovery rate.
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also be influenced by glutamate signaling,95 the known toxic
mechanism of acute DA toxicity, but the molecular profile of the
hippocampus was largely absent of DEGs related to glutamate
signaling. Yet, the single significant gene in the myelin network
that was down-regulated, NRG1, acts as a switch for myelination
processes that are either glutamate signaling dependent or inde-
pendent,97 providing a possible cell–cell communication link
between the known mechanisms of action of DA and myelin sta-
bility. It is possible that, as a hallmark of prolonged low-level
DA neurotoxicity, differences in myelin integrity could reflect
multiple adaptations across the brain that contribute to the cogni-
tive decline observed in humans commonly exposed to low levels
of DA.24–27 Results from other models have also noted white
matter effects; white matter differences have been observed with
developmental DA exposure in zebrafish98 and with naturally
exposed feral sea lions experiencing memory difficulties.99,100 As
the field gains a better understanding of the process of adaptive
myelination and neural function, applying this knowledge to
assess adverse health effects in the human population may bolster
knowledge for effective preventative or intervention strategies.

Although therewas a tacit assumption that the neurotoxic effects
of DA would be related to its glutamatergic excitotoxic properties,
we observed no histological evidence of an excitotoxicity-
associated neuronal death or microglia response. Except for a single
gene (GRIN2B), expression of genes related to glutamate receptors
and signaling were also largely the same between controls and DA-
exposed animals. The molecular response did, however, suggest
DA-related differences in the expression of genes that are connected
to regulatory functions and cell proliferation, rather than cellular
degeneration. For example, many of the top up-regulated DEGs
identified play important roles in tissue remodeling (CHI3L1),
cytoskeletal function (CDC42EP1), and phospholipid production

(PLPP2). In addition, the up-regulation of immediate early genes
(e.g.,FOS and EGR families) can be reflective of a rapid response to
address mechanisms associated with brain plasticity and memory
formation, as well as injury response.101–103 Immediate early genes
have also been implicated in acute responses to DA in both rodent
models74–76,85,87,104,105 and nonhuman primates.84 In the present
study, FOS, FOSB, EGR1, EGR2, and EGR4 were significantly
higher in the hippocampus when comparing DA-exposed to control
animals, which may reflect neural efforts to regulate multiple proc-
esses in the brain that are normally not associated with DA-induced
excitotoxicity. Alternatively or concurrently, they may reflect the
adaptative changes in astrocytes that occurred with chronic, low-
level DA exposure. Accordingly, three of the statistically significant
genes (p<0:05) found in DA-exposed animals that were related to
astrocytes, includingADORA2A, IGF2, and IGFBP5, are associated
with astrocyte interactionswithmicroglia106 and neurons,107 aswell
as the regulation of IGF receptor signaling.

Astrocytes help regulate local interactions with multiple CNS
components, including synapses, blood vessels, and other glial
cells.108 These cells express a wide repertoire of receptors, trans-
porters, and other molecules that are essential for metabolic and
homeostatic functions and synaptic regulation.109,110 Their involve-
ment in brain state transitions occurs through the release of glio-
transmitters and regulation of extracellular potassium influencing
the neuromodulatory networks.111 Astrocytes are morphologically
complex cells displaying an intricate arborization that is sensitive to
the environment.112–114 In response to injury or other environmental
assaults, astrocytes often undergo a rapid and often reversible struc-
tural remodeling response, but the full astrocyte hypertrophy that
typically accompanies robust neuronal death is not required for a
functional astrocyte response.115 Over the course of aging, the
human brain has demonstrated an increased density of astrocyte cell

Figure 10.White matter response to domoic acid. (A) Gene Set Enrichment Analysis (GSEA) plot. The enrichment profile across all genes in that set from
GSEA is shown in the upper panel curve, with the significant genes demarked underneath by black vertical lines and a scale representing genes up-regulated
on the left (red) to those down-regulated on the right side (blue) of the panel. (B) Representation image of Luxol fast blue (LFB) staining for myelin in the hip-
pocampus of vehicle control and domoic acid-exposed animals. (C) Significantly differentially expressed genes from the white matter GSEA list by log2 FC.
Note: Diff, difference; FC, fold change.
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bodies, similar to what was observed in the present study, suggest-
ing a biological response.70

For DA exposure, the patterns of astrocyte reactivity in pri-
mates87 and rodents32,116,117 have been primarily characterized
by elevated levels of GFAP immunoreactivity and shifts in cell
morphology that are reflective of hypertrophy, but a nonhypertro-
phic response in the monkey hippocampus has also been
reported, occurring 6 months after a single, IV injection of DA
(0.055 mg DA/kg BW).118 In that instance, astrocytes from DA-
exposed animals displayed a different GFAP staining pattern that
showed evidence of inducing an acute CNS injury. This pattern
was remarkably similar to that observed in the present study.
These astrocytic responses, in absence of cooccurring neuronal
death, may reflect a prolonged response to an earlier event.
Alternatively, the pattern observed in the present study may rep-
resent a gradual morphological transformation without frank
astrogliosis, as has been observed in normal human aging.70 It is
not known, however, if the morphological characteristics of the
astrocytes represent a residual response that was initiated early in
the exposure paradigm or, alternatively, a response that develops
over time. In other models of prolonged exposure, weekly expo-
sure for 22 wk in mice (0.75 mg DA/kg intraperitoneally) and for
>36 wk in zebrafish (0.31 mg DA/g once a week for 6 wk, then
0.18 mg DA/g once every other week for 30 wk) did not result in
any changes in neurons or GFAP+astrocytes.38,73 Other molecu-
lar and protein level changes were documented in these studies,
namely, increases in the glutamate transporter, VGluT1, in syn-
aptic boutons in the mice38 and altered transcriptomic profile and
mitochondrial function in zebrafish brains.73 In the monkey, pro-
longed, low-dose DA exposure may represent a subthreshold
level of glutamatergic signaling that is insufficient for neuronal
excitotoxicity but adequate to stimulate a response from astro-
cytes. This response could be either directly caused by glutamate
or, more so, an interaction with the neurons.

Although the primary site of damage with an excitotoxin is
the hippocampus, an involvement of the thalamus has also been
implicated in acute DA neurotoxicity in nonhuman primates86

and rats.32,119,120 In the present study, no evidence of neuronal
death or related astrocyte hypertrophy or microglia activation
was observed in the thalamus. Instead, we observed a distinct dif-
ference of DA-exposed microglia morphology characterized by
larger soma size and extended processes that, when combined
with the absence of an acute injury phenotype, may represent
cell–cell interactions required for maintaining regulatory func-
tions and neuronal survival.121–123 Alternatively, this may repre-
sent direct actions of DA on microglia.34,35,124,125 Although the
thalamus was not a focus for molecular profiling, the subtle dif-
ferences observed in microglia and astrocytes suggested that
identifying DEGs in the thalamus would be beneficial in deter-
mining the underlying nature of the response and possibly identi-
fying compensatory gene responses.

Multifocal microscopic hemorrhages absent of cellular necro-
sis or apoptosis have been observed in sea otter brains after natu-
ral exposure to DA,126 and the authors suggested that these were
indicative of previously active damage in response to subacute or
chronic exposure to DA. In the present study, focal sites of injury
(cluster reactions of microglia) were observed across multiple
DA-exposed animals, in the thalamus, fornix, fimbria, and nu-
cleus accumbens. These reactions likely represented an a priori
event; they appeared without colocalized cell death or astrocyte
hypertrophy and without indications of congestion or meningeal
hemorrhage. In cases of mild hemorrhagic or neurovascular
injury, prolonged microglia activation contributes to performing
a clearance and repair task.127–129 Although imaging for the neu-
rovasculature was not conducted, there was no indication of

infiltrating blood-borne cells. Thus, the focal microglia responses
observed could have been in response to prior relatively minor
and short-lived vascular insults.

Human Health Implications
Current regulatory limits for DA were designed to protect adults
against overt toxicity associated with acute, high-dose exposures.
Since 1987, they have been successful in preventing cases of
human acute poisonings.130 Yet with changing climatic patterns
that have triggered longer-lasting DA–algal blooms,131,132 there
is an increasing chance that repeated DA exposure may occur at
closer and closer intervals, resulting in a greater level of human
exposure. Accordingly, the public health concern has shifted
focus to protecting vulnerable populations who are exposed to
low levels of DA for prolonged periods of time (some for a life-
time). Given the environmentally relevant exposure levels and
route of exposure used in the present study, the findings sug-
gested that subacutely toxic levels of DA exposure were not
absent of neurological effects but, rather, were sufficient to induce
the system to respond to the low-level insult. The chronic nature
of this activation may alter the ability of the nervous system to
respond to subsequent insults, potentially shifting the underlying
risk for other age-related health effects, such as neurodegenera-
tive and neurovasculature disorders. Future regulatory guidance
on DA should consider these findings and the fact that even
smaller shifts in cell activation or response can impact future
responses to environmental exposures and diseases. The long-
term consequences of such shifts should be taken into considera-
tion and addressed with regard to the health risks of affected pop-
ulations, especially coastal Native American and Indigenous
populations who have not been traditionally included in the pol-
icy development and regulation regarding this common marine
toxin.
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