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On 18 August 1961, the Santa Cruz Sentinel reported1 that thou-
sands of “crazed seabirds” were diving into lamp posts, buildings,
cars, and streets to their death on the shores of North Monterey
Bay, California. The birds appeared to be confused and disori-
ented, exhibited seizure activity, and flew at terrified residents.
Eight people were bitten, but none suffered a related illness. Alfred
Hitchcock contacted the newspaper for details. As the story is told,
the Hollywood movie producer used the incident as research mate-
rial for the classic 1963 thriller The Birds. About 30 years later it
was established that the culprit of this extreme event was an algal
bloom of Pseudo-nitzchia, select species of which produce domoic
acid (DA).2 DA is a potent neurotoxin that bioaccumulates in
filter-feeding shellfish and subsequently enters the food web. DA
has been responsible for multiple mass illness and mortality events
of shore birds3 and marine4–6 and coastal-dwelling mammals,7 par-
ticularly on the U.S. Pacific Coast. These events provided opportu-
nities to capture the naturally occurring physical, physiological,
neurologic, cardiac, and behavioral impacts ofDA exposure, aswell
as advance understanding of delayed effects, reexposures, and reha-
bilitation possibilities.8,9 Laboratory studies of zebrafish, shellfish,
marine mammals, and mice further expanded the capacity for hy-
pothesis testing relevant to protecting public health.10–12 Nonhuman
primate studies, such as that presented by Petroff et al.8 in this issue
of Environmental Health Perspectives, represent a unique opportu-
nity to improve understanding of an important contemporary issue:
the neural mechanisms underlying chronic exposure to presumably
safe levels ofDA.

The potential risk of domoic acid to human health was first
discovered in Montreal, Canada, in 1987. People who consumed
mussels harvested from the Prince Edward Island region with
high levels of DA suffered the acute onset of severe gastrointesti-
nal and neurologic symptoms, which in some cases included seiz-
ures, coma, and even death.13,14 Many survivors were left with a
permanent anterograde memory disorder, amnesic shellfish poi-
soning (ASP). Autopsy findings of patients with ASP and early
nonhuman primate studies identified damage to the hippocampus
as central to seizures and memory problems associated with DA
neurotoxicity.14,15 In the aftermath of this outbreak, extensive
research using shellfish, rodent, and nonhuman primate models
helped establish current regulatory limits of 20 ppm, ostensibly
preventing new cases of ASP.16–19

However, the evidence collected over the past decade—which
came from epidemiological cohort studies of at-risk Native
American communities,20–22 surveys of recreational and subsist-
ence razor clam harvesters,23 and risk assessments,24 combined
with zebrafish25 and rodent,26,27 models—indicates that repeated,
chronic exposure to DA at presumably safe levels (<20 ppm)
may have neurotoxic effects impacting many people. Studies of
coastal Native American communities with repetitive, low-level
exposure for up to 8 y identified the hallmark memory problems
associated with ASP in attenuated form.20,21 Similarly, problems
with spatial memory were found in mice exposed to low levels of
DA in the absence of other neurologic symptoms.10 A key finding
of this mouse study was the reversibility of the spatial memory
problems with exposure cessation, signaling optimism for chroni-
cally exposed people.

Petroff et al.8 conducted many studies in their effort to identify
the neural mechanisms of repeated dietary exposure to lower levels
of DAupon brain systems, behavior, and adaptation in adult female
Macaca fascicularis monkeys. The investigators did not find the
expected hippocampal excitability in the low-dose monkeys com-
pared with controls. They also did not find differences in hippo-
campal and thalamic volume connectivity based upon in-life
magnetic resonance imaging. What they did find was a “subtle
shift” in the molecular profile of the hippocampus, as well as in the
microglia phenotype of the thalamus. With appropriate caution,
the investigators interpreted this as an adaptive or compensatory
response to lower-level DA exposures over time. This could poten-
tially explain the relatively small effect size of memory decline in
similarly exposed people. Moreover, it highlights the critical
role of the thalamus in the physiological adaptation and recovery
of cognitive functions after disruption that have been similarly
reported after mild traumatic brain injury.27 The authors also con-
sidered the extent to which these adaptations increase vulnerability
to subsequent brain insults, including aging, thus also contributing
to the evolving science of brain reserve capacity.28

The DA story started with birds and a movie. Along the way,
investigative efforts using rodents, fish, marine mammals, wildlife,
nonhuman primates, and cohorts of at-risk people complemented,
challenged, and advanced science toward the goal of protecting pub-
lic health. These integrated efforts need to continue toward identify-
ing a simple, reliable biomarker for human exposure assessment;
establishing human thresholds for neurotoxicity across the life span;
reevaluating current DA regulatory levels for vulnerable popula-
tions; further examining the reversibility of chronic exposures; elu-
cidating the interactions of repetitive low-level DA exposure with
aging, other exposures, or illnesses; and identifying robust models
of community engagement and education.
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