Skip to main content
. 2022 Sep 15;129:109625. doi: 10.1016/j.asoc.2022.109625

Table 5.

The quantitative examination of various segmentation strategies utilizing the (The satisfactory values are featured in strong face).

Index Image Applied algorithm Count of the clusters
3 5 7 9
Davies–Bouldin Average
(310 images)
Efficient GA [97] 2.057389792 2.341342543 2.631067668 2.182999317
Adaptive PSO [96] 1.466742939 2.262712553 2.300312783 1.649374921
Beam-ACO [95] 1.49016067 1.906178838 2.109355593 1.852796881
MCS method [98] 2.125579881 2.355334741 1.756786889 1.832064307
HHO method [99] 1.615224562 1.702627053 2.204451965 2.647738311
GWO approach [100] 1.835247126 1.767716428 2.946051439 2.722753129
Whale optimization [101] 1.767607021 2.528863859 2.803699012 2.316640263
Chimp optimization [102] 2.415340941 2.350907067 2.433318413 2.553789173
Neural network based segmentation [103] 1.606792734 1.693970454 1.542606235 2.297489919
SUFEMO (Proposed) 1.421301735 1.812008792 1.687189337 1.502481616

Xie–Beni Index Average
(310 images)
Efficient GA [97] 1.624786762 1.709276519 2.207538007 2.649905004
adaptive PSO [96] 1.849336068 1.786084272 2.948651807 2.735604899
Beam-ACO [95] 1.784413031 2.534017353 2.806131272 2.335561186
MCS method [98] 2.435244805 2.353755926 2.446036152 2.554270162
HHO method [99] 2.038041 2.334152 2.612432 2.9165278
GWO approach [100] 1.448495 2.246186 2.295493 2.631099
Whale optimization [101] 1.475947 1.904366 2.105878 2.833088
Chimp optimization [102] 2.107597 2.351055 2.754129 2.819813
Neural network based segmentation [103] 1.61375 1.683281 2.044525 2.595974
SUFEMO (Proposed) 1.628119075 1.697662119 2.246409944 2.310486157

Dunn index Average
(310 images)
efficient GA [97] 1.326722693 2.295283281 2.334360301 2.013982282
Adaptive PSO [96] 1.517242172 1.803836769 1.405798931 1.331685373
Beam-ACO [95] 1.458856701 1.438020506 2.154291777 2.655296748
MCS method [98] 1.906901194 1.853224645 2.831798973 3.028592536
HHO method [99] 1.230797 1.306074 2.353937 2.016582
GWO approach [100] 1.726747 1.815292 1.9218 2.244343
Whale optimization [101] 1.459989 1.552861 2.455488 2.763597
Chimp optimization [102] 2.122828 1.66564 2.44328 2.732422
Neural network based segmentation [103] 2.546459 2.504361 2.362737 2.28769
SUFEMO (Proposed) 2.584698504 2.588595748 2.350004016 2.868974087

β index Average
(300 images)
Efficient GA [97] 0.48298906 1.855825929 1.935245603 1.513778012
Adaptive PSO [96] 2.199301495 2.028453938 2.538635827 2.158815625
Beam-ACO [95] 1.442986088 2.053681742 1.724977482 1.834309177
MCS method [98] 2.749255434 2.711009201 3.993628751 2.967283554
HHO method [99] 2.486583 2.864695 2.941107 1.92769
GWO approach [100] 2.517785 2.947065 2.855919 2.859128
Whale optimization [101] 2.954762 2.367244 2.728644 2.449435
Chimp optimization [102] 2.766324 2.521449 3.011658 2.969639
Neural network based segmentation [103] 2.849432 3.157295 3.77819 2.936146
SUFEMO (Proposed) 2.830809221 3.142069236 3.790172244 2.993016698