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Abstract

Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other 

birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. 

This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm 

development. Here, we used clinical and molecular data from 36 individuals with CDH+ who 

are catalogued in the DECIPHER database to identify genes that may play a role in diaphragm 

development and to discover new phenotypic expansions. Among this group, we identified 

individuals who carried putatively deleterious sequence or copy number variants affecting 

CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development 

was supported by their expression in the developing mouse diaphragm, their similarity to known 

CDH genes using data from a previously published and validated machine learning algorithm, 

and/or the presence of CDH in other individuals with their associated genetic disorders. Our 

results demonstrate how data from DECIPHER, and other public databases, can be used to identify 

Hardcastle et al. Page 2

Am J Med Genet A. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a 

role in diaphragm development.

Keywords

Congenital diaphragmatic hernia; diaphragmatic eventration; CREBBP ; SMARCA4 ; UBA2 ; 
USP9X ; DECIPHER database

INTRODUCTION

Congenital diaphragmatic hernia (CDH) is a life-threatening structural birth defect with 

an incidence of approximately 1 in 4,000 (Langham et al., 1996). CDH is defined as an 

abnormal opening in the diaphragm that allows the abdominal viscera to protrude into 

the thorax. Here we will use an expanded definition that also includes diaphragmatic 

eventrations in which the diaphragm continuity is not disrupted, yet the diaphragm is 

abnormally elevated, often due to a defect in diaphragmatic muscularization (Clugston & 

Greer, 2007). In isolated cases, CDH is the only defect identified. In contrast, individuals 

with CDH+ have both a diaphragmatic defect and one or more, non-hernia-related 

anomalies. Advances in copy number variant detection and next generation sequencing 

technologies have made it possible to identify a molecular etiology in many individuals with 

isolated CDH and an even higher percentage of individuals with CDH+ (Scott et al., 2021; 

Wat et al., 2011).

In some CDH cases, failure to identify a molecular etiology is due to an incomplete 

understanding of the genes that can contribute to diaphragm development. Genes that 

are associated with high penetrance of CDH can be readily identified through standard 

gene discovery methods in which recurrent clinical phenotypes identified in cohorts of 

patients carrying deleterious changes affect a specific candidate gene (Qi et al., 2018). 

Low penetrance CDH genes are much harder to identify using these methods, particularly 

if the genetic disorders caused by these gene are relatively rare. In such case, additional 

evidence that a gene contributes to the development of CDH may come from mouse models, 

individual case reports, expression data, and/or bioinformatic studies (Scott et al., 2021).

Here we use publicly available clinical and molecular genetic data from individuals 

cataloged in the DECIPHER database (https://www.deciphergenomics.org/) to identify 

phenotypic expansions involving CDH (Firth et al., 2009). Our results provide evidence 

that deleterious variants in CREBBP, SMARCA4, UBA2, and USP9X are associated with 

CDH+.

MATERIALS AND METHODS

Ethical Approval

Publication of anonymized data from Subjects 1–16 and 19–38 was approved by the 

Institutional Review Board of Baylor College of Medicine (protocol H-47546). Subjects 

17 and 18 were accrued into a research protocol approved by Institutional Review Board of 

Columbia University (protocol AAAB2063) after obtaining written informed consent.
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In all cases, research was performed in accordance with international standards and was 

conducted in accordance with the ethical standards of this institution’s committee on human 

research and international standards.

Database analysis and clinical review

We performed a phenotype-based search of the DECIPHER database to identify individuals 

with “congenital diaphragmatic hernia” and/or “diaphragmatic eventration” who carried 

single nucleotide variants and copy number variants (Firth et al., 2009). Contact was made 

with each of the submitting centers who then approved the publication of their patient’s 

clinical and molecular data.

Sequencing studies

Whole exome sequencing was performed for Subjects 17 and 18 as previously described (Qi 

et al., 2018).

Literature and database searches

We searched for reports in which CDH candidate genes and/or their associated 

genetic disorders were mentioned in conjunction with key words such as “diaphragm”, 

“diaphragmatic hernia”, “CDH”, or “diaphragmatic eventration”.

Machine learning

We hypothesize that genes that cause CDH, 1) will have similar patterns of annotation, 2) 

will be associated with the development of similar defects in mouse models, 3) will interact 

with each other physically or within the same molecular pathways, 4) will be regulated 

by the same microRNAs, 5) will be expressed in similar tissues, 6) will be regulated by 

similar transcription factors, and 7) will have similar epigenetic modification patterns. We 

have previously used a machine learning algorithm to rank all RefSeq genes based on their 

similarity in each of these domains to a set of 31, manually curated human genes known to 

cause CDH, or whose mouse homolog causes CDH in mice, (CHAT, DNASE2, EFEMP2, 
EFNB1, FBN1, FGFRL1, FREM1, FZD2, GATA4, GLI2, GLI3, HLX, HOXB4, LOX, 
LRP2, MET, MSC, NIPBL, NR2F2, PAX3, PBX1, PDGFRA, RARA, RARB, ROBO1, 
SLIT3, SOX7, STRA6, TCF21, WT1, and ZFPM2) which acted as our CDH training gene 

set (Callaway et al., 2018).

Briefly, our machine learning algorithm integrated data from corresponding large-scale 

genomic knowledge including 1) Gene Ontology (GO), 2) Mouse Genome Informatics 

(MGI) phenotype annotations, 3) the Protein Interaction Network Analysis (PINA), 4) 

the Kyoto Encyclopedia of Genes and Genomics (KEGG) molecular interaction network 

data and 5) microRNA (miRNA) targeting data, 5) the GeneAtlas expression distribution, 

and 6) transcription factor binding and 7) epigenetic histone modification data from the 

NIH Roadmap Epigenomics Mapping Consortium, to generate CDH-specific pathogenicity 

scores ranging from (0–100%) for each RefSeq gene (Callaway et al., 2018; Campbell et al., 

2013). These scores represent how closely each gene’s annotation, mouse defect, protein/

pathway interaction, microRNA regulation, transcription factor regulation, and epigenetic 

modification patterns compared to those of the 31 genes in the CDH training set.

Hardcastle et al. Page 4

Am J Med Genet A. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To validate our procedure, we performed a leave-one-out cross-validation in which each 

gene from the training set was individually removed and the remainder of the training set 

genes were used to fit the machine learning procedure. After each fitting, all of the genes in 

the genome were ranked based on their similarity to the remaining training set genes. The 

scores for each of the training set genes were then plotted to characterize the performance of 

the procedure by tabulating the fraction of test genes with score percentiles exceeding each 

cutoff. This generated positive receiver operation (ROC)-style curves where the effectiveness 

of the procedure corresponds to the area under the curve and above a diagonal line which 

represents the result that would be generated by chance alone. These studies generated 

positive ROC curves based on data from each knowledge source, and an omnibus score 

representing the average of the scores across all knowledge sources (Callaway et al., 2018). 

This demonstrated the ability of our scoring procedure to identify CDH training set genes 

more efficiently than random chance.

We then performed as second validation in which we identified 35 CDH-related/CDH 

candidate gene from reviews authored by Donahoe et al and Kardon et al. that were not part 

of the training set and determined their centile ranks in comparison with all RefSeq genes 

(Donahoe et al., 2016; Kardon et al., 2017). The median CDH-specific pathogenicity score 

of these CDH-related genes was 95.5% and all but one gene had ranks >50%. This analysis 

provided additional evidence that our procedure was able to detect CDH-related genes more 

efficiently than random chance (Callaway et al., 2018).

Having scored all RefSeq genes with regards to their similarity to the 31 CDH genes in 

the training set, we then used these CDH-specific pathogenicity scores to prioritize the 

CDH candidate genes within the CDH critical region on chromosome 4p16 (Callaway et 

al., 2018). We subsequently used the same scores to evaluate the CDH candidate genes 

identified using data from a clinical database (Scott et al., 2021). Here, we apply these same 

CDH-specific pathogenicity scores to a new dataset from the DECIPHER database.

Statistical analysis

Box plots were generated using the Alcula.com Statistical Calculator: Box Plot 

program (http://www.alcula.com/calculators/statistics/box-plot/). For comparisons of CDH 

penetrance between reported cohorts and the general population, we used a two-tailed 

Fisher’s exact tests performed using a 2 × 2 contingency table calculator available through 

GraphPad QuickCalcs (https://www.graphpad.com/quickcalcs/contingency1/).

To correct for multiple comparisons, we determined an adjusted p value of 0.00179 using 

the Statology.org Bonferroni Correction Calculator (https://www.statology.org/bonferroni-

correction-calculator/) with n = 28, representing all of the genes listed in Tables 1, 2, and 3.

RESULTS

To identify genes that may play a role in diaphragm development, and to discover 

new phenotypic expansions, we searched the DECIPHER database to identify individuals 

with CDH who carried single nucleotide variants and rare (not commonly seen in the 

Database of Genomic Variants), small (< 1.5 Mb and containing 1–20 protein-coding genes) 
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copy number variants (CNVs) (Firth et al., 2009; MacDonald et al., 2014). We obtained 

permission to publish the clinical and molecular data from 36 individuals with CDH who 

met these criteria; 15 individuals with sequence variants (Subjects 1–15; Supplemental 

Information Table S1), and 21 individuals with CNVs (Subjects 18–38; Supplemental 

Information Table S2). Two additional individuals with CDH, Subjects 16 and 17 were 

accrued through a research study. Subjects 1, 9, and 20 were previously published (Bartholdi 

et al., 2014; Hamilton et al., 2018; Rawlins et al., 2017).

For DECIPHER patients with deletions, we focused on genes that are predicted to have 

high loss-of-function intolerance (pLI >0.8 in gnomAD) since they are the most likely to 

be able to cause CDH when deleted (Karczewski et al., 2020). For DECIPHER patients 

with duplications, we focused on genes that are predicted to have high loss-of-function 

intolerance (pLI >0.8 in gnomAD) whose function may have been disrupted by the 

duplications based on the presence of one or more breakpoints within the gene. For example, 

Subjects 29 and 30, a male child and his mother, respectively, carried identical intergenic 

duplications that involved exons 3–6 of the GPC3 gene [NM_001164617]. Loss of GPC3 

function causes Simpson-Golabi-Behmel syndrome, type 1 (MIM: 312870), an X-linked 

overgrowth syndrome that has been previously shown to be associated with the development 

of CDH that can affect both males and females (Chong et al., 2018; Vaisfeld et al., 2017).

Five individuals in the cohort carried sequence changes in genes that have already been 

associated with CDH including CHRNG (n = 1), GATA4 (n = 1), RARB (n = 1), STAG2 (n 

= 1) and WT1 (n =1) (Aoi et al., 2020; Devriendt et al., 1995; Jordan et al., 2018; Morgan et 

al., 2006; Srour et al., 2013; Yu et al., 2015; Yu et al., 2013). The remaining 31 individuals 

carried sequence or CNVs affecting genes whose association with CDH has not been clearly 

defined. To determine the likelihood that these genes contribute to the development of CDH, 

we used an approach previously employed by Scott et al. (Scott et al., 2021). Briefly, we 

determined whether each gene was: 1) expressed in the developing mouse diaphragm at 

embryonic day (E)11.5, E12.5, and E16.5 based on whole-transcriptome expression profiles 

published by Russell et al. (Russell et al., 2012), 2) had a high similarity to previously 

published CDH genes based on a high CDH-specific pathogenicity scores (≥85% rank 

compared to all RefSeq genes) previously generated using a validated machine learning 

procedure (Callaway et al., 2018; Campbell et al., 2013), and/or 3) had been previously 

reported in association with CDH in humans, or is known to cause a genetic syndrome 

previously associated with CDH. The results of these evaluations are summarized in Tables 

1–3.

Genes for which there is sufficient evidence to support a phenotypic expansion including 

CDH are shown in Table 1 and include CREBBP (Subject 4), SMARCA4 (Subject 10), 

UBA2 (Subjects 17 and 23) and USP9X (Subjects 14 and 16). Genes affected by sequence 

variants or CNVs for which there is currently insufficient evidence to suggest that they are 

associated with the development of CDH are shown in Tables 2 and 3, respectively.

Including the individuals reported in this manuscript, there have now been four individuals 

reported with CDH associated with causative variants in SMARCA4, three individuals 

reported with CDH associated with causative variants in UBA2, and three females reported 
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with CDH associated with causative variants in USP9X (Reijnders et al., 2016; Scott et 

al., 2021; Wild et al., 2022). The human disorders associated with these genes were only 

described in 2012, 2021, and 2016, respectively (Reijnders et al., 2016; Schnur et al., 2021; 

Tsurusaki et al., 2012). Hence, it is reasonable to assume that less than 650 individuals 

with Coffin-Siris syndrome 4 caused by variants in SMARCA4, less than 330 individuals 

with UBA2-related disorder, and less than 330 individuals with intellectual developmental 

disorder, X-linked 99, syndromic, female-restricted caused by variants in USP9X have been 

reported to date. If this assumption is true, then the CDH rate in individuals reported with 

these disorders is significantly higher (p ≤ 0.0017; two-tailed Fisher’s exact tests) than what 

would be expected based on the rate of CDH in the general population (1 in 4,000), even 

when taking into account multiple comparisons (Bonferroni adjusted p value = 0.00179).

As a means of assessing the performance of the CDH-specific pathogenicity scores used 

in this manuscript, we compared the median scores of the 31 CDH genes used to train 

our machine learning algorithm and the genes in Tables 1–3 (Figure 1). As expected, the 

training set had the highest median (98.8%). The medians of the genes listed in Table 1 

(78.7%), Table 2 (81.5%), and Table 3 (76.4%) were lower, but all exceeded the median for 

all RefSeq genes (50%), indicating that each of these groups are enriched for genes that are 

similar to the known CDH genes in the training set.

DISCUSSION

CDH is a relatively common birth defect which may be associated with multifactorial 

inheritance risk (Edwards, 1960; Norio et al., 1984; Wolff, 1980). It is possible, therefore, 

that some individuals with pathogenic variants in known disease genes develop CDH 

through an unrelated mechanism. In other cases, the pathogenic variants may be causative. 

Distinguishing between a non-causal and causal relationship can be difficult, especially 

since CDH is often found to be an incompletely penetrant phenotype of genetic disorders.

In this manuscript, we searched the DECIPHER database to identify individuals with 

CDH. We then evaluated whether the genes affected by sequence changes or CNVs they 

carried were likely to be causative of their CDH based on: 1) the gene’s expression in 

the developing mouse diaphragm, 2) the gene’s similarity to known CDH genes based 

on CDH-specific pathogenicity scores generated by a previously published and validated 

machine learning procedure, and/or 3) whether the gene, or its associated genetic syndrome, 

has been previously associated with CDH in the literature. Based on these criteria, there is 

sufficient evidence to suggest that pathogenic variants in CREBBP, SMARCA4, UBA2, and 

USP9X can predispose an individual to develop CDH.

CREBBP encodes a nuclear transcriptional coactivator protein that regulates gene activity 

throughout the body (Chrivia et al., 1993). Pathogenic variants of the CREBBP cause 

Rubinstein-Taybi syndrome 1 (MIM: 180849) (Petrij et al., 1995). This syndrome is 

characterized by neurodevelopmental phenotypes, distinct facial features, broad thumbs and 

first toes, short stature, and a high rate of congenital heart defects and renal anomalies 

(Milani et al., 2015). Although individuals with clinically diagnosed Rubinstein-Taybi 

syndrome or Rubinstein-Taybi syndrome 2 caused by pathogenic variants in EP300 
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have been reported to have CDH, CREBBP has not been previously implicated in the 

development of CDH (Benjamin et al., 1988; Scott et al., 2021). Subject 4 is a male with 

CDH who carries a de novo c.3779+1G>A [NM_004380.2] pathogenic variant in CREBBP. 

CREBBP’s putative role in diaphragm development is also supported by the expression 

of its mouse homolog in the developing diaphragm and CREBBP’s high CDH-specific 

pathogenicity score of 92% (Callaway et al., 2018; Russell et al., 2012). Subject 4 also 

carried a de novo c.6394A>C [NM_001170629.2], p.(Asn2132His) VUS in CHD8, a gene 

associated with autism, susceptibility to, 18 (MIM: 615032), and more recently implicated 

as a cause of intellectual disability and overgrowth (Ostrowski et al., 2019). We cannot 

exclude the possibility that this variant also contributed to the development of CDH in this 

individual.

SMARCA4 encodes a catalytic subunit of SWI/SNF complexes which serves to regulate 

gene expression by altering nucleosome conformation through chromatin remodeling 

(Barutcu et al., 2016). Pathogenic variants in this gene cause Coffin-Siris syndrome 4 

(MIM: 614609) (Tsurusaki et al., 2012). The majority of SMARCA4 variants associated 

with Coffin-Siris syndrome 4 are missense or small in-frame deletions and have been 

hypothesized to exert dominant-negative or gain-of-function effects (Kosho et al., 2014). 

However, recent reports have indicated that inactivating variants may cause a milder version 

of this syndrome (Errichiello et al., 2017; Li et al., 2020; Mitrakos et al., 2020). Subject 10 

is a male with a right-sided CDH who died shortly after birth. He carried a likely pathogenic 

c.2453G>A [NM_001128849.2], p.(Trp818*) stop gain variant in SMARCA4 that was 

inherited from an asymptomatic father. SMRCA4’s homolog is expressed in the developing 

mouse diaphragm, and it has a CDH-specific pathogenicity score of 94%. Recently, three 

other individuals with CDH were reported to carry de novo, pathogenic (c.2936G>A 

[NM_001128849.2], p.(R979Q)), or likely pathogenic (c.3595G>A NM_001128849.3], p.

(Val1199Met); c.3728G>A [NM_001128844.3], p.(Arg1243Gln)), variants in SMARCA4 
(Scott et al., 2021; Wild et al., 2022). The association of SMARCA4 with CDH is also 

supported by the fact that CDH has been seen previously in individuals with Coffin-Siris 

syndrome (Delvaux et al., 1998; Fleck et al., 2001; Russell et al., 2012; Sweeney et al., 

2018).

UBA2 binds to SAE1 to form a heterodimer that plays a key role in the SUMOylation of 

proteins by activating SUMO1 (Desterro et al., 1999; Okuma et al., 1999). SUMOylation, 

in turn, plays an essential role in a variety of biological processes including cell growth, 

migration, and cellular responses to stress (Yang et al., 2017). Heterozygous pathogenic 

variants in UBA2 are associated with a recently described genetic disorder characterized by 

highly variable neurologic, cardiac, renal, skeletal, dermatologic and extremity phenotypes 

(Schnur et al., 2021). UBA2 is partially deleted in Subject 23 by an ~175 kb interstitial 

deletion of chromosome 19q13.11. She has a variety of structural birth defects including 

a large 5 cm × 5 cm, left-sided CDH with only a thin rim of tissue posteriorly. Her 

identical twin, who presumably carries the same deletion, had a similar large, left-sided 

CDH. Subject 17, who has a cleft lip and a Morgagni type CDH diagnosed at 1 year of 

age, carries a de novo pathogenic c.364C>T [NM_005499.3], p.(Arg122*) variant in UBA2. 

The identification of three individuals with CDH associated with variants affecting UBA2 
provides strong evidence for its association with CDH. As expected, the mouse homolog of 
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UBA2 is expressed in the developing mouse diaphragm (Russell et al., 2012). Since UBA2’s 

function in SUMOylation is distinct from that of any other CDH-related gene, it is not 

surprising that its CDH-specific pathogenicity score is relatively low at 42% (Callaway et 

al., 2018).

USP9X encodes a large substrate-specific deubiquitylating enzyme similar to ubiquitin-

specific proteases (Wood et al., 1997). Pathogenic hemizygous and heterozygous variants 

in USP9X cause intellectual developmental disorder, X-linked 99 (MIM: 300919) and 

intellectual developmental disorder, X-linked 99, syndromic, female-restricted (MIM: 

300968), respectively (Homan et al., 2014; Reijnders et al., 2016). Reijnders et al. reported 

a female with intellectual developmental disorder, X-linked 99, syndromic, female-restricted 

and CDH who carried a de novo c.2554C>T [NM_001039590.3], p.(Arg852*) stop gain 

variant in USP9X (Reijnders et al., 2016). Subject 14 is a female with CDH who carries a 

de novo, pathogenic c.1812_1815delTCAA [NM_001039590.3], p.(Gln605Phefs*7) variant 

in USP9X, and Subject 16 is a female with a left-sided CDH who carries a de novo, likely 

pathogenic c.5186A>G [NM_001039590.3], p.(His1729Arg) variant in USP9X. This variant 

is considered “Disease Causing” by MutationTaster and has a CADD score of 25 (Rentzsch 

et al., 2021; Schwarz et al., 2014). Subject 14 has abnormal cerebral white matter and global 

developmental delay, and Subject 16 has partial agenesis of the corpus callosum, speech 

delay, and hypotonia, consistent with a diagnosis of intellectual developmental disorder, 

X-linked 99, syndromic, female-restricted. The identification of three CDH cases with 

putatively damaging variants in USP9X provides strong evidence for its association with 

CDH. USP9X’s mouse homolog is expressed in the developing mouse diaphragm (Russell et 

al., 2012). USP9X has a relatively low CDH-specific pathogenicity score of 66%, possibly 

due to its unique role in ubiquitination, which is uncommon among CDH-related genes.

In conclusion, our results suggest that CREBBP, SMARCA4, UBA2, and USP9X play a 

role in diaphragm development and that individuals affected by their associated genetic 

disorders—Rubinstein-Taybi syndrome 1, Coffin-Siris syndrome 4, UBA2-related disorder, 

and mental retardation, X-linked 99, syndromic, female-restricted—can present with CDH. 

Currently, there is insufficient evidence to support an association between CDH and the 

other genes affected by sequence variants or CNVs reported here. Many of these genes 

are expressed in the developing mouse diaphragm, and several have high similarity to 

genes implicated in the development of CDH as evidenced by their high CDH-specific 

pathogenicity scores. Hence, it is possible that they will be implicated in the development of 

CDH in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genes identified in this study are more similar to a set of 31 genes known to cause CDH 
than would be expected by chance.
Box plots generated based on the CDH-specific pathogenicity scores of, 1) the 31 known 

CDH genes used to train our machine learning algorithm (Callaway et al., 2018), 2) genes 

for which there is sufficient evidence to support a phenotype expansion involving CDH 

(Table 1) and, 3) genes for which there is currently insufficient evidence to support a 

phenotype expansion involving CDH (Tables 2 and 3). As expected, the medians of the 

genes listed in Table 1 (78.7%), Table 2 (81.5%) and Table 3 (76.4%) were lower that of 

the training genes (99.8%) but exceeded the median for all RefSeq genes (50%; chance) 

represented by the dashed line. This indicates that each of these groups are enriched for 

genes that are similar to the 31 known CDH genes in the training set.
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