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Abstract

Background and Purpose: Intracerebral hemorrhage (ICH) and intraventricular hemorrhage 

(IVH) clinical trials rely on manual linear and semi-quantitative (LSQ) estimators like the ABC/2, 

modified Graeb and IVH scores for timely volumetric estimation from CT. Deep learning (DL) 

volumetrics of ICH have recently approached the accuracy of gold-standard planimetry. However, 

DL and LSQ strategies have been limited by unquantified uncertainty, in particular when ICH and 

IVH estimates intersect. Bayesian deep learning methods can be used to approximate uncertainty, 

presenting an opportunity to improve quality assurance in clinical trials.

Methods: A DL model was trained to simultaneously segment ICH and IVH using diagnostic 

CT data from the Minimally Invasive Surgery Plus Alteplase for ICH Evacuation (MISTIE) 

III and Clot Lysis: Evaluating Accelerated Resolution of IVH (CLEAR) III clinical trials. 

Bayesian uncertainty approximation was performed using Monte-Carlo dropout. We compared 

the performance of our model with estimators used in the CLEAR IVH and MISTIE II trials. The 

reliability of planimetry, DL and LSQ volumetrics in the setting of high ICH and IVH intersection 

is quantified using consensus estimates.

Results: Our DL model volume correlations and median Dice scores of 0.994 and 0.946 for 

ICH in MISTIE II, and 0.980 and 0.863 for IVH in CLEAR IVH respectively, outperforming 

LSQ estimates from the clinical trials. We found significant linear relationships between ICH 

uncertainty, Dice scores (r=−0.849) and relative volume difference (r=0.735).
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Conclusion: In our validation clinical trial dataset, DL models with Bayesian uncertainty 

approximation provided superior volumetric estimates to LSQ methods with real-time estimates of 

model uncertainty.
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Introduction

Patients with intracerebral hemorrhage (ICH) are at risk of significant morbidity and 

mortality with the volume and location of the hematoma and the presence and volume 

of intraventricular hemorrhage (IVH) being well established predictors of outcome.1–6 On 

presentation, approximately 40% of ICH patients will have IVH, and during the natural 

course of the disease, a further 15% will develop it in a delayed fashion.7,8 Volumetric 

thresholds for the prediction of poor functional outcome have been reported as an ICH 

volume of greater than 30ml or an IVH volume of greater than 5ml.6,9,10 Reduction of ICH 

or IVH volume has been a therapeutic target in recent and ongoing randomized controlled 

trials.11–14

In order to support expedient screening and enrollment, trial investigators at clinical sites 

have utilized linear and semi-quantitative estimates (LSQ) of ICH and IVH volume to assess 

eligibility and provide primary or secondary outcome measures.7,14–16 Previously described 

and validated metrics include the linear ABC/2 formula to estimate ICH volume, and for 

IVH, semi-quantitative scoring systems such as the modified Graeb Score (mGS) and the 

IVH score (IVHS).2,16,17 LSQ estimates have been shown to be predictive of functional 

outcome and are considered to have sufficient inter-rater reliability (IRR) for clinical trial 

use.9,11,18 However, there are known limitations. The ABC/2 formula is less accurate when 

estimating the volume of lobar, complex hemorrhages and those with a volume of greater 

than 30ml.19–21 The mGS has reduced accuracy for IVH volumes of > 40ml and does 

not have a validated volumetric conversion formula17,22 The IVHS provides an internally 

validated exponential conversion of eIVHS/5 for IVH volume in ml.18,23,24

Deep neural network (DNN) models have recently been utilized for 2D segmentation and 

volumetric estimation of ICH25,26 Despite the large percentage of patients with co-occurring 

ICH and IVH, multi-class models of separate ICH and IVH have only recently been reported 

for hemorrhagic traumatic brain injury (TBI) lesions and primary ICH with small IVH 

volumes.27

Bayesian statistical methods provide a formalism for understanding and quantifying 

uncertainty associated with predictions by DNNs.28–30 Bayesian deep learning methods 

create probabilistic segmentations and uncertainty by sampling variations of the DNN itself 

in order to obtain a distribution of model parameters.31,32 This approach has been used to 

perform probabilistic segmentation with uncertainty estimation of anatomic structures, brain 

tumors, multiple sclerosis and ischemic stroke lesions.31,33–38
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We utilised data from the Minimally Invasive Surgery Plus Alteplase for ICH Evacuation 

(MISTIE) and Clot Lysis: Evaluating Accelerated Resolution of IVH (CLEAR) clinical 

trials precise core lab segmentations of ICH and IVH volumes11–13,16,39 We will refer to 

the phase III trials as MISTIE III and CLEAR III and the phase II trials as MISTIE II and 

CLEAR IVH as this is how they are reported in the literature.

We tested three hypotheses: First, that the volume of ICH can be estimated reliably by 

human raters and DNN methods in the setting of significant intersection between ICH and 

IVH. Second, that DNN multi-class segmentation of ICH and IVH trained with combined 

data from the phase III CLEAR and MISTIE studies could outperform LSQ estimators in 

independent data from the phase II studies. Third, that Bayesian uncertainty approximation 

is correlated with ICH segmentation quality.

Methods

Data

Data in this study was from the phase II and phase III MISTIE and the phase II and phase 

III CLEAR multi-center randomized controlled trials. The use of CT imaging data from the 

MISTIE and CLEAR trials for DNN model training was approved by the Johns Hopkins 

Medicine institutional review board.

All images used were non-contrast CT images produced with a soft-tissue convolutional 

kernel, commonly sampled along the axial plane at 5mm intervals. All data was prior to 

randomization. Basic demographics and imaging information are in Table 1. Ground truth 

ICH and IVH planimetry volumes were manually segmented using Osirix imaging software 

(v10.0, Pixmeo, Geneva, CH) by expert raters formally trained in volumetric assessment and 

quantification of ICH and IVH of CT scans in accordance with the CLEAR and MISTIE 

protocols. All ICH and IVH estimations were verified by a board certified neurologist and 

board certified neurointensivist both with extensive clinical trial neuroimaging experience.

Image Processing

CT imaging data and hemorrhage masks were converted to the Neuroimaging Informatics 

Technology Initiative format using dcm2niix (v1.0.2, www.github.com/rordenlab/dcm2niix) 

Measures to ensure the accuracy of 3D volumetric data included gantry tilt correction and 

normalization of data with unequal slice thickness using our previously published, publicly 

available preprocessing pipeline including brain extraction and template registration.26

Intersection Estimation and Volume

The IRR of volumetric estimates where there is significant interface between ICH and 

IVH is unknown. ICH and IVH surface polygon meshes were constructed from planimetry 

estimates using the marching cube algorithm,41 and the surfaces of ICH, IVH and 

their intersection were computed using boolean operations in Blender (v.3.0.1, Blender 

Foundation, Amsterdam, NL, 2018, www.blender.org)(Figure 1). We denoted the ICH 

ventricular intersection area (VIA) and the ratio of the VIA to total ICH surface area, 

we called the ventricular intersection ratio (VIR). We a priori determined that a VIR > 
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0.25 would qualify for an evaluation with multiple raters (n = 3) using the same protocol. 

In order to create a consensus segmentation, the expectation-maximization algorithm for 

simultaneous truth and performance level estimation (STAPLE), a robust estimator of 

underlying ground truth from multiple raters was utilized.42,43 Deviation from the consensus 

by each rater was evaluated by rater-STAPLE Dice coefficient, volume correlation and 

absolute volume difference.

Deep Neural Networks

We trained two networks: V-Net, an established DNN designed to segment 3D volumetric 

medical imaging data and a customized DNN we call our Intracerebral intraVentricular 

Network (IV-Net) (Figure 2).44 Our models were developed and validated using Tensorflow 

(version 2.3.0, Google, Mountainview, CA, www.tensorflow.org). IV-Net utilizes the 

encoder-decoder framework of V-Net but with the addition of architectural changes with two 

main goals: contextual propagation and uncertainty estimation. We employed two validated 

strategies: dilated convolutions, that forward contextual information through the encoder 

and multiclass attention-gating which helps focus learning on important context in the 

decoder.45–47 We utilized a 1ml threshold for the existence of ICH and IVH in our model 

output based on prior work.48 We trained the model for 200 epochs on the combined phase 

III MISTIE and CLEAR diagnostic scan datasets leaving out a ratio of 0.1 randomly for 

testing.

Bayesian Uncertainty Approximation

Uncertainty was estimated using Monte-Carlo Bernoulli dropout sampling, a theoretically 

and experimentally validated Bayesian uncertainty approximation.31 We added dropout to 

each layer of our neural network and therefore obtain different variations of the network 

during each stochastic forward pass (Figure 1). Based on prior work in multiclass anatomic 

brain segmentation, we utilized 10 stochastic samples.33 Our uncertainty metric is derived 

from the percentage of uncertain voxels that do not appear in the majority voting estimate.31

Volume and Uncertainty Analysis

Comparing predictions from our two models and ground truth segmentations of ICH from 

MISTIE II and IVH for CLEAR-IVH, we report the Dice score between predicted and 

ground truth segmentations,49 volume Pearson correlation coefficients and RMSE. The 

higher performing model was then evaluated on ICH, IVH and ICH + IVH from both 

trials as well as absolute volume difference < 5ml as 5ml is the clot stability threshold in 

the MISTIE and CLEAR trial protocols. To evaluate our uncertainty metric, we combined 

data from the phase II trials. Comparisons of Dice scores and volume metrics used the 

Kruskal-Wallis test between groups and then Wilcoxon signed rank test with Bonferroni 

correction,50 and p <.05 was considered statistically significant. 95% confidence intervals 

(95% CI) are provided for correlation coefficients. Analyses were conducted in R, (version 

3.5.3, R Foundation for Statistical Computing, www.r-project.org)
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Results

Linear and Semi-Quantitative Manual Estimators

LSQ estimator performance is summarized in Table 2. ICH volume ABC/2 estimates in the 

MISTIE II and CLEAR IVH trial were consistent with previous results at clinical trial sites 

and trial reading center, showing excellent correlation with planimetry volumes. However 

the percentage of scans below a threshold of < 5ml absolute volume difference was overall 

low.

IVH estimates showed a reduce correlation compared with ABC/2, in particular the site 

mGraeb score had a low correlation with IVH volume. LSQ estimates show an overall bias 

towards overestimating ICH and underestimating IVH (Figure 3).

Ventricular Intersection and ICH Volume Estimation

Ventricular intersection metrics indicated that 12/51 (23.5%) in CLEAR-IVH and 0/135 

(0%) in MISTIE II had a VIR > 0.25. An inter-rater analysis compared with the STAPLE 

consensus showed a mean Dice of 0.803, absolute volume difference of 1.47 ± 2.03 ml and 

volume correlation of 0.744 (95% CI [0.30, 0.92]). Kruskal-Wallace testing indicated there 

was no statistically significant difference across raters from STAPLE estimates by absolute 

volume difference (χ2 = 1.31, p = 0.52), but there was a significant difference for Dice (χ2 

= 8.45, p = 0.02). Wilcoxon testing showed rater 1 did not have a significant relationship by 

Dice (W = 113, p = 0.151).

Deep Neural Networks with Bayesian Uncertainty Approximation

VNet and IV-Net performances on ICH segmentation were compared by Dice scores 

(0.904 vs 0.946), volume correlation (0.977 vs 0.994) and RMSE (4.21 vs 2.15). IVH 

segmentations similarly showed a trend toward accuracy in IV-Net by Dice scores (0.773 

vs 0.863), volume correlations (0.960 vs 0.985) and RMSE (11.97 vs 6.67). These results 

favored IV-Net but were not statistically significant between the two models.

Additional analysis of IV-Net, now our DNN automated method was performed on ICH 

from CLEAR-IVH and IVH from MISTIE II, see Table 3. DNN automated estimates of IVH 

from MISTIE II maintained a volume correlation of 0.980 (95% CI [0.96, 0.99]). In CLEAR 

IVH, IVH results were favorable compared with LSQ estimators, with volume correlation of 

0.985 (95% CI [0.97, 0.99]) and absolute volume difference showing a significant difterence 

from LSQ estimators (χ2 = 77, p < .001) and the strongest relationship with planimetry (W 

= 1214, p < .001). ICH predictions in CLEAR IVH showed slightly lower Dice coefficient 

of 0.881, volume correlation of 0.931 (95% CI [0.87, 0.96]) and a RMSE of 2.95. Median 

performance scans are shown in Figure 4A.

Figure 4B shows relationships between uncertainty and Dice scores with a correlation of 

−0.849 (95% CI [0.80, 0.89]), then relative volume difference with a positive correlation 

of 0.735 (95% CI [0.66, 0.79]) and then VIR showing a correlation of 0.699 (95% CI 

[0.62, 0.76]). with our uncertainty metric. We observed that both Dice scores and volume 
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differences diverge from a linear relationship at > 2% uncertainty, and all scans with a VIR > 

0.25 had > 2% uncertainty.

In the 12 patients with high VIR, ICH segmentation showed a mean Dice of 0.586 and 

volume correlation of 0.932 (95% CI [0.77, 0.98]) and absolute volume difference of 2.31 

± 4.02 ml. STAPLE and ICH probability estimates for four of these subjects are shown 

in Figure 4C, where lower probability outputs (yellow) may over or underestimate ICH 

compared with human raters, but high probability areas (red) agree volumetrically, even if 

overlap is reduced.

Discussion

Recent investigations of DNN segmentation of ICH and IVH have been reported in the 

literature for patients with TBI and primary ICH,27,48 but come with limitations as they 

only include small IVH volumes and do not quantify the degree of intersection or model 

uncertainty. In this study, we show that firstly despite significant ICH and IVH overlap, 

volumetric assessments by multiple raters are not significantly different, even though overlap 

metrics like Dice may significantly vary. We then showed that DNN volumetric estimates 

of ICH and IVH show improvent in image quality metrics over LSQ estimates in regards to 

volume correlation, absolute volume difference, RMSE and percentage of scans within 5ml 

volume. We found that Bayesian DNN uncertainty significantly correlates with lower Dice 

scores, higher relative volume difference and instances of high IVH/ICH intersection.

Uncertainty thresholds such as the 2% threshold in our paper, allow the selection of 

scans for additional review. In these cases, probability maps can be inspected and further 

interpreted by investigators examining the location, perihematomal density changes or clot 

textural features to help determine the location of ICH when admixed with IVH. In cases of 

model errors, the attention gates included in our model can be inspected by the trial imaging 

center as they add additional interpretability to the saliency maps in deep learning models.45

A limitation of this study is that it is biased towards patients with larger volumes of ICH or 

IVH and patients with tumors or vascular malformations were excluded from the trials. Our 

model was not designed as a screening tool for general CT scans to capture occurrences of 

ICH and IVH, but instead a volume quantification tool for patients pre-screened to have ICH 

and or IVH in multi-center clinical trials.

This study shows that automated methods can outperform LSQ methods where time 

constraints, human error and biases can potentially lead to inaccurate results, especially in 

patients with large ICH or IVH most at risk of a poor outcome and in need of intervention. 

We think that DNN methods of volume estimation still require human supervision and could 

take on a greater role in the clinical trial and clinical practice ecosystems once validated in 

prospective studies.
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Figure 1. 
Advanced imaging techniques including, ventricular intersection area (VIA) mesh 

construction and Bayesian deep learning uncertainty approximation.

A) 3D inner-surface renderings of ICH (Red), IVH (Blue) and the VIA (Purple) generated 

by a single rater. Anterior (A) and superior (S) directions are displayed Right: zoomed 

portion of the VIA along the inner ICH surface. B) Bayesian approximation in a deep neural 

network by Monte-Carlo dropout. Networks are loaded with different nodes stochastically 

‘dropped out’ (light-grey) to create a group of related networks. Each segmentation is a 

distribution of ICH (red) and IVH (blue) segmentations.
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Figure 2. 
IV-Net our Deep Neural Network automated method is a 5-layer network (Top) with 3 

different architectural blocks (Bottom). In the encoder layers (Blue) densely connected 

dilated convolutions (Dilated Convs) are combined with Group Normalization (Group 

Norm), a Bottleneck layer and a scaling convolution (Scaling Conv). In the central layers 

(Grey) convolutions (3×3×3 Convs) are combined with Group Norm and a dropout layer 

(Dropout) before a Scaling Conv. The decoder layers (Orange) include Attention Gates. Skip 

connections (dashed arrows) span the network.
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Figure 3. 
Bland-Altman (BA) plots of linear and semi-quantitative (LSQ) estimates and Deep neural 

network (DNN) automated segmentation vs semi-automated planimetry. The dashed lines 

show −5ml and +5ml boundaries. A) BA plots of LSQ estimators vs planimetry. ABC/2 

estimates of ICH (red), IVH Score estimates (blue) and combined ABC/2 and IVH Score 

volume estimates of ICH + IVH (purple) from MISTIE II (top row) and CLEAR IVH 

(bottom row) trials. B) DNN Automated segmentation vs planimetry volumes of ICH (red), 

IVH (blue) and combined ICH + IVH (purple) from CLEAR-IVH (top row) and MISTIE II 

trials (bottom row).
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Figure 4. 
Bayesian Deep Neural Network (DNN) segmentation images and uncertainty vs 

segmentation quality analysis. A) Median Dice score DNN automated segmentation images 

from MISTIE II (first row) and CLEAR IVH (second row) with ICH (red) and IVH (blue). 

B) Segmentation quality metrics vs Uncertainty (%) for majority voting ICH segmentations 

by from MISTIE II and CLEAR IVH. Top: Ventricular intersection ratio (VIR) vs 

Uncertainty (r= 0.699). Middle: Dice Scores vs Uncertainty (r=− 0.849). Bottom: The 

relative volume difference (Δ Volume) vs Uncertainty. For values beyond 2% (dashed lines) 

we see deviations from the linear relationships. C) Simultaneous truth and performance 

level estimation (STAPLE) and DNN Automated probability estimates of four patients 

with VIR > 0.25. On the left is the diagnostic scan, the center is overlayed with the 

planimetry STAPLE consensus estimate and right the DNN probabilistic output. Far right is 

a probability estimate colormap.
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Table 1.

Demographics and imaging metrics for the MISTIE and CLEAR clinical trials.

Trial CLEAR IVH MISTIE II CLEAR III MISTIE III

Subjects (n) 51 135 500 499

Age (years) 56 (48, 64) 61 (54, 72) 59 (51, 67) 62 (52, 71)

Female (n(%)) 17 (33.3%) 44 (32.6%) 223 (44.6%) 194 (38.9%)

Race/Ethnicity (n (%))

African American 24 (47.1%) 40 (29.6%) 170 (34%) 87 (17.4%)

Hispanic 1(1.9%) 13(9.6%) 60 (12.0%) 68 (13.6%)

Asian 5 (9.8%) 5 (3.7%) 1 (0.2%) 2 (0.4%)

Caucasian 16 (31.4%) 77 (57.1%) 305 (61.0%) 374 (74.9%)

Other/Unknown 5 (9.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

ICH Volume (ml) 5.6 (1.38,15.1) 34.8 (23.3, 50.7) 8.01 (3.0, 13.8) 41.8 (30.8, 54.5)

IVH Volume (ml) 37.8 (17.6, 57.2) 0 (0, 2.34) 24.5 (14.2, 39.8) 0 (0, 1.9)

Ictus to 1st CT (hrs) 1.00 (0.48, 1.85) 2.11 (1.18, 4.61) 0.96 (0.56, 2.03) 2.01 (1.20,5.10)

Metrics and demographics are listed by total number (n), hours (hrs), percentage (%) or median and interquartile range.
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Table 2.

Performance metrics for LSQ estimators at clinical sites and trial reading center.

Clinical Trial Subtype Estimator Volume Correlation (95% CI) RMSE (ml) Abs. Vol Diff. (ml) % < 5ml

MISTIE II ICH
(n=135)

Site ABC/2 0.815
(0.75, 0.86)

11.63 8.23 
(3.67, 13.7)

64.1%

RC ABC/2 0.916
(0.88, 0.94)

12.38 5.38 
(2.01, 10.0)

48.1%

IVH
(n=48)

eIVHS/5 0.759
(0.61, 0.86)

7.13 1.34 
(0.67, 5.43)

68.9%

Site mGraeb 0.756
(0.60, 0.86)

- - -

CLEAR IVH ICH
(n=40)

RC ABC/2 0.826
(0.69, 0.90)

5.62 1.64 
(0.619, 5.61)

57.6%

IVH
(n=51)

eIVHS/5 0.690
(0.51, 0.81)

22.34 12.24 
(5.41, 25.0)

21.2%

Site mGraeb 0.306
(0.03, 0.53)

- - -

Performance metrics are listed for the for ABC/2, modified Grab Score (mGraeb) and from the clinical sites and ABC/2 and IVH Score volume 

estimates (eIVHS/5) from the centralized reading center (RC). Total subjects (n) are shown for each estimator. Volume Correlation is the Pearson 
correlation coefficient between the estimator and planimetry volumes with 95% confidence interval (95% CI). RMSE is the root mean squared 
error. Abs. Vol. Diff. is the absolute volume difference. % < 5ml is the percentage of predictions that were within 5ml.
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Table 3.

Performance metrics for DNN segmentation of ICH and IVH versus semi-automated planimetry.

Clinical Trial Subtype Dice Volume Correlation (95% CI) RMSE (ml) Abs. Vol Diff. (ml) < 5ml

MISTIE II ICH
(n=135)

0.946 0.994
(0.99, 0.996)

2.15 0.566 
(0.264, 1.43)

96.3%

IVH
(n=48)

0.776 0.980
(0.96, 0.99)

2.02 1.08 
(0.463, 1.698)

96.1%

ICH + IVH
(n=135)

0.940 0.995
(0.99, 0.996)

2.22 0.655 
(0.339, 1.69)

95.6%

CLEAR IVH ICH
(n=40)

0.881 0.931
(0.87, 0.96)

2.95 0.857 
(0.388, 1.94)

92.6%

IVH
(n=51)

0.863 0.985
(0.97, 0.99)

6.67 2.91 
(1.52, 6.27)

72.0%

ICH + IVH
(n=51)

0.905 0.995
(0.99, 0.997)

4.93 2.74 
(1.19,5.80)

70.0%

Total subjects (n) are listed for each study, then Dice score and volume correlation with 95% confidence interval (95% CI). RMSE is the root 
mean squared error in ml. Abs. Vol. Diff. is the absolute volume difference in ml by median and interquartile range.. %< 5ml is the percentage of 
predictions that were within 5ml.
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