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Single-cell profiling reveals molecular basis of
malignant phenotypes and tumor
microenvironments in small bowel
adenocarcinomas
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Junpeng Gao1,2, Wei Wang1,2, Qingqing Li1,2, Shuai Gao8, Lu Wen1,2, Wei Fu1,3✉ and Fuchou Tang 1,2,6,7✉

Abstract
Small bowel adenocarcinomas (SBAs) are rare malignant tumors with a high mortality rate, and their molecular
characteristics are still largely unexplored. Here we performed single-cell RNA sequencing for tumor samples from 12
SBA patients and predicted drug candidates for SBA. We identified four prevalent subtypes of malignant cells with
distinct signatures including cell cycle program, mitochondria program, metabolism program and
epithelial–mesenchymal transition (EMT) program. The progression relationships of these four subtypes of malignant
cells were also revealed, which started from the cell cycle program, through the mitochondria program and then
progressing into either the metabolism program or the EMT program. Importantly, ligand–receptor interaction pairs
were found to be specifically enriched in pairs of EMT-program malignant cells and highly exhausted CD8+ T cells,
suggesting that cancer cell subpopulations with EMT features may contribute most to the exhaustion of T cells. We
also showed that the duodenal subtype of SBA exhibited molecular features more similar to gastric cancer whereas
jejunal subtype of SBA more similar to colorectal cancer. Especially, we predicted specific drugs for SBA based on
differential gene expression signatures between malignant cells and normal epithelial cells of SBA, and verified more
potent inhibitory effects of volasertib and tozasertib for SBA cancer cells than conventional drugs of SBA at the same
concentration, which provides new clues for treatments of SBA. In summary, our study provides a blueprint of the
molecular signatures of both tumor cells and tumor microenvironment cells in SBA and reveals potential targets and
drug candidates for its clinical treatments.

Introduction
Small bowel adenocarcinomas (SBAs) are rare gastro-

intestinal cancers with unfavorable prognoses. More than
half of SBAs originate in the duodenum, while 25%–29%

arise in the jejunum, and 10%–13% arise in the ileum1.
Although the small intestine accounts for > 75% of the
length of the entire gastrointestinal tract, small intestinal
cancers only account for 2% of all gastrointestinal tract
tumors2, which indicates unique mechanisms of carci-
nogenesis in the small intestine. Relative to gastric cancer
(GC) or colorectal cancer (CRC), the incidence of SBA is
rare, but the intrinsic reasons for this are still not clear3.
Rapid epithelial cell turnover, fast dietary material pas-
sage, low bacterial loads, high lymphoid aggregate levels
and a relatively alkaline environment may partially explain
the low incidence of SBA4. Due to the rarity of
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pathological studies on SBA, chemotherapy regimens for
SBA are usually based on the treatment of CRC as a
reference, and specific drugs for SBA are lacking.
Recently, immunotherapy-related indicators such as DNA
mismatch repair-deficient/microsatellite instability-high
(dMMR/MSI-H) status, PD-L1 expression and a high
tumor mutational burden (TMB) were reported to appear
at higher frequencies in SBA than in other gastrointestinal
cancers, and pembrolizumab or nivolumab, with or
without ipilimumab, can be used as second-line treatment
options for advanced dMMR/MSI-H SBA more widely5.
Genomic studies have revealed different characteristics of

SBA compared to GC and CRC6–8. However, there are few
studies on the SBA transcriptome, and more specific mar-
kers of SBA are required for its diagnosis and prognosis.
Previous genomic studies of SBA were mainly based on bulk
tissue sequencing data, which reveal the average features of
tumor cells and microenvironment cells in tumor tissues,
and the intratumoral heterogeneity and cell type composi-
tion of SBAs have not been comprehensively studied9,10.
Here we performed single-cell RNA sequencing

(scRNA-seq) for samples of multiple sites from 12 SBA
patients. The transcriptomic features of malignant cells
were comprehensively analyzed, the intratumoral and
microenvironment heterogeneity of SBA were system-
atically revealed, and inter-regulatory processes were
inferred from ligand–receptor interactions. In detail, we
identified 4 prevalent subtypes of malignant cells with
distinct gene expression signatures including cell cycle
program, mitochondria program, metabolism program
and epithelial–mesenchymal transition (EMT) program.
The progression trajectory of these 4 subtypes of malig-
nant cells started from the cell cycle program, through the
mitochondria program and then progressing into the
metabolism program or the EMT program. Malignant
cells with EMT features were also found to contribute
most to the exhaustion of CD8+ T cells. Using the tran-
scriptome signatures, we identified that the duodenal
subtype of SBA exhibited molecular features more similar
to GC whereas jejunal subtype of SBA more similar to
CRC, which provides new clues for clinical information of
SBA. Finally, drug candidates for the treatment of SBA
were also predicted based on differential gene expression
signatures between malignant cells and normal epithelial
cells. Volasertib and tozasertib were verified more effi-
cient for killing SBA cancer cells than frequently-used
clinical drugs of SBA in vitro, which may benefit drug
discovery and the clinical treatments of SBA.

Results
The cellular landscape of SBA revealed by scRNA-seq
analysis
To systematically reveal the tumor characteristics of

SBA, we collected 34 samples, including 21 primary

tumor samples, 10 adjacent normal samples and 3 lymph
node metastatic tumor samples from 12 patients of SBA,
and performed scRNA-seq analysis for these samples
(Supplementary Table S1). We also performed the whole-
exome sequencing (WES) for 15 samples from P3–P6, to
identify inter-patient and intra-patient genetic hetero-
geneities of SBA. To equilibrate sequencing accuracy and
throughput of the single-cell data, we utilized both the
modified high-precision STRT method and the 10×
Genomics methods, applying each method in 6 cases, and
acquired data from 3676 and 27,390 single cells, respec-
tively, after filtration (Supplementary Fig. S1a)11,12.
Overall, in both the STRT and 10× Genomics datasets, 7
main cell types were identified according to well-known
markers (Fig. 1a–c; Supplementary Fig. S1b–d): epithelial
cells, fibroblasts, endothelial cells, myeloid cells, B cells,
T/NK cells and mast cells. In addition to these cell types, 2
other specific cell types were found in the 10× dataset:
neutrophils and plasma cells derived from B cells. We also
performed the gene regulatory network (GRN) analysis
and identified the corresponding GRNs for each cell
cluster13, which included genes such as CDX2, GATA6
and KLF5 in epithelial cells, TEAD3 and TWIST2 in
fibroblasts, and BCL11B, TCF7 and TBX21 in T/NK cells
(Fig. 1d; Supplementary Fig. S1e). For normal epithelial
cells in the STRT dataset, the epithelial cells from adja-
cent normal tissues could be divided into three clusters
after removing batch effects: progenitor epithelial cells,
goblet cells and enterocytes (Fig. 1e; Supplementary Fig.
S1f). In the 10× dataset, normal epithelial cells were
clustered into nine types including progenitor epithelial
cells, stem cells, GSTA2+ epithelial cells, goblet cells,
enterocytes, endocrine cells, Paneth cells, tuft cells and M
cells (Fig. 1e; Supplementary Fig. S1g). To evaluate the
differences of the STRT and 10× Genomics methods, we
integrated all the acquired cells and epithelial cells from
these two datasets (Supplementary Fig. S2e, f). Epithelial
cells, stromal cells and immune cells from the STRT and
10× datasets were properly integrated together (Supple-
mentary Fig. S2g). Subclusters of epithelial cells from
these two datasets were also integrated well. The same cell
types including progenitor cells, goblet cells and enter-
ocytes from both datasets were clustered together or
closely, indicating that there were no dramatic differences
between these two technical platforms (Supplementary
Fig. S2h). The inference of copy number variations
(CNVs) by scRNA-seq data was performed, and the nor-
mal epithelial cells were used as reference cells with no
prominent CNVs, which was confirmed by the WES
analysis of the same patient (Supplementary Fig. S3e). The
CNV patterns of the malignant epithelial cells were found
to be heterogeneous among different patients, and some
common CNVs shared by different patients were also
identified such as gains of Chr5p and Chr7p (Fig. 1f;
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Fig. 1 (See legend on next page.)
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Supplementary Fig. S2a–c). The inferred CNVs by
scRNA-seq data were also verified by calling CNVs from
the WES data. We selected out epithelial cells with high
CNV levels as malignant cells, and these cells were clus-
tered separately according to the individual patients
(Supplementary Fig. S2d).
To assess the changing ratio of identified cell types

during SBA tumorigenesis, we identified the cell propor-
tions of different cell types, in 17 tumor samples and 8
adjacent normal tissue samples from 10 patients in which
cells are sampled relatively randomly and not enriched for
specific cell types (excluding P5 and P6). However, there
were essentially no significant differences in cell type
fractions between tumor tissues and adjacent normal
tissues, probably due to the limited sample number
(Supplementary Fig. S3a, b). To compute the fractions of
different cell types more accurately, we performed
deconvolution analysis of published bulk sample gene
expression profiling data of SBA based on the signatures
of reference cell types from the 10× dataset9,14 (Fig. 1g;
Supplementary Fig. S3c). We could clearly see that the
percentages of fibroblasts were much higher in the tumor
tissues than in the adjacent normal tissues, indicating that
fibroblasts are enriched during SBA tumor progression.
The decreasing percentages of epithelial cells and
increasing percentages of endothelial cells in tumor tis-
sues were also identified. Moreover, the changing ten-
dencies of cell proportions for different cell types were
consistent between our single-cell dataset and the
deconvolution analysis of bulk sample dataset. TAGLN is
a well-known marker of fibroblasts, and the immunohis-
tochemistry (IHC) analysis of TAGLN also verified the
increasing proportion of fibroblasts in tumor tissues
relative to adjacent normal tissues (Fig. 1h).
As for the WES data, 15 tumor samples from 4 cases

were collected to detect somatic mutations. As for
somatic mutations in frequently mutated genes, we
detected somatic mutations in TP53, SMAD4, PIK3CA,
SOX9, ARID2 and OBSCN (Supplementary Fig. S3d). Of
them, somatic mutations of TP53 were found in all
samples from P4 and P6 and the P3_T3 from P3, somatic
mutations of OBSCN were found in P4 and P5, somatic
mutations of SMAD4 were found in P4 and P6, and

somatic mutations of SOX9, ARID2, PIK3CA were found
only in P3, which reveals the inter-patient heterogeneity
among patients partially. Mutations of ERBB2, APC,
KRAS, IDH1 and PTEN were not detected, which may be
due to the limited sample number and their relatively low
mutation rate among SBA patients.

Molecular characteristics of cancer cells in SBA associated
with their malignant and pathological phenotypes
There have been limited gene expression profiling stu-

dies of SBA, and the detailed molecular characteristics of
malignant cells in SBA are not clear. We defined clusters
whose epithelial cells with high CNV levels were domi-
nant as malignant cells (cancer cells), and the other epi-
thelial cell clusters as normal epithelial cells (Fig. 2a).
Despite extremely high tumor heterogeneity, malignant
cell markers such as MUC1, CEACAM5, S100A11, CD24,
and TM4SF1 were relatively uniformly upregulated in
cancer cells and had the potential to serve as targets for
SBA diagnosis and treatment (Fig. 2b, c; Supplementary
Fig. S4a–c, Tables S2–S5). Then, we performed IHC to
verify the differential expression of MUC1 between tumor
tissues and adjacent normal tissues at the protein level
(Fig. 2d). The differential expression in GRNs identified in
each patient also confirmed the tumor heterogeneity of
SBA, with transcription factors (TFs) such as BATF,
CREB3L1, KLF2, E2F1 variably expressed among different
patients (Fig. 2e; Supplementary Fig. S4d). We also
compared differentially expressed genes (DEGs) of
malignant cells between primary and metastatic tumor
samples (Supplementary Fig. S4e). We found that the
mesenchymal signature is enriched in the malignant cells
from lymph nodes compared to the malignant cells from
primary tumors, which may be associated with the
enhanced EMT process during metastasis.
To further investigate any residual small intestinal

functions of the malignant cells under pathological con-
ditions, we integrated our datasets with another published
single-cell dataset from normal ileum samples to assess
normal nutrient transportation and absorption functions
of intestine epithelial cells for various nutrients (Supple-
mentary Fig. S5a, b)15. We selected all the normal epi-
thelial cells from these datasets and evaluated the

(see figure on previous page)
Fig. 1 Expression landscape of SBA and cell composition changes. a UMAP plot exhibiting the identified clusters of the STRT and 10× datasets.
b UMAP plot exhibiting the cell tissue sources of the STRT and 10× datasets. c Dot plots presenting the normalized expression level of corresponding
markers of each cell cluster in the STRT dataset. d Heatmap showing the average normalized GRN expression scores. e UMAP plot exhibiting the
identified clusters of normal epithelial cells in the STRT and 10× datasets. f The upper panel exhibiting large-scale CNVs of single cells inferred based
on normal epithelial cells in the STRT dataset. The middle panel exhibiting large-scale CNVs of single cells inferred based on epithelial cells from
tumor tissues in the STRT dataset. The lower panel exhibiting the CNV called from the WES data of P3–P6. g Histogram showing the cell composition
percentage of each sample inferred by the deconvolution analysis. h Representative IHC staining of TAGLN in adjacent normal and primary tumor
tissues (original magnification 100×). The rows of the paired normal and tumor samples are from the same patients, and three individual patients are
listed. Scale bar, 100 μm.
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corresponding score of each gene set. In terms of
absorption and transport functions related to lipids, bile
salts, vitamins, water, amino acids, organic solutes, sugar,
nucleotides, inorganic solutes and metal ions, the malig-
nant cells from the duodenum, jejunum, and ileum
showed declined functions relative to normal intestinal
epithelial cells, and this trend was consistent throughout
the small intestine (Fig. 2f). Especially in functions related
to lipids, bile salts, vitamins and sugar, the gene set score
of these functions decreased significantly in malignant
cells compared to normal epithelial cells in ileum (Sup-
plementary Fig. S5c). Furthermore, we evaluated scores of
different metabolic pathways, and found that many
metabolic pathways were depleted in malignant cells
compared to normal epithelial cells (Fig. 2g). However,
several metabolic functions such as amino sugar and
nucleotide sugar metabolism, purine metabolism and
pyrimidine metabolism, were enriched in the malignant
cells of ileum.

Identification of two tumor progression paths and EMT
expression programs that may favor metastasis
After the intrinsic epithelial cell subpopulations and

potential sources of malignant cells were identified, the
nonnegative matrix factorization (NMF) method was
applied to elucidate feasible expression programs with co-
expressed genes. Based on all of the malignant cells in the
STRT dataset, we generated 50-dimensional principal
components and extracted 7 co-expressing programs
(Fig. 3a; Supplementary Fig. S6a). The enriched signaling
pathways that constituted different expression programs
were functionally associated to some extent, especially the
epithelium-related signaling pathways.
To further illustrate the detailed characteristics of the

malignant SBA cells, we focused on the malignant cells of
P5 and P6, who were patients with duodenal cancers with
metastatic lymph node tumors. For the tumor sampling
sites of P5 and P6, the negative and positive poles of the
top principal components obtained from principal com-
ponent analysis (PCA) were taken (Supplementary Fig.
S6b). We scored these features and extracted six pro-
grams by hierarchical clustering (Fig. 3b, c). Four gene
expression programs, including cell cycle-related pro-
gram, mitochondria-related program, metabolism-related

program and EMT-related program, were common pro-
grams shared by these two patients, and the other two
programs were each specific to one of the patients (Sup-
plementary Fig. S6c, d, Table S6).
The correlations and progression paths of these four

expression programs were analyzed further. The meta-
bolism- and EMT-related programs showed the lowest
correlation with each other, which indicated mutually
exclusive states (Supplementary Fig. S6e). The pseudo-
time trajectories of these four programs also presented the
similar pattern of the progression tracks (Fig. 3d). Fur-
thermore, we performed the signaling entropy rate ana-
lysis of these cell types16, identifying that malignant cells
of the cell cycle program and mitochondria-related pro-
gram had higher ‘differentiation’ potency while malignant
cells of the EMT- and metabolism-related signatures had
lower ‘differentiation’ potency (Fig. 3e; Supplementary Fig.
S6f). Therefore, we inferred that the cell cycle program
represented the starting state during tumorigenesis
(Fig. 3f). The mitochondria-related program clearly
represented the intermediate state of the malignant cells,
which connected to the other programs. There were two
branches of the malignant cell progression trajectory, in
which the metabolism-related program and the EMT-
related program represented the end states of tumor-
igenesis. The EMT-program malignant cells and the
metabolism-program malignant cells showed a negative
correlation of gene expression, with high expression of
CD59 and LAMC2 in EMT-program malignant cells and
high expression of EIF5B and HES1 in metabolism-
program malignant cells (Fig. 3g, h). As for the lymph
node metastatic malignant cells, these cells are enriched
in the EMT program signatures, accounting for 60% in the
EMT subtype and 25% in the metabolism subtype (Fig. 3i).
It indicated that the EMT program may be involved in the
metastatic process. When the analysis was expanded to
other cancer cases, we found similar progression paths of
the malignant cells in both the STRT and 10× datasets,
except in P1 due to prior chemotherapy (Supplementary
Fig. S6g).
We subsequently focused on the EMT program. Among

the identified EMT program markers, LAMB3 and
LAMC2 have also been reported as markers of a non-
typical EMT program in head and neck cancers17. We also

(see figure on previous page)
Fig. 2 Molecular signatures of the malignant cells and association with pathological characteristics in SBA. a UMAP plot exhibiting the cell
identification by CNV values in the STRT and 10× datasets. b, c Boxplots in the upper panel showing average normalized expression of the malignant
cells and normal epithelial cells. Dot plots in the lower panel showing the log2 fold change (FC) of malignant cell relative to normal epithelial cell of
each patient or dataset. d Representative IHC staining of MUC1 in adjacent normal and primary tumor tissues (original magnification 100×). The rows
of the paired normal and tumor samples are from the same patients, and three individual patients are listed. Scale bar, 100 μm. e Dot plot showing
the log odd ratio values of tumor/normal of corresponding TFs, with P values calculated by χ2 test. f Violin plot showing the expression scores of
absorptive and transport gene sets in malignant and normal epithelial cells from different intestinal regions. g Heatmap showing the expression
scores of metabolism pathways in malignant and normal epithelial cells from different intestinal regions.
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identified related GRNs in the EMT-related program,
which included genes such as ETS1, STAT5A, TEAD3 and
XBP1 (Fig. 3j, k). Among these genes, previous studies
showed that the TF ETS1 can enhance the expression of
ZEB1/2, whereas STAT5A can induce EMT through
TWIST118,19. XBP1 can induce EMT by promoting the
expression of SNAI1/2 in the IRE1-XBP1-snail pathway20.
These key TFs may be upstream factors promoting EMT.
Therefore, we inferred that the identified EMT signature
is the initial stage of the typical EMT program, through
inducing activities of related TFs to promote EMT.

Changes in the features of cancer-associated fibroblasts
during tumor progression
To reveal the characteristics and heterogeneities of

cancer-associated fibroblasts (CAFs) in SBA, we enriched
fibroblasts from 2 patients in the STRT dataset (Supple-
mentary Table S1). We captured 339 fibroblasts from the
STRT dataset and 787 fibroblasts from the 10× dataset
(Fig. 4a, c; Supplementary Fig. S7a). After removing batch
effects, 6 clusters of fibroblasts were identified in each of
the datasets, and 4 clusters were shared by these two
datasets (C1, C2, proliferative fibroblasts and myofibro-
blasts). According to both the STRT and 10× datasets, the
percentage of C1 clusters decreased in tumor tissues
relative to adjacent normal tissues, while the percentages
of proliferative fibroblasts and myofibroblasts increased
(Fig. 4b). ACTA2 is one of the markers for myofibroblasts,
and the IHC staining of ACTA2 confirmed that the pro-
portion of myofibroblasts is higher in tumor tissues
compared to adjacent normal tissues (Supplementary
Fig. S7b).
Next, we explored the alterations of fibroblasts during

tumor progression in SBA. Several of the identified DEGs,
such as RCN3, BGN, TPM4, and PKM, have been repor-
ted as marker genes of CAFs in CRC and indicated similar
signatures of gastrointestinal cancers (Fig. 4d; Supple-
mentary Fig. S7c, d)21. The IHC staining also showed the
higher expression of RCN3 in tumor tissues than in
adjacent normal tissues, which confirms the upregulation
of RCN3 in fibroblasts during tumorigenesis of SBA
(Fig. 4e). Moreover, in the STRT dataset, we identified
marker genes of fibroblasts from lymph node tumor sites

and 8 genes whose expression levels continuously
increased during tumor progression and metastasis
(Fig. 4f; Supplementary Fig. S7e). DPT and SFRP2 were
rarely expressed in normal epithelial cells and tumor
immuno-microenvironment cells but were mainly
expressed in fibroblasts from tumor tissues.
Then, we focused on cell communications between

fibroblasts and malignant cells. We applied NATMI to
quantify the expression and specificity of specific inter-
action pairs and filtered the ligand–receptor pairs to
retain significant interaction pairs among different states
(Supplementary Fig. S8a, b)22. Eighteen continuously
upregulated and nine continuously downregulated dif-
ferentially expressed interaction pairs from normal tissues
to primary tumors and then to lymph node metastatic
tissues were validated. Next, we analyzed the
ligand–receptor interactions between diverse subtypes of
fibroblasts and malignant cells characterized by the
identified gene expression programs. We identified
interaction pairs in both the STRT and 10× datasets
(Supplementary Fig. S8c). The collagen–integrin interac-
tion pairs of myofibroblasts and EMT-malignant cells
showed the strongest and most specific interactions
among all the identified cell type interactions (Fig. 4g). At
the same time, we found that collagen-related genes were
more enriched in tumor tissues than in the adjacent
normal tissues, which was confirmed by the gene set
enrichment analysis (GSEA) of the collagen-related and
collagen formation datasets (Supplementary Fig. S8d).

CD8+ T cells with exhaustion signatures and their potential
interactions with the malignant cells
In our datasets, we captured a sufficient number (7742)

of T/NK cells from the 10× dataset and performed
downstream analysis. Twelve clusters of T/NK cells were
identified, which included one cluster of NK cell, four
clusters of CD8+ T cells, four clusters of CD4+ T cells and
three clusters of T cells with other representative features
(Fig. 5a, c; Supplementary Fig. S9a). Among these clusters,
the cell type composition of T cells from individual
samples differed substantially (Fig. 5b; Supplementary Fig.
S9b). In general, the percentages of FOXP3 Treg cells
increased significantly in tumor tissues, which indicated a

(see figure on previous page)
Fig. 3 Tumor heterogeneity and gene expression programs of the malignant cells. a Heatmap showing the Pearson correlation clustering of
identified intra-tumor expression programs. b Heatmap showing the Pearson correlation clustering across gene signatures extracted from the PCA
output. c Dot plots presenting the normalized expression levels of corresponding markers of each gene expression program of the malignant cells in
the STRT dataset. d Scatterplot showing the developmental trajectory of malignant cell identified by different expression programs using monocle2.
e Boxplot showing the signaling entropy rate of cells with identified gene expression programs. f Heatmap showing diverse expression patterns of
the malignant cells from different expression programs along the pseudotime trajectory. g Scatterplot exhibiting the negative correlation of
metabolism- and EMT-related malignant cells. h Scatterplot exhibiting the expression levels of representative marker genes. i Scatterplot exhibiting
the information of malignant cells from lymph nodes and primary tumor tissues embedded in the trajectory pathway. j Heatmap showing the on or
off activities in the malignant cells of diverse expression programs. k Scatterplot showing the TF expression scores in the developmental trajectory.
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general suppression of T cell activities in SBA. Next, we
compared the gene expression profiles of tumor tissue-
derived and normal tissue-derived T cells. Taking CD4+

Treg cells and CD8+ cytotoxic T cells as examples, Treg
cells derived from tumor tissues showed higher expres-
sion of LAYN, LGALS1 and TNFRSF1B, and cytotoxic
T cells derived from tumor tissues showed higher
expression of TNFRSF9 (encoding 4-1BB), LAYN and
CTLA4 (Supplementary Fig. S9c). We identified DEGs in
both CD4+ and CD8+ T cells from tumor tissues relative
to those from adjacent normal tissues (Fig. 5d). As
expected, DEGs that were upregulated in T cells from
tumor tissues, such as CTLA4 and TIGIT, were enriched
for exhausted T cell functions. Downregulated DEGs such
as IL7R, CD69, CCL4, CCL4L2 were associated with T cell
activation and cytotoxic activities23,24.
Then, we focused on the association of CD8+ T cells

and exhaustion status. Using the cytotoxicity and
exhaustion gene sets, we showed that the T cells from
tumor tissues presented significantly higher expression of
both the cytotoxicity and exhaustion signature genes than
T cells from normal tissues (Fig. 5e). On the basis of the
exhaustion gene set, these CD8+ T cells were divided into
ex-high (highly exhausted signature) and ex-low (lowly
exhausted signature) groups (Supplementary Fig. S9d). As
expected, the ex-high group showed higher expression of
exhaustion signature genes, and the lowly exhausted
group presented more T cell cytotoxicity- and leukocyte
migration-related signatures (Supplementary Fig. S9e).
Among different types of CD8+ T cells, exhaustion mar-
kers such as TIGIT, BATF, CTLA4, LAYN and PDCD1
were enriched in KLRB1+CD8+ T cells, indicating that
this cluster of CD8+ T cells contributes most to T cell
exhaustion (Supplementary Fig. S9f). KLRB1+CD8+

T cells also highly expressed CXCL13 (Supplementary Fig.
S9g). Of these markers, KLRB1 was reported to inhibit key
aspects of cytotoxic T cell functions significantly in glio-
mas25,26. CXCL13 has also previously been reported to be
associated with exhaustion signatures27,28.
Finally, we performed the cell–cell communication ana-

lysis of ex-high and ex-low T cells with malignant cells
(Fig. 5g). Among these interactions, EMT-program malig-
nant cells and mitochondria-program malignant cells were
the most frequent malignant cell types interacting with

T cells. Among the interaction pairs of malignant cells and
T cells, the T cell receptor CXCR4 was identified in many
interactions, and CXCR4-related interactions were enriched
in ex-low T cells. We also identified T cell exhaustion-
associated interactions among these cell pairs, and as
expected, these interactions (such as HMGB1–HAVCR2,
CEACAM1–HAVCR2, HBEGF–CD44 and LGALS3–LAG3)
were enriched in ex-high T cells, as receptor-providing cells.
HAVCR2 (encoding TIM3) was one of the main receptors
of ex-high T cells, and the IHC results verified that the
expression of TIM3 at the protein level was clearly higher in
tumor tissues compared with adjacent normal tissues
(Fig. 5f). Exhaustion ligands (CEACAM1, LGALS3, LGALS9,
etc.) were mainly enriched in EMT-program and
mitochondria-program malignant cells, which corre-
sponded to the more malignant cells in our study. We also
used the EMT and highly exhausted CD8+ T cell gene sets
to explore the relationship with highly exhausted T cell
interactions in the 10× datasets of GC and CRC29,30. We
isolated malignant cells and T cells from these datasets and
divided them into cells with high or low expression of the
EMT or exhausted T cell signature (Supplementary Fig.
S10a, b). Although the exhaustion interactions were mainly
enriched in highly exhausted T cells, there were no sig-
nificant differences between low- and high-EMT malignant
cells for the interactions (Supplementary Fig. S9h). This
suggests that the EMT-high malignant cells promote CD8+

T cell exhaustion through cell–cell communications speci-
fically in SBA, but not in GC or CRC.

Identification of transcriptomic characteristics and
relationships of SBA with other gastrointestinal cancers
The SBA therapies applied to date have mainly mirrored

those for CRC, but several studies have suggested that
there are significant differences in mutation signatures
and genome-wide CNVs between SBA and CRC6–8. To
reveal the similarities and differences of different gastro-
intestinal cancers, we identified the correlational rela-
tionships in gastrointestinal cancers through integrating
our 10× dataset with other published 10× single-cell
datasets of gastrointestinal cancers29,30, including SBA,
GC and CRC (Supplementary Fig. S10a, b). We utilized
the features of inferred CNVs to divide epithelial cells into
malignant cells and normal epithelial cells in separate

(see figure on previous page)
Fig. 4 Changes in features of fibroblasts during tumor progression. a UMAP plot exhibiting the identified clusters and sources of fibroblast in
the STRT and 10× datasets. b Histogram showing cell type percentage of fibroblasts from different sources in the STRT and 10× datasets. Pie plot
showing fibroblast source percentages in different cell types. c Dot plots presenting the normalized expression levels of corresponding markers of
each fibroblast cluster in the STRT dataset. d Heatmap showing expression of marker genes of fibroblasts from tumor and normal tissues in the STRT
dataset. e Representative IHC staining of RCN3 in adjacent normal and primary tumor tissues (original magnification 100×). The rows of the paired
normal and tumor samples are from the same patients, and three individual patients are listed. Scale bar, 100 μm. f Violin plot exhibiting expression of
continuously increasing markers during tumor progression in the STRT dataset. g Dot plot showing expression of interaction pairs in fibroblast and
epithelial cell pairs from different subclusters.
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datasets with the previously mentioned method, while
there were no samples from ileum in our 10× dataset and
we divided SBAs in the 10× dataset into duodenal and
jejunal subtypes to reveal detailed positional information.
Based on the expression of common highly variable genes
(HVGs), we scored the correlations among these gastro-
intestinal cancers (Supplementary Fig. S10c). Although
there were no ileal samples in the 10× datasets of SBA, we
clearly observed a closer relationship of duodenal sub-
types with GC than with CRC. The correlational rela-
tionships of gastrointestinal cancers corresponded to the
spatial order of the gastrointestinal tract, providing a
continuously changing signature across gastrointestinal
cancers. To identify the relationship of these gastro-
intestinal cancers further, we performed the PCA
dimension reduction analysis based on the DEGs of gas-
tric and colorectal malignant cells. The PCA analysis
showed that the duodenal subtype of SBA exhibited
molecular features more similar to GC whereas jejunal
subtype of SBA more similar to CRC (Fig. 6a). There is
also a trajectory in accordance with the spatial order of
the gastrointestinal tract, which is from gastric, duodenal,
jejunal to colorectal malignant cells. We identified DEGs
of malignant cells from GC and CRC (Supplementary Fig.
S10d), and tracked these DEGs in the identified trajectory
in the PCA plot. We found that some upregulated DEGs
in GC malignant cells such as HSPB1, PHLDA2, DNAJB1
have the decreasing expression tendency in malignant
cells from GC, duodenal caners, jejunal cancers to CRC.
Meanwhile, several upregulated genes in CRC malignant
cells such as RPLP2, RPL36A, TFF3 have the increasing
expression tendency in malignant cells from GC, duode-
nal cancers, jejunal cancers to CRC (Fig. 6a). The analysis
based on scRNA-seq data was consistent with conclusions
based on the comparison taking malignant cell as a whole,
which indicates the consistency of the identified potential
ordered relationships between GC and duodenal SBA and
between jejunal SBA and CRC.
To assess the similarities and differences, we integrated

these datasets and found that markers of malignant cells
in SBA identified previously showed widespread expres-
sion among all gastrointestinal cancers (Supplementary
Fig. S10e), although some biomarkers, such as GDF15,
MUC1, and S100A4, were expressed only in specific

intestinal regions (Fig. 6b). We also compared the differ-
entially expressed pathways and metabolic activities
among these cancer types (Fig. 6c, d). Secretory-related
pathways (pancreatic beta cell and protein secretion sig-
natures) were enriched in malignant cells of GC, hormone
response signatures (androgen and estrogen responses)
were specifically enriched in duodenal malignant cells,
jejunal malignant cell presented proliferation-related sig-
natures (TGFβ and mitotic spindle signatures), while
colorectal malignant cells tended to show stronger
metastatic characteristics (EMT and angiogenesis sig-
natures). As for metabolic activities, retinol metabolism
and galactose metabolism were enriched in duodenal
malignant cells, while pyruvate-related metabolism, such
as purine and pyruvate metabolism, and biosynthesis-
related pathways, such as pentose phosphate pathway and
biosynthesis of unsaturated fatty acids, were enriched in
colorectal malignant cells.
Differences of SBA and CRC are meaningful to guide

treatments of SBA. Among the DEGs found between
malignant and normal epithelial cells in SBA and CRC,
there were only a few overlaps (Supplementary Fig. S10f).
The GO analysis indicated that both malignant cells of
SBA and CRC presented EMT signatures (Fig. 6e). The
hallmark EMT gene set had a higher expression in CRC
than in SBA at the global transcriptome level (Supple-
mentary Fig. S10g). To further distinguish the EMT
programs of SBA and CRC, we identified the specific
transcriptional activity of XBP1 in SBA (Fig. 6f). The
transcriptional activity of XBP1 in SBA seems higher than
that in CRC. The molecular classifications of SBA and
CRC are complex, and more studies are needed to identify
the EMT signatures in these two cancer types.

Evaluation of potential targets for SBA
The available types of treatments for SBA are limited and

there is a lack of specific clinical therapies for SBA. Pre-
vious studies showed frequent somatic mutations of SBA,
such as ERBB2, KRAS, PTEN, PIK3CA, IDH1, which may
be potential targets for SBA treatments. Although we did
not detect most of somatic mutations in the above genes
according to the WES analysis, we sought to evaluate the
expression levels of these potential targets. We identified
the ERBB family genes, including EGFR, ERBB2, ERBB3

(see figure on previous page)
Fig. 5 CD8+ T cells with exhaustion signatures and related interactions with malignant cells. a UMAP plot exhibiting the identified clusters of
T cells in the 10× dataset. b Histogram showing cell type percentages of different T cells from collected samples in the 10× dataset. c Dot plots
presenting the normalized expression levels of corresponding markers of T cell clusters in the 10× dataset. d Scatterplot showing DEGs of T cells from
tumor tissues compared with normal tissues in both CD4+ and CD8+ T cells. e Violin plots showing expression of the exhaustion and cytotoxicity
gene sets in CD8+ T cells from tumor and normal tissues. The P value was calculated by t-test. f Representative IHC staining of TIM3 in adjacent
normal and primary tumor tissues (original magnification 100×). The rows of the paired normal and tumor samples are from the same patients, and
three individual patients are listed. Scale bar, 100 μm. g Dot plot showing the expression of interaction pairs in epithelial cell and T cell pairs with
different signatures.
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Fig. 6 Identification of the similarity and differences of SBA with other gastrointestinal cancers. a Scatterplots exhibiting the PCA dimension
reduction analysis for gastric, duodenal, jejunal to colorectal malignant cells and DEGs expressed in the PCA plot. b Violin plot exhibiting markers of
SBA expressed in gastrointestinal cancers. c, d Heatmap showing gene set scores of hallmark gene sets and metabolism pathways in malignant cells
from different gastrointestinal regions. e Enrichment analysis for markers of malignant cells in SBA and CRC. f Heatmap showing the TF activities of
GRNs in malignant cells from SBA and CRC.
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and ERBB4, that were specifically upregulated in malignant
cells in these two datasets (Fig. 7a; Supplementary Fig.
S11a). Previous studies have reported that ERBB2 is fre-
quently mutated in SBA, which is associated with worse
clinical outcomes7,8. The IHC staining of ERBB2 showed
the higher protein expression levels in tumor tissues than
normal tissues in SBA (Fig. 7b). As for other frequently
mutated genes, though the absolute expression levels of
these targets are relatively low, the expression levels of
KRAS, PIK3CA, PTEN are higher in malignant cells com-
pared to normal epithelial cells, and the expression of IDH1
in malignant cells and normal epithelial cells has no sig-
nificant differences (Supplementary Fig. S11b).
Among the DEGs identified in malignant cells in SBA,

MUC1 is widely expressed in different patients, and the
IHC staining confirmed the specificity of MUC1 in tumor
tissues of SBA (Fig. 2d), which indicates thatMUC1 can be
regarded as a universal marker of SBA according to our
scRNA-seq data. MUC1 is a member of the mucin family
and was reported to be highly expressed in gastrointestinal
cancers31, which was previously found to be associated
with EMT in SBA. MUC1 is also associated with onco-
genes such as EGFR, ERBB2 and T cell exhaustion-related
genes such as LGALS3 functionally and physically
according to the protein interaction network (Supple-
mentary Fig. S11c). As for normal intestinal epithelial cells
in both the STRT and 10× datasets, MUC1 was expressed
mainly in goblet cells (Fig. 7c; Supplementary Fig. S11d, e).
The expression of MUC1 was positively correlated with
cancer stem cell markers such as CD24, PSCA and
TM4SF1, which indicated that the high expression of
MUC1 in malignant cells was associated with tumor
proliferation (Fig. 7d; Supplementary Fig. S11f). To explore
more potential functions of MUC1 in gastrointestinal
cancers, the bulk RNA-seq data and protein expression
data using the reverse phase protein array (RPPA) method
of CRC from the TCGA dataset were used, and we iden-
tified the correlation of expressed genes at RNA and
protein levels with the MUC1 RNA expression (Supple-
mentary Fig. S11g). The common highly-correlated genes
with MUC1 RNA expression both at RNA and protein
levels, such as PARP1, MTOR, MAP3K6, were found,
which gives clues for the molecular mechanisms of MUC1
for tumorigenesis of SBA. Furthermore, MUC1 was
reported as an attractive candidate target in many CAR-T
studies. Although CAR-T therapies were mainly provided
to be effective in blood cancers rather than solid tumors,
the CAR-T therapy of MUC1 for SBA may be developed
and further studied to benefit SBA patients.

Prediction and verification of specific drug candidates for
SBA based on transcriptomic analyses
To identify more specific drug candidates for SBA, we

used a ridge regression-based method to predict the

potential drug responses of SBA32,33 (Fig. 7e). Drug sen-
sitivity data in the form of IC50 AUC values and gene
expression profiling data of CCLE cell lines were used as
training sets, including data on 2521 drugs and 1969 cell
lines34–38 (Supplementary Fig. S12a). We utilized the
log2FC values of tumor cells relative to normal cells and
the correlation coefficients of tumor scores as the filtering
criteria to predict potential candidate drugs for SBA.
Fourteen predicted drugs were obtained, including one
from the CTRP database and two from the GDSC1
database, while the others were from the PRISM database
(Fig. 7f; Supplementary Table S7). Of the fourteen pre-
dicted drugs, we selected four of them including filanesib,
mocetinostat, tozasertib and volasertib to verify the inhi-
bitory effects for SBA. Filanesib is a kinesin spindle pro-
tein (KIF11) inhibitor which has recently been proposed
for cancer treatment, specifically for multiple myeloma.
Mocetinostat is a histone deacetylase (HDAC) inhibitor
undergoing clinical trials for treatment of many cancers
including follicular lymphoma, Hodgkin’s lymphoma and
acute myelogenous leukemia. Tozasertib is a pan-Aurora
inhibitor, mostly against Aurora A. Volasertib is an
experimental small-molecule inhibitor of the PLK1 (polo-
like kinase 1) protein and is developed for use as an anti-
cancer agent. The criteria of selecting these candidates are
as follows. Firstly, these selected drug candidates were at
least in the phase II of clinical traits in other cancer types,
which means that the toxicity and side effects are accep-
table for cancer patients and the safety- and dose-related
research data are available. Secondly, these drugs are
relatively easy to obtain. Although the absolute expression
levels of these genes are relatively low, we can see targets
of these four selected drugs are more highly expressed in
tumor tissues compared to adjacent normal tissues
(Supplementary Fig. S12b).
To assess the inhibitory effects of candidate drugs for

SBA, we screened the HUTU-80 cell line, which was
derived from duodenal adenocarcinomas, with these four
drugs including filanesib, mocetinostat, tozasertib and
volasertib as well as two conventional drugs of SBA,
oxaliplatin and irinotecan as controls (Fig. 7g; Supple-
mentary Table S8). Especially at the concentration of
0.1 μM, the inhibitory effects of volasertib and tozasertib
were significantly higher than oxaliplatin and irinotecan
(Supplementary Fig. S12c). Although moncetinostat also
had a comparable inhibitory effect at the concentration of
0.1 μM, it did not show stronger effects at higher con-
centrations. We performed the cell viability assay and the
dose-response analysis of these drugs to detect inhibitory
effects. In HUTU-80 cells, volasertib and tozasertib had
the most pronounced inhibitory effects, whereas mon-
cetinostat and silanesib did not show prominent differ-
ences of inhibitory effects compared to oxaliplatin and
irinotecan. Both volasertib and tozasertib target cell cycle
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to inhibit cell division39,40. To clarify susceptibility of
screened drugs in separate malignant cells of SBA, we
calculated drug responses of tozasertib and irinotecan of
separate epithelial cells in our STRT dataset. The UMAP
embeddings were computed by transcriptional changes
induced by drugs from databases built in Beyondcell41,
and clusters were presented according to malignant cells
and normal epithelial cells, which is similar to clusters
based on gene expression (Fig. 7h). Tozasertib has three
similar related signatures in the built-in datasets of
Beyondcell. High and low drug susceptible scores of these
signatures of tozasertib were similar to the classification
of malignant and normal epithelial cells, which was con-
cordant with our prediction results and proved the drug
specificity in malignant cells of SBA (Fig. 7i; Supple-
mentary Fig. S12d). Irinotecan only showed the high
susceptibility in part of malignant cells, and tozasertib was
highly susceptible in almost all the malignant cells, which
may explain the higher inhibitory effect of tozasertib
compared to irinotecan (Fig. 7i). Irinotecan is one of the
conventional drugs for intestinal cancers42, and the het-
erogeneity of drug susceptibility of irinotecan in SBA
indicated that more specific drugs are in urgent need for
SBA. The high susceptibility and specificity of tozasertib
may provide new clues for treatments of SBA.

Discussion
The knowledge and available data about SBA are limited,

and extrapolations from studies of CRC are used as the
major reference in the treatment of SBA4,5,43. In our study,
several important conclusions are presented. In SBA, we
identified 4 prevalent subtypes of malignant cells: the cell
cycle program, the mitochondria program, the metabolism
program and the EMT program. The progression trajec-
tory of these 4 subtypes of malignant cells is from the cell
cycle program to the mitochondria program, and pro-
gressing into either the metabolism program or the EMT
program. These 4 prevalent subtypes of malignant cells
and their progression trajectory are identified in two
datasets, which represents the generalization of the find-
ing. This finding represents the intra-tumor heterogeneity

of SBA malignant cells and the scRNA-seq strategy is ideal
for analyzing intra-tumor heterogeneities. As for tumor
immune microenvironment, we identified that the EMT-
program malignant cells have a high association with
highly exhausted CD8+ T cells. The interactions between
EMT-program malignant cells and highly exhausted
T cells may reveal the association between the EMT sig-
nature of malignant cells and T cell exhaustion in SBA.
With published scRNA-seq data of other gastrointestinal
cancers, we compared gastric, duodenal, jejunal and col-
orectal malignant cells at the global gene expression levels,
and revealed the closer relationship between GC and
duodenal subtype of SBA and closer relationship between
jejunal subtype of SBA and CRC. These ordered rela-
tionships are also in accordance with the spatial order of
the gastrointestinal tract. Because the current therapies of
SBA mainly refer to CRC, it raises an issue whether it is an
optimal way to treat duodenal cancers with therapies of
CRC. Based on the single-cell transcriptome signatures of
malignant cells and normal epithelial cells, published drug
treatment resources and in-depth bioinformatics analyses,
specific candidate drugs of SBA were predicted. Verifica-
tions of predicted drugs were performed in the HUTU-80
duodenal cancer cell line, and inhibitory effects of vola-
sertib and tozasertib are stronger than classical clinical
drugs for SBA such as oxaliplatin and irinotecan when
used at the same concentration. These predicated and
verified drug candidates may potentially benefit SBA
patients based on the current situation that there lacks
specific drugs for SBA.
The case number is only 12 due to the rarity of SBA,

which is one of the limitations of this study. To maximize
the utility of this study, we collected 34 samples from
these 12 SBA patients, with 21 primary tumor samples, 10
adjacent normal samples and 3 lymph node metastatic
tumor samples (Supplementary Table S1). Previous stu-
dies about SBA mainly focused on genomic mutation
information, which can be captured from frozen tissues or
paraffin sections. High-quality single-cell transcriptome
data can only be obtained from fresh tissues, and the
rarity of SBA limits the number of collected samples to

(see figure on previous page)
Fig. 7 Identification of target genes and candidate drugs for SBA. a Violin plot exhibiting expression levels of key genes in the ERBB pathway
and the ERBB family gene set score in the malignant cells and normal epithelial cells in the integrated dataset of the STRT and 10× datasets, with “ns”
representing no significance and P values calculated by t-test. b Representative IHC staining of ERBB2 in adjacent normal and primary tumor tissues
(original magnification 100×). The rows of the paired normal and tumor samples are from the same patients, and three individual patients are listed.
Scale bar, 100 μm. c Violin plot showing MUC1 expression in normal epithelial types from the 10× dataset. d Scatterplot exhibiting the positive
correlation of expression of MUC1 and other genes. e The brief workflow of drug predication. f Scatterplot exhibiting the log2FC of tumor sample
compared with normal samples and correlation with tumor score according to the predicted IC50 AUC value of every drug. Drugs with labels were
selected as candidate drugs. g Cell survival curve for HUTU-80 cells treated with the indicated inhibitors with a dose escalation from 0 to 100 μM.
Data are presented as means ± SD. h UMAP plot identified the differences of malignant cells and normal epithelial cells based on transcriptional
changes induced by drugs from databases built in Beyondcell. i Drug sensitivity of tozasertib and irinotecan evaluated in single cells from the STRT
dataset based on Beyondcell.
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make a large cohort of single-cell transcriptome infor-
mation of SBA. Although the number of patients of our
dataset is limited, the numbers of the tumor and adjacent
normal tissue samples are acceptable to reveal intra-
patient heterogeneities of SBA. As for the number of ileal
samples in this study, the low number of ileal patients is
due to much lower percentage of ileal cancers in SBA.
And it is more difficult to collect a relatively large number
of ileal cancer samples. Although the number of patients
of ileal cancer is only 2, there are 4 primary tumor sam-
ples and 2 adjacent normal samples, which is acceptable
to identify intra-patient tumor heterogeneities. To com-
pensate for the limitation, we included published single-
cell transcriptome data from two normal ileum samples to
increase normal ileal cell numbers and make related
biological conclusions more representative. Meanwhile,
more studies and more samples for SBA were needed, and
we think that more samples will bring more findings and
verify our findings in the future.
In this study, we used two different library construction

methods, the modified STRT method and 10× Genomics
method to balance the number of captured genes in each
individual cell and cell throughput for each run. The
modified STRT method can capture more genes with a
median number of 4187 detected genes in each cell, which
is much higher than the number of captured genes of the
10× Genomics method with a median number of 1710
detected genes in each cell (Supplementary Fig. S1a). The
10× Genomics method is the mainstream high-
throughput scRNA-seq method, and the number of cap-
tured cells of the 10× dataset is 33,374 while the number
of captured cells of the STRT dataset is 3676. Combining
these two scRNA-seq methods, the number of detected
genes and the number of captured cells were well
balanced to explore more information in individual cells
and enough number of cells to determine cell types. The
logic of our analysis is using these two datasets as indi-
vidual datasets to find the biological patterns first in one
dataset and then confirm them in the other dataset. We
also use distinct advantages of these two datasets to draw
dataset-specific conclusions. As for specific conclusions
from the STRT dataset, we used the STRT dataset to
predict potential specific drugs for SBA because the STRT
dataset capture more genes than the 10× dataset and can
reduce the influences of dropout effects. As for specific
conclusions from the 10× dataset, we only obtained
enough number of T cells in the 10× dataset and explored
T cell signatures using the 10× dataset. We also used the
10× dataset to identify the relationship of gastrointestinal
caners because there are less batch effects between this
dataset and the published GC and CRC 10× datasets.
We first revealed the molecular landscape of SBA at the

single-cell level. We used two methods to capture single-
cell transcriptome of SBA, and the integration of normal

epithelial cells proved the consistency of these two data-
sets. We also combined bulk transcriptome data and
performed the deconvolution analysis to infer increasing
percentages of fibroblasts and decreasing percentages of
epithelial cells in tumor tissues, which indicates the
potentially important role of fibroblasts in SBA. We
identified biomarkers of SBA and potential target genes
for its treatment, such as CEACAM5 and MUC1. CEA-
CAM5 is a traditional marker used in the clinical diag-
nosis of many types of cancers including SBA44, and
MUC1 is a tumor antigen that is also targeted in many
clinical traits of immunotherapies31,45. MUC1 presents a
positive correlation with stem-related markers in SBA and
is also reported to show good druggability46,47. Further-
more, almost all the physiological functions of small
intestine were observed to be decreased in the malignant
cells, as expected, and different metabolic pathways were
enriched in malignant cells and normal epithelial cells of
different intestinal regions, which may be meaningful for
related clinical treatments.
To further investigate the intratumoral heterogeneity

and subtypes of SBA, four common gene expression
programs of the malignant cells were identified in the
patients. Malignant cells with a strong cell cycle program
first progress into an intermediate state with
mitochondria-enriched programs, and then to two cell
fates, the metabolism-enriched program and the EMT-
enriched program, emerging as the terminal progression
states of the malignant cells. The EMT program was
speculated to be an endpoint of tumor progression
without the expression of classical EMT markers. The
progression trajectory started from the cell cycle program,
through the mitochondria program and progressing into
either the metabolism program or the EMT program.
Meanwhile, the STRT and 10× datasets both represent
these 4 subtypes of malignant cells and their progression
relationship, which manifests the generalization of these
two datasets. We inferred that the specific EMT signature
of SBA represented the initial stage of EMT based on the
GRN analysis. The reason for the lack of classical EMT
markers in the identified EMT program of SBA is unclear
but may have resulted from the diversity of tumor pro-
gression and specific mechanisms. Markers of this process
were also shared in non-classical EMT programs of other
cancer types, indicating the similar signatures among
diverse types of cancers17.
Furthermore, we identified the connections of malignant

cells with fibroblasts and T cells in the tumor micro-
environment. As for fibroblasts, several studies hinted that
fibroblasts are important in gastrointestinal cancers, and we
want to capture enough fibroblasts to explore related phe-
nomena. Although we tried to enrich fibroblasts in P5 and
P6, the ratio of fibroblasts from the enriched sample (97/
1237) is not significantly different from the ratio of

Yang et al. Cell Discovery            (2022) 8:92 Page 17 of 23



fibroblasts in unenriched samples (242/2439). Although the
attempt of enriching fibroblasts is unsuccessful, the quality
of the cells (such as gene and transcriptional molecule
numbers) is not influenced and the cells can still be used for
downstream analyses. There were four common fibroblast
subclusters, cluster C1, cluster C2, proliferative fibroblasts
and myofibroblasts in both the STRT and 10× datasets,
which represents the universality and representativeness of
the identified fibroblast subclusters. Only the common
fibroblast subclusters were analyzed further in our study to
make our conclusions more reliable. The identified fibro-
blast subcluster C1 was also reported in other scRNA-seq
studies, such as a single-cell inflammatory bowel disease
study and a single-cell colorectal cancer study30,48. Fur-
thermore, we identified continuously changing interactions
in fibroblasts during tumor progression. As we found and
confirmed increased percentages of fibroblasts in tumor
tissues of SBA, and these interactions may be involved in
tumor progression and metastasis. For T cells, we focused
on T cell exhaustion, which was revealed in both CD4+ and
CD8+ T cells from tumor tissues. Among CD8+ T cells,
highly exhausted T cells tended to interact more with EMT-
program malignant cells, involving interaction pairs such as
HMGB1–HAVCR2, CEACAM1–HAVCR2, HBEGF–CD44
and LGALS3–LAG3. The similar phenomena were also
reported previously and supported by studies of other
cancer types49–51. More verifications and studies are
required for these phenomena in the future. The interac-
tions of ex-high T cells and EMT-high malignant cells were
not significantly enriched in GC or CRC, which indicated
that this EMT-program malignant cell–highly exhausted
CD8+ T cell interaction signature may be specific to SBA.
Based on the current situation of limited treatments for

SBA, we utilized our data and published data to evaluate
and screen for potential drugs. We compared GC and
CRC with SBA and found that duodenal subtypes and GC
were more closely related at the transcriptomic level. It
should be noted that treatments for CRC are widely
referenced for the treatment of SBA5; therefore it should
be further considered whether these therapies are suitable
for duodenal cancers. Although a previous study showed a
closer relationship of SBA with CRC than with GC at the
CNV level, we think that different dimensions of data may
have different features, and it is reasonable about the
inconsistency between the CNV-related features and the
gene expression-related features. In that study, SBA was
similar to CRC at the CNV level, but the differences of
individual patients may result from the different genomic
mutations. Furthermore, previous SBA studies were based
on bulk sequencing, in which signatures of malignant cells
from SBA may be covered up by tumor microenviron-
ment cells. Combing with our finding that proportions of
fibroblasts increase significantly in tumor samples of SBA,
we think that microenvironment cells of tumor samples

influence the evaluation of CNV to some extent. As for
our single-cell transcriptome dataset, we separated epi-
thelial cells from all the microenvironment cells of GC,
SBA and CRC, and selected out malignant cells from
normal epithelial cells to represent more specific sig-
natures of different cancer types. In addition, we also
divided SBA into duodenal, jejunal and ileal malignant
cells, which makes the comparison more accurate. As the
spatial order of the gastrointestinal tract from stomach,
duodenum, jejunum to colorectum, we found that duo-
denal malignant cells were more similar to gastric
malignant cells based on HVGs, which is corresponding
to the spatial distance. As for SBA and CRC, combining
with signaling pathway analysis, the EMT signatures of
SBA were found to be weaker than those of CRC at the
global transcriptome level, which may explain the initial
EMT signature identified in SBA and a more mature EMT
signature in CRC. Based on the identified complex
molecular subtypes of CRC and potential molecular
subtypes of SBA, more studies are needed to reveal the
EMT signature in gastrointestinal cancers in the future.
Moreover, gene expression profiling data and drug

response IC50 values were integrated to predict potential
drug candidates of SBA. There are relatively few SBA
patients, and thus large-scale preclinical or clinical trials
are lacking. By using published omics and drug response
data, we screened out 14 potential drugs for SBA treat-
ment. The cell viability experiment confirmed that vola-
sertib and tozasertib exhibit more powerful inhibitory
effects for the duodenal cancer cell line than conventional
drugs for SBA. The high sensitivity and specificity of
tozasertib for SBA were also identified in our analysis.
Volasertib and tozasertib were predicted through comb-
ing our scRNA-seq data and published data and verified
to be effective in a duodenal cancer cell line, which may
benefit SBA patients. More studies and clinical data for
these drugs are worth performing in the future.
We performed a large set of verification experiments to

confirm our major conclusions. First, the cell viability
assay in the HUTU-80 cell line for the predicted drugs
were performed. Inhibitory effects of volasertib and
tozasertib are stronger than those of classical clinical
drugs for SBA such as oxaliplatin and irinotecan when
used at the same concentration, which indicates that the
prediction of drug candidates is reliable and effective.
Second, we used the IHC staining to verify many markers
identified in the study. As for malignant cells, we found
several DEGs or markers in malignant cells. MUC1 as a
DEG of malignant cells, proved to be expressed more
highly in malignant cells than normal epithelial cells by
the IHC staining. ERBB2 is found to be highly expressed
in malignant cells in SBA, which is also reported to be
highly expressed in SBA, and the IHC staining of ERBB2
also confirmed our conclusion. As for fibroblasts, we used
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the deconvolution analysis to reveal the higher proportion
of fibroblasts in tumor tissues compared to adjacent
normal tissues, and we used the marker of fibroblast,
TAGLN, to verify the higher proportion of fibroblasts in
tumor tissues compared to normal tissues. We also found
that the ratio of myofibroblasts increases in tumor during
SBA tumorigenesis, and the IHC staining of ACTA2,
which is a well-known marker of myofibroblasts, con-
firmed the higher proportion of myofibroblasts in SBA
tumor tissues. The DEGs of fibroblasts from tumor tissues
compared to adjacent normal tissues were also identified,
and one of them, RCN3 is also verified by the IHC
staining. As for T cells, the exhaustion signature was
found in CD8+ T cells. The exhaustion marker, TIM3 was
highly expressed in T cells of tumor tissues compared to
adjacent normal tissues, which is also confirmed by the
IHC staining. However, more functional experiments for
SBA are needed in the future.
In summary, our work systematically studied the char-

acteristics of malignant cells and tumor microenviron-
ment cells in SBA, revealing signatures of pathological
phenotypes, the connections between malignant cell and
microenvironment cell signatures and drug candidates
with related targets. SBA is rare but has high mortality
rate, and large-scale clinical trials of SBA are difficult to
carry out. The enhanced cell–cell interactions between
EMT-program malignant cells and highly exhausted
T cells may provide clues regarding immunotherapies for
SBA. The prediction and verification of approved drugs
that may be used to treat SBA could guide clinical treat-
ment decisions.

Materials and methods
Human specimen sampling
The research was approved by the Ethics Committee of

Peking University Third Hospital (License# IRB00006761-
M2016170). Informed consents of this study were signed
by all the patients. Small bowel cancer tissues were sam-
pled from 12 small bowel cancer patients, who received
small bowel resection in Department of General Surgery,
Peking University Third Hospital. Normal mucosae at
least 5 cm from tumor border were sampled, and lymph
node metastases from 3 patients were also sampled.
Sampling was performed immediately after surgical
resection to retain cell activity.

Single cell isolation
Both normal mucosae and cancer tissues were cut into

pieces and digested with the mix of collagenases (2 mg/
mL collagenase II and IV; Invitrogen), followed by incu-
bation on a shaker at 37 °C until no visible pieces were
found in the digestion solution. CD90 antibody (BioLe-
gend, 328110) was used in FACS to screen CD90+

fibroblasts.

Single-cell cDNA amplification and library construction
The modified STRT method was applied to perform

cDNA amplification and library construction, which has
been described in detail in previous studies11,12. The
library was prepared using a KAPA Hyper Prep Kit
(KAPA Biosystems) and sequenced using the 150-bp
paired-end sequencing method on Illumina HiSeq 4000
platforms. As for the 10× method, single cell separation,
DNA amplification and library construction were per-
formed following the manufacturer’s guidelines of chro-
mium single-cell sequencing technology from 10×
Genomics. The scRNA-seq libraries were constructed
using the Chromium Single Cell 3ʹ Library and Gel Bead
Kit V3. Finally, the prepared libraries were sequenced on
Illumina NovaSeq 6000 platforms.

WES
About 200 ng genomic DNA was extracted and frag-

mented by sonication to 150–200 bp length. Then end
repair and ligation by adaptors were performed, frag-
mented DNA with adapters were subjected to PCR
amplification with the mix of NEB universal primer, NEB
index primers and 2× KAPA HiFi HotStart ReadyMix
(Kapa Biosystems, Cat# KK8054). Finally, cDNA libraries
were prepared to be captured by WES using SureSelectXT
Human All Exon v6 kits (Agilent Technologies, Cat#
G7530-9000).

IHC staining
Normal mucosae and cancer tissues were fixed in 10%

neutral buffered formalin for 24 h, and then embedded
in paraffin. Paraffin-embedded tissues were sectioned
into 5 μm-thick slices. The slides were incubated with
primary antibody including anti-TAGLN antibody
(abcam, ab155272, 1:800), anti-ACTA2 antibody
(abcam, ab7817, 1:2000), anti-RCN3 antibody (atlas
antibodies, HPA043134, 1:500), anti-ERBB2 antibody
(ZSGB-Bio, ZA-0023), anti-MUC1 antibody (abcam,
ab70475, 1:100) and anti-TIM3 antibody (abcam,
ab241332, 1:1000) at 4 °C overnight and then incubated
with secondary antibody (horseradish peroxidase-
conjugated IgG, ZSGB-Bio PV-6000) at 37 °C for
30 min and visualized using diaminobenzidine (DAB).

Cell culture
Human duodenum adenocarcinoma cell line HUTU-80

was obtained from Center of Basic Medical Research,
Peking University Third Hospital. The cell line was rou-
tinely grown in Minimum Essential Medium (MEM)
containing non-essential amino acids (NEAA) (41500,
Solarbio, China) supplemented with 10% fetal bovine
serum (10099-141, Gibco, USA) and penicillin (100 IU/
mL)-streptomycin (100 mg/mL) solution (SV30010,
HyClone, USA) and maintained at 37 °C and 5% CO2.
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Cell viability assay
HUTU-80 cells (6 × 103 per well) were seeded in 96-well

plates. After attachment to the plates and culturing in
complete growth medium for 24 h, the cells were treated
with Oxaliplatin, Irinotecan, Tozasertib, Volasertib,
Mocetinostat and Filanesib (HY-17371, HY-16562, HY-
10161, HY-12137, HY-12164, HY-15187, MedChemEx-
press, China) at different final concentrations ranging
from 100 nM to100 μM using dimethyl sulfoxide (DMSO,
0219605580, MP Biomedicals, USA) or H2O as a solvent
control. The number of viable cells was determined by
CellTiter-Glo Luminescent Cell Viability Assay (G7571,
Promega, USA) following the kit protocol 36 h later and
all experiments were performed in triplicate.

Processing of scRNA-seq data
As for the STRT sequencing data, UMI-tools (verion

1.0.0) were applied to extract barcodes and unique mole-
cular identifiers (UMIs), and seqtk (version 1.3) was used
to filter the low-quality reads. Then STAR (version 2.7.1a)
was used to align these clean reads to the human GRCh38
genome. We used featureCounts (version 1.6.4) to count
read uniquely mapped to the genomes, and UMI-tools
were applied to quantify the UMIs. In the STRT dataset,
we retained cells with more than 1000 detected genes,
10,000 transcripts and lower than 20% of mitochondrial
genes. As for the 10× dataset, we used Cell Ranger (version
3.1.0) with default arguments to process raw data, and the
human GRCh38 was used as the reference genome. In the
10× dataset, we retained cells with more than 500 detected
genes, 1000 transcripts and lower than 50% of mitochon-
drial genes. In both the STRT and 10× datasets, UMIs per
cell were normalized and transformed to generate gene
expression values by log transforming. The log-normalized
values were used in the downstream analyses.

Cell clustering analysis
We mainly used Seurat (version 3.2.2) to perform the

downstream analyses52. Batch effects caused by experi-
ment batches should be reduced, and we used the R
packages RSCORE (version 0.1.0) and Harmony (version
1.0) to correct batch effects53,54. To obtain different cell
types, we performed RSCORE to remove batch effects,
with the parameters “max_step= 20” and the human
protein–protein interaction network 3.5.173 version from
BioGRID. To classify subclusters in separate cell types
such as epithelial cells, fibroblasts and T/NK cells, Har-
mony was used to remove batch effects with the default
parameters. Finally, individual cells were clustered
through a graph-based clustering approach of Seurat.

Integrating with published datasets
We used the sctransform function to normalize our

datasets as well as published datasets including our STRT

and 10× datasets, the normal ileum dataset and other
gastrointestinal cancer datasets, and utilized the CCA
method to integrate these datasets. The default parameters
were used, and the expression values in assays of SCT were
used to identify cell clusters and calculate DEGs.

DEG analysis and gene enrichment analysis
DEGs of different cell types were identified through the

FindAllMarkers function of Seurat using the wilcox test and
the fold change with the value 2. The detailed parameter
“test.use= “wilcox”, min.pct= 0.25, logfc.threshold = log
(2)”. DEGs of malignant cells and normal epithelial cells in
the whole datasets were calculated with the same para-
meters. Only genes with the adjusted P values (based on
bonferroni correction) < 0.01 were retained as DEGs of
malignant cells and normal epithelial cells. DEGs of malig-
nant cells and normal epithelial cells of separate patients
were retained with the fold change of 1.5 to involve as many
markers as possible. Metascape (http://metascape.org/) was
used to perform gene enrichment analysis.

Analysis of the WES data
As for the CNV analysis, low-quality and adapter-

contaminated reads were reduced and trimmed by
Trimmomatic (version 0.39), and then clean reads were
aligned to the human GRCh38 genome using BWA
(version 0.7.17). CNVkit (version 0.9.6) was used to esti-
mate CNV, which outputted normalized copy ratios of
DNA segments.
As for somatic mutations, germline mutations were

called using HaplotypeCaller built in GATK (Genome
Analysis Toolkit, Version 4.0.12). Somatic mutations were
called with paired peripheral blood samples as control.
Somatic mutation calling tools including Mutect2 (built in
GATK), MuSE (version 1.0), Varscan2 (version 2.4.3),
SomaticSniper (version 1.0.5), Strelka2 (version 2.9.10)
and LoFreq (version 2.1.3.1) were also used to call somatic
SNVs, and the outputs were filtered and integrated by
SomaticSeq (version 2.8.1) with the criterion that SNVs
detected by more than four tools were retained. The
default parameters of these tools were used. Only the
“PASS” somatic mutations were used for downstream
analysis.

CNV inference by scRNA-seq data and malignant cell
identification
The R package InferCNV (version 1.1.3) was used to

process scRNA-seq data55. In both the STRT and 10×
datasets, epithelial cell from adjacent normal tissues were
applied as references, and CNVs of epithelial cells from
cancer tissues were inferred according to expression pat-
tern. With the inferCNV outputs, we used the mean of
squares of deviation as the measurement and the 90th
percentile of normal epithelial cells as the threshold value
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to divide epithelial cells into high CNV levels and low
CNV levels. Combining with the cluster information,
clusters in which epithelial cells with high CNV levels were
dominant were regarded as malignant cell manually, and
other clusters were regarded as normal epithelial cells.

GRN analysis
We used the R package SCENIC (version 1.1.3) to

evaluate TF activities13. The GENIE3 method was used to
detect correlations, and the dataset of motifs located 20 kb
around TSS from the cisTarget database was used.

Gene set signature and signaling pathway enrichment
analysis
To evaluate gene expression signatures in single cells,

we used the AddModuleScore function of Seurat to score
the expression level of the specific gene sets at the single-
cell level. We used the Gene Set Variation Analysis
(GSVA) enrichment scores to describe enrichment scores
of the hallmark gene sets through the R package GSVA
(version 1.32.0)56. The input was the mean expression of
separate datasets. The “ssgsea” method of GSVA package
was used. As for the GSEA analysis, the python package
gseapy (version 0.9.17) was used to perform the GSEA
analysis. The parameters of “permutation_type= ‘gene_-
set’, permutation_num= 1000, method= ‘signal_to_-
noise’” were used.

Quantifying metabolism activity at the single-cell
resolution
The R package scMetabolism (version 0.2.1) was used to

evaluate metabolism activities at the single-cell resolution57.
The count data were input, the “VISION” method and the
KEGG pathways built in scMetabolism were used.

Signal entropy rate analysis
We used the R package SCENT (version 1.0.2) to esti-

mate the ‘differentiation’ potency of single cells16. Signal
entropy rate of single cells was calculated by the default
parameters.

Deconvolution analysis
We employed CIBERSORTx (https://cibersort.stanford.

edu/index.php) to perform the deconvolution analysis14.
The signature matrix was derived from DEGs of different
cell types in our 10× dataset, and the normalized
expression matrix was from a published dataset of a
microarray experiment of SBA (GSE61465).

Pseudotime analysis
We used the R package Monocle2 (version 2.12.0) with

the DDR-Tree method and default parameters to perform
the single-cell trajectory analysis58. The log-normalized
data was used as the input. The DEGs or marker genes of

clusters were applied as ordering gene sets. The cell tra-
jectories were inferred after dimension reduction and cell
ordering with the default parameters.

Cell communication analysis
We used the python toolkit NATMI to perform cell

communication analysis22. The log-normalized expres-
sion values and cell types corresponding to individual
cells were used as the input data. The ExtractEdges
function calculate expression and specificity of
ligand–receptor interactions, and the DiffEdges function
identifies changes of ligand–receptor interactions
between two conditions. The built-in “lrc2p” database
was used to predict interactions, the weight of edges was
calculated by the mean method, and the detection
threshold value is set to 0.2.

Correlation with the expression of MUC1
The bulk RNA-seq data based on the HiSeq platform

and protein expression data using the RPPA method of
CRC from the TCGA dataset were used, and the analysis
was performed by the LinkedOmics webtool59. As for the
analysis forMUC1, the protein expression of MUC1 is not
detected in the RPPA assay, and therefore we calculated
the correlation of the RNA expression of MUC1 and the
other protein expression.

Drug response prediction
We mainly used a ridge regression-based method of the

R package pRRophetic (version 0.5) to predict the IC50

AUC values of potential drug responses32. The tran-
scriptomic data of cell lines from CCLE and drug
response data from CTRP, PRISM, GDSC1 and GDSC2
were utilized as training sets. Malignant and normal epi-
thelial cells from epithelial cells of the STRT scRNA-seq
data were divided into 50 groups randomly, and the mean
expression values were used as the pseudo-bulk samples.
We used the calcPhenotype function to calculate the IC50

AUC values for each corresponding drug, and selected
drugs according to the following criteria: adjusted P
values < 0.05 (under t-test), the log2FC value <−0.1, and
the correlation with the tumor score <−0.5.

Single-cell drug susceptibility assessment
The R package Beyondcell (version 1.2.1) was used to

identify drug sensibilities of scRNA-seq data41. The drug
perturbation signature collection (PSc) database built in
Beyondcell was used. The number of detected genes per
cell was corrected following the guidance.

Analysis of the cell viability
GraphPad Prism software 5 was used to conduct the

statistical analysis of cell viability. Data were presented as
means ± SD.
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