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Purpose: PNOCO003 is a multicenter precision medicine trial for
children and young adults with newly diagnosed diffuse intrinsic
pontine glioma (DIPG).

Patients and Methods: Patients (3-25 years) were enrolled on
the basis of imaging consistent with DIPG. Biopsy tissue was
collected for whole-exome and mRNA sequencing. After radio-
therapy (RT), patients were assigned up to four FDA-approved
drugs based on molecular tumor board recommendations.
H3K27M-mutant circulating tumor DNA (ctDNA) was longi-
tudinally measured. Tumor tissue and matched primary cell lines
were characterized using whole-genome sequencing and DNA
methylation profiling. When applicable, results were verified
in an independent cohort from the Children’s Brain Tumor
Network (CBTN).

Results: Of 38 patients enrolled, 28 patients (median 6 years, 10
females) were reviewed by the molecular tumor board. Of those, 19

Introduction

Despite many approaches being used to treat diffuse intrinsic
pontine glioma (DIPG) over many decades, no therapy has success-
fully improved average survival beyond one year (1-4). The current
standard-of-care treatment is up-front radiotherapy (RT), commonly
coupled with or followed by novel therapies within a clinical
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followed treatment recommendations. Median overall survival (OS)
was 13.1 months [95% confidence interval (CI), 11.2-18.4] with no
difference between patients who followed recommendations and
those who did not. H3K27M-mutant ctDNA was detected at
baseline in 60% of cases tested and associated with response to RT
and survival. Eleven cell lines were established, showing 100%
fidelity of key somatic driver gene alterations in the primary tumor.
In H3K27-altered DIPGs, TP53 mutations were associated with
worse OS (TP53,u: 11.1 mo; 95% CI, 8.7-14; TP53,,; 13.3 mo; 95%
CI, 11.8-NA; P = 3.4e—2), genome instability (P = 3.1e—3),and RT
resistance (P = 6.4e—4). The CBTN cohort confirmed an associ-
ation between TP53 mutation status, genome instability, and clinical
outcome.

Conclusions: Upfront treatment-naive biopsy provides insight
into clinically relevant molecular alterations and prognostic bio-
markers for H3K27-altered DIPGs.

trial (2, 3, 5). Trial options include targeted therapies, convection
enhanced delivery with direct intratumoral drug infusion into the
tumor, and immunotherapy (3, 6). Large-scale molecular profiling
studies have revealed critical oncogenic somatic driver alterations and
highlighted intertumoral heterogeneity in DIPG. Somatic mutations in
H3F3A and HISTIH3B, resulting in a lysine-to-methionine substitu-
tion at position 27 on the H3.3/H3.1 histone tail (H3K27M), are
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Translational Relevance

PNOCO003 is one of the first to report on a biopsy-driven,
biology-based combination therapy for children and young adults
with DIPG. The cohort offers insight into molecular biomarkers for
DIPG and provides support of TP53 mutations as markers of
radiotherapy (RT) resistance in H3K27-altered DIPG/DMG.
Molecular characterization further reveals that TP53 mutations
associate with newly described molecular findings such as loss of
10q/PTEN and that this combined molecular signature correlates
with the worst survival outcomes. The work provides a potential
new molecular stratification for H3K27-altered DIPG/DMG and
offers support for therapeutic considerations, such as RT sensiti-
zers in patients with pertinent TP53 alterations. Finally, PNOC003
contributes to the growing application of circulating tumor DNA in
pediatric central nervous system tumors and the development of
cell lines with associated molecular comparison with tumor tissue.

present in 80%-90% of DIPG tumors (7-9) and among H3 subtypes
there is non-random, co-segregation with partner mutations and
distinct epigenetic signatures (10-16). H3.3K27M mutations frequent-
ly co-occur with alterations in the p53 pathway (e.g., TP53, PPM1D),
along with receptor tyrosine kinase amplification/mutation (e.g.,
PDGFRA). In contrast, H3.1K27M mutations carry alterations in the
TGF3/BMP receptor (ACVRI) and downstream components of the
PI3-kinase pathway (e.g., PIK3CA, PIK3RI; refs. 7, 10, 17, 18). On the
basis of the pathognomonic molecular characteristics, DIPG is now
classified as H3K27-altered diffuse midline glioma (DMG) and defined
by somatic mutations in H3F3A, HISTIH3B/C, EGFR, or EZHIP
overexpression (19). The diverse range of molecular pathways con-
tributing to the oncogenesis of DIPG suggests that single-agent therapy
is unlikely to provide durable disease control.

Driven by advances in genome sequencing, the safety of surgical
biopsy in the current era, and anticipation that multiagent
approaches will be necessary to improve survival, we developed
PNOC003 (NCT02274987), a precision medicine trial for DIPG.
The trial used Clinical Laboratory Improvement Amendments
(CLIA)-generated tumor-normal whole-exome sequencing (WES)
and tumor mRNA sequencing (mRNA-seq) data to generate indi-
vidualized therapy plans based on tumor-specific alterations, which
were then applied in children and young adults with newly diagnosed
DIPG after standard-of-care, upfront RT. Within the trial, collection of
plasma H3K27M-mutant circulating tumor DNA (ctDNA), patient-
derived cell line generation, whole genome sequencing (WGS), and
DNA methylation profiling were performed. When feasible, molecular
and clinical outcomes were retrospectively corroborated against an
external dataset of pediatric patients with DMG from the Children’s
Brain Tumor Network (CBTN; Pediatric Brain Tumor Atlas, PBTA,
https://doi.org/10.24370/SD_BHJXBDQK). Here, we report the results
and exploratory biologic correlates from the multicenter clinical trial
PNOCO003.

Patients and Methods

Clinical trial design

PNOCO003 was open to enrollment between September 2014 and
January 2018. Study design and methods have been previously
described (20). Patients participated across five Pacific Pediatric
Neuro-Oncology Consortium (PNOC) institutions listed in the
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Supplementary Methods. Eligible patients were 23 and <25 years of
age with newly diagnosed DIPG based on radiographic imaging
and without disseminated disease. Patients underwent biopsy with
local pathology review to confirm >50% tumor content. Fresh-
frozen tissue samples were sent to Ashion Analytics (now part of
Genomic Health, an Exact Sciences Laboratory) for CLIA WES,
and mRNA-seq.

Patients were monitored by standard-of-care clinical examinations
and laboratory and clinical assessments that aligned with anticipated
toxicities based on specific drug combinations from specialized tumor
board treatment recommendations. Treatment-related adverse events
(TRAE) were collected from the time of study enrollment (n = 38) and
throughout the completion of protocol-defined toxicity follow-up. RT-
related toxicities were not included as these were considered part of
standard of care. Patients underwent MRI assessments every odd cycle
of study therapy (i.e., cycle 3, 5, etc.). Post hoc central radiology review
was performed by a board-certified neuro-radiologist (J. Villanueva-
Meyer). Protocol defined progressive disease on MRI was defined as a
greater than 25% increase in the sum of perpendicular diameters and/
or development of new enhancing or non-enhancing lesions, as
previously described (21).

Before trial activation, necessary approvals were obtained by the
FDA and institutional Investigational Review Boards (IRB) at enroll-
ing sites. All patients and/or parents/guardians provided informed
consent/assent before study enrollment and by IRB guidelines. The
UCSF Data Safety and Monitoring Committee served as clinical trial
oversight to monitor for safety and protocol conduct.

Biopsy collection and processing

Each enrolled patient underwent stereotactic biopsy with the col-
lection as per local institutional standards. Details of the stereotactic
approach and selection of at least 50% tumor content have been
previously described (20, 22).

Clinical WES and transcriptome sequencing

Ashion Analytics performed DNA and RNA extractions on tumor
biopsies and performed library preparations as previously
described (20). Clinical WES (~256X) was performed on biopsy tissue
and matched normal blood (diagnosis, n = 29; progression, n = 2). For
P-05, a 562-gene targeted exome panel [Ashion’s Genomic-Enabled
Medicine (GEM) Cancer Panel] was performed. Poly-A-selected RNA
sequencing (RNA-Seq ~200M reads) was performed (diagnosis, n =
30; progression, n = 2). WES and RNA-Seq libraries were sequenced at
2 x 100 bp on an Illumina HiSeq 2500.

Specialized tumor boards and treatment recommendations
Each tumor molecular profile was reviewed at a specialized tumor
board, and a precision medicine approach of up to four FDA-approved
drugs was determined. Treatment was initiated after completion of
standard-of-care RT. Details of tumor boards and drug selection guide-
lines and administration have been previously described (20, 23, 24).

ctDNA analyses

Plasma ctDNA was collected at standard-of-care biopsy, the start of
any molecular treatment recommendations, each MRI timepoint,
progression, and end of treatment (25, 26). Plasma ctDNA at baseline
versus post-RT was compared using Wilcoxon matched-pairs signed-
rank test (GraphPad Prism 9 software). ctDNA survival analyses were
performed using log-rank (Mantel-Cox) tests in R.

Cell line generation, propagation, and maintenance
Cell line generation was attempted, when feasible (27), from pati-
ent biopsy samples (P-06, P-07, P-09, P-16, P-26, P-31, P-33, P-37, and
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P-38), biopsy needle wash (P-05) or patient tumor-derived mouse
xenograft tissue (P-04).

WGS data generation and processing for PNOC003 and CBTN

WGS was performed at NantHealth Sequencing Center (Culver
City, CA) on a post hoc basis for biopsy tissue (~60X) with matched
controls (~30X; diagnosis, n = 33; progression, n = 2; post-mortem,
n = 4; external CBTN cohort, n = 22) and on DNA derived from
PNOCO003 patient-derived cell lines. The libraries for WGS were
2x150 bp and sequencing was done on an Illumina HiSeq platform
(X/400). Details of CBTN sequencing were previously described in
the OpenPBTA project (28).

Somatic driver gene discovery

Using the MAF file from our consensus SNV/indel callset, we
performed a de novo driver gene discovery using the R package
dndscv (29) with default parameters (q < 0.2) and combined with
prior knowledge about high-grade glioma driver genes from
IntOGen (30).

DNA methylation array

DNA was extracted from tumor tissue specimens and cell pel-
lets (500,000 cells) and was quantified using Qubit dsSDNA Broad
Range Assay. DNA was bisulfite converted using the EZ DNA
Methylation-Gold kit (Zymo Research) and hybridized onto
Infinijum MethylationEPIC BeadChip using Infinium Methylatio-
nEPIC BeadChip Kit per manufacturer instructions (Illumina).
BeadChip arrays were scanned using the iScan Reader (Illumina).
IDAT files were uploaded and analyzed using the DKFZ brain tumor
methylation classifier (v11b4; https://www.molecularneuropathology.
org/mnp; ref. 31).

Chromosomal instability

The consensus PBTA CNV callset was queried for large gains and
losses with full/partial chromosomal alteration defined as events
>5Mb. A chromosome instability (CIN) score was computed for each
patient based on the number of chromosomes affected by large-scale
events and previously described as: Chromosomal gain/loss events
combined, only chromosomal gain events, and only chromosomal loss
events.

Statistical analysis

At the completion of enrollment of the feasibility cohort for
PNOCO003 (20), the protocol was amended to evaluate clinical response
in a total accrual of 19 patients, as defined by OS at 12 months (OS12,
primary objective). Secondary objectives were to describe the toxicity
and safety of the biopsy. Exploratory objectives were to compare the
fidelity of WGS with WES and mRNA-seq analyses and between
molecular profiles of longitudinal tumor samples over disease course
and to evaluate ctDNA as a biomarker of treatment response or
resistance. To compare characteristics of patients that did or did not
follow treatment recommendations, x” tests were used for binary
variables (gender, race, and ethnicity) and Kruskal-Wallis for non-
normally distributed variables (age). Survival outcomes were com-
pared using Kaplan-Meier survival analysis and significance calcu-
lated by the log-rank test. Cox proportional hazards regression models
were used to assess the combination of genomic markers on survival
outcomes. Violations of the non-proportional hazards assumptions of
log-rank tests were tested and ruled out using Schoenfeld Residuals
Test. Mann-Whitney tests were used to compare RT response based
on individual gene alterations as well as chromosome gains and losses
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in the setting of CIN. The Fisher’s exact test was used to compare
chromosome gains and losses based on individual gene alterations.

Data availability

Access to raw data can be requested from CBTN (https://cbtn.org).
Code for the somatic workflows can be found at https://github.com/
d3b-center/OpenPBTA-workflows. Code for downstream analyses
can be found at https://github.com/AlexsLemonade/OpenPBTA-anal
ysis/. Processed files are publicly available on CAVATICA (https://
cavatica.sbgenomics.com/u/cavatica/pbta-pnoc003; https://cavatica.
sbgenomics.com/u/cavatica/openpbta). Processed data can be visual-
ized in PedcBioPortal (https://pedcbioportal.kidsfirstdrc.org).

Additional details on all Patients and Methods can be found in
Supplementary Methods.

Results

Multi-omics tumor profiling is safe and feasible and informs
personalized treatment recommendations in patients with
newly diagnosed DIPG

Thirty-eight patients were enrolled in PNOC003 between 2014 and
2018 (White/Non-Hispanic, n = 11; White/Unknown, n = 2; Black/
African American/Non-Hispanic, #n = 4; Asian/Non-Hispanic, n = 3;
Unknown/Non-Hispanic, n = 4; Unknown/Hispanic/Latino, n = 10;
Unknown/Unknown, n = 4). A total of 28 out of 38 patients were
included in analyses for clinical trial outcomes after removal of 10
patients due to: Family changing decision about undergoing biopsy
(n = 1), failure to collect sufficient tissue for CLIA molecular analysis
(n = 3), ineligible pathology diagnosis [pilocytic astrocytoma (n = 1);
embryonal tumor with multi-layered rosettes (n = 1); embryonal
tumor (n = 1)], withdrawal of participation after the biopsy but before
study required treatment (n = 1), and death before completion of
CLIA molecular profiling or RT (n = 2; Fig. 1A; Supplementary
Table S1). WES was completed in all 28 patients, except P-05, for
whom gene panel sequencing was substituted. CLIA mRNA-seq
was completed for all, except P-17, due to failed required quality
control. Nineteen of 28 patients [10 (36%) females; median age of
6 years at diagnosis (range, 4-25 years; Supplementary Table S2)]
followed biology-based, multiagent combination therapy. Two pati-
ents underwent tissue collection at progression (P-06 and P-07).
Four patients underwent postmortem tissue collection (P-04, P-07,
P-13, and P-18).

A specialized molecular tumor board reviewed WES and mRNA-
seq data for each patient (n = 28) and issued biology-informed
treatment recommendations in a median of 18 business days
(range, 15-20 days; ref. 20). WES and mRNA-seq data identified
alterations affecting H3F3A (82%, n = 23) and TP53 (68%, n = 19)
as the most frequent gene alterations. High-level DNA amplifica-
tions were recurrently seen in PDGFRA (n = 4) and MET (n = 6).
The most frequent gene expression outliers were seen for TOP2A
(68%, n = 19) and PDGFRA (68%, n = 19; Fig. 1B). Eighteen
different FDA-approved molecular-targeted drugs were recom-
mended across all patients (Fig. 1C; ref. 20). The top recommended
drugs were the HDAC inhibitor, panobinostat, to target histone
H3K27M induced epigenetic alterations (68%, n = 19; ref. 32),
mebendazole to target PDGFRA amplification and/or over-
expression (50%, n = 14; refs. 33, 34), and everolimus to target
PI3K/PTEN/mTOR pathway activation (43%, n = 12; refs. 35-37).
Nineteen patients (68%) followed treatment recommendations
(Supplementary Table S2). There were no differences in gender,
age at diagnosis, race, ethnicity, or institution of enrollment
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Figure 1.

Overview of the PNOCOO03 clinical trial, molecular alterations identified, assigned therapy recommendations based on molecular data, and clinical outcomes. A, Left
shows the clinical trial outline with the total number of patients in each treatment phase of the trial (includes 38 enrolled patients and 10 patients removed from
outcome analyses due to the family changing decision about undergoing biopsy; n =1), failure to collect sufficient tissue for CLIA molecular analysis (n = 3), ineligible
pathology diagnosis, withdrawal of participation after the biopsy but before study required treatment (n = 1), and death before completion of CLIA molecular
profiling or radiotherapy (n = 2). Right provides an overview of the completed multi-omic profiling of tumor tissue, germline, CSF, and cell lines. B, Oncoprint
representation of alterations identified for all patients that successfully underwent WGS, WES, or RNA-seq in primary DIPG tumors (n = 33; WES and mRNA-seq,
CLIA; WGS, non-CLIA). Patients P-18, P-24, and P-25 were removed from trial due to insufficient tissue availability for WES and mRNA-seq; however, these patients
completed WGS (not used for treatment decision-making). “Tier 1” targetable alteration listed. “Not applicable” for “Followed Therapy” row indicates patients that
came off therapy before initiation of therapy recommendations due to family preference (n = 1), the family changed mind about continuing therapy
recommendations (n = 1), patient death before rendering therapy recommendations (n = 1), or did not have sufficient tissue to perform CLIA molecular analyses
required to render therapy recommendations (n = 2). Patients are represented in columns, and genes are labeled in rows. Percentages on the right column represent
the proportion of patients in the cohort with molecular alterations. Tumor mutation burden (TMB) and overall survival (OS) are represented below the oncoprint.
C, Sankey diagram illustrates the individualized, targeted therapy recommendations for each PNOCOO3 patient who underwent molecular tumor board (n = 30) and
based on gene alterations identified via molecular profiling. The first node shows the patient identifier connected to the therapeutically informative genes in the
second node. The third node depicts targeted therapy agents recommended by the molecular tumor board. Abbreviations used for drugs are shown in parentheses,
“pr”indicates targeted recommendations from repeat biopsy at progression (n = 2). Two patients underwent molecular tumor board but were removed from therapy
due to patient/family preference (n = 1; P-28) or patient death during RT (n = 1; P-20). D, Kaplan-Meier OS and PFS of all patients followed for survival outcomes
(n = 28 for OS, n = 27 for PFS; based on missing PFS for P-31). Median OS of 13.1 months and median PFS of 8.5 months. WES, whole-exome sequencing; WGS,
whole-genome sequencing; mMRNA-seq, mRNA sequencing; ctDNA, circulating tumor DNA; TMB, tumor mutation burden; OS, overall survival; PFS, progression-free
survival.
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between patients that followed versus those that did not follow
treatment recommendations.

Surgical AEs were collected on all patients that underwent biopsy
(n = 37), and medication-related AEs were collected on all patients
that initiated therapy as per specialized tumor board treatment
recommendations (n = 19). Most TRAEs were grade 1 and 2, including
surgery-related (Supplementary Tables S3 and S4). The most fre-
quently reported medication-related TRAEs were hematologic,
including grade 3 and 4 leukopenia (37%, n = 7), lymphopenia
(26%, n = 5), neutropenia (53%, n = 10), and thrombocytopenia
(37%, n = 7). Surgical TRAEs included grade 3 abducens nerve
disorder, dysarthria, and nystagmus, all of which were existing grade
2 AEs at each patient’s baseline (n = 1 each) and resolved back to
baseline. Related serious AEs occurred in one patient with grade 3
hypokalemia and hypertension (both resolved with medical manage-
ment). Two patients underwent repeat biopsy without associated
toxicity related to the second biopsy. Overall, there were no treatment-
or surgical toxicity-related deaths.

Driver gene alterations in TP53, PTEN, and PDGFRA are
molecular biomarkers predictive of overall survival in DIPG

Median overall survival (OS) for the cohort (inclusive of pati-
ents that met eligibility criteria and were not replaced, n = 28,
Supplementary Table S2) was 13.1 months [95% confidence inter-
val (CI), 11.2-18.4]. Median OS did not differ between patients
that followed specialized tumor board treatment recommendations
(n=19;11.8 mo; 95% CI, 11.0-21.8) and those who did not (n =9,
13.1 mo; 95% CI, 8.2-20.0; P = 5.9e—1). OS at 12 months (OS12)
for the entire cohort was 54% (95% CI, 38-76; Fig. 1D). To better
understand the impact of tumor heterogeneity on outcome in
our cohort, we investigated genetic and molecular biomarkers of
treatment response and survival outcomes in patients with H3K27-
altered DIPG (inclusive of patients with available WGS and
survival data, n = 30, Supplementary Tables S1 and S2). We used
for our biomarker analyses WGS data, both for samples with
available CLIA WES and mRNA-seq and samples in which CLIA
analyses were not done.

We identified nine recurrently mutated driver genes in H3K27-
altered DIPG tumors, including TP53 (73%), ATRX (27%), PPM1D
(20%), MET (20%), ACVRI, PIK3CA, PTEN, SOX10, and PDGFRA
(17% each; Fig. 2A). Association between driver gene mutation
status and OS revealed PTEN (P = 1.7e—2), TP53 (P = 3.4e—2),
and PDGFRA (P = 4.9e—2) to be significantly associated with
worse clinical outcomes (Fig. 2B). Patients with somatic TP53
driver mutations (TP53 4, 7 = 20; OS, 11.1 mo; 95% CI, 8.7-14)
demonstrated worse OS compared with TP53 wild-type tumors
(TP53,, n =8, 0S, 13.3 mo; 95% CI, 11.8-NA; P = 3.4e—2; n =28
with survival data; Fig. 2C). This finding was corroborated in
22 patients with H3K27M-mutant DMG from the CBTN (TP53,,u1,
n =15, 0§, 9.0 mo; 95% CI, 7.4-15.8; TP53,,, n =7, OS, 17.6 mo;
95% CI, 8.9-NA; P = 2.4e—2; Supplementary Fig. S1A and S1B).
The survival outcomes of the CBTN cohort were not statistically
different when compared with the PNOCO003 cohort (Supple-
mentary Fig. S1A); however, the prolonged OS of patients with
TP53,,, tumors in the CBTN cohort may be due inclusion of tumors
in midline structures outside of the pons (e.g., thalamus).

In addition to TP53 mutation status as a negative predictor of
survival outcome, patients with PDGFRA amplification (n = 4, OS,
8.9 mo; 95% CI, 5.7-NA) showed worse OS (n = 24, PDGFRA,,; OS,
12.5 mo; 95% CI, 11.2-17.2; P = 4.9e—2; Fig. 2D). Furthermore,
patients with PTEN-altered tumors, including somatic mutations
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(n = 3) and focal deletions (n = 1), demonstrated worse survival
(n =4, OS, 8.6 mo; 95% CI, 8.3—NA) compared with patients with
PTEN wild-type tumors (n = 24, OS, 13.1 mo; 95% CI, 11.2-17.2;
P = 1.7e—2; Fig. 2E). These trends persisted even when tested
independent of TP53 mutations (Supplementary Fig. S2).

Somatic TP53 alterations predict response to RT

TP53 mutations have been previously associated with poor RT
response in DIPG (38). Therefore, we investigated the association
between mutations in TP53 and other driver genes with RT response
across H3K27-altered DIPG patients, using pre- and post-RT MRL
The median time between pre- and post-RT MRI was 2.6 months
(range, 2.2-4.2). Across all driver genes, only TP53,,,,, H3K27-altered
DIPGs showed stable tumor volumes after RT when comparing pre- to
post-RT images (median +3%, n = 17). In contrast, TP53,,, H3K27-
altered tumors demonstrated a marked reduction in tumor volumes
(median —42%, n = 8, Fig. 3A). Notably, PPM1D mutations were
mutually exclusive with TP53 mutations and associated with reduced
tumor burden post-RT, consistent with published in vitro observations
(Fig. 3A; Supplementary Fig. S3; ref. 38). Most TP53,, tumors
showed tumor volume measurement differences in the range of
—25% to +25% relative to pre-RT measurement, whereas TP53,
tumors demonstrated a 25% or greater decrease in tumor volume
(Fig. 3B and C). Moreover, tumor volume estimates remained stable
among TP53,, patients up to 12 months, whereas TP53,,,; tumor
volumes increased at six to nine months post-RT (Fig. 3D). Repre-
sentative imaging pre- and post-RT are shown for P-01 (H3.3 K27M,
TP53,,; Fig. 3E) and P-36 (H3.3 K27M, TP53,,,; Fig. 3F).

TP53-associated genome instability is associated with recurrent
loss of 10q/PTEN

To better understand the mechanism behind TP53 as a biomarker
for worse clinical outcomes and given the role of TP53 in genome
instability across cancers (39), we next analyzed chromosomal gain
and loss events and CIN in H3K27-altered DIPGs. Recurrent chro-
mosomal alterations affected several chromosomes with the highest
frequency of loss events on chromosomes 10, 11, 13, 14, 16,17, and 18,
and recurrent gain events on chromosome 1 (Fig. 4A). TP53 mutations
showed the strongest association with CIN and, more specifically with
chromosomal losses, consistent with similar observations in TP53,,
SHH-medulloblastoma (40) and other pediatric brain tumor entities
(ref. 41; Fig. 4B and C).

Furthermore, we validated the association between TP53
mutations and CIN in 21 H3K27M-mutant DMGs from CBTN
(Supplementary Fig. S4A and S4B). PTEN alterations were also
associated with CIN (P = 2.0e—2) and specifically chromosome
losses (P = 2.3e—2; Fig. 4B). All PTEN-altered tumors were,
however, also positive for TP53 mutations and specifically associat-
ed with loss of chromosome 10 (P = 3.9e—4; Fig. 4B). In contrast,
PPMID mutations were associated with genome stability (P =
3.1e—2; Fig. 4B). Given the observed co-occurrence of TP53 and
PTEN mutations with chromosome 10 loss events, we evaluated
patterns of somatic copy-number alterations along chromosome
10. Chromosomal breakpoints consistently converged on the full
or terminal loss of 10q (Fig. 4D), associated with PTEN loss of
heterozygosity (n = 5 out of 8 are PTEN-altered tumors; Fig. 4D),
and associated with reduced PTEN expression (Fig. 4E). We assessed
the clinical relevance of CIN and observed that loss of chromosome
10q was significantly associated with poor clinical outcome in
H3K27-altered DIPGs (n = 28, OS 8.6 vs. 13.2 mo, P = 1.1e—4,
Supplementary Fig. SIC and S1D).

Clin Cancer Res; 28(18) September 15, 2022

3969



Kline et al.

A

2883
dadadaad
DIPG subtype [N
P53 BN
ATRX Il = =
PPM1D
MET
ACVR1 O
PIK3CA ] | P
PTENE B [ ] ]
sox10 = B [ ] |
PDGFRA = L] =
2.0
g 15
a > R S S P R
=31
o ? 1.0
3%
2 0.5
° |
0_0_ I I I i ' ?
| olo J I Il I cl> I ] |
E 823 Lbikg s
EF5 223046k ¢7
8 = < o T a
[
Somatic driver gene
1.00 — PDGFRAwt
— = PDGFRAamp
S ors
<
=)
2 050
[
2
3 025 5
0.00
0 10 20 30
Time (mo)
Number at risk
PDGFRAamp 1 4 1 0 0 0 0
24 18 7 4 2 0
5 10 15 20 25 30
Time (mo)

Figure 2.

DIPG subtype

= H3.3 K27M-mutant

= H3.1 K27M-mutant

u H3-wildtype with EZHIP overexpression

_ Driver gene alterations
- = Missense mutation
- m Frameshift deletion
L1 m Inframe deletion
HERTE 7% - = Nonsense mutation
B n 7% u Splice site mutation
17% “ ® Frameshift insertion
17% - » Focal amplification
°° L ® Focal deletion
13% [ = Multiple hits
B — TP53wt
— == TP53mut
_g 0.75
<
3
2 0501 = === ==
©
g
S 91 p=-0034
0.00
0 10 20 30
Time (mo)
Number at risk
TP53mut 20 12 4 1 0 0
3 7 3 3 2 0
5 10 15 20 25 30
Time (mo)
1.00 —El — PTENwt
— 1 = PTENmut
S oo 1
<
=)
D 050] = = = = =
©
¢
0 921 p=go17
0.00 y
0 30
Time (mo)
Number at risk
PTENmut 1 4 1 0 0 0 0
24 18 7 4 2 0
5 10 15 20 25 30
Time (mo)

Somatic TP53, PTEN, and PDGFRA alterations are associated with clinical outcomes in H3K27-altered DIPG. A, Oncoprint representation of recurrent somatic driver
gene alterations in H3K27-altered DIPGs with available WES, WGS, and mRNA-seq, regardless of the availability of survival outcomes (n = 30). H3K27-altered DIPG
subtyping based on the 2021 WHO Classification of Central Nervous System Tumors system: H3F3A (p.K27M), HISTIH3B (p.K27M), and EZHIP overexpression.
B, Association between somatic driver gene status and OS in H3K27-altered DIPG patients (n = 28). Lollipop plot shows the —log;q log-rank test P value for all
tested driver genes (n = 8). Red colored dots mark genes significantly (P < 0.05) associated with OS. C-E, Kaplan-Meier survival curves and log-rank P values
for H3K27-altered DIPG patients stratified by TP53 (C), PDGFRA (D), and PTEN (E) alteration status. WES, whole-exome sequencing; WGS, whole-genome
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Loss of 10q associates with poor clinical outcome in
H3K27-altered, TP53-mutant DIPGs

We next assessed the joint clinical relevance of genomic biomarkers
found in our exploratory analyses. We observed that loss of 10q
occurred almost exclusively in TP53-mutant tumors in the PNOC003
H3K27-altered DIPG cohort (Supplementary Fig. S4C), which we
validated in the CBTN H3K27-altered DMG cohort (Supplementary
Fig. S4C). We, therefore, assessed the clinical impact of chromosome
10q loss among TP53-mutant H3K27-altered DMGs and found that
this event correlates with worse OS among this subgroup (Fig. 4F).
These results suggest that even within H3K27-altered, TP53-mutant

3970 Clin Cancer Res; 28(18) September 15, 2022

DMGs, distinct molecular subgroups with unique clinical outcomes
exist. Survival analyses were then expanded to include patients with
both genomic biomarkers. Patients with TP53 mutations and loss of
chromosome 10q demonstrated the shortest OS, whereas patients with
wild-type TP53 and retention of chromosome 10q demonstrated the
most prolonged OS (Fig. 4G and H).

Joint analysis of PNOC003 and CBTN cohorts (n = 49) further
demonstrated that TP53,,, [hazards ratio (HR), 2.33; P=3.2e—2] and
loss of chromosome 10q (HR, 2.34; P = 2.2e—2) are independent
prognostic biomarkers of clinical outcome (TP53,,,/10qge1, 1 = 14,
08, 8.4; 95% CI, 7.4-15.8); TP53,,,u/10qys 1 = 20, OS, 13.1 mo; 95%
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Figure 3.

Somatic TP53 mutations predict poor radiographic response after radiotherapy in patients with H3K27-altered DIPG. A, Association between somatic driver gene status
and change in tumor volume (top) and tumor size measured by anterior-posterior (AP) and transverse (TR) dimensions (bottom) post-RT (n = 25 H3K27-altered DIPG
patients with available pre- and post-RT MRI data). Colored dots show mutant driver genes that are significantly (P < 0.05) associated with an increase (red) or decrease
(blue) in tumor volume/size post-RT. B, Scatter plot comparing the percentage of change pre- and post-RT tumor volume versus tumor size across TP53mut (n = 17; red
dots) and TP53wt (n = 8, blue dots) H3K27-altered DIPG. C, Box plot comparing tumor volumes stratified by TP53 mutation status based on post-RT MR images in
patients enrolled in PNOC003 (TP53mut, n = 17, red box; TP53wt, n = 8, blue box). D, Line graph showing longitudinal changes in tumor volume from time of initial
diagnosis up to 12 months from subjects enrolled in PNOCO03 based on volumetric tumor assessment on MRI (n = 99 MRI scans; TP53mut, n =17, red line; TP53wt,n =8,
blue line). E and F show a representative example of pre- and post-RT MRI tumor volume for patients with a TP53wt (C) and TP53mut (F) H3.3 K27M-mutant DIPG.
Yellow area marks tumor outline. RT, radiotherapy; wt, wild-type; mut, mutant; MRI, magnetic resonance imaging; AP, anterior-posterior; TR, transverse. ***, P< 0.001.

CIL, 10.1-17.2; TP53,/10qy, n = 14, OS, 15.5 mo; 95% CI, 11.8-29.4;
P = 2.2e—3; Supplementary Fig. S1E and S1F). These results suggest
that loss of chromosome 10q and/or PTEN is an added adverse
genomic event in H3K27-altered, TP53-mutant DIPG/DMGs and
warrant validation in future, larger patient cohorts.

AACRJournals.org

Exploratory molecular profiling and contemporary diagnostic
criteria result in updated diagnoses in three patients

In addition to revealing impacts on clinical outcome, WGS,
mRNA-seq, and DNA methylation profiling led to updated diag-
noses in three patients. Given that our trial was initiated before the
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Figure 4.

Somatic driver gene alterations are associated with distinct patterns of chromosome instability in H3K27-altered DIPG. A, Lollipop plot showing the frequency of
somatic chromosomal gain and loss events in H3K27-altered DIPGs (n = 30). Percentages on the left show the proportion of primary tumors with chromosomal gains
orlosses (middle row). Red dots represent full/partial chromosome gains; blue dots represent full/partial chromosome losses. B, Association between somatic driver
gene alterations (top side), CIN (left side), and SCNAs (left side) in H3K27-altered DIPGs. Box color and associated number of asterisks indicate the degree of
statistical significance (colored boxes). Direction of the arrow indicates an increased risk of association (up-arrow) or decreased risk of association (down-arrow). C,
Plot shows the total number of chromosomal losses in TP53mut (n = 20) and TP53wt (n = 8) H3K27-altered DIPGs. D, Somatic PTEN alterations are associated with
SCNAs on 10g. Plot shows the genomic position of somatic deletions (blue bars) on chromosome 10 and somatic PTEN alterations (pink asterisk). The vertical line
marks the genomic location of the PTEN gene. E, Association between driver gene expression and 10q deletion status in H3K27M-altered DIPG. PTEN expression is
significantly reduced in DIPGs that harbor a 10q deletion (Mann-Whitney U test). F, Kaplan-Meier survival curves show poor clinical outcomes in H3K27-altered,
TP53-mutant DIPG patients in PNOC003. G and H, Kaplan-Meier survival curves for PNOCO03 (C) and CBTN (D) H3K27-altered DIPG/DMG patients after
stratification into three genetically defined risk groups: TP53mut/10del (red, highest risk), TP53mut/10wt (gray, intermediate risk), and TP53wt/10wt (blue,
lowest risk). SCNA, somatic copy-number alterations; CIN, chromosomal instability; wt, wild-type; mut, mutant; del, deletion; CBTN, Children’s Brain Tumor
Network; ***, P < 0.001; **, P < 0.0T; *, P < 0.05.

2016 and 2021 WHO classification of central nervous system
tumors (19, 42), we re-analyzed patient clinical data with newly
published diagnostic criteria and, according to the study deter-
mined histopathology, combined with molecular profiling. Patient
P-04 was initially diagnosed with diffuse astrocytoma, IDH- and
H3-wildtype, WHO grade 2 based on immunohistochemistry. Gene
expression profiling identified overexpression of EZHIP, and DNA
methylation profiling classified this tumor as “DMG, H3K27M-
mutant” with a calibrated score of 0.96 (Supplementary Fig. S5;
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ref. 19). The clinical course and survival were consistent with this
diagnosis with an OS of 13.2 months.

In contrast, patients P-11 and P-19 were diagnosed with anaplastic
astrocytoma, H3-wild-type, WHO grade 3, and diffuse astrocytoma,
NOS, respectively, and demonstrated exceptional OS. P-11 survived
43.7 months, and P-19 remained alive past data cutoff. Molecular
analysis of a biopsied specimen from patient P-11 (25 years old at
diagnosis) did not reveal any molecular alterations consistent with a
contemporary diagnosis of DMG but harbored a somatic IDHI R132H

CLINICAL CANCER RESEARCH



mutation consistent with adult-type IDH-mutant astrocytoma. Sim-
ilarly, the tumor from patient P-19 lacked identifiers consistent with
H3K27-altered DMG and instead demonstrated biallelic NFI altera-
tions and a focal homozygous deletion of CDKN2A/B. DNA methyl-
ation profiling of tumor tissue clustered this patient with “anaplastic
pilocytic astrocytoma” with a calibrated score of 0.85.

Impact of H3K27M-mutant plasma ctDNA level on RT response
and survival outcome

For additional biomarker analysis, plasma was collected from
patients at initial diagnosis (n = 25) and longitudinally during therapy
(n = 21; Fig. 5A). H3K27M-mutant ctDNA was detected in 60% (n =
15) of patients at baseline. We observed a significant decrease in
plasma H3K27M ctDNA between upfront diagnosis and the first
timepoint post-RT (Fig. 5B). Although three patients showed marked-
ly high upfront ctDNA levels (Fig. 5B), our associations between
ctDNA level and treatment response were maintained in the absence of
these exemplary cases (Supplementary Fig. S6A-S6C). Moreover, the
absence of detectable H3K27M ctDNA at baseline was significantly
associated with shorter PFS (P = 4.3e—3, Fig. 5C) and OS (P =
7.5e—3, Fig. 5D). Among patients with detectable H3K27M ctDNA at
baseline, those who exhibited a decrease in ctDNA (>0.01%) post-RT
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showed slightly longer PFS and OS (not significant, Supplementary
Fig. S6D-S6G). The value of A 0.01% was selected on the basis of
median variant allele frequency (VAF) change from pre- to post-RT
ctDNA among patients with detectable H3K27M ctDNA at baseline;
this value is above the previously published cutoff value of true positive
plasma samples (0.001%; ref. 25).

PNOCO0O3 patient-derived cell lines exhibit varied molecular
fidelity to corresponding human tumor

As a part of tissue collection for all patients, primary cell line
generation was attempted when sufficient tissue was available. We
established 11 primary DIPG cell lines (diagnosis, n = 9; progression,
n = 2), subsequently evaluated by WGS and DNA methylation pro-
filing. Key somatic driver gene alterations representative of DIPG were
retained in all cell lines, including H3K27M (n = 10 out of 10), p53
pathway mutations (TP53, n = 6 out of 6; PPM1D, n =5 out of 5), and
oncogenic alterations in several components of the RTK/PI3K/mTOR
pathway (Fig. 6A). Overall, tumor mutation burden was higher in 54%
of cell lines when compared with paired biopsy tissue, consistent with
other reports (refs. 43, 44; n = 6; Fig. 6A, bottom). We compared
somatic coding mutations between paired tumors and derived cell
lines, both at the clonal (Fig. 6B) and subclonal level (Fig. 6C). We
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H3K27M-mutant plasma ctDNA associates with clinical outcomes in DIPG. A, Summary table with baseline and longitudinal plasma ctDNA collection in PNOCO003.
B, Change in plasma H3K27M-mutant ctDNA VAF pre- and post-RT in PNOC0OO03 cohort. € and D, Kaplan-Meier PFS (C) and OS (D) curves after stratification
of patients with (present) and without (absent) detectable plasma H3K27M-mutant ctDNA at baseline. VAF, variant allele frequency; ctDNA, circulating tumor
DNA; RT, radiotherapy; PFS, progression-free survival; OS, overall survival. **, P < 0.01.
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Genomic fidelity of DIPG cell lines derived from primary and progressive tumor biopsies. A, Oncoprint of WGS-derived somatic driver gene alterations for 11 DIPG cell
lines and matched tumor tissue samples (biopsy at diagnosis, n = 9; biopsy at progression, n = 2). Band C, Total number of nonsynonymous gene mutations in11DIPG
cell lines and matched tumors with clonal (B) and subclonal mutations (C). Somatic mutations in DIPG cell lines and matched tumors are shown in orange, and
mutations present only in cell lines and matched tumors are shown in blue and black, respectively. D, DNA methylation-based somatic copy-number profile of
a representative H3.3K27M-mutant DIPG cell line and matched primary tumor biopsy sample. WGS, whole-genome sequencing; TMB, tumor mutation burden;
VAF, variant allele frequency; clonal, VAF >0.20; sub-clonal, VAF 0.05-0.20.

found that although the majority of clonal DIPG driver gene altera-  contrast, analyses of DNA methylation array-derived genomic profiles
tions were retained, several unique subclonal alterations were iden-  revealed concordant global chromosome-level events (Supplementary
tified in cell lines (Fig. 6B and C; Supplementary Tables S5 and S6),  Fig. S7). A representative copy-number profile for a primary DIPG
suggesting divergence at the genetic level in patient-derived models.In  tumor and derived cell line is Fig. 6D.
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Genomic analysis of progressive and post-mortem tissue
revealed conservation of major somatic driver mutations
targeted in the clinical trial

We performed WES and mRNA-seq on biopsies at the progression
from two patients (P-06 and P-07; ref. 20) and WGS on post-mortem
tissue from different anatomical locations from four patients (P-04,
P-07, P-13, and P-18; Supplementary Fig. S8). We observed retention
of key oncogenic mutations between biopsy and post-mortem tissues,
including TP53 (P-04, P-13, and P-18) and H3F3A (P-07, P-13). In
the case of P-07 (PFS 4.4 mo, OS 8.0 mo), a subclonal TP53 mutation
(5% VAF) was identified at diagnosis, yet lost at progression and
in post-mortem tissue. In contrast, this patient harbored a clonal
PPMI1D mutation (33% VAF) at diagnosis, which was retained at
progression and post-mortem. Comparison of mRNA-seq between
diagnostic tissue and at time of progression revealed new overexpres-
sion of FOSB and TOP2A in P-06 and P-07 and DDR2 in P-07.

Discussion

Despite diverse approaches in early-phase clinical trials, there has
been no progress in improving survival for children with DIPG over
decades. The advent of molecular profiling in clinically meaningful
timeframes, including multi-omics analyses incorporating WGS/
WES, mRNA-seq, and DNA methylation profiling, offers great prom-
ise in how we diagnose, understand, and treat DIPG and, more
contemporarily, H3K27-altered DMG. The current study harnessed
multi-omics profiling to develop a precision medicine approach for
children and young adults with newly diagnosed DIPG.

The primary goal of PNOC003 was to assess the impact of biology-
based, multi-agent therapy in newly diagnosed pediatric DIPG. The study
indicates the feasibility of such an approach (20), supports the safety of
surgical biopsy for DIPG tumors, and highlights biopsy in ensuring
accurate diagnosis and treatment decision making. These findings align
with recent publications on the feasibility of biopsy in patients with DIPG
and agree with earlier reports (22, 45-47). In addition, the tolerability of
multi-drug regimens supports future combinatorial strategies and con-
sideration of combinations with RT, which may further survival impact.

The lack of clinical benefit of PNOC003 raises the question of how the
approach is failing, including the limited availability of drugs that
effectively address critical driver genes such as TP53. The drug deci-
sion-making in our trial was based on a structured prioritization of drug
selection and preclinical and/or clinical work that supported targeting
specific molecular aberrations (20). Recent efforts like CNS-TAP now
incorporate algorithms, which include blood-brain-barrier penetration
and compare clinical promise across multiple drugs from the same
class (48). Hopefully, these efforts combined with more effective explo-
ration of tumor penetration and target inhibition and drug development
aimed at key driver pathways highlighted in our work will further the
clinical benefit of precision medicine-based efforts for DIPG/DMG.

Perhaps, our most significant molecular finding was the identifi-
cation of a novel genomic subtype with H3K27 alteration, TP53
mutations, and associated loss of 10q/PTEN. This molecular combi-
nation demonstrated the worst survival outcome among DIPG/DMGs
in PNOCO003. Although we recognize that our small sample size
requires confirmation in larger cohorts, TP53 mutations are associated
with both worse OS and RT resistance in our cohort. This was
consistent with prior findings (38, 49) and corroborated in an inde-
pendent CBTN H3K27-altered DMG cohort. Our findings indicate
that patients with H3K27-altered, TP53-mutant DMG may most
directly benefit from radio-sensitizing agents and warrant investiga-
tion into the impact of reirradiation at progression across subtypes.

AACRJournals.org
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Of additional clinical interest is that TP53 mutations are associated
with significant genomic instability and primarily chromosomal losses,
which may lead to loss of 10q/PTEN. Together, these alterations
predicted the worst clinical outcome in our cohort. Although we
attempted to target PTEN alterations with everolimus in PNOC003
patients, this agent is not specific for PTEN. We are hopeful that newer,
more specific agents (e.g., alpelisib) will improve clinical practice
responses. We advocate that ongoing work confirms this new high-
risk molecular stratification system in larger sample size, verifies that it
should be aggressively targeted in our patient population, and hones
focus on future drug development.

Two subjects enrolled on PNOC003 underwent repeat biopsy at the
time of disease progression, without experiencing toxicity related to
the second biopsy. We recognize this is a small sample size but provides
early support for consideration of serial biopsies if the information
obtained can affect subsequent therapy options. The timing of such
biopsies remains to be determined but should coincide with the
collection of circulating biomarkers to help validate this approach.
We demonstrated that collection of plasma ctDNA enabled detection
of clinically relevant driver mutations (H3F3A and HIST1H3B K27M)
at diagnosis in our patient population. Interestingly, the absence of
detectable ctDNA at baseline correlated with worse PES. One possible
explanation is that lack of ctDNA in the periphery is a marker of a
denser tumor with a lower likelihood for drug penetration or could be
due to an intact BBB restricting passing of ctDNA into the periphery.
We attempted to correlate imaging characteristics with ctDNA to
answer this question; however, our small sample size was limiting.
Regardless, given the association between upfront ctDNA level and
survival outcome and observed decreases in post-RT H3K27M-
mutant ctDNA, the clinical impact of ctDNA warrants ongoing
investigation and should be expanded to additional circulating tumor
biomarkers in both blood and CSF (50).

Our study is the first to complete multi-omic profiling of patient
samples to direct therapy and integrate results across multiple platforms,
including CLIA WES, mRNA-seq, WGS, and DNA methylation, allow-
ing comparison of molecular findings. This work provides insight into
the variability in diagnoses and treatments that may occur based on the
molecular platform used and indicates that larger-scale studies are
needed to elucidate which platforms are most clinically informative.
Furthermore, cases where diagnoses were updated highlight the benefit of
more extensive molecular profiling when standard diagnostic criteria for
DIPG are not met, particularly for clinical trial eligibility, treatment
decision-making, and prognostication. Our work also highlights the
successful development of patient-derived preclinical models and the
molecular variability that can occur between patient samples and patient-
derived models, particularly with divergent partner alterations. Such
variability informs on possible pitfalls of preclinical models in transla-
tional efforts and preclinical drug discovery. In depth RNA sequencing,
methylation profiling, and large-scale drug screen studies are actively
underway using the PNOC003 cell lines in addition to an expanded
cohort of DMG primary derived cell lines. We anticipate that these
findings will grow our understanding of potential mechanisms of drug
resistance and tumor escape from targeted therapies in our patient cohort
and inform the next iteration of precision-based therapies for DMG.

A limitation of our study is the small sample size. PNOC003 was
intended to confirm the feasibility of a new treatment paradigm. Yet,
even with a small sample size, our comprehensive molecular findings
can inform future translational efforts and treatment decision-making
for DIPG. We aimed to address the shortcomings of a small cohort
through validation of key molecular findings in an external, independent
H3K27-altered DMG cohort. We also recognize that we limited
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ourselves to FDA-approved drugs and drugs that were delivered orally or
intravenously. By broadening treatment recommendations to therapies
that may still be undergoing clinical investigation and with a focus on the
aggressive genotype-phenotype relationships in our cohort, we may
better extend the clinical benefit to patients with DIPG. Our experience
in PNOCO003 supports the exploration of novel drug delivery systems
and drug combinations in future clinical trials and addressing drug
penetration and pharmacodynamics (PD) a priori. We are currently
exploring the impact of drug penetration, PD biomarkers, and more
comprehensive preclinical work before clinical translation in follow-up
trials to PNOCO003, specifically DMG-ACT (PNOC023, NCT04732056;
PNOCO022, NCT05009992) and PNOC008 (NCT03739372). We also
recognize that we did not pre-emptively explore the impact of our
therapy on targeted pathways inlongitudinal DNA and RNA sequencing
and were limited by the number of patients that underwent follow up
biopsy at progression. However, we found ongoing PDGFRA over-
expression in P-07, despite aiming to target this with mebendazole. We
also identified MAP3K8 overexpression in the patient’s tumor after
upfront targeting of a PIK3R1 alteration. This could be indicative of
alternative pathway activation driven by use of everolimus. We intend to
overcome future limitations in pathway analysis by implementing treat-
biopsy-treat approaches in larger sample sizes, such as PNOCO016, a
target validation study inclusive of DIPG and DMG (NCT03893487),
and DMG-ACT trials (NCT05009992; NCT04732065). These larger
cohorts will further investigate RNA expression patterns and to correlate
with driver pathways. In addition, ongoing trials, such as DMG-ACT,
are assessing active molecular pathways in DMG a priori via antibody
staining of tissue both at diagnosis and post-therapy.

In summary, PNOCO003 is the first clinical trial to bring together a
complement of clinical, multi-omic profiling to determine a combination
therapy approach while exploring biologic endpoints that inform the next
generation of therapy for children and young adults with newly diagnosed
DIPG. Together, our work (i) confirms proof of concept for multi-
targeted, multi-agent combinations in DIPG, (ii) highlights TP53 and
10q/PTEN alterations as potential mechanisms of therapeutic resistance
with uniquely poor prognoses in H3K27-altered DMG, and (iii) supports
future investigation of next-generation approaches and drug delivery
systems to target the most aggressive subtypes of DIPG/DMG.
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