Skip to main content
. 2022 Sep 7;12(14):6308–6338. doi: 10.7150/thno.72152

Table 7.

The summary of recent machine learning based colorimetric analysis.

Learning type Purpose Image format Machine learning model Software Training data Color space Sample Ref
Supervised learning Classification RAW
JPEG
Least-Squares Support-Vector Machine (LS-SVM) MATLAB 385 images RGB, HSV, LAB Hydrogen peroxide 208
Supervised learning Classification JPEG Linear Discriminant analysis (LDA), Gradient Boosting Classifier (GBC), Random forest RF) Python, MATLAB 224 images RGB, HSV, LAB Artificial Saliva 94
Supervised learning Classification JPEG LDA, SVM, ANN MATLAB, Python, Android studio - RGB, HSV, YUV, Lab Alcohol solution 209
Supervised learning Classification JPEG LDA
Ensemble bagging classifier (EBC)
Matlab, Android
studio
616 images RGB, HSV, YUV, LAB Artificial saliva 210
Supervised learning Classification JPEG Convolutional neural network (CNN) MATLAB 1600 images RGB Glucose solution 211
Supervised learning Classification Spectrum Support vector machine-radial basis function (SVM-RBF) - - - Glucose solution 212
Supervised learning Classification JPEG Multi-Layer Perceptron (MLP), Residual Network (ResNet), CNN - 490 images RGB C-reactive protein (CRP) 212
Supervised learning Classification JPEG, RAW LS-SVM MATLAB 450 images RGB prepared PH solution 213
Supervised learning Classification JPEG, Spectrum Faster region-based (CNN) - 1500 images RGB Urine 102
Supervised learning Classification RAW Artificial neural networks (ANNs) MATLAB 160 and 54 data points CMYK Artificial urine 62
Supervised learning Classification NIR
Spectrum
Deep neuronal network (DNN) - 1024 dataset - Serum glucose 39
Supervised learning Classification Spectrum Multi-Channel -CNN - - - Glucose solution 214