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Abstract

Intercellular cross talk between cancer cells and stromal and immune
cells is essential for tumor progression and metastasis. Extracellular
vesicles and particles (EVPs) are a heterogeneous class of secreted
messengers that carry bioactive molecules and that have been shown
to be crucial for this cell–cell communication. Here, we highlight the
multifaceted roles of EVPs in cancer. Functionally, transfer of EVP
cargo between cells influences tumor cell growth and invasion, alters
immune cell composition and function, and contributes to stromal
cell activation. These EVP-mediated changes impact local tumor pro-
gression, foster cultivation of pre-metastatic niches at distant organ-
specific sites, and mediate systemic effects of cancer. Furthermore,
we discuss how exploiting the highly selective enrichment of mole-
cules within EVPs has profound implications for advancing diagnostic
and prognostic biomarker development and for improving therapy
delivery in cancer patients. Altogether, these investigations into the
role of EVPs in cancer have led to discoveries that hold great promise
for improving cancer patient care and outcome.
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Introduction

Extracellular vesicles (EVs), which constitute a heterogenous group

of vesicles carrying various biomolecular materials that are secreted

by most cells, have gained increasing attention due to their complex

cargo and their ability to mediate long-distance communication in

normal development and physiology, as well as in several patho-

physiological conditions. The two major groups of EVs that have

received intensive study include exosomes and microvesicles (MVs,

also called ectosomes) (Cocucci & Meldolesi, 2015; Meldolesi, 2018;

van Niel et al, 2018). MVs vary in size, ranging from 70 nm to

almost 1 lm, and they are shed directly from the plasma membrane

into the extracellular space. Exosomes form within the endosomal

system prior to their secretion and are typically 50–150 nm in size.

Further dissection of EVs has led to the recent discoveries of subcat-

egories with different canonical EV markers and possibly of different

cellular origins (Kowal et al, 2016), as well as of distinct subclasses

with different sizes and cargo, named exosome small (Exo-S) and

exosome large (Exo-L), and of a new non-membranous nanoparti-

cle, named exomere (Zhang et al, 2018b). Thus, we refer to this col-

lective secreted heterogeneous mixture consisting of MVs/

ectosomes, exosomes, and exomeres as extracellular vesicles and

particles (EVPs). Throughout this review, we will use the term EVP,

or we will use more specific nomenclature (e.g., MV, exosome,

exomere) when subtype of EVPs are known for a particular study.

For further discussion on appropriate use of EV terminology, we

refer readers to a detailed description of this matter by Thery

et al (2018).

While many physiological processes, including neurotransmis-

sion and immune signaling, are mediated by EVPs (Saliba et al,

2019; Zhou et al, 2020b), the role of EVPs in systemic aspects of

human diseases, and in particular cancer, has attracted much atten-

tion. The inhibition of exosome production by cancer and stromal

cells is invariably associated with reduced cancer growth and metas-

tasis in a series of experimental studies (Bobrie et al, 2012; Peinado

et al, 2012; Matsumoto et al, 2017; Richards et al, 2017), supporting

the notion that exosome secretion is pivotal to cancer development.

A considerable body of literature has shown the involvement of

EVPs in all aspects of cancer progression, including host–microbiota

interaction, carcinogenesis, metastasis establishment, and systemic

effects of cancer on distant organs. EVPs are found in all bodily flu-

ids, and their cargo signature can be used to predict cancer type at

early stages and therapeutic responses (Hoshino et al, 2020; Shi-

mada et al, 2021). The innate low toxicity and broad tissue distribu-

tion of EVPs also make them desirable and autologous carriers of

chemotherapeutics, genetic material, or imaging agents.

In this review, we first present fundamental aspects of EVPs, partic-

ularly as they relate to cancer, including their heterogeneity, their

mechanisms of biogenesis and uptake, and their diverse biomolecular

cargoes. Next, we briefly cover key methods for the isolation and use

of EVPs for experimental purposes. We will then discuss the multi-

faceted functional roles of EVPs during cancer (Figure 1), illustrating
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how EVPs from tumor, stroma, and immune cells in the tumor

microenvironment organically orchestrate tumor growth and invasion,

progression to metastatic disease, and systemic effects of cancer.

Finally, we will examine the potential of EVPs as cancer biomarkers,

therapeutic deliverables, and therapeutic/prognostic targets, highlight-

ing their promises and limitations.

EVP heterogeneity and biogenesis

Complexity at the nanoscale level: EVP heterogeneity
EVPs represent a heterogeneous mixture of vesicles and particles

that also vary in their biophysical properties, particularly with

regard to size and density. Hence, characterization of the different

subclasses is critical for understanding their contribution to cancer.

By implementing asymmetric-flow field-flow fractionation (AF4)

technology, Zhang et al (2018b) recently identified three distinct

subpopulations of EVPs, named exosome small (Exo-S, 60–80 nm)

and exosome large (Exo-L, 90–120 nm), alongside a newly discov-

ered nanoparticle population, named exomere (<50 nm, with peak

at ~ 35 nm), which lacks a membrane structure. In support, Zhang

et al (2019e) also reported the isolation of exomeres from cultured

cell lines using a modified ultracentrifugation strategy and demon-

strated the transfer of functional exomere cargo to recipient cells.

These novel nanoparticles were also found in human blood plasma

by atomic force imaging (Bairamukov et al, 2020).
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Figure 1. Multifaceted roles of EVPs in cancer.

Diagram depicting the contribution of EVPs to different aspects of cancer initiation and progression, which is the subject of this review.
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Exomeres exhibit a unique biomolecular composition compared

to Exo-S and Exo-L. Specifically, they are more enriched in pro-

teins involved in metabolic pathways, while Exo-S and Exo-L pref-

erentially contain membrane proteins and signaling proteins. All

three populations package DNA in a cell-type dependent manner,

whereas RNA is generally more enriched in Exo-S and Exo-L

across cell types. Exomeres contain less lipids than Exo-S and Exo-

L and display a distinct composition profile of different lipid

classes. Besides exomeres, Zhang et al (2021) recently reported

additional non-membranous nanoparticles named supermeres,

which were further isolated from EVs and exomere-depleted cell

culture conditioned medial via ultracentrifugation. The protein and

RNA composition of supermeres differ from Exo-S, Exo-L, and

exomeres. Remarkably, the majority of extracellular RNA was

found associated with supermeres rather than exosomes and

exomeres. The biogenesis, molecular and structural organization,

and functional mechanisms of supermeres remain to be deter-

mined. Furthermore, a recent study has reported that cytotoxic T

cells release perforin and granzymes in stable particles named

supramolecular attack particles (SMAPs), which represent another

type of non-EV particle (Balint et al, 2020). The SMAPs are auton-

omously cytotoxic and ~ 120 nm in diameter, composed of a cyto-

toxic core and a shell of glycoproteins but lack a phospholipid

membrane. More than 285 SMAP-associated proteins have been

identified, including perforin and granzymes. A C-terminal frag-

ment of thrombospondin-1 has been found in the shell structure

and may contribute to the targeting specificity of SMAPs. Whether

SMAPs function only through the immunological synapse or via

other modes of action requires further investigation.

Other secreted vesicles with potentially more specialized func-

tions have also been described. Recently, D’Acunzo et al (2021)

reported the identification of mitovesicles, a new population of

brain-derived double-membraned EVs of mitochondrial origin.

These mitovesicles overlap in size and cosediment with exosomes,

but they can be further separated from exosomes via a high-

resolution density gradient step. They contain a specific subset of

mitochondrial constituents whose levels and cargo change during

pathophysiological processes involving mitochondrial dysfunction,

such as in Down Syndrome, but their mechanism of release is

unknown. In addition, several studies have identified various types

of larger, micro-sized vesicles. For example, adult neurons from C.

elegans were found to extrude large vesicles called exophers

(~ 4 lm), which contain protein aggregates and organelles (Melen-

tijevic et al, 2017). In migrating cells, an additional class of large

vesicles (~ 1 lm), named migrasomes, form at the tips and inter-

section of trailing edge retraction fibers and contain numerous

smaller vesicles and cytosolic contents (Ma et al, 2015). Lastly,

large oncosomes (0.5–10 lm) carrying oncoproteins such as AKT1

are shed from the plasma membrane of cancer cells (Minciacchi

et al, 2017).

New beginnings: biogenesis of endosome- and plasma membrane-
derived EVPs
Exosome biogenesis begins with the formation of nano-sized

intralumenal vesicles (ILVs) that are contained within endocytic

compartments known as multivesicular endosomes or multivesicu-

lar bodies (MVBs) (Simons & Raposo, 2009; Gruenberg, 2020).

ILVs form by inward budding of the endosome limiting membrane

and detachment of the bud as a vesicle into the endosome lumen.

MVBs traffic to the plasma membrane where they fuse and release

the ILVs extracellularly as exosomes. By contrast, plasma-

membrane-derived MVs form by direct budding of plasma mem-

brane into the extracellular space (Sedgwick & D’Souza-Schorey,

2018; Clancy et al, 2021).

Intralumenal vesicle budding at multivesicular bodies

Pathways of ILV budding into MVBs during exosome biogenesis

include those regulated by endosomal sorting complex required

for transport (ESCRT) (Juan & Furthauer, 2018), by programmed

cell death 6-interacting protein (also known as ALG-2-interacting

protein X (Alix)) (Bissig & Gruenberg, 2014), and by lipids (Skot-

land et al, 2017b) (Figure 2A). These pathways have been studied

in cancer cells, as well as non-cancer cell types that may be cru-

cial microenvironmental regulators of tumor progression and

metastasis.

The ESCRT pathway of ILV biogenesis involves a series of four

main complexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III,

which interact and assemble in an ordered, stepwise fashion on

▸Figure 2. EVP cargo, biogenesis, and uptake.

(A) EVP biogenesis occurs in MVB endosomes, giving rise to secreted exosomes, and at the plasma membrane, resulting in the generation of MVs, which are also

termed ectosomes. Invagination of the endosome membrane leads to the formation of nanosized (50–150 nm) ILVs that are contained within the MVB lumen. ILV

formation is regulated by various molecular processes at the MVB membrane that are each capable of capturing cargo and remodeling membranes for ILV generation

and are also induced by upstream regulators. MVB trafficking is controlled by Rabs and SNARE-complexes for secretion of exosomes at the cell surface. MVs/ectosomes

range in size from 50 nm to almost 1 lm. Their budding occurs at plasma membrane microdomains enriched for ESCRT proteins, like TSG101, which is recruited by

ARRDC1 for MV formation, and MV biogenesis is also stimulated by ARF6. In cancer, molecular pathways involving RTKs/Rab31, SRC, ARF6/PLD2, Ral/PLD1, and mTOR/

PKM2 along with environmental and cellular factors related to hypoxia, pH, invasion, chemotherapy can all influence exosome biogenesis. Hypoxia and Rab22a promote

MV formation in cancer cells. EVP uptake involves attachment of EVPs to extracellular matrix via adhesion molecules, such as integrins, on EVPs. Pathways of cellular

uptake include endocytosis, macropinocytosis, and phagocytosis. Internalized EVPs traffic to the perinuclear area of recipient cells where they may fuse with lysosomes.

(B) EVPs (including exomeres on the left and exosomes on the right) carry a variety of macromolecules, including proteins, nucleic acids, and lipids. Transmembrane

proteins include adhesion molecules, like integrins, growth factor receptors, and tetraspanins, which are involved in biogenesis and which may also mediate adhesion.

Cytosolic proteins such as actin, HSPs and other biogenesis factors are also commonly found in EVPs. Both dsDNA and ssDNA are found associated with EVPs. Double-

stranded DNA is present both inside and on the surface of EVPs. Various RNAs, such as miRNAs, mRNAs, and other short and long noncoding RNAs, are carried by EVPs.

Lipids, particularly cholesterol, phospholipids, ceramides, and sphingomyelin are enriched in EVPs. (C) Biogenesis and uptake factors functionally regulate in vivo cancer

metastasis. Inhibition of Ral and Rab GTPases involved in biogenesis impairs metastasis. Blockade of exosomal integrins reduces exosome uptake and metastasis. HSP,

heat shock protein; ILV, intralumenal vesicle; MVB, multivesicular body; MV, macrovesicle; RTK, receptor tyrosine kinases; dsDNA, double-stranded DNA; ssDNA, single-

stranded DNA.
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membranes (Hurley, 2015; Juan & Furthauer, 2018; Vietri et al,

2020). ESCRT-0, -I, and -II subunits possess ubiquitin binding

domains for capture of ubiquitinated cargo, while ESCRT-I, -II, and -

III promote membrane remodeling for ILV budding. The ATPase

VPS4 interacts with ESCRT-III to support completion of ILV forma-

tion by promoting membrane scission, resulting in ILVs pinching off

into MVB lumens. Importantly, depletion of multiple ESCRT protein

subunits or VPS4 affects exosome biogenesis by altering exosome

number, size, and protein composition to varying extents (Tamai

et al, 2010; Baietti et al, 2012; Colombo et al, 2013; Jackson et al,

2017; Banfer et al, 2018).

Intraluminal vesicle biogenesis mediated by ESCRT-III is also

induced by the ESCRT-associated protein Alix (Bissig & Gruenberg,

2014). Targeting of Alix to endosomes for ESCRT-III engagement

occurs through multiple mechanisms that all have been shown to

support exosome secretion in cancer cells. In MCF7 breast cancer

cells, syntenin, a cytoplasmic adapter protein, recruits Alix to MVBs

where interaction with ESCRT-III induces ILV formation (Baietti

et al, 2012; Roucourt et al, 2015). Syntenin may be targeted to endo-

somes through activation of phospholipase D (PLD)2 by the GTPase

ADP-ribosylation factor 6 (ARF6); PLD2, in turn, generates phospha-

tidic acid (PA) at the MVB limiting membrane to which syntenin

can bind (Ghossoub et al, 2014). Generation of PA at endosomes

can also occur via PLD1 activation by Ral GTPases to increase exo-

some biogenesis, and this function for Ral supports in vivo 4T1

mammary carcinoma metastasis (Ghoroghi et al, 2021). Localiza-

tion of Alix to MVBs also occurs via association with the late

endosome-specific lipid lysobisphosphatidic acid (LBPA) to support

ESCRT-III-dependent ILV formation and exosome production in

HeLa cells (Matsuo et al, 2004; Larios et al, 2020).

The lipid ceramide has also been implicated in exosome biogene-

sis (Skotland et al, 2017b; van Niel et al, 2018). Neutral sphin-

gomyelinase 2 (nSMase2), which is the enzyme that generates

ceramide from sphingomyelin at endosomes, increases ILV and exo-

some biogenesis (Trajkovic et al, 2008). This function of ceramide

at MVBs may be enabled by multiple, additional pathways to

enhance exosome biogenesis. The autophagy-related protein

microtubule-associated protein 1A/1B-light chain 3 (LC3) may

recruit FAN, an activator of nSMase (Adam-Klages et al, 1996), to

endosome membranes where FAN could stimulate ceramide-

mediated ILV formation (Leidal et al, 2020). Moreover, activated

Rab31 can augment exosome production and packaging of epider-

mal growth factor receptor (EGFR) into cancer cell-derived exo-

somes, and it was proposed that this occurs via the ceramide

pathway of ILV production (Wei et al, 2021a), suggesting that it

may be critical for cancer cell exosome biogenesis.

Trafficking and plasma membrane fusion of multivesicular bodies

The final stages of exosome biogenesis involve the trafficking of

MVBs to the plasma membrane where they fuse and release ILVs as

exosomes. Rab GTPase proteins, which are major regulators of

intracellular membrane trafficking (Zhen & Stenmark, 2015), control

the movement of MVBs toward the plasma membrane (Blanc &

Vidal, 2018). Rab protein activity is regulated by GTPase-activating

proteins (GAPs) (Zhen & Stenmark, 2015), and Rab-dependent path-

ways are further mediated by interaction with downstream effectors

that are required for transport to and fusion of traveling vesicles

with destination membranes (Fukuda, 2013). Alongside Rabs, these

Rab GAPs and effectors have also been implicated in exosome

release (Figure 2A).

Rab27 and Rab35 are among the most recognized Rabs that influ-

ence MVB to plasma membrane trafficking for exosome secretion,

and they also have functional roles in cancer. Rab27a and Rab27b

associate with MVBs and mediate efficient release of exosomes by

promoting targeting and docking of MVBs to the cell surface in HeLa

cells (Ostrowski et al, 2010). The Rab27 effectors Slp4 and Slac2b

also support exosome release (Ostrowski et al, 2010). Rab35 and its

GAPs TBC1D10A, TBC1D10B, and TBC1D10C were also shown to

regulate transport and fusion of MVBs with the plasma membrane

in oligodendroglial cells (Hsu et al, 2010). Importantly, Rab27a and

Rab35 are necessary for the secretion of exosomes from tumors

in vivo (Bobrie et al, 2012; Peinado et al, 2012; Pucci et al, 2016).

Rab11 (Savina et al, 2002) and Rab7 (Baietti et al, 2012) may also

function in this final stage of exosome biogenesis.

Additional factors residing on the MVB membrane and at the cell

periphery with direct roles in promoting fusion of membranes also

control exosome secretion. These molecules include vesicle- and

target-SNARES (v- and t-SNARES), which localize to the vesicle

membrane and plasma membrane, respectively (Jahn & Scheller,

2006). The t-SNARE SNAP23 is phosphorylated and localizes to the

intracellular face of the plasma membrane to promote exosome

release in cancer cells (Wei et al, 2017b; Verweij et al, 2018; Yang

et al, 2019b). Likewise, the v-SNAREs VAMP7 and Ykt6 are also

implicated in exosome secretion by facilitating MVB-plasma mem-

brane fusion in cancer cells (Fader et al, 2009; Gross et al, 2012;

Sun et al, 2020a).

Biogenesis of endosome-derived EVPs in cancer cells

Although these pathways of exosome biogenesis have been exten-

sively characterized, it remains uncertain which are crucial in

cancer cells and if certain pathways are preferentially upregulated in

cancer cells compared with non-transformed cells. As noted above,

studies of some of these pathways have been conducted in cancer

cell lines, and the functional roles of some biogenesis factors in

mediating in vivo metastasis have been shown. However, more

firmly establishing whether there are distinctions in mechanisms of

exosome biogenesis pathways in cancer versus non-cancer cells and

further illuminating how such pathways are triggered will uncover

possible routes for safe therapeutic targeting of exosomes for cancer

treatment.

Insight into such specificity is beginning to emerge. For instance,

the tyrosine kinase SRC can enhance exosome secretion by stimulat-

ing ILV budding through phosphorylating syndecans and syntenin

(Imjeti et al, 2017) and interacting with Alix (Hikita et al, 2019).

Because SRC is overexpressed or exhibits increased activation by

growth factor and integrin signaling in multiple cancers (Kim et al,

2009), it may potentiate the syntenin-Alix pathway of exosome bio-

genesis in cancer cells. Similarly, Rab31-dependent upregulation of

ceramide-induced ILV formation may represent another cancer-cell-

specific pathway of exosome biogenesis. Rab31 has been described

to be overexpressed in cancer (Chua & Tang, 2015), and phosphory-

lation of Rab31 by various receptor tyrosine kinases often overacti-

vated in cancer, such as EGFR, HER2, and MET, leads to abnormal

activation of Rab31, which in turn could induce exosome biogenesis

(Wei et al, 2021a). Overexpression or enhanced activation of other

GTPases involved in exosome biogenesis, including ARF6 (Li et al,
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2017d), Ral (Yan & Theodorescu, 2018), Rab27 (Li et al, 2018e),

and Rab35 (Shaughnessy & Echard, 2018) in cancer cells has also

been reported, indicating that pathways involving these factors may

also be avenues by which exosome biogenesis is upregulated in

cancer.

Microenvironmental and cellular stimuli frequently associated

with cancer progression may also underlie tumor-cell-specific exo-

some production (Figure 2A). Notably, hypoxia, a common feature

of the primary tumor microenvironment, has been shown to

increase EVP production in various cancer types, including breast

(King et al, 2012), lung (Hsu et al, 2017), prostate (Panigrahi et al,

2018), and ovarian cancer (Dorayappan et al, 2018) and melanoma

(Park et al, 2019). Mechanistically, induction of HIF-1a supports

enhanced EVP release during hypoxia in breast cancer cells (King

et al, 2012), while hypoxia appears to enhance MVB biogenesis and

release of endosome-derived exosomes in prostate cancer (Panigrahi

et al, 2018) and ovarian cancer (Dorayappan et al, 2018). Addition-

ally, alterations in pH associated with decreased extracellular and

increased intracellular pH are prevalent in cancer cells (White et al,

2017), and augmented exosome biogenesis associated with changes

in MVB biogenesis and transport has been observed when cancer

cells are cultured in more acidic medium (Boussadia et al, 2018;

Nakase et al, 2021). Impairment of lysosomal function can also pro-

mote exosome release and alter exosomal cargo by breast cancer

cells (Latifkar et al, 2019). Progression of tumors to an invasive

phenotype may similarly increase exosome biogenesis by supporting

enhanced exosome secretion at sites of invadopodia, which are

actin-rich cellular protrusions that degrade extracellular matrix

(ECM) (Eddy et al, 2017). MVBs were shown to dock at invadopo-

dia in a Rab27-dependent manner, and interfering with invadopodia

reduced exosome secretion (Hoshino et al, 2013). MVB docking to

the plasma membrane also relies on the actin-binding protein cor-

tactin, which promotes invadopodia formation (Artym et al, 2006;

Sinha et al, 2016). Further work is needed to better understand the

extent to which tumorigenesis influences exosome biogenesis and

has the exciting potential to uncover roles for additional cancer-

associated phenotypes, such as altered metabolism, epithelial-to-

mesenchymal transition (EMT), ECM stiffness, stromal activation,

and immune cell infiltration. It is noteworthy that many of these

phenotypes are interconnected; hence, their ability to mediate exo-

some production may converge on common molecular mediators

that would be attractive therapeutic targets.

Biogenesis of plasma-membrane-derived microvesicles

Biogenesis of plasma-membrane-derived MVs (also known as ecto-

somes) involves budding of the plasma membrane out into the

extracellular space and release of the bud as a shed vesicle (Clancy

et al, 2021) (Figure 2A). Initiation of MV formation begins with the

establishment of plasma membrane domains rich in lipids such as

cholesterol and ceramide (Sedgwick & D’Souza-Schorey, 2018).

Additionally, discrete domains of the plasma membrane that are

enriched with proteins involved in membrane reshaping, such as

TSG101 and Vps4, have been associated with plasma membrane

MV budding (Booth et al, 2006). Furthermore, targeting of TSG101

to the plasma membrane for MV biogenesis was demonstrated to

occur via interaction with Arrestin Domain Containing 1 (ARRDC1)

(Nabhan et al, 2012). Interestingly, ARRDC1 is distinctly localized

to the plasma membrane and not the MVB, indicating that it may

play a key role in dictating TSG101-dependent exosome versus MV

formation. TSG101 may also facilitate cargo recruitment through

protein–protein interactions as has been proposed for endosome-

derived exosomes; indeed, TSG101 can regulate MV packaging of T

cell receptors (Choudhuri et al, 2014). ARF6-induced actomyosin

contractility promotes the final shedding step of plasma membrane

blebs (Muralidharan-Chari et al, 2009).

In cancer cells, MV biogenesis is enhanced by hypoxia through

an unclear mechanism involving upregulation of Rab22A (Wang

et al, 2014). Protein targeting to MV in tumor cells has been linked

to trafficking mediated by the SNARE protein vesicle-associated

membrane protein 3 (VAMP3) (Clancy et al, 2015), and miRNA

cargo can be directed to tumor MVs via an interaction between

ARF6, a regulator of MV biogenesis, and Exportin-5, an RNA bind-

ing protein that mediates export of miRNA precursors out of the

nucleus (Clancy et al, 2019). These studies have provided important

insight into MV formation, but as with exosome biogenesis, further

work is needed to understand mechanisms of MV biogenesis in

cancer cells.

Biogenesis of exomeres

The biogenesis mechanisms of exomeres are still under investiga-

tion. While Exo-S and Exo-L are enriched in ESCRTs, Rabs, and

SNARE-related proteins, indicating that biogenesis may involve

MVB trafficking or plasma membrane budding, proteins associated

with exosome and MV biogenesis were shown to be lacking in

exomeres, suggesting that exomere biogenesis may rely on differ-

ent, yet uncharacterized mechanisms (Zhang et al, 2018b, 2019e).

Subcellular localization analysis of exomere-enriched proteins

showed their specific association with endoplasmic reticulum

and mitochondria, suggesting that their biogenesis may, at least par-

tially, originate in these organelles. Enrichment in microtubule-

associated proteins in exomeres also implies the possibility of micro-

tubule/cytoskeleton involvement in the secretion of exomeres. Fur-

thermore, given the fact that exomere-specific proteins are involved

in metabolic processes, cell metabolic status might dictate exomere

production and release. Lastly, future investigations into lipid

species selectively enriched in exomeres, such as triglyceride, cera-

mide, and cholesteryl ester, might provide further information on

their biogenesis (Zhang et al, 2018b, 2019e).

Taking it all in: mechanisms of EVP uptake
Intercellular communication involving EVP uptake by recipient cells

is essential for EVP-mediated cancer phenotypes. Therefore, under-

standing mechanisms of uptake may be key for identifying viable

routes of therapeutic targeting of EVPs in cancer. In support, adju-

vant treatment of mice with the drug reserpine, which was found to

inhibit EVP uptake, appeared to eliminate lung metastasis of B16F10

melanoma cells (Ortiz et al, 2019), underscoring the potentially sig-

nificant impact of targeting EVP uptake for cancer treatment.

The first step of EVP uptake involves attachment of vesicles to

recipient cells. This binding can be mediated by surface molecules

on EVPs. In particular, integrins and tetraspanins may regulate

uptake either by directly promoting attachment to receptors on host

cells or by supporting adhesion to cell-adjacent ECM, which enables

uptake. For instance, B-cell-derived EVPs carrying integrins b1 and

b2 can bind activated fibroblasts and also fibronectin and collagen-I

(Clayton et al, 2004). Likewise, along with integrin a4 or b4,

6 of 65 The EMBO Journal 41: e109288 | 2022 � 2022 The Authors

The EMBO Journal Serena Lucotti et al



tetraspanin 8 regulates differential uptake by numerous cell types,

including endothelial cells, lung fibroblasts, and bone marrow cells,

and in multiple organs, such as the lung, liver, spleen, and pancreas

(Nazarenko et al, 2010; Rana et al, 2012). In cancer, this function of

EVP integrins is critical for target cell selection and uptake in pre-

metastatic niches; cancer cell EVPs can bind to laminin for uptake

by fibroblasts and epithelial cells in the lungs or to fibronectin for

uptake by Kupffer cells in the liver via integrin b4 or b5, respec-
tively, and this ultimately determines metastatic organotropism

(Hoshino et al, 2015).

Glycosylation of EVP surface proteins also influences EVP target-

ing and internalization. Increased glycosylation was shown to

impede EVP uptake by ovarian cancer cells in vitro (Escrevente

et al, 2011), and uptake of breast cancer cell EVPs by brain endothe-

lial cells in vitro is also diminished by glycosylation (Nishida-Aoki

et al, 2020). Interestingly, changes in certain glycosylation patterns

alter in vivo biodistribution. Specifically, while removal of N-linked

glycans did not appear to affect organ biodistribution of breast

cancer cell EVPs, loss of O-linked glycans enhanced uptake by the

lungs and brain without affecting uptake by the spleen and liver

(Nishida-Aoki et al, 2020). Molecules on the surface of the receiving

cell can also impact uptake of cancer cell EVPs. Cell surface 25-

hydroxycholesterol blocks EVP uptake (Ortiz et al, 2019), whereas

heparan sulfate proteoglycans favor EVP uptake (Christianson et al,

2013). It would also be expected that additional integrin ligands or

tetraspanin binding partners on host cells are required for uptake.

Methods employing fluorescent labeling of EVPs using lipophilic

dyes and subsequent intracellular imaging of EVP fate in recipient

cells have demonstrated that EVPs seem to be mainly internalized

through regulated endocytosis, after which they enter the endocytic

pathway and are trafficked to perinuclear late endosomes or lyso-

somes (Morelli et al, 2004; Tian et al, 2010, 2014a; Svensson et al,

2013; Costa Verdera et al, 2017). EVPs can also be taken up by

macropinocytosis (Tian et al, 2014a; Nakase et al, 2015; Costa

Verdera et al, 2017) and phagocytosis (Feng et al, 2010). Through

these various modes of cellular uptake, EVPs would be expected to

initially stay intact; hence, an outstanding question is how EVP car-

goes are accessed by target cells. Backfusion of internalized EVPs

with host endosomal membranes would facilitate liberation of intra-

EVP cargoes and allow membrane-associated molecules to engage

effectors by assuming the same orientation and topology relative to

endosomal membranes as in donor cells. Direct monitoring and

visualization of cargoes will be necessary to tease out these possibil-

ities and more firmly corroborate direct and specific roles for EVP

cargoes in eliciting changes in recipient cell phenotype.

Fully loaded: EVP cargo
EVP protein packaging

Packaging of particular proteins into EVPs functionally influences

cancer progression and metastasis (Figure 2B). Most notably, EVP

integrin profiles can distinguish cancers that metastasize to certain

distant sites, and selective integrin packaging also plays a crucial

role in dictating organ-specific uptake of EVPs and consequent pre-

metastatic niche formation (Hoshino et al, 2015). EVPs derived from

lung-tropic breast cancer cells package more a6b4 and a6b1 integrins
than brain metastatic breast cancer cells or liver metastatic pancre-

atic cancer cells, whereas avb5 is more highly represented in EVPs

from liver-tropic cells. Additionally, depletion of these integrins

impaired organotropic EVP uptake and reduced metastasis. Other

EVP molecules, such as cell migration-inducing and hyaluronan-

binding protein (CEMIP), are also associated with metastasis to par-

ticular organs. Brain metastatic breast cancer cells preferentially

package CEMIP into EVPs, and EVP CEMIP functionally supports

brain metastasis (Rodrigues et al, 2019). Although levels of cellular

CEMIP protein are equivalent between lung-, bone-, and brain-

tropic breast cancer cells, CEMIP was found markedly enriched in

brain tropic cell-derived EVPs. Collectively, these studies illustrate

the critical role of specific EVP protein packaging in determining

metastatic fate. As a result, monitoring cancer patient EVPs for

selectively packaged proteins, such as specific integrins or CEMIP,

may aid in selection of therapies most effective in treating future

metastases at specific organs.

The oncoprotein EGFR has been identified in EVPs derived from

glioma cells, squamous cell carcinoma cells, lung cancer cells, and

gastric cancer cells. Oncogenic activation of EGFR and increased

expression of wild-type (WT) EGFR promote incorporation of EGFR

into EVPs and allow for paracrine transfer of activated EGFR to less

aggressive tumor cells and to endothelial cells to support tumor pro-

gression (Al-Nedawi et al, 2008, 2009). EGFR could only be detected

in serum EVPs from gastric cancer patients compared with healthy

donors and its levels increased with cancer stage (Qu et al, 2017).

Moreover, EGFR+ EVPs promoted gastric cancer liver metastasis.

Interestingly, Rab31 was shown to promote packaging of EGFR into

exosomes via the ceramide pathway of ILV biogenesis. Activated

EGFR can phosphorylate Rab31, which stimulates Rab31-dependent

ILV formation and incorporation of EGFR into those ILVs (Wei et al,

2021a). Thus, although pathways of selective protein packaging into

EVPs remain largely undefined, this study of EGFR packaging has

begun to provide new insights into this process and may be blocked

to inhibit EVP EGFR-mediated phenotypes. Another oncoprotein,

MET, has also been shown to be selectively packaged into cancer

cell EVPs. Comparison of MET levels between EVPs from metastatic

B16F10 mouse melanoma cells and from the less aggressive B16F1

variant showed that increased MET correlated with metastatic abil-

ity, and EVP MET was responsible for promoting melanoma lung

metastasis by favoring premetastatic niche conditioning, corroborat-

ing the functional importance of selective protein packaging in

metastasis (Peinado et al, 2012).

In addition to these functional studies of particular EVP proteins,

proteomic analysis of EVPs has been instrumental in defining the

broad repertoire of nuclear, cytoplasmic, and membrane proteins

incorporated into cancer EVPs. These studies have identified com-

mon proteins that tend to include defined EVP markers, such as

molecules associated with biogenesis. Importantly, these investiga-

tions have substantiated the importance and prevalence of distinct

protein packaging for cancer-associated EVPs, potentially making

EVPs powerful tools for diagnosis and prognosis.

Analysis of EVPs from a panel of 60 cancer cell lines (NCI-60)

representative of nine tissue types identified greater than 6,000

unique proteins across EVPs from all cell lines (Hurwitz et al, 2016).

213 common proteins were identified that include proteins, such as

Rabs, that are expected regulators of biogenesis. This study also

demonstrated that proteomes of EVPs from different cell lines but of

the same cancer type cluster together, and further analysis of indi-

vidual cancers showed that samples also cluster based on stage or

aggressiveness of disease. These exclusive proteins may therefore
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represent biomarkers for cancer type and prediction of disease state.

These differences in proteins between EVPs generally reflected the

varying levels of expression in the cells of origin, but this work also

identified proteins that are preferentially enriched in certain EVPs

even when similarly expressed between cell types, supportive of

selective packaging.

A recent landmark study has reinforced the significance of EVP

proteins as biomarkers through a large-scale analysis of hundreds of

human patient-derived EVPs (Hoshino et al, 2020). This study

aimed to identify EVP markers suitable for characterization of

human patient EVPs, to establish whether cancer patient EVP pro-

teomes are distinct from EVPs of healthy patients, and to determine

if EVPs from patients with different types of cancer are distinct.

Characterization of markers confirmed the presence of traditional

EVP markers and also established new markers common to all sam-

ples. The conventional markers included HSP8 and Alix, which

were also among the predominant ones found in the NCI-60 study

of cancer cell lines (Hurwitz et al, 2016), indicating a refined panel

including these along with the newly established markers may be

optimal for characterization of EVPs from patients. Hoshino and col-

leagues also mined for proteins that may be associated with cancer

EVPs and discovered that EVPs from tumor tissue explants carry dis-

tinct proteins compared to EVPs from non-tumor explants of the

same tissue type. Furthermore, many of these proteins are signifi-

cantly enriched in or exclusive to a particular cancer type, such as

lung cancer or pancreatic cancer, but proteins common to different

cancers were also identified in this tissue explant EVP analysis.

Remarkably, these proteins were also observed to be enriched in

EVPs from plasma of cancer patients compared to plasma-derived

EVPs from healthy individuals. Thus, select EVP proteins can poten-

tially serve as clinically tractable liquid biopsy tools to identify and

diagnose cancer. Hoshino and colleagues further identified addi-

tional cancer-associated EVP proteins from other organ sources,

such as immune organs, that are representative of systemic changes

associated with cancer and therefore contribute to EVP proteome

profiles which may help detect cancer via liquid biopsy.

Additional proteomic studies have more specifically focused on

determining whether EVP proteomes may represent disease stage

for types of cancer. For colon cancer, analysis of patient-derived pri-

mary colorectal cancer cells and paired lymph node metastatic cells

revealed that EVPs from both cell types carry approximately 800

proteins each but, less than half are similarly abundant between the

samples, demonstrating that the majority are selectively enriched

and could be used as predictors of disease stage (Choi et al, 2012).

Likewise, a larger analysis of seven human melanoma cell lines

uncovered that EVPs from more aggressive or metastatic melanoma

carry distinct molecules compared to EVPs from cell lines represen-

tative of less advanced disease (Lazar et al, 2015). Additionally, pro-

teomic characterization of glioblastoma EVPs also showed that the

enrichment of certain proteins is associated with tumor grade and

aggressiveness (Mallawaaratchy et al, 2017). Furthermore, multiple

reports detailing the proteome of breast cancer EVPs established

specific EVP protein signatures based on metastatic ability (Gangoda

et al, 2017), primary tumor molecular subtype (Rontogianni et al,

2019), and treatment status and recurrence (Vinik et al, 2020). Alto-

gether, these studies have identified distinct proteins selectively

packaged into EVPs, which may have prognostic and predictive

value for cancer detection, progression, and therapeutic response.

EVP DNA and RNA cargo

DNA present in EVPs may be a valuable source of circulating tumor

DNA for liquid biopsy biomarker analysis. Cancer cell derived EVPs

contain a variety of DNA molecules, including genomic DNA

(Balaj et al, 2011;Kahlert et al, 2014; L�azaro-Ib�a~nez et al, 2014;

Thakur et al, 2014) and mitochondrial DNA (Guescini et al, 2010;

Sansone et al, 2017). Genomic DNA represents the entire genome

(Kahlert et al, 2014; Thakur et al, 2014) and may be single-stranded

(Balaj et al, 2011) or double-stranded (Kahlert et al, 2014; L�azaro-

Ib�a~nez et al, 2014; Thakur et al, 2014) (Figure 2B). Moreover, imag-

ing (Maire et al, 2021) and biochemical analysis (Thakur et al,

2014) of EVP DNA showed that it is present both on the surface of

and within EVPs. DNA sequencing has identified the presence

of oncogenes in various cancer-derived EVPs, including amplified c-

Myc in medulloblastoma EVPs (Balaj et al, 2011), mutant BRAF in

melanoma EVPs, mutant EGFR in non-small-cell lung cancer EVPs

(Thakur et al, 2014), mutant KRAS and p53 in pancreatic cancer

EVPs (Kahlert et al, 2014), and mutant PTEN in prostate cancer

EVPs (L�azaro-Ib�a~nez et al, 2014).

Mechanisms of EVP DNA incorporation remain understudied and

obscure. The overall levels of DNA are higher in EVPs from cancer

cells compared with normal fibroblasts (Balaj et al, 2011; Thakur

et al, 2014), suggesting that tumorigenic phenotypes promote DNA

packaging. Additionally, packaging of DNA into tumor-derived EVPs

may be induced by several stimuli, including oncogenic HRAS trans-

formation (Lee et al, 2014), chemotherapy (Ke et al, 2017; Kitai

et al, 2017; Yokoi et al, 2019), and radiation therapy (Diamond

et al, 2018). Recent work also suggested that secretion of DNA via

EVPs is cytoprotective by alleviating cellular stress associated with

accumulation of harmful cytoplasmic DNA and micronuclei (Taka-

hashi et al, 2017; Yokoi et al, 2019). Hence, cancer-therapy-induced

DNA damage may promote EVP DNA packaging. Molecularly, tetra-

spanins, which are abundant in EVPs, may control EVP DNA load-

ing through interaction with histones and DNA (Yokoi et al, 2019).

EVPs also transport various mRNA and noncoding RNA species,

and many of these RNAs are significantly enriched in EVPs com-

pared with the cell of origin, indicating that active mechanisms

drive their packaging. For example, some mRNAs that are present

in EVPs from mast cells could not be detected in parent cells, while

some miRNAs were more abundant in EVPs (Valadi et al, 2007).

Similarly, diverse RNAs are more highly represented in tumor-

derived EVPs compared to the tumor, including mRNAs in glioma

cells (Skog et al, 2008), miRNAs in colorectal cancer cells (Cha

et al, 2015), circular RNAs in liver cancer cells (Li et al, 2015c) and

colon cancer cells (Dou et al, 2016), small nuclear RNAs in Lewis

Lung Carcinoma (LCC) tumors (Liu et al, 2016d), and long noncod-

ing RNAs in colorectal cancer cells (Hinger et al, 2018).

Whether or not EVPs transfer sufficient amounts of RNA to elicit

phenotypic changes in recipient cells has been debated. However,

RNAs are enriched in EVPs from cancer patients, and EVP RNAs

impact disease progression by promoting pre-metastatic niche for-

mation and metastasis in mouse models (Xie et al, 2019; Möller &

Lobb, 2020). Moreover, primary tumor cells may expose other cells

in their immediate surroundings or at distant sites to a constant

delivery of EVP-encapsulated RNA that may indeed be critical for

cancer progression. Accordingly, the mechanisms governing EVP

RNA sorting have garnered considerable attention. In cancer cells,

EVP packaging may be modulated by activation of oncogenes, such
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as mutant KRAS, which alters loading of various RNA molecules

into EVPs (Cha et al, 2015; Dou et al, 2016; Hinger et al, 2018), in

part by regulating association of the miRNA-interacting protein

Ago2 with MVBs (McKenzie et al, 2016). In addition, the nSMase2-

ceramide pathway was found to be dependent on 30 UGGA and 3’

UUU motifs, which agrees with prior work describing an increased

prevalence of 30-end uridylated miRNA in EVPs compared with cells

(Koppers-Lalic et al, 2014). The RBP hnRNPA2B1 promotes selec-

tive sorting of miRNA into EVPs by binding specific motifs (EXOmo-

tifs) contained within those miRNAs (Villarroya-Beltri et al, 2013).

Although it remains unclear how hnRNPA2B1 engages EVP biogene-

sis machinery, this study showed that hnRNPA2B1 associates with

intracellular ceramide-rich MVB structures, suggesting that the

nSMase2-ceramide pathway of exosome biogenesis may be

involved. Moreover, this function of hnRNPA2B1 supports colorec-

tal cancer liver metastasis (Zhao et al, 2020c) and bladder cancer

lymphatic metastasis (Chen et al, 2019a) by regulating EVP sorting

of tumor cell miRNA and long noncoding RNA, respectively. YBX1

is another RBP that mediates encapsulation of diverse small noncod-

ing RNAs, including miRNA, tRNA, Y RNA, and Vault RNA, into

EVPs (Shurtleff et al, 2016, 2017). Mechanistically, ubiquitination of

YBX1, which supports interaction with TSG101 and consequent

YBX1 secretion (Palicharla & Maddika, 2015), may further dictate

loading of YBX1 and associated RNAs. Furthermore, secretion of

EVP YBX1 was shown to be enhanced by EMT following HRAS-

mediated transformation of epithelial cells (Tauro et al, 2013b), sug-

gesting that YBX1-mediated packaging of miRNAs into EVPs may be

augmented in cancer. Another recent study has identified an addi-

tional RBP-mediated pathway of RNA sorting that is anchored by

the autophagy-related protein LC3 (Leidal et al, 2020). LC3 is tar-

geted to MVB membranes and it interacts with the RBPs hnRNPK

and SAFB. This interaction allows for capture and loading of small

RNAs, namely snoRNAs and miRNAs, into exosomes. It remains

unknown how this particular pathway may influence incorporation

of RNA into cancer cell-derived EVPs. Autophagy is well recognized

for being upregulated as a vital coping mechanism in normal and

cancer cells in response to environmental stressors (Galluzzi et al,

2015). Therefore, the contribution of LC3 to classical autophagy ver-

sus exosomal loading may be fine-tuned to manage the homeostatic

secretory and stress response needs of cells.

Overall, these studies of EVP RNA loading have provided consider-

able insight into selective packaging of bioactive molecules and may

be key in guiding future interrogation of protein and DNA packaging.

Such investigation could similarly be aimed at understanding how par-

ticular protein modifications influence packaging and how protein

and DNA cargoes may interact with core biogenesis machineries.

EVP lipid content

Lipids represent an additional class of macromolecules that are

packaged into EVPs (Figure 2B). They were first identified in EVPs

from reticulocytes, which were reported to harbor cholesterol, sph-

ingomyelin, and various phospholipids, including phosphatidyl-

choline, phosphatidylserine (PS), phosphatidylinositol, and

phosphatidylethanolamine (Vidal et al, 1989). These lipids appeared

mostly equivalently abundant in EVPs and cells, but subsequent

studies of EVP lipid analysis have described an enrichment of lipids

in EVP compared with cells, namely cholesterol, sphingomyelin,

ceramide, and PS (Egea-Jimenez & Zimmermann, 2019). B cell EVPs

have an increased abundance of cholesterol, sphingomyelin, and

ganglioside GM3 compared with levels in cells, whereas multiple

phospholipid species were less enriched in EVPs compared with

cells (Wubbolts et al, 2003). This lipid profile of B cell EVPs was

also shown to be associated with detergent resistance properties

similar to lipid raft microdomains found within cellular membranes.

Likewise, sphingomyelin was found to be the main lipid enriched in

EVPs from both mast cells and dendritic cells, whereas cholesterol

was not found to be enriched, and the phospholipids phosphatidyl-

choline and phosphatidylethanolamine were decreased or increased,

respectively, in EVPs compared with cells (Laulagnier et al, 2004).

In cancer, similar trends of EVP lipid content appear to exist. A

large-scale lipidomic analysis quantifying greater than 200 lipid

species in EVPs from PC3 prostate cancer cells identified cholesterol,

sphingomyelin, glycosphingolipids, such as ceramides, and PS as

being more abundant in EVPs than cells, with other phospholipids

generally lower in EVPs (Llorente et al, 2013). Furthermore, EVPs

from urine of prostate cancer patients have higher levels of some

lipids, namely ceramides, relative to urine-derived EVPs from

healthy patients, suggesting that these lipids could serve as fluid-

based biomarkers (Skotland et al, 2017a); however, in another

study, ceramide levels were found to be decreased in urine EVPs

from stage 2 benign prostate hyperplasia patients compared with

urine EVPs from stage 3 prostate cancer patients (Clos-Garcia et al,

2018), complicating the potential use of this lipid for biomarker pur-

poses. Additionally, EVPs from colorectal cancer cells, glioblastoma

cells, and hepatocellular carcinoma cells also display an enrichment

of cholesterol, sphingomyelin, and PS compared with cells (Lydic

et al, 2015; Haraszti et al, 2016). These studies unveil common

themes in EVP lipid content, and further work establishing mecha-

nisms of lipid packaging and functional roles for EVPs lipids may

enhance their biomarker and therapeutic potential.

Exomere cargo

Following their recent discovery, exomeres have been thoroughly

characterized for their molecular composition (Zhang et al, 2018b,

2019e). Proteomics analysis revealed unique protein profiles of

exomeres that are quite distinct from that of EVs. As expected,

membrane-associated proteins are relatively low in exomeres, con-

sistent with their lack of external membrane. Exomeres are instead

enriched in metabolic enzymes and proteins involved in glycosyla-

tion, hypoxia, microtubule assembly, and coagulation. Gene Set

Enrichment Analysis strikingly demonstrated that metabolic pro-

cesses, including carbohydrate metabolism and protein synthesis,

are selectively associated with exomere-specific proteins. These

bioinformatic analyses suggest potential roles for exomeres in mod-

ulating the metabolism in the recipient cells. Furthermore, the bio-

logical activity of exomere protein cargo has been demonstrated by

the functional work carried out by Zhang and collaborators, where

they showed that exomeres-encapsulated b-galactoside a2,6-
sialyltransferase 1 (ST6Gal-I) and amphiregulin (AREG) mediate

hypersialyation of membrane proteins and activation of EGFR sig-

naling, respectively, in the recipient cells (Zhang et al, 2019e).

Posttranslational modifications of proteins are critical for cell sig-

naling. Via lectin blotting and glycomic MS analysis, our group fur-

ther evaluated the N- glycan profiles of exomere and exosome

subsets (Zhang et al, 2018b). The extent of N-glycosylation and the

protein carriers present in exomeres were found different from that

� 2022 The Authors The EMBO Journal 41: e109288 | 2022 9 of 65

Serena Lucotti et al The EMBO Journal



in Exo-S and Exo-L for the examined glycan species, including

bisected and branched N-glycans, structures related to fucosylation

(fucose-linked a -1,6) to GlcNAc or fucose-linked (a -1,3) to GlcNAc-

related structures, and a -2,6-sialylated glycans. Instead, complex N-

glycans with relatively high levels of sialylation are prevalent in all

subsets. Glycomic studies further revealed differences in N-glycan

composition and structures among exomeres, Exo-S, and Exo-L, as

evidenced by detection of unique ions in exomeres specifically.

Notably, the N-glycan profile of exomeres and exosomes is cell type-

specific.

Interestingly, exomeres contain lipids, though their total lipid

content is three to fivefold lower than EVs, which is consistent with

the lack of an external membrane in exomeres (Zhang et al, 2018b,

2019e). Additionally, lipidomic analysis showed distinct lipid com-

position among exomere and EVs. Major structural components of

the plasma membrane lipid bilayer, such as phospholipids, sphin-

gomyelin, and sterols, ranked top in both exomeres and EVs. Com-

pared with other lipid classes, relatively higher levels of

triglycerides and ceramides and a higher ratio of esterified to unes-

terified cholesterol were observed in exomeres compared with EVs,

suggesting that exomeres may serve as a major carrier to transport

these metabolites to recipient cells.

Similar to EVs, nucleic acids have also been found as part of

exomere cargo. DNA content of exomeres is comparable with that

of EVs and display cell type-dependent patterns in their relative

abundance (Zhang et al, 2018b, 2019e). As examined in a human

pancreatic cancer cell line, DNA molecules carried by exomeres

showed a slightly smaller size than those associated with EVs. In

contrast to DNA, and regardless of cell type, exomeres contain less

RNA and predominantly small RNAs (< 1,000 nucleotides). Interest-

ingly, as examined in murine melanoma B16F10 cells, abundant

small RNA peaks, likely composed of tRNAs, microRNAs, and other

small RNAs, were detected in Exo-S and Exo-L, but not in exomeres

(Zhang et al, 2018b).

Overall, the complex cargo of exomeres is starting to emerge, but

questions remain regarding their packaging and regarding the bio-

genesis and biological functions of exomeres. Advanced, high-

resolution isolation platforms for single particle analysis and addi-

tional in vivo functional studies are desired to further investigate

these aspects of exomeres biology.

Seeing is believing: isolation, labeling, and models for EVP studies
Methods for EVP isolation

Technology has advanced significantly in the field of EVP study,

leading to the development of various methodologies for EVP isola-

tion in the past decade. Based on the fundamental principles for sep-

arating EVPs from other types of entities in biofluids, these methods

can be grouped into two main categories: one exploits the size, den-

sity, and charge of EVPs, while the other uses affinity capture tech-

niques, such as immuno-recognition of unique epitopes present on

the EVP surface or specific ligand–receptor interaction.

The first category of EVP isolation and subtype separation meth-

ods includes differential ultracentrifugation (UC), density gradient,

size exclusion chromatography (SEC), ultrafiltration (UF), anion

exchange chromatography, and polymer precipitation (Thery et al,

2006; Merchant et al, 2010; Lasser et al, 2012; Tauro et al, 2012;

Kim et al, 2016a). Additionally, AF4 has been successfully adapted

to fractionate EVPs on the basis of hydrodynamic size. As we

described (Zhang & Lyden, 2019), two perpendicular flows in a thin,

flat, hollow channel with a semi-permissive bottom wall membrane

allow for separation and elution of EVP subtypes at different time

points. Several key advantages offered by the AF4 technique include

high separation resolution (down to a few nanometers), the ability

to separate EVPs across a large size range of a few nanometers to

micrometers, and being label-free, gentle, rapid, and highly repro-

ducible. However, due to the limited loading capacity, samples ana-

lyzed using AF4 usually need to be pre-processed by other methods

(such as UC) to first enrich and concentrate EVPs. By employing this

technique, we have reported successful separation of distinct sub-

sets of EVs and identification of exomeres from multiple cell lines

(Zhang et al, 2018b). Several studies have described isolation and

analysis of plasma and urine EVPs utilizing AF4 after initial isola-

tion steps, such as UC, UF, SEC, and immunoaffinity capture (Yang

et al, 2017a; Oeyen et al, 2018; Kim et al, 2020; Multia et al, 2020;

Wu et al, 2020a), though the yield and purity of EVPs isolated from

these samples need to be compared with other methods in parallel.

The application of UF-based methods, such as dead-end filtration

and tangent flow filtration, for EVP isolation has increased greatly in

the past few years (Liangsupree et al, 2021). EXODUS (exosome detec-

tion via the ultrafast-isolation system) is a recently reported platform

developed based on UF (Chen et al, 2021e). By enabling membrane

vibration and generating transverse waves and acoustic streaming,

EXODUS effectively limits the fouling effect and particle aggregation

on the nanoporous membrane, thus increasing EVP isolation effi-

ciency. Detailed characterization and comparison of EXODUS with

other methods were conducted mainly on urine samples and showed

superior performance in yield, purity, and speed. It can operate on a

large range of sample volumes, from tens of microliters to hundreds of

milliliters. Separating EVPs within different size ranges can be

achieved by utilizing membranes with different pore sizes. In addition,

the EXODUS workstation has the automatic operation feature, making

it useful for high-throughput study. However, more extensive analysis

is needed to determine the performance of EXODUS for the isolation of

EVPs from plasma. A general limitation for size-based separation

approaches, including EXODUS, is that it cannot separate EVPs from

other types of molecular entities with similar sizes.

Wu et al (2017) described an acoustofluidic platform, which pro-

cesses undiluted blood directly to isolate EVPs based on size. Two

separation modules are integrated to first remove blood cells and

platelets and subsequently separate EVPs from microparticles and

other large bodies. The unique features of this approach include no

requirement for blood pre-processing, being label-free and gentle,

preservation of intact EVP morphology, flexibility to adjust the cut-

off size for each separation module, and automation. However, as

Wu and colleagues noted, the isolated samples may contain non-EV

particles (i.e., exomeres) and aggregates with sizes similar to that of

EVs, such as lipoprotein particles. Refining the device configuration

to separate EVPs from lipoproteins based on their different acoustic

contrast factors has been proposed.

Due to the net negative charge carried by EVPs, charge-based

technologies, such as ion exchange and electrophoresis, have also

been adapted to EVP isolation (Kim et al, 2016a; Kosanovic et al,

2017; Heath et al, 2018; Marczak et al, 2018; Chen et al, 2018a;

Notarangelo et al, 2019; Kim & Shin, 2021). Ion exchange is a rapid

and scalable approach, which can easily process samples in large

volumes, an important application for large-scale preparation of
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EVPs for therapeutic purposes. However, structural integrity and

functionality of isolated EVPs have to be evaluated, especially in the

case where buffers with extreme pH or high salt concentration have

been used at the binding or elution steps. Analyzing complex sam-

ples, such as plasma, with charge-based techniques will be challeng-

ing, and combination with other methods will be necessary to

increase the purity of isolated EVPs.

In the affinity-based category of EVP isolation methods, the most

commonly utilized approach is immunoaffinity capture (IAC) by anti-

bodies recognizing either general EV markers (such as tetraspanins

CD9, CD81, and CD63) or membrane proteins that are unique to EVPs

derived from specific cell types (such as EpCAM) (Tauro et al, 2013a;

Kowal et al, 2016; Wang et al, 2016a; Zhao et al, 2016b; Brett et al,

2017; Ko et al, 2018; Sharma et al, 2018; Katsu et al, 2019; Lo et al,

2020). Both conventional immunoprecipitation and fluorescence-

activated cell sorting have been adapted for IAC of EVP subsets.

Microfluidics coupling IAC with different fluidics designs represents a

popular approach for positive or negative selection of EVP subsets in

biofluids (Contreras-Naranjo et al, 2017; Wang et al, 2021b). The

advantages of IAC include allowing isolation of select EVPs derived

from a specific cell type and being a single-step, rapid, and flexible

procedure. However, IAC approaches cannot separate EVP subsets

that share the same targeting epitopes, and eluting EVPs from binding

antibodies can be challenging, making IAC incompatible with func-

tional studies that require intact EVPs.

Recent innovation in aptamers has made them promising alterna-

tives to antibody-based probes for isolation of EVP subsets. Apta-

mers are chemically synthesized short RNA or single-stranded DNA

molecules with unique 3D structures that bind their cognate targets

with high specificity and affinity, comparable with antibodies (Sun

et al, 2016). Remarkably, profiling of serum EVP surface proteins

utilizing a panel of seven fluorescently labeled aptamers along with

thermophoretic enrichment and linear discriminant analysis can

successfully detect early stage cancers and classify cancer types with

high specificity and sensitivity (Liu et al, 2019a). Liu and colleagues

showed that this assay was superior to PSA levels for discrimination

of prostate cancer from benign prostate enlargement and for recur-

rence assessment post-prostatectomy. Their study also indicated

that the thermophoresis condition can be adjusted to further sepa-

rate small EVPs from microparticles. A strategy for duplex detection

of EpCAM and Her2 on a single EVP was further developed to

improve the identification of breast cancer-derived EVPs by integrat-

ing hybridization chain reaction with dual DNA aptamer-mediated

recognition of these two targets (Li et al, 2021c). Dong et al (2018)

described a highly sensitive electrochemical method for detecting

tumor-derived EVPs based on aptamer recognition-induced multi-

DNA release and cyclic enzymatic amplification. Aptamer capturing

can also be used for isolation of EVP subsets, and the captured EVPs

can be nondestructively released via disruption of the aptamer 3D

structure by incubating with complementary sequences or by

restriction enzyme cleavage, allowing for preservation of EVP bioac-

tivity (Zhang et al, 2019c).

Commercial kits have been developed based on the reversible

binding of Tim4 protein to PS on the surface of EVPs. This affinity-

based method is highly specific and calcium (Ca2+)-dependent

(Miyanishi et al, 2007), facilitating release of intact EVPs by adding

Ca2+ chelators (Nakai et al, 2016). This technique has been applied

to various sample types and utilized for isolation and for

quantification by ELISA and flow cytometry. However, similar to

other affinity-based approaches, this method cannot distinguish

EVPs of different sizes. Moreover, for lipid-rich samples, such as

plasma, it may be challenging to separate EVPs efficiently from

other PS-containing particles. Strategies based on other separation

principles may have to be included to improve the purity of isolated

EVPs. To a lesser extent, lectin probes have been used to separate

EVPs carrying characteristic glycans on their surface (Shimoda et al,

2019; Yamamoto et al, 2019; Jankovic et al, 2020). Heparin and

peptides that exhibit specific affinity for canonical heat shock pro-

teins have also been tested for EVP isolation (Ghosh et al, 2014;

Balaj et al, 2015; Mao et al, 2019a).

Although many approaches for EVP isolation have been devel-

oped, different methods may result in enrichment of specific subsets

of the heterogenous EVP population due to their unique separation

principles. Therefore, caution should be exercised when determin-

ing the molecular composition and functional role of EVPs isolated

by the various methods. The choice of method for EVP isolation

depends on the sample complexity and quantity, and the required

yield, purity, and bioactivity for downstream use. Technological

advancements are still urgently needed for complex sample process-

ing, high-throughput analysis, and large-scale preparation of high-

quality EVPs for therapeutic applications. Advancing our under-

standing of EVP biogenesis and the physical and molecular features

of distinct EVP subpopulations is necessary to guide further method-

ology development for their isolation.

Tracking EVP biodistribution and uptake in vivo

Tracking the in vivo fate of cancer cell EVPs in mice is essential for

understanding their contribution to tumor progression and metasta-

sis. Mapping EVP organ biodistribution and cellular uptake has pri-

marily been accomplished by injecting mice with EVPs purified

from in vitro cell lines. The administration of exogenous EVPs has

the drawback of not fully recapitulating the endogenous release of

tumor EVPs in mice. However, because tumors secrete additional

factors, such as soluble proteins, it has the distinct and critical

advantage of allowing for the study of EVP-specific phenotypes

in vivo. Visualizing these injected EVPs has relied mainly on label-

ing them prior to injection using fluorescent lipophilic dyes that can

be detected ex vivo in whole organs or in tissue sections. These dyes

have multiple advantages. They are available as different fluo-

rochromes, providing flexibility for signal readout and combined

immunofluorescence-based analysis of cell type-specific EVP

uptake. Their use also does not require any prior knowledge of EVP

biomolecule content, as they will label all lipid-containing particles

isolated by conventional EVP purification procedures. Finally, they

can label EVPs isolated from samples, such as patient-derived speci-

mens, for which genetic-mediated tagging of EVPs may not be feasi-

ble. However, limitations of the dyes include formation of

aggregates that could lead to signal artifacts and fluorescent signal

half-lives that may not completely reflect the biological fate and

turnover of circulating EVPs. Nevertheless, this approach combined

with functional validation of EVP-mediated phenotypes has been

crucial for unraveling key aspects of cancer progression and metas-

tasis (Peinado et al, 2012; Costa-Silva et al, 2015; Hoshino et al,

2015; Rodrigues et al, 2019).

There remains a pressing need for imaging and tracking of EVPs

secreted endogenously by tumors in vivo to functionally connect
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EVP biodistribution with EVP-mediated phenotypes. Limited studies

have made use of cancer cell lines stably expressing genetic repor-

ters, allowing implanted cells to release tagged EVPs that can be

traced. These reporters are typically fusion proteins that consist of a

signal generating protein to visualize EVPs and an EVP targeting

sequence to ensure EVP packaging of the fusion protein. In particu-

lar, expression of GFP or luciferase targeted to EVPs through fusion

to CD63 or lipid anchoring domains has been used to track EVPs

secreted by tumors in mice. Orthotopic mammary tumors were

shown to secrete GFP-CD63 EVPs into the surrounding microenvi-

ronment, where they are taken up by stromal cells (Suetsugu et al,

2013). Spontaneous metastasis of these cells was associated with

EVP uptake in the lungs and the presence of GFP+ circulating EVPs

in blood. Similarly, CD63-GFP EVPs secreted by melanoma in vivo

were observed to be taken up by macrophages in tumor-draining

lymph nodes (Pucci et al, 2016). Genetically stable expression of

membrane-bound, EVP-targeted Gaussia luciferase was also used to

show that melanoma tumors secrete EVPs that reach distant tissues

by measuring luciferase activity in harvested organs. Fusion of GFP

to a palmitoylation signal also targets GFP to EVPs and allows for

tracing of EVPs within the tumor microenvironment of thymoma

tumors in mice (Lai et al, 2015). Likewise, fusion of the high inten-

sity luciferase NanoLuc (Nluc) to CD63 enabled in vivo detection of

EVPs secreted by subcutaneous colon cancer xenograft tumors in

the stomach and intestine (Hikita et al, 2018). Multiple other

luciferase-based fusion proteins have been developed, but their abil-

ity to mark EVPs in vivo has only been investigated in the context of

exogenous administration of luciferase+ EVPs from cultured cells

(Takahashi et al, 2013; Lai et al, 2014; Wang et al, 2020c). Overall,

these studies using fluorescent and bioluminescent reporters

demonstrate how tumor-derived EVPs communicate with their local

and distant environments, providing support for endogenous secre-

tion of tumor EVPs in mediating metastasis.

In addition to tracing EVPs in vivo, tracking delivery of specific

EVP cargo remains a considerable challenge. Gain- and loss-of-

function approaches have been crucial in defining the importance of

various cargoes in mediating EVP-dependent phenotypes, but under-

standing whether cargoes are active in recipient cells in vivo will

establish direct links between EVP molecules and the observed phe-

notypes. Studies exploiting the packaging of Cre mRNA into EVPs

have made headway into addressing this question. In this approach,

tumor cells expressing a Cre transgene package Cre mRNA into EVPs;

in vivo injection of these tumor cells into Cre-reporter mice allows

for visualization of host cells that acquire EVP Cre mRNA. Intracra-

nial injection of Cre+ glioma cells into Cre-reporter mice showed that

Cre mRNA is delivered mainly to CD45+ leukocytes and also to neu-

rons, microglia, and endothelial cells (Ridder et al, 2015). Similarly,

Lewis lung carcinoma cells also deliver exosomal Cre mRNA primar-

ily to CD45+ leukocytes when injected intravenously or subcuta-

neously, and Cre mRNA can be detected in serum EVPs of tumor-

bearing mice (Ridder et al, 2015). This same approach has been used

to demonstrate that B16 melanoma tumor EVPs can deliver Cre

mRNA to the lymph nodes, lungs, and spleen and that aggressive

breast cancer cells can deliver mRNA to less aggressive breast cancer

cells in vivo (Zomer et al, 2015). These proof-of-principle studies

have been valuable in tracking uptake and transfer of endogenous

EVPs and EVP molecules, but more consistent implementation of

similar approaches combined with functional analysis is needed.

EVP Functions

Under construction: pre-cancer origins
Chronic inflammation

Prolonged or chronic inflammatory conditions associated with

immune infiltration and cytokine release precede the development

of various cancers, including colorectal and liver cancer (Greten &

Grivennikov, 2019). Immune cells are a major source of circulating

EVPs in this context. For instance, the concentration of monocyte-

derived and T-cell-derived EVPs is increased in the serum of patients

with systemic lupus erythematosus and correlates with activation of

monocytes, neutrophils, B cells, and CD4+ lymphocytes (Lopez et al,

2020). T-cell-derived EVPs were found significantly enriched in

tRNA fragments in comparison to releasing cells (Chiou et al, 2018).

This selective packaging was proposed to be a mechanism for dis-

posing of tRNAs that inhibit T cell ability to home to lymph nodes,

become activated, and produce cytokines. Myeloid-derived suppres-

sor cells (MDSCs), which expand during chronic infectious and

inflammatory diseases (Gabrilovich & Nagaraj, 2009), are also major

producers of EVPs. For example, MDSC-derived EVPs from individu-

als with late chronic sepsis or human immunodeficiency virus (HIV)

or hepatitis C virus (HCV) infections are involved in priming na€ıve

myeloid cells for differentiation into immunosuppressive MDSCs

and in inhibiting T cell activation via transfer of the long noncoding

RNA transcript HOTAIRM1 (Wang et al, 2018b; Alkhateeb et al,

2020; Thakuri et al, 2020).

Among other inflammatory conditions, chronic pancreatitis is

associated with release of circulating EVPs enriched in pro-

inflammatory miRNAs and proteins that may foster systemic dis-

ease. These EVPs home to distant organs, such as the liver, lungs,

and intestines, and induce pyroptosis of alveolar macrophages and

polarization macrophages to an inflammatory phenotype associated

with release of cytokines such as IL-1b, IL-6, and CCL-2, leading to

vascular leakage and exacerbating lung injury (Bonjoch et al, 2016;

Jimenez-Alesanco et al, 2019; Wu et al, 2020f). EVPs were also

found to be associated with the onset of inflammatory bowel dis-

eases (IBDs), such as colitis and Crohn’s disease, which predispose

to the development of colorectal cancer (CRC) (Stidham & Higgins,

2018; Guan, 2019). In an experimental model of dextran sulfate

sodium (DSS)-induced colitis, circulating EVPs expressing a series

of acute-phase proteins and lncRNA NEAT1-induced polarization of

macrophages toward a pro-inflammatory phenotype (Wong et al,

2016; Liu et al, 2018c). EVPs from the colon of mice with colitis

were found to express proteins associated with cell proliferation

(e.g., epithelial growth factor receptor, EGFR) and induce fibroblast

proliferation via EGFR-ERK signaling, suggesting that EVPs pro-

duced during IBD development may directly lead to CRC onset

(Hasegawa et al, 2020).

Similar to a wound that does not heal, fibrotic diseases are

associated with the chronic differentiation and accumulation of

myofibroblasts and excessive deposition of ECM components such

as collagen I and lead to a higher risk of organ failure, morbidity,

and progression to malignancy (Distler et al, 2019). EVPs have a

central role in the development of lung fibrosis. EVPs from macro-

phages promote the proliferation of pulmonary interstitial fibrob-

lasts via miR-328 transfer, aggravating fibrosis (Yao et al, 2019).

Instead, EVPs from pulmonary fibroblasts suppress the differentia-

tion of neighboring myofibroblasts by delivering anti-fibrotic
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prostaglandin (PG)E2 (Lacy et al, 2019). EVPs are also involved in

the etiology of liver fibrosis, where hepatic stellate cells (HSCs)

proliferate and differentiate into pro-tumorigenic myofibroblasts.

EVPs derived from HSCs, hepatocytes, and inflammatory macro-

phages in fibrotic livers induce HSC proliferation, migration, and

metabolic switch via their protein and miRNA cargo, promoting

progression of liver fibrosis (Wang et al, 2015; Seo et al, 2016;

Chen et al, 2018b, 2019b, 2020c; Wan et al, 2019; Gao et al,

2020a; Zhang et al, 2020f). In HSCs, the deregulation of autophagy

pathways, such as the PDGF/SHP2/mTOR and TRIB3/SQSTM1

pathways, allows for an increased release of EVPs with fibrogenic

properties (Gao et al, 2020a; Zhang et al, 2020f). Conversely, NK

cell-derived EVPs decrease TGF-b1-dependent HSC activation, pro-

liferation, and autophagy (Wang et al, 2020g, 2020h). Finally, in

diabetes or cardiac dysfunction, EVPs derived from macrophages,

cardiomyocytes, CD4+ T cells, and endothelial progenitor cells pro-

mote a fibrogenic response in cardiac fibroblasts, leading to

myocardial fibrosis (Ke et al, 2017; Nie et al, 2018; Cai et al, 2020;

Govindappa et al, 2020).

Mutations in oncogenes and tumor suppressors

Oncogenes are drivers of cancer initiation, progression, and metas-

tasis, and numerous studies have started to unravel how they pro-

mote cancer progression by regulating biogenesis and secretion of

EVPs that contribute to the establishment of tumor-supportive

microenvironments.

Kras is one of the most frequently mutated oncogenes in many

cancers, including pancreatic, colon, and lung cancers (Prior et al,

2012). Using isogenic CRC cell lines that differ only in Kras muta-

tion status, Higginbotham and collaborators have pioneered stud-

ies aimed at understanding how Kras exerts non-cell autonomous

effects via EVPs and reported that activated mutant Kras controls

the molecular composition and functions of EVPs. For example,

elevated levels of amphiregulin (AREG), KRAS, EGFR, Src family

kinases, and integrins were detected in Kras mutant EVPs (Higgin-

botham et al, 2011; Demory Beckler et al, 2013; Clark et al, 2016).

In vitro functional studies consistently showed that EVPs derived

from Kras mutant cells, but not from Kras-WT cells, can enhance

invasion and 3D growth of non-transformed Kras-WT cells (Higgin-

botham et al, 2011; Demory Beckler et al, 2013), implying that

mutant Kras can alter the signals mediated via EVPs and confer a

growth advantage for surrounding WT cells. Kras mutant cells also

package functional GLUT1 in EVPs, which in turn regulates the

balance between glycolysis and oxidative phosphorylation in recip-

ient cells and within intestinal adenomas in vivo (Zhang et al,

2018c). Another report indicated that Rab13 is not only specifically

recruited to EVPs but also required for the secretion of EVPs from

Kras mutant cells, whereas Rab13 depletion has no effect on the

EVP production in Kras-WT cells, indicating that tumor cells with

overactivated Kras employ distinct EVP biogenesis mechanisms

(Hinger et al, 2020). An important unanswered question is how

mutant Kras regulates EVP cargo sorting. RNA profiling analyses

showed a Kras-dependent selective exporting of miRNAs and long

RNAs (mRNAs and ncRNAs) (Cha et al, 2015; Hinger et al, 2018),

although the molecular mechanism is unknown. Together, these

studies suggest that specific Kras mutant-dependent EVP cargoes

may serve as potential biomarkers for cancer detection and as

therapeutic targets.

Oncogenic Hras also exerts paracrine activities by altering EVP

production and cargo composition. For example, Hras-transformed

MDCK cells release EVPs enriched in proteases, integrins, VEGF-

associated proteins, and the master transcriptional regulator YBX1

(Tauro et al, 2013b). These EVPs induced angiogenesis, indicating

that EVP-mediated communication between tumor cells and

endothelial cells commences during early stages in the metastatic

cascade (Gopal et al, 2016). Fibroblasts expressing constitutively

active Hras-V12 undergo senescence and release EVPs with distinct

lipid signatures enriched in hydroxylated sphingomyelin, lyso- and

ether-linked phospholipids, and sulfatides (Buratta et al, 2017). Lee

and colleagues showed that in transformed rat intestinal epithelial

cells oncogenic Hras stimulates release of EVPs containing

chromatin-associated double-stranded DNA fragments covering the

entire host genome, including full-length Hras (Lee et al, 2014).

EVPs containing oncogenic Hras DNA stimulated endothelial cell

proliferation and migration and also increased p53 levels, phospho-

rylated cH2AX, and micronuclei formation, which are all reminis-

cent of a genotoxic stress response.

EGFR, which has a pivotal role in the pathogenesis of many

human cancers, is also incorporated into EVPs (Al-Nedawi et al,

2008, 2009; Skog et al, 2008) and is involved in regulating EVP bio-

genesis and EVP-mediated signaling pathways. Constitutively active

EGFR (EGFRvIII) is frequently detected in glioblastoma multiforme

and reported to alter the expression of EVP-regulating genes and EVP

properties, including their protein composition (Choi et al, 2018).

For instance, pro-invasive proteins (CD44, basigin, and CD151) were

shown to be associated with EVPs of EGFRvIII-expressing glioma

cells, whereas EVP markers (CD81 and CD82) were downregulated

in EVPs of EGFRvIII-negative cells. Increased EVP uptake by

EGFRvIII-positive glioma cells was also observed. EGFR and p53

mutations are common genetic alterations in NSCLC. Transformation

of normal human bronchial epithelial cells by p53 knockdown and

overexpression of EGFR L858R promotes secretion of EVPs enriched

in proteins involved in E2F and Myc pathways, which may induce

proliferative and migratory phenotypes in recipient cells (Lobb et al,

2017). In head and neck cancer cells, EGFR overexpression coupled

with E-cadherin blockade led to loss of EGFR and tissue factor (TF)

from the plasma membrane, coinciding with a surge in emission of

EVPs containing both receptors. These EVPs transferred TF to cul-

tured endothelial cells, rendering them highly pro-coagulant (Garnier

et al, 2012). Thus, EVPs might have a role in connecting aberrant

EGFR signaling in cancer cells with dysregulated coagulation, a key

process in malignant cancer progression.

Specific p53 mutations have oncogenic functions and promote

tumor progression and metastasis (Olive et al, 2004; Hingorani

et al, 2005; Morton et al, 2010; Freed-Pastor & Prives, 2012; Cooks

et al, 2013; Zhu et al, 2015). Recent studies demonstrated that cells

expressing such oncogenic p53 mutants (Mutp53) can utilize EVPs

to reprogram recipient tumor cells, fibroblasts, and tumor-

associated macrophages. For instance, NSCLC expressing oncogenic

p53R273H and p53R175H mutants produce EVPs that promote inva-

sion and migration of other tumor cells (Novo et al, 2018). This pro-

cess requires the ability of Mutp53 to control the levels of EVP

podocalyxin, a sialomucin linked to cancer aggressiveness, and to

increase Rab-coupling protein (RCP)-dependent integrin trafficking

in target cells. EVPs from Mutp53-expressing tumor cells promote

integrin recycling to the plasma membrane of fibroblasts and
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influence their ECM deposition and remodeling, generating a sup-

portive microenvironment for tumor initiation and cell invasion. In

agreement, Ju and colleagues demonstrated that Mutp53s can acti-

vate stromal fibroblasts in colon cancer, a process dependent on

transfer of specific EVP-associated miRNAs (Ju et al, 2019). In addi-

tion, colon cancer cells expressing Mutp53 promote the differentia-

tion of a distinctive, tumor-supportive macrophage subpopulation

via EVPs carrying miR-1246. Co-injection of tumor cells with these

reprogrammed macrophages resulted in larger primary tumors and

increased liver and lung metastatic burden (Cooks et al, 2018). Fur-

thermore, p53 null and especially DNA contact Mutp53 (p53R273H)

enhance Hsp90a secretion by cancer cells via RCP adaptor (Zhang

et al, 2020c). Notably, administration of Hsp90a monoclonal anti-

body attenuated lung and liver metastases in mice carrying

p53R270H (equivalent to R273H in humans) or p53-null tumors.

Taken together, these studies provide evidence that oncogenic p53

mutants influence the tumor microenvironment via an EVP-

mediated, paracrine fashion to promote malignancy, and that differ-

ent Mutp53s utilize distinct mechanisms to regulate EVP-transmitted

oncogenic functions.

Besides oncogenes, Apc mutation increases EVP secretion via

activation of Wnt pathway when introduced into WT small intesti-

nal organoids (Szvicsek et al, 2019). Since Apc mutation is an early

event in intestinal and colorectal tumorigenesis, this evidence impli-

cates tumor-derived EVPs at an early stage of tumor development. A

newly discovered role of the tumor suppressor Lkb1 in EVP biogene-

sis and release was also described (Zhang et al, 2018a). Restoration

of Lkb1 expression in lung cancer cells enhanced EVP secretion, and

EVPs from Lkb1-expressing cells promoted recipient cell migration

by downregulating expression of migration-suppressing miRNAs

and EVP secretion. Lastly, in rhabdomyosarcoma, PAX3-FOXO1

fusion drives the alteration of myoblast EVP content, particularly

miR-486-5p, which mediates fibroblast migration and invasion

(Ghamloush et al, 2019).

In conclusion, oncogenes take part in the biogenesis and secre-

tion of EVPs, instruct selective packaging of EVP cargo molecules,

act as active cargo themselves, and influence the uptake of EVPs

and multiple signaling pathways in recipient cells. Crosstalk medi-

ated by tumor-derived EVPs, occurring at local or distant sites, con-

tributes to key aspects of tumorigenesis and metastasis, such as

immunosuppression, ECM organization, angiogenesis, and vascula-

ture remodeling. Future studies incorporating multi-omics character-

ization of EVP composition and genetic manipulation of key DNA

components will be critical for further understanding the contribu-

tion of oncogenes to EVP biogenesis and cargo packaging. This

knowledge will guide the development of novel therapeutic strate-

gies that target EVPs for cancer intervention.

Metabolic reprogramming

Metabolic rewiring is one of the first steps of transformation that sup-

ports the higher nutrient demands of cancer cells (Fendt et al, 2020).

It has been recognized that metabolic reprogramming during cancer

initiation is both the cause and consequence of EVP excretion.

The metabolome of EVPs is relatively understudied compared

with proteome and transcriptome, but recent studies identified an

array of metabolites in EVPs, such as amino acids, organic acids,

sugars and their conjugates, nucleotides and nucleosides, cyclic

alcohols, carnitines, aromatic compounds, and vitamins (Altadill

et al, 2016; Zhao et al, 2016a; Puhka et al, 2017; Clos-Garcia et al,

2018; Luo et al, 2018; Zebrowska et al, 2019). Additionally, a

diverse set of metabolic enzymes has been documented in EVPs

derived from various sources. For example, glucose deprivation in

cardiomyocytes increases the synthesis and release of EVPs loaded

with functional glucose transporters and glycolytic enzymes, which

in turn potentiate glucose uptake of recipient endothelial cells (Gar-

cia et al, 2016). Similarly, human prostate-derived EVPs carry func-

tional glycolytic enzymes that produce ATP when supplied with

substrates (Ronquist et al, 2013). Furthermore, neural stem/progen-

itor cell-derived EVPs harbor the catalytically active asparaginase-

like protein 1 (Asrgl1) enzyme capable of increasing glutamate,

GABA, and aspartate while decreasing asparagine in cell culture

media (Iraci et al, 2017). Similarly, arginase-1 activity is associated

with hepatocyte-derived EVPs and induces a significant change in

arginine metabolites in serum (Royo et al, 2017), suggesting that

EVPs are capable of modifying their metabolic environment before

being internalized by target cells.

EVPs can also mediate the exchange of regulators of metabolic

signaling pathways under a broad range of pathophysiological con-

ditions, such as altered glucose metabolism and inflammation,

which are predisposing factors for cancer initiation. Pancreatic b
cells are a major source of EVPs with metabolic reprogramming

potential, particularly in patients with type 2 diabetes (Li et al,

2020a). Increased glucose levels stimulate pancreatic b cell release

of EVPs enriched in lncRNA-p3134, which promotes insulin secre-

tion and suppresses cell death from glucotoxicity (Ruan et al, 2018).

Similarly, miR-29 packaged in b cell EVPs stimulates chemotaxis

and activation of pro-inflammatory macrophages via induction of

IL-12, IL-6, and IL-1b. Consequently, systemic inflammation pro-

motes insulin insensitivity, leading to predisposition to type 2 dia-

betes (Sun et al, 2021c). In addition, EVPs from serum of diabetic

patients are enriched in miR-20-5b and are taken up by skeletal

muscle cells, which in turn increase their glycogen synthesis via

AKTIP/STAT3 regulation (Katayama et al, 2019).

A recent study by Goulielmaki and colleagues revealed a novel

EVP-based link between DNA damage, metabolic disorders, and

inflammation (Goulielmaki et al, 2020). Using an engineered mouse

model carrying an ERCC1-XPF DNA repair defect (Er1F/-), the

authors showed that persistent DNA damage accumulation in Er1F/-

tissue-infiltrating macrophages triggers cytoplasmic stress and

increases EVP biogenesis. These EVPs, which were also detected in

Er1F/- animal sera, promoted glucose uptake in recipient pancreatic

cells and hepatocytes by upregulating glucose transporters, such as

GLUT1, and enhanced glucose tolerance in WT mice. Future studies

are necessary to identify the specific EVP cargoes that mediate such

metabolic reprogramming in recipient cells.

EVPs have also been implicated in the etiology of obesity-

induced insulin resistance, a known risk factor for cancer develop-

ment (Kahn et al, 2006; Romeo et al, 2012; Johnson & Olefsky,

2013; Barazzoni et al, 2018). EVPs from adipocytes, especially those

from obese mice, are enriched in enzymes and substrates of fatty

acid oxidation and increase the motility of tumor cells (Lazar et al,

2016; Clement et al, 2020). In obesity and under lipolytic stimuli,

adipocytes release EVPs enriched in aP2 (also called fatty acid bind-

ing protein 4), which can affect glucose and lipid metabolism in tar-

get cells and is involved in diabetes, fatty liver disease, and cancer

(Ertunc et al, 2015). Furthermore, chronic inflammation and
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accumulation of proinflammatory macrophages, particularly in the

adipose tissue and liver, are hallmarks of obesity and have been pre-

viously linked to obesity-induced insulin resistance and cancer

(Romeo et al, 2012; Li et al, 2015a, 2016; Lackey & Olefsky, 2016;

Kita et al, 2019). Recent work by Ying and colleagues uncovered a

new function for adipose tissue macrophages (ATMs), whereby they

systemically modulate insulin action via EVPs (Ying et al, 2017).

The authors reported that treating lean mice with EVPs derived from

obese mice ATMs led to glucose intolerance and insulin resistance,

whereas treating obese mice with EVPs derived from lean mice

ATMs led to improved glucose tolerance and insulin sensitivity.

MiR-155 contained in ATM EVPs from obese mice emerged as a key

factor regulating these processes in the liver, adipose tissue, and

muscle, likely via downregulating GLUT4. In a similar fashion, EVPs

derived from HSCs in fibrotic livers reprogram glucose metabolism

in neighboring HSCs, Kupffer cells, and sinusoidal endothelial cells

and induce a shift from oxidative phosphorylation to aerobic glycol-

ysis, which has been associated with tumor development (Wan

et al, 2019). Lastly, EVPs derived from adipocytes undergoing endo-

plasmic reticulum stress cause glucose and lipid metabolic changes

in hepatocytes, leading to nonalcoholic hepatic steatosis, fibrosis,

and inflammation (Gu et al, 2021).

Collectively, these studies demonstrate that EVPs are key players

in metabolic reprogramming at local and systemic levels in different

physiological and pathological conditions and may thus provide

therapeutic targets to maintain metabolic homeostasis and prevent

cancer initiation. In addition, metabolome studies on EVPs derived

from different body fluids will identify biomarker candidates for dis-

ease detection and monitoring.

Parasites, viruses, and microbiota

EVPs have emerged as essential routes of bilateral communication

between hosts and organisms (i.e., parasites, viruses, and bacteria)

that govern cancer pathogenesis. Common parasites, such as Plas-

modium species, Leishmania species, and Toxoplasmas gondii, pro-

duce EVs enriched in parasite antigens and nucleic acids that

stimulate the host immune response and parasite survival and

induce EVP release by host stromal cells (Wu et al, 2018; Liang

et al, 2019). For example, macrophages stimulated with Plasmod-

ium berghei, Leishmania, or T. gondii EVs overexpress CD40 ligand

and release IL-8, IL-12, IFN-c, and TNF-a (Couper et al, 2010; Silver-

man et al, 2010; Dlugonska & Gatkowska, 2016), inducing a protec-

tive immunity for infections and, potentially, cancer initiation.

Similarly, EVs from Schistosoma mansoni are internalized by

endothelial cells and induce a phenotype consistent with endothelial

activation, thrombosis, and immune cell recruitment (Kifle et al,

2020).

EVPs have a central role in viral infections. Epstein-Barr virus

(EBV)-infected B cells release EVPs containing the small viral RNA

EBER1 and activate an anti-viral immune response in recipient plas-

macytoid DCs (Baglio et al, 2016). Interestingly, cells may also

employ EVPs as a means to excrete viral DNA from cells (Takahashi

et al, 2017). Human papilloma virus (HPV)-infected cancer cells

(e.g., HeLa cells) transfer long noncoding RNAs (lncRNAs) to unin-

fected cervical cells and affect their metabolism and viability (Hew-

son et al, 2016). EVPs from HVC-infected hepatocytes activate TGF-

b1 expression in HSCs via miR-19a/miR-192 shuttling, inducing

their activation and expression of fibrogenic markers (Devhare et al,

2017; Kim et al, 2019b). HIV-infected CD4+ T cells release EVPs

enriched in pro-hypoxic and pro-inflammatory mediators (Duette

et al, 2018). Furthermore, lymphatic endothelial cells infected with

Kaposi’s sarcoma-associated herpesvirus (KSHV) release viral

miRNA-enriched EVPs that mediate metabolic reprogramming of

non-infected vascular and lymphatic cells, thereby increasing aero-

bic glycolysis, propensity to KSHV infection, angiogenesis, and

migration, potentially promoting sarcoma development (Yogev

et al, 2017). Finally, latent membrane protein 1 (LMP1) encoded by

EBV-infected cells is packaged into EVPs and induces activation of

normal fibroblasts to cancer-associated fibroblasts (CAFs) via regu-

lation of the NF-kB pathway and glucose metabolism (Wu et al,

2020d).

Bacteria, including gut microbiota, are an important source of

EVs. As bacteria are deficient in canonical EV secretion systems,

these vesicles originate from outer membrane budding and are thus

indicated as outer membrane vesicles (OMVs) (Shen et al, 2012).

Other mechanisms of EV release have been characterized but are

less studied (Chronopoulos & Kalluri, 2020). Despite differences in

secretion pathways of eukaryotes and prokaryotes, OMVs range

from 20 to 100 nm in diameter, are similar to eukaryotic EVs and

exomeres, and have the ability to communicate with the host

immune system. Beneficial bacteria strains, such as Bacteroides

fragilis, release OMVs enriched in surface bacterial capsular

polysaccharides, which orchestrate an immune-suppressive

response involving Tregs, T cells, and DCs. Importantly, adoptive

transfer of OMV-stimulated DCs protects mice from DSS-induced

colitis (Shen et al, 2012). Similarly, OMVs from Bacteroides acidifa-

ciens and Akkermansia muciniphila strains provide a protective

effect against colitis-associated weight loss, inflammatory cell infil-

tration, and cytokine release by colon epithelial cells, ultimately

ameliorating the severity of IBD (Kang et al, 2013; Patten et al,

2017; Ashrafian et al, 2019), as well as reducing gut permeability in

type 2 diabetes (Chelakkot et al, 2018). Conversely, strains of probi-

otic and commensal Escherichia coli produce LPS-expressing OMVs

that induce secretion of pro-inflammatory and immunomodulatory

cytokines, such as IL-10, IL-8, and TNF-a, by peripheral blood

mononuclear cells and intestinal epithelial cells (Ellis & Kuehn,

2010; Fabrega et al, 2016; Patten et al, 2017; Canas et al, 2018). As

a result, OMV-associated LPS was detected at significantly higher

levels in the plasma of patients with IBD and chemotherapy-

induced intestinal mucositis in comparison to healthy controls and

is a potential biomarker of intestinal barrier dysfunction (Tulkens

et al, 2020). The composition of gut microbiome and corresponding

OMVs dramatically changes upon colitis or IBD development in

mice and humans, with a striking reduction in numbers of OMVs

from less immune-activating strains of Bacteroides acidifaciens and

Akkermansia muciniphila strains (Kang et al, 2013) and a change

of OMV content toward inducing oxidative stress (Zhang et al,

2018e). Hence, inflammatory gut syndromes are associated with the

release of bacterial OMVs that might exacerbate advancement of

malignant disease. More indirectly, myeloid DCs exposed to Heli-

cobacter pylori release EVs that express bacterial components and

elicit systemic immune reactions, such as CD4+ T cell activation,

explaining skin eruptions in H. pylori-infected patients (Ito et al,

2018).

Host and dietary EVPs can affect the gut microbiota. Common

gut bacteria strains (e.g., Fusobacterium nucleatum and Escherichia
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coli) internalize EVPs from different host cells, including adipose

and gut epithelial cells. These EVPs increase the proliferation rate

and gene expression profile of gut bacteria, which may be involved

in initiating the development of pre-cancerous conditions, such as

colitis (Liu et al, 2016b; Yu et al, 2019b). EVPs from dietary sources

elicit different microbiota responses. To illustrate, EVPs from edible

plants, such as ginger root, are preferentially taken up by Lacto-

bacillaceae and promote their production of IL-22, thereby provid-

ing protection against gut permeability and colitis (Teng et al,

2018). On the other hand, milk-derived EVPs are preferentially

internalized in Escherichia coli and Lactoplantibacillus plantarum

and are enriched in miRNAs that influence bacterial expression of

genes involved in adhesion and invasion (Yu et al, 2019b). Viable

Fusobacterium nucleatum has been found in primary and distant

metastatic sites of CRC patients and mouse xenografts, where it

supports tumor growth and progression (Bullman et al, 2017).

Hence, host–microbiota–diet interplay via EVPs may facilitate bacte-

rial colonization of distant organs, possibly promoting cancer initia-

tion and progression.

Build it up: cancer promotion
Cancer stem cells

A small fraction of pluripotent and mostly quiescent tumor cells

named cancer stem cells (CSCs) have been shown to be responsi-

ble for tumor initiation. The resistance of CSCs to conventional

chemotherapy and their ability to propagate largely account for the

high rates of therapeutic failure and recurrence in primary and

metastatic tumors (Batlle & Clevers, 2017). Cancer-associated EVPs

play a central role in maintaining CSC pluripotency, similarly to

how embryonic stem cells maintain their pluripotency via EVP-

mediated intercellular communication (Hur et al, 2020) (Figure 3).

Chen and colleagues were the first to demonstrate that culture

media from several mouse tumor cell lines promoted the differentia-

tion of mouse induced pluripotent cells into cancer initiating cells

in vivo (Chen et al, 2012). Further, it was determined that cancer-

derived EVPs activate expression of core stemness drivers Nanog

and Oct3/4 in mouse induced pluripotent cells, conferring on them

properties of self-renewal and plasticity (Yan et al, 2014b; Calle

et al, 2016). Interestingly, EVPs from breast cancer and serous car-

cinoma contain the mRNA and protein of Nanog and other stem-

ness drivers, and their levels correlate with poor overall survival

(Rodriguez et al, 2015; Sherman-Samis et al, 2019). These mRNAs,

however, may not be responsible for promotion of pluripotency.

Instead, fibronectin exposed on the surface of cancer-associated

EVPs may be responsible for CSC maintenance (Hur et al, 2020).

CAFs are a major source of EVPs promoting CSC maintenance and

chemoresistance by inducing the de-differentiation of cancer cells

and the activation of stemness expression pathways, such as Wnt/

b-catenin pathway, via EVP-associated mRNAs, miRNA, and

lncRNAs (Hu et al, 2015, 2019b; Ren et al, 2018; Rodrigues et al,

2018; Wang et al, 2019c; Liu et al, 2020a).

In turn, CSC-derived EVPs support tumor progression through

multiple pathways. For instance, pancreatic cancer CSCs induce a

distinct transcriptomic change, including activation of EGF/VEGF

and EMT pathways, in non-CSCs cancer cells, rendering them

apoptosis-resistant, invasive, proliferative, and metastatic. Impor-

tantly, this reprogramming depends on the activation of EVP-

induced cellular signaling rather than on direct transfer of mRNAs/

miRNAs (Wang et al, 2019d). Angiogenesis is also supported by

CSCs EVPs, with lncRNA H19 and miR-26a being central players

(Conigliaro et al, 2015; Wang et al, 2019e). Finally, CSC EVPs pro-

mote the differentiation of normal fibroblasts into CAFs (Zhang

et al, 2020a).

Thus, a growing body of evidence suggests that cancer-

associated EVPs, both cancer cell- and stroma-derived, drive the

dynamic balance between induction, maintenance, and differentia-

tion of CSCs, which in turn promote tumor progression via EVP-

mediated communication.

Tumor growth

The importance of EVPs in sustaining tumor growth and tumor

cell proliferation is demonstrated by the observation that treat-

ment with GW4869, an inhibitor of ceramide-mediated biogenesis,

or knockout of Rab27a slows tumor growth in vivo (Bobrie et al,

2012; Matsumoto et al, 2017; Matsumoto et al, 2017; Richards

et al, 2017). In contrast, exposure of cancer cell lines, such as

pancreatic cancer, lung adenocarcinoma, and breast cancer cells,

to endogenous EVPs or EVPs from more invasive cell lines pro-

motes growth and cell cycle progression and inhibits apoptosis of

cancer cells (Qu et al, 2009; Harada et al, 2017; Xie et al, 2020a;

Shen et al, 2021). Pathway analysis has shown enrichment of

proliferative pathways in cancer-derived EVPs (Shi et al, 2020a).

Several EVP cargos, including miRNAs, circRNA, and enzymes,

such as lysyl oxidase-like 4, have been found responsible for this

proliferation-promoting effect (Chen et al, 2014; Zhang et al,

2018f; Li et al, 2019d; Luan et al, 2020; Xie et al, 2020a; Wang

et al, 2020d). Moreover, numerous growth factors are selectively

packaged in cancer cell line- and patient-derived EVPs (Hoshino

et al, 2020) (Figure 3).

Host-derived EVPs also play a prominent role in tumor growth,

and CAF-derived EVPs in particular enhance proliferation of cancer

cells (Zhao et al, 2016a, 2020a; Zhou et al, 2021b). Notably, CAFs

obtained from breast cancer biopsies, but not fibroblasts from adja-

cent tissue, release EVPs that induce breast cancer cell proliferation

▸Figure 3. EVPs promote multiple aspects of cancer growth.

The growth of primary tumors is positively impacted by EVPs released by tumor cells and other cells in the tumor microenvironment, including stroma cells (fibroblasts,

MSCs, and adipocytes) and immune cells (TAMs, DCs, T lymphocytes, NK cells, and neutrophils). These EVPs influence tumor cells directly by promoting tumor

formation and progression via different means, including maintaining CSC pluripotency, promoting tumor cell proliferation, inducing tumor cell EMT and invasion, and

altering tumor metabolic demands. Additionally, cancer cell-derived EVPs generate a favorable microenvironment permissive for local tumor expansion by promoting

angiogenesis and vascular remodeling, and modulating immune functions towards a pro-tumorigenic and immunosuppressive phenotype. Finally, tumor- and stroma-

derived EVPs have a central role in inducing cancer resistance to chemotherapy and radiation therapy. Several EVP cargoes have been found responsible for these pro-

tumorigenic roles, including nucleic acids (mRNAs, miRNAs, lncRNAs, circRNAs, DNAs), proteins, enzymes, surface receptors and lipids. TAM, tumor-associated macro-

phage; DC, dendritic cell; NK, Natural Killer; MSC, mesenchymal stem cell; CSC, cancer stem cell.
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via transfer of LINC00355 and miR-500a-5p (Yan et al, 2020; Chen

et al, 2021a). Metabolic reprogramming of cancer cells might be

another major feature of CAF-derived EVPs, as highlighted by the

observation that CAF EVPs promote growth of pancreatic cancer

cells by reducing mitochondrial respiration and enhancing glucose

and glutamine metabolism via their cargo of amino acids, lipids,

and other metabolic intermediates (Zhao et al, 2016a). Additionally,

CAF EVPs also have a major role in driving chemoresistance, as

reviewed below.

Recent evidence shows that innervation of the tumor mass, a

process defined as axonogenesis, promotes growth and metastasis

of different cancer types, such as head and neck and prostate

cancer. Madeo and colleagues recently discovered that blood EVPs

from patients with head and neck cancer and from several oropha-

ryngeal squamous cancer cell lines induce neurite outgrowth

in vitro and in vivo, an effect that depends on exosomal ephrin-B

and that is abrogated by Rab27a/b knockout (Madeo et al, 2018).

EMT, migration, and invasion

The phenotypic plasticity of cells is a physiological aspect of

embryo development that has been adopted by tumor cells for

enhanced motility and immune evasion that facilitates local and

distant invasion (Brabletz et al, 2021). Higher motility and ability

to undergo EMT can be transferred in an autocrine and paracrine

manner via EVP cargo (Figure 3). For example, EVPs from highly

metastatic cell lines can transfer EMT properties to lowly meta-

static cell lines by regulating MAPK/ERK, PTEN/Akt/Snail, Ras

and mTOR signaling, with miRNA shuttling playing a prominent

role (Wang et al, 2016b; Chen et al, 2018c, 2020d; He et al,

2019b; Yang et al, 2020a; Sun et al, 2021a). Similarly, CAF-

derived EVPs induce EMT, migration, and ultimately metastasis of

various cancer types, including castration-resistant prostate cancer,

ovarian cancer, and breast cancer (Li et al, 2017e; Novo et al,

2018; Wang et al, 2020a). Upregulation of E-cadherin, vimentin,

N-cadherin, ZEB1, Snail, Slug, Twist1, and MMPs, and activation

of PTEN/PI3K/AKT/b-catenin and EGFR/ERK pathways in cells

taking up CAF EVPs are all major drivers of tumor cell EMT (Li

et al, 2017e; Novo et al, 2018; Wang et al, 2020a; Yang et al,

2020b; Zhang et al, 2020h). Further, intratumoral fibroblasts inter-

acting with interferon-stimulated gene responsive (ISG-R) breast

cancer cells undergo NOTCH1-MYC activation and produce EVPs

that, similar to viruses, are enriched in 50-triphosphate RNAs and

induce an anti-viral response in breast cancer cells, promoting

pulmonary metastasis (Nabet et al, 2017). This signaling requires

activation of the RIG-I receptor in cancer cells by unshielded

RN7SL1 RNA in stromal EVPs (Wang et al, 2010; Nabet et al,

2017). In hypoxic tumors, bone-marrow-derived mesenchymal

stem cells (MSCs) promote EMT and invasion of lung cancer cells

via transfer of different miRNAs and activation of STAT3 signaling

(Zhang et al, 2019g). CSC-derived EVPs can also promote EMT of

neighboring differentiated cancer cells in clear cell renal cell carci-

noma (CCRCC) patients by inducing activation of PTEN-dependent

EMT gene expression and, consequently, promoting pulmonary

metastasis of CCRCC cells. EVPs from CSCs isolated from meta-

static CCRCC patients were particularly potent drivers of tumor

growth and lung metastasis (Wang et al, 2019a), suggesting the

existence of functional changes in CSCs EVP cargoes in advanced

disease.

EVP-induced EMT program may also result in increased cell

migration, although the two processes can be independent of one

another (He et al, 2019c; Schelch et al, 2021). Direct autocrine and

paracrine shuttling of EVP cargo, including tetraspanins, promotes

in vitro migration of cancer cells (Pace et al, 2019; Matsumoto et al,

2020; Huang et al, 2020c). EVPs mediate in vivo communication

between highly invasive MDA-MB-231 and less invasive T47D

breast cancer cell lines to facilitate cancer cell motility, invasiveness,

and metastatic potential (Zomer et al, 2015). Further, Luga and col-

leagues have shown that EVPs from fibroblast-like L cells activate

Wnt11-dependent planar cell polarity signaling in cancer cells and

promote the formation of protrusive invadopodia (Luga et al, 2012).

Among other EVP factors, TGF-b is a central regulator of EMT and

cell migration and has been detected in EVPs from cancer cells and

CAFs, but not in EVPs from other cancer-associated cells, underscor-

ing the importance of cancer cell and fibroblast communication in

EMT and migration (Webber et al, 2010; Wang et al, 2016b; Li et al,

2017e; Ringuette Goulet et al, 2018; Batlle & Massague, 2019; Fergu-

son Bennit et al, 2021). In response, cells stimulated by TGF-b
release a second wave of EVPs that induce MMP-2 expression in

neighboring cancer cells, further expanding the migratory potential

(Wu et al, 2018). Other evidence suggests that EVPs from tumor-

associated macrophages (TAMs) contribute to tumor cell invasion

via shuttling ApoE and activation of the PI3K/Akt pathway in tumor

cells, partially explaining the association between TAM density and

poor prognosis (Zheng et al, 2018b; Lan et al, 2019). Interestingly,

Fas ligand (FasL)+ EVPs from activated CD8+ T cells promote MMP-

9 expression and motility of tumor cells in vitro and lung invasion

in vivo, while surprisingly lacking pro-apoptotic ability via Fas-FasL

engagement (Cai et al, 2012). This suggests that in “hot tumors,”

cancer cells exploit the EVP cargo of cytotoxic T cells to their advan-

tage, hijacking the tumor-suppressive role of T cell activation.

Angiogenesis

Cancer-derived EVPs induce significant changes in the endothelial

cell compartment associated with angiogenic switch (Figure 3). As

vascular beds are the gateway for dissemination, the pro-angiogenic

properties of EVPs correlate with metastatic potential and poor prog-

nosis (Zhou et al, 2014; Maji et al, 2017; Tang et al, 2018a).

Several EVP cargoes mediate a pro-angiogenic effect. EVPs

derived from glioblastoma cells support tube formation of brain

endothelial cells via transfer of pro-angiogenic IL-6, IL-8, VEGF, and

TIMP-1/2 selectively packaged in these EVPs (Skog et al, 2008).

Likewise, pro-angiogenic angiopoietin 2 (ANGPT2) was found

expressed in HCC-derived EVPs and was internalized and recycled

by endothelial cells (Xie et al, 2020a). mRNAs of pro-angiogenic

cytokines, such as CXCL1, 2 and 8, are enriched in EVPs from mela-

noma cell lines but not normal melanocyte cultures (Bardi et al,

2019). Similarly, the cell adhesion molecule E-cadherin is released

by ovarian cancer cells into conditioned medium and patient-

derived ascites via EVPs and induces vascularization in vitro and

in vivo (Tang et al, 2018a). EVPs from HCC cell lines promote

growth, migration, and differentiation of HSCs into functional a-
SMA+ CAFs, via transfer of miR-21 and activation PTEN/PDK1/AKT

pathway, which in turn supports release of pro-angiogenic factors

and HCC tumor growth in vivo (Zhou et al, 2018). Interestingly,

inflamed perivascular adipose tissue in obese mice releases EVPs

enriched in miR-221-3p, which promote vascular remodeling by
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inducing proliferation and migration of vascular smooth cells (Mao

et al, 2019b). The same miRNA was found to target

thrombospondin-2 (THBS2) in endothelial cells and increase

endothelial cell migration, tube formation, and sprouting in cervical

squamous cell carcinoma (Wu et al, 2019c). Several other EVP-

associated miRNAs and circRNAs increase angiogenesis and

endothelial barrier permeability (Bao et al, 2018; Zeng et al, 2018;

Yang et al, 2018a; Li et al, 2018b; He et al, 2019a; Du et al, 2020b;

Huang et al, 2020d). These results are substantiated by preclinical

models in which education with miRNA-enriched cancer-derived

EVPs increased tumor microvessel density and intratumoral VEGF

levels, promoting tumor growth (Zeng et al, 2018; Xie et al, 2020b).

The release of EVPs with pro-angiogenic properties is significantly

affected by microenvironmental factors, such as nutrient availability

and oxygen levels. EVPs from cancer cells under hypoxia or aerobic

glycolysis have a more potent effect on tube formation and tumor

vascularization in vivo than normoxic EVPs, due to the enrichment

of pro-angiogenic mRNA, miRNA, and VEGF cargo (Umezu et al,

2014; Mao et al, 2019b; Zhang et al, 2020d). Among others, the acti-

vation of PTEN/AKT/VEGFA, beta-catenin, NF-kB, Tie2, and

EPHB2/STAT3 signaling pathways was observed in endothelial cells

exposed to cancer-derived EVPs (Tang et al, 2018a; Sato et al, 2019;

He et al, 2019a; Xie et al, 2020a; Song et al, 2021).

It is interesting to note that also HUVEC-derived EVPs reduce

expression of tight junction proteins in neighboring endothelial cells

via endoplasmic reticulum stress response and increase vascular

permeability and metastasis in vivo (Lin et al, 2020), but the signal-

ing controlling the release and cargo of EVPs from tumor-associated

endothelial cells needs to be further investigated.

Immune modulation

Immune cells are primary targets of cancer cell-derived EVPs in

mouse models, especially in the lungs and liver, with neutrophils

and myeloid cells being the most avid takers (Hoshino et al, 2015;

Ridder et al, 2015; Zomer et al, 2015; Wen et al, 2016). On the one

hand, intratumoral release of EVPs correlates with immune cell

recruitment. Infiltration of neutrophils in orthotopic 4T1 murine

breast carcinoma tumors was dramatically reduced by Rab27a

knockdown in tumor cells (Bobrie et al, 2012). MMP3/9 and

chemoattractant G-CSF were found enriched in these EVs, support-

ing neutrophil recruitment and tumor growth, but this effect might

also be due to neutrophil differentiation from bone marrow precur-

sor cells via other factors contained in EVs (Bobrie et al, 2012).

On the other hand, cancer-derived EVPs induce modulation of

immune functions, predominantly with pro-tumorigenic conse-

quences. While M1 and M2 macrophage phenotypes have been

characterized in vitro and in mice, macrophage polarization is less

dichotomous in humans. In general, tumor-associated macrophages

(TAMs) can be found in a classic pro-inflammatory Th1/M1-like

and tumor suppressive phenotype, or an alternative anti-

inflammatory M2-like phenotype that has been associated with

increased cancer invasiveness, motility, and metastasis (Noy & Pol-

lard, 2014; Laviron & Boissonnas, 2019). Several lines of evidence

indicate that cancer-cell-derived EVPs induce polarization of TAMs

toward an M2-like tumor-promoting phenotype. CRC cell lines

exposed to CXCL12, a cytokine found in the CRC microenvironment,

produce EVPs enriched in different miRNAs that induce the activa-

tion of PTEN/PI3K/Akt signaling pathway in TAMs, shifting them

toward an M2 phenotype. Polarized macrophages then support

tumor cell EMT, endothelial cell tube formation, and progression to

liver metastatic CRC in vivo (Wang et al, 2020c). CRC tumor cell–

derived EVPs reprogram macrophages to release MCP-1 and TNF

and to undergo cytoskeleton rearrangement and protrusion forma-

tion (Chen et al, 2016b). In the brain, glioma cells shed EVPs that

induce activation of astrocytes, ultimately promoting glioma growth

(Gao et al, 2020b). EVPs enriched in miR-1246 from p53-mutant

CRC cells stimulate the enrichment of polarized TAMs in tumors

that correlate with poor prognosis (Cooks et al, 2018). Other EVP

miRNA cargos were found responsible for eliciting macrophage pro-

tumorigenic activation and causing intratumoral infiltration

(Casadei et al, 2017; Hsieh et al, 2018; Chen et al, 2018d; Kwon

et al, 2020; Zhao et al, 2020c). Similarly, T cells respond to miR-

415-enriched EVPs from gastric cancer cells by undergoing mTOR

activation and differentiation into Th17 cells, promoting tumor infil-

tration (Liu et al, 2018a). Circular RNA circPACRGL, expressed in

CRC-derived EVPs, serves as a sponge for miR-142-3p and miR-506-

3p in cancer cells, resulting in upregulation and release of TGF-b1,
and induction of phenotypic switch from N1 to N2 neutrophils

(Shang et al, 2020). N2 neutrophils have been found to promote

tumor growth and progression elsewhere (Fridlender et al, 2009).

Cancer-derived EVPs are also a significant source of secreted PD-

L1 in the tumor microenvironment, making them major regulators

of immune checkpoints. NSCLC, glioblastoma, prostate, and CRC

cell lines all release PD-L1+ EVPs that block T cell activation and

expansion in vitro and in lymph nodes in vivo (Ricklefs et al, 2018;

Poggio et al, 2019; Kim et al, 2019a). The subsequent reduction of

intratumoral CD8/CD4 ration and T cell exhaustion promote tumor

growth. This evidence is further supported by the observation that

Rab27a- or nSMase-KO cell lines grow slower than their WT coun-

terparts in immunocompetent mice, but to a similar extent in T cell

deficient mice (Poggio et al, 2019). PD-L1 exposure on EVPs also

prevents the activation of an immune memory response against

tumor cells (Poggio et al, 2019). EVPs might also transfer expression

of PD-L1 to other cells (Ricklefs et al, 2018; Yin et al, 2020; Liang

et al, 2020b). For example, cancer cell-derived EVPs induce PD-L1

expression in DCs and decreases their antigen presenting and CD8+

T cell priming activity, supporting the generation of a tumor-

permissive microenvironment and resistance to immunotherapy. DC

cell dysfunction is induced by lipid accumulation and fatty acid oxi-

dation in DCs as a result of EVP fatty acid transfer (Yin et al, 2020).

Of note, PD-L1 expression in plasma EVPs associates with disease

progression in different types of cancer (Theodoraki et al, 2018; Li

et al, 2019a). Other inhibitory immune checkpoints, such as B7-H3,

were also found expressed on cancer-derived EVPs, although less

well studied compared with PD-L1 (Purvis et al, 2020).

Conversely, EVPs derived from immune cells themselves have

both tumor-supportive and tumor-suppressive properties, depending

on the cell source. NK cell-derived EVPs directly caused tumor cell

cytotoxicity via shuttling of FasL, perforin, and NKG2D, and

reduced tumor growth and metastasis in murine models of glioblas-

toma and melanoma (Lugini et al, 2012; Shoae-Hassani et al, 2017;

Zhu et al, 2017, 2018b), suggesting that NK EVP-driven cytotoxicity

might be a source of tumor control. The microenvironmental cues

and factors leading to release of NK cell EVPs remain unclear.

Most TAM-derived EVPs do not share the immunosuppressive phe-

notype of the parental cells and, instead, are endowed with an
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immunomodulatory phenotype that induce T cell activation and

expansion, ultimately promoting tumor cell cytotoxicity. In addition,

lipids and several proteins involved in lipid metabolism were repre-

sented in TAM-derived EVPs and induced the production of throm-

boxane (TXA2), but not other pro-inflammatory eicosanoids such as

PGE2, by tumor cells (Cianciaruso et al, 2019). PDAC-associated

TAMs release EVPs enriched in miR-501-3p that instead induce

migration and apoptosis resistance of pancreatic cancer cells via

TGF-b pathway, angiogenesis, as well as primary tumor growth and

metastasis in vivo (Yin et al, 2019). Furthermore, EVPs from HCC-

associated CD206+ M2-like TAMs are induced a migratory pheno-

type in HCC cells, partially explaining the association between TAM

infiltration and risk of metastasis in HCC patient. This effect relies

on different mechanisms, including the transfer of exosomal aMb2 to
HCC cells leading to increased endothelial cell adhesion, as well as

increased MMP-9 activity in HCC cells that promotes their invasion

of distant sites (Wu et al, 2020b). Finally, EVPs from exhausted

CD8+ T cells in human HCC further promote the exhaustion of naive

CD8+ T cells, supporting immune evasion (Wang et al, 2019b).

In conclusion, cancer-associated immune cells are both the

source and recipient of EVPs, with different immune modulating

properties. Cancer-derived EVPs preferentially induce polarization

of immune cells toward a tumor-promoting phenotype and prevent

infiltration and activation of anti-tumor lymphocytes, generating an

immunosuppressive and permissive microenvironment. In turn,

immune-derived EVPs have shown both anti- and pro-tumorigenic

functions, highlighting the different contribution of immune cell-

derived EVPs in the progression of a range of tumor types.

Cancer cell metabolic plasticity

Reprogrammed energy metabolism is a hallmark of cancer (Hana-

han & Weinberg, 2011). Cancer-derived EVPs from culture or patient

biofluids are particularly rich in mediators of metabolic reprogram-

ming, including purine metabolites, glycolytic, and gluconeogenic

enzymes, which confer higher invasive phenotype to recipient cells

(Ronquist et al, 2016; Zhang et al, 2017c; Ludwig et al, 2020) (Fig-

ure 3). In NSCLC, EVP-associated lncRNAs and circRNAs potentiate

glucose uptake and lactate production, which are the main forms of

energy sustaining cancer growth (Ding et al, 2020; Chen et al,

2021b). Our lab has determined that the distribution of metabolic

mediators in different EVP subgroups is not equal. Instead, meta-

bolic enzymes involved in glycolysis and mTOR signaling are specif-

ically enriched in exomeres derived from different types of cancer

cells (Zhang et al, 2018b, 2019e). These exomeres primarily target

the liver in animal models, supporting the hypothesis that tumor-

derived exomeres can systemically influence metabolism of cancer

patients (Zhang et al, 2018b).

Besides intrinsic regulation of tumor cell metabolism, several

studies have highlighted the importance of EVP-mediated metabolic

crosstalk between cells in the tumor microenvironment as another

tier of cancer metabolism regulation. Mast cell-derived EVPs are

particularly rich in regulators of eicosanoid metabolism, which is

involved in DC maturation, inflammation, cell growth, angiogenesis,

and thrombosis (Subra et al, 2010; Cianciaruso et al, 2019; Mizuno

et al, 2019). Similarly, cancer-associated adipocytes (CAAs) pro-

mote tumor progression via storage of energy molecules, cytokines,

and growth factors and are associated with poor prognosis (Park

et al, 2014). In order to reprogram adipocytes into CAAs, breast

cancer cells shuttle EVP miRNAs involved in alteration of adipocyte

homeostasis (Wu et al, 2019b). In turn, CAAs promote extensive

metabolic remodeling in tumor cells, including increased glucose

and fatty acid uptake and support an aggressive phenotype (Wu

et al, 2019b). In HCC, adipocyte-derived EVPs reduce DNA damage

and promote cell cycle progression via USP7/Cyclin A2 (Zhang et al,

2019a). Adipocyte EVPs can also transfer fatty acids and stimulate

fatty acid oxidation in melanoma cells, a process increased by obe-

sity (Clement et al, 2020). These transferred fatty acids fuel fatty

acid oxidation, which subsequently redistributes mitochondria to

membrane protrusions of migrating cells and increases their migra-

tion capability.

The conversion of normal fibroblasts into tumor-promoting

CAFs relies on metabolic reprogramming, in part induced by cancer

cell-derived EVPs and their miRNAs. Breast-cancer-secreted, EVP-

encapsulated miR-105 activates Myc signaling in CAFs, which repro-

grams their metabolism in favor of glycolysis and glutaminolysis

and allows secretion of glucose- and glutamine-derived metabolites

to fuel adjacent tumor cells. In addition, by consuming metabolic

byproducts and promoting extracellular acidification, EVP-

reprogrammed CAFs generate a nutrient-rich and permissive

microenvironment that promotes tumor cell growth and migration

(Yan et al, 2018b). Breast-cancer-derived EVPs carry high levels of

miR-122, which suppresses glucose uptake by lung fibroblasts and

brain astrocytes in the pre-metastatic niche, thereby increasing the

nutrient availability for tumor cells and facilitating metastasis (Fong

et al, 2015). Additionally, in CAFs, glycolysis is favored to oxidative

phosphorylation in response to EVP-associated integrin b4
+ and

miRNAs, potentially providing lactate and pyruvate as means of

energy for breast and melanoma tumor cells (Pavlides et al, 2009;

Shu et al, 2018; Sung et al, 2020). Instead, EVPs from colorectal

cancer cells lead to metabolic reprogramming of fibroblast by upreg-

ulating proteins required for glycogen metabolism, amino acid

biosynthesis, and transporters for glucose, lactate, and amino acids

(Rai et al, 2019). The functional contribution of such metabolic

transformation to tumor progression needs to be evaluated. In

return, EVPs released by CAFs increase glucose uptake and glycoly-

sis and inhibit mitochondrial oxidative phosphorylation in prostate

cancer cells (Zhao et al, 2016a). Metabolomic characterization of

CAF EVPs revealed high levels of different amino acids, fatty acids,

and TCA-cycle intermediates, which can be readily utilized by host

cells. Importantly, the authors provided evidence that CAF-derived

EVPs can supply metabolites to cancer cells and rescue their prolif-

eration and growth under nutrient deprivation.

These studies collectively suggest that distinct types of metabolic

interactions between tumor and stroma exist to facilitate tumor pro-

gression, and this may depend on tumor type, stage, and the meta-

bolic conditions provided by the tumor microenvironment.

Intervention, radiation, and chemotherapy

A growing body of evidence suggests that standard of care treat-

ment, such as surgery, radiation therapy, and chemotherapy, is

associated with a surge in circulating EVPs that may come from

tumor or stromal cells that survive treatment (Figure 3). Both

therapy-induced metabolic changes and selection of cells with

altered EVP release might be potential underlying mechanisms.

Surgery is associated with a change in EVPs levels and cargo in the

bodily fluids of cancer patients (Campanella et al, 2015; Butz et al,
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2016; Rodriguez Zorrilla et al, 2019). The levels of CD63+ EVPs were

found to return to normal days after tumor resection, but high EVPs

count immediately after surgery was predictive of poor overall sur-

vival in oral squamous cell carcinoma patients (Rodriguez Zorrilla

et al, 2019).

Treatment of different cancer cells with sublethal doses of com-

mon chemotherapeutics, such as rapamycin, doxorubicin, cisplatin,

panabinostat, bortezomib, carfilzomib, or melphalan, increases the

release of EVPs, often called chemoexosomes, and changes their

protein and miRNA cargo (Bandari et al, 2018; Samuel et al, 2018;

Tubita et al, 2019; Wills et al, 2021; Li et al, 2021d). Different pro-

tein cargo was also identified in EVPs from irradiated cancer cells

(Mutschelknaus et al, 2017; Abramowicz et al, 2019; Mo et al,

2020). EVPs released upon radiation therapy can affect multiple

components of the tumor microenvironment. EVPs from irradiated

lung cancer, head and neck cancer, and ovarian cancer cells stimu-

late tumor cell motility, migration, and proliferation (Mutschelknaus

et al, 2017; Samuel et al, 2018; Mo et al, 2020; Wang et al, 2020b).

Several mechanisms have been characterized, including packaging

of angiopoietin-like 4 in EVPs (Mo et al, 2020), EVP enrichment of

metabolic enzymes, such as ALDOA and ALDH3A1 (Wang et al,

2020b), induction of the AKT and p38/JNK signaling pathway

(Mutschelknaus et al, 2017; Samuel et al, 2018), and transfer of

EVP ECM-degrading heparanase in recipient cells (Bandari et al,

2018). Additionally, these EVPs increase angiogenesis via VEGF-B

upregulation in endothelial cells (Mo et al, 2020), as well as stimu-

late macrophage migration and secretion of TNF-a, ultimately pro-

moting tumor growth (Bandari et al, 2018).

Drug resistance can also be transmitted via EVPs, and thus EVP-

mediated communication might represent an additional mechanism

of expansion of therapy-resistant subclones and cell competition, as

described in detail by Parker and colleagues in this Cancer Reviews

series (Parker et al, 2021). Gemcitabine-resistant NSCLC cells trans-

fer resistance to parental cells via shuttling of EVP miR-222-3p,

which targets suppressor of cytokine signaling 3 (SOCS3) followed

by activation of JAK/STAT signaling. As expected, levels of miR-

222-3p in serum EVPs from NSCLC patients negatively correlated

with response to gemcitabine treatment and higher levels identified

patients with no response and progressive disease (Wei et al,

2017a). EVPs from adriamycin-resistant breast cancer cells transmit

resistance to sensitive cells via transfer of GSTP1 and Hsp70, the lat-

ter of which reprograms the energy metabolism of recipient cells

toward reduced mitochondria respiration and increased glycolysis

(Yang et al, 2017c; Hu et al, 2021). Levels of GSTP1 mRNA were

higher in serum EVPs from chemo-resistant breast cancer patients in

comparison to patients who achieve complete response (Yang et al,

2017c). EVPs from hypoxic ovarian cancer cells propagate cisplatin

resistance by decreasing dsDNA damage and increasing survival

(Dorayappan et al, 2018). MDA-MB-231 cells treated with different

microtubule stabilizers release survivin-enriched EVPs that promote

survival of adjacent tumor cells and fibroblasts (Kreger et al, 2016).

EVP-encapsulated miR-155 from chemoresistant cells confers resis-

tance to recipient sensitive cells in breast cancer, oral squamous car-

cinoma, and PDAC (Mikamori et al, 2017; Santos et al, 2018; Kirave

et al, 2020). Finally, EVPs from glioblastoma cells harboring the

PTPRZ1-MET fusion mutation mediate the horizontal transfer of

chemoresistance to temozolomide in vitro and in patients (Zeng

et al, 2017).

Multiple reports point to CAFs, which are innately chemoresis-

tant (Richards et al, 2017), as a main source of EVPs promoting

chemoresistance. EVPs from normal skin fibroblasts exposed to

radiation therapy were found enriched in hyaluronic acid, which

promotes different aspects of cancer progression (Zare et al, 2020).

Additionally, EVPs from CAFs derived from CRC tissue, but not nor-

mal fibroblasts from control colorectal mucosa, induce resistance of

cancer cells to 5-FU/L-OHP chemotherapy, and promote metastasis

via transfer of miR-92-3p, which activates Wnt/b-catenin pathway

and inhibits mitochondrial apoptosis in recipient cells (Bandari

et al, 2018; Hu et al, 2019a). Similarly, cultured CAFs induce resis-

tance of bladder cancer cells to paclitaxel and doxorubicin via EVP-

mediated miR-148-3p and downregulation of PTEN (Shan et al,

2021). Lastly, EVPs from CAFs exposed to gemcitabine promote pro-

liferation and chemoresistance of PDAC cells and orthotopic tumors

via transfer of miR-146a and Snail mRNA (Richards et al, 2017).

Our current knowledge on the mechanisms of EVP release relies

on experiments performed on untreated cancer cells. The evidence

summarized here suggests that the amount and cargo of EVPs are

affected by chemo- and radiotherapy on both tumor, immune and

stromal cell components, but further research is needed to under-

stand the effect of clinical intervention on EVP biogenesis and

release.

Creating a favorable soil: pre-metastatic niches
EVPs from different cell and tissue sources have the “innate” ten-

dency to distribute to pre-metastatic sites, such as lungs, liver, bone

marrow, and brain, that reflect the organotropism of the releasing

cells (Peinado et al, 2012;Hoshino et al, 2015; Yoshida et al, 2019).

Peinado and colleagues have shown that the protein content of EVPs

correlates with their metastatic potential (Peinado et al, 2012).

Building on this, integrin expression was found to be a major pat-

tern of EVPs orchestrating the formation of pre-metastatic niches at

future sites of organotropic metastasis (Hoshino et al, 2015; Yoshida

et al, 2019). EVP organotropism has important functional conse-

quences, such as promoting metastatic seeding of the distant site by

allowing formation of pre-metastatic niches (Figure 3). This is

demonstrated by the observation that inhibition of exosome exocy-

tosis via Rab27a-KO is sufficient to reduce the likelihood of distant

metastasis in a plethora of models, including mammary carcinoma

cells (Bobrie et al, 2012; Zhang et al, 2015b) and melanoma cells

(Peinado et al, 2012; Guo et al, 2019a). It remains to be determined

if inhibition of exomere release affects metastasis similarly. Due to

their ability to selectively deliver their cargo at specific distant sites,

EVPs might as well be the first and foremost messengers preparing a

“congenial soil” for the “seed.”

Gateways to colonization: vascular leakiness and angiogenesis

The continuity of the endothelial lining of the blood and lymphatic

system represents an important barrier to improper extravasation of

immune cells and tumor cells and to potentially harmful therapeu-

tics at distant sites. Peinado and colleagues were the first to show

that murine melanoma B16F10-derived EVPs, but not EVPs from

non-metastatic Melan-A cell line, increased lung vascular permeabil-

ity, an initial step in pre-metastatic niche formation. This promoted

the rate and extent of spontaneous lung and bone metastasis, while

minimally affecting tumor growth (Peinado et al, 2012). Further,

EVPs from highly brain-invasive breast cancer cells increased
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permeability of the blood–brain barrier (BBB) and promoted brain

metastasis of less invasive cells (Tominaga et al, 2015). Rodrigues

and colleagues more recently confirmed this finding showing that

brain-tropic EVPs are taken up by CD31+Glut1+ brain endothelial

cells and increased leakiness in brain capillaries (Rodrigues et al,

2019).

Endothelial cell junctions are a major target of cancer-derived

EVPs. miR-105 and miR-181 are restricted to EVPs from highly

metastatic breast cancer cell lines, suppress expression of tight junc-

tion proteins, such as zona occludens (ZO)-1, and dysregulate local-

ization of N-cadherin and actin in microvascular endothelial cells,

leading to endothelial barrier disruption, cancer cell transendothelial

migration, and lung and brain metastasis (Zhou et al, 2014; Tomi-

naga et al, 2015). Functional miR-105+ EVPs were also detected in

the serum of patients with stage II and III breast cancer and correlate

with risk of metastasis (Zhou et al, 2014). Similarly, highly invasive

variants of hepatocellular carcinoma cell lines, but not non-

metastatic variants, release EVPs that reduce expression of VE-

cadherin and ZO-1 in endothelial cells, leading to endothelial perme-

ability and tumor cell transendothelial migration (Fang et al, 2018;

Yokota et al, 2021). These EVPs were found enriched in different

miRNAs, some of which associate with lower disease-free survival

and higher frequency of distant metastasis in HCC patients (Fang

et al, 2018; Yokota et al, 2021). Other miRNAs were found highly

expressed in EVPs from breast cancer, CRC, hepatoma, and ovarian

cancer cells and patient plasma, and were shown to compromise the

integrity of endothelial cell junctions via downregulation of VE-

cadherin, ZO-1, and Claudin-5, and silencing of KLF2/4, factors con-

trolling transcription of VEGF and junction proteins, ultimately pro-

moting metastasis to both livers and lungs (Di Modica et al, 2017;

Fang et al, 2018; Zeng et al, 2018; Lin et al, 2020). More recent evi-

dence has shown that tubulin tyrosine ligase like 4 (TTLL4)

expressed in EVPs from breast cancer cell lines MDA-MB-231 and

MDA-MB-468 contributes to EVP biogenesis, endothelial cell perme-

ability, and tumor cell adhesion to endothelial cells (Arnold et al,

2020). Along the same lines, MDA-MB-231-derived EVPs are

enriched in nucleoside diphosphate kinase (NDPK) A and B in com-

parison to their non-tumorigenic counterpart (HME1) and activate

P2Y1 receptor signaling in lung microvascular cells, inducing cell

migration and decreased junctional b-catenin. This resulted in

increased vascular leakiness and pulmonary metastasis, an effect

that could be prevented by P2Y1 inhibitors (Duan et al, 2021).

Finally, Yoshida and colleagues showed that EVPs isolated from

high-grade bladder cancer cells are carriers of tyrosine kinases, such

as ErbB2 and CRK, and, in addition to promoting proliferation of

tumor cells locally, stimulate FAK/AKT signaling, migration, and

proliferation of endothelial cells, and promote lung metastasis in

EVP-educated mice (Yoshida et al, 2019).

A fertile soil for metastasis might also be “prepared” by EVPs at

local or distant lymph nodes. Melanoma-derived EVPs promote

angiogenesis and chemotaxis in sentinel lymph nodes, facilitating

tumor cell infiltration at later stages of disease (Hood et al, 2011).

These findings were corroborated recently by other groups showing

that EVP-associated lncRNAs, miRNA, and CXCL4 promote lymph

node remodeling and lymphatic metastasis in cancer types prone to

this route of dissemination, such as breast cancer, cervical squa-

mous carcinoma, and CRC (Li et al, 2018c; Zhou et al, 2019a; Chen

et al, 2020a). A direct effect of EVPs on tube formation of lymphatic

endothelial cells, MMP upregulation, and reprogramming of macro-

phages to produce lymphangiogenic VEGF-C have also been

described (Li et al, 2018c; Zhou et al, 2019a; Sun et al, 2019b; Chen

et al, 2020a).

Immune cell and bone marrow cell recruitment

Tissue-resident immunity is typically refractory to tumor cell colo-

nization, but the accumulation of bone-derived immune cells or the

activation of resident immune cells at distant sites generates an

immune suppressive environment that allows for metastatic dissem-

ination and outgrowth (Kaplan et al, 2005; Murgai et al, 2017;

Kaczanowska et al, 2021). In the liver niche, Pan02 EVPs harboring

migration inhibitory factor (MIF) educate hepatic Kupffer cells to

release TGF-b, which induces differentiation of HSCs and deposition

of fibronectin. the recruitment of bone marrow-derived cells

(BMDCs), including macrophages and neutrophils, to fibronectin-

rich microenvironments ultimately supports metastasis formation

(Costa-Silva et al, 2015). These findings were recently corroborated

by the observation that EVPs from KPC murine pancreatic cancer

cells promote enrichment of macrophages in the liver niche. How-

ever, these EVPs could not rescue the reduction of myeloid cell infil-

tration in livers of mice engrafted with Rab27a-deficient KPC cells,

suggesting that Rab27a has autologous functions in pre-metastatic

niche formation in addition to EVP-mediated mechanisms (Kren

et al, 2020). Several PDAC EVP cargo proteins, such as MET,

ADAM9, S100A4, LGALS3, and integrins b4 and b5, are involved in

immune modulation and cell recruitment, while EGFR, CLDN1,

CAV1, and SDC1 are associated with angiogenesis, innate immune

response, and cell migration in the pre-metastatic liver (Emmanoui-

lidi et al, 2019). Gastric cancer-derived EVPs overexpress epithelial

growth factor receptor (EGFR) in both murine models and patients,

especially at advanced stage of disease. By upregulating hepatocyte

growth factor (HGF) in the liver microenvironment, these EGFR+

EVPs act as a chemoattractant to tumor cells expressing c-MET, the

HGF receptor (Zhang et al, 2017b). Interestingly, EBV infection in

the liver has been correlated with release of EVPs enriched in LMP1,

which promotes expression of pre-metastatic markers S100A8, fibro-

nectin, and VEGFR1 in liver and lungs (Wu et al, 2020d).

Comparable changes to the immune profile of pre-metastatic

lungs have been observed in response to EVPs from lung-tropic

cancer types such as breast cancer and melanoma. Bobrie and col-

laborators showed that murine breast carcinoma tumors promote

infiltration of neutrophils into pre-metastatic lungs (Bobrie et al,

2012). Similarly, murine breast cancer E0771 and 4T1-derived EVPs

induce an immunosuppressive pre-metastatic niche in lungs and

liver of na€ıve mice, with increased granulocytic and myeloid

MDSCs and, as a consequence, reduced infiltration of CD8+ T and

NK cells (Wen et al, 2016). The tumor-suppressive activity of NK

cells and CD4+/CD8+ T cells was also directly suppressed by EVPs

(Wen et al, 2016). EVPs from invasive breast cancer cell lines are

enriched for Annexin II and prime macrophage activation at distant

sites, including the brain and lungs, via activation of MAPK, NF-kB,

and STAT3 signaling, leading to the release of pro-inflammatory IL-

6 and TNFa (Maji et al, 2017). Enrichment in insulin-like growth

factor 2 mRNA binding protein 1 (IGF2BP1) has been observed in

EVPs from melanoma cell lines and increased the deposition of

fibronectin as well as recruitment of CD45+ cells in lungs, further

promoting lung cancer metastasis (Ghoshal et al, 2019).
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Recruitment of immune cells to lungs can also happen via educa-

tion of other stroma cells, especially fibroblasts. Hoshino and col-

leagues have shown that lung-tropic EVPs expressing integrin a6b4
upregulated pro-inflammatory S100 proteins in lung fibroblasts

(Hoshino et al, 2015), which function as damage-associated molec-

ular pattern (DAMP) molecules for the migration and activation of

macrophages, neutrophils, and DCs (Xia et al, 2017). Similarly,

EVPs from Lewis lung carcinoma cells (LLC) are mainly engulfed

by pulmonary fibroblasts and activate their NF-kB signaling via

miR-3473b transfer. In response, fibroblasts release pro-

inflammatory cytokines, such as IL-6, CCL-2, and CCL-5, and drive

recruitment of B cells, promoting pulmonary colonization (Du et al,

2020a). Moreover, EVPs produced upon direct interaction between

breast cancer cells and fibroblasts in the primary tumor induce acti-

vation of distant myeloid and DC immune cells in the spleen (Nabet

et al, 2017) and might thus be involved in the generation of pre-

metastatic niches.

While our knowledge of pre-metastatic niches in the lungs and

liver has exponentially grown in the last decade, we know very little

about other pre-metastatic sites. EVPs from the metastatic mela-

noma cell line B16F10 educate BMDCs and increase the production

of c-Kit+Tie2+ precursor cells. This effect is due to the horizontal

transfer of oncogenic MET, which induces S6 and ERK phosphoryla-

tion in BMDCs and promotes the mobilization of vasculogenic and

hematopoietic BMDC precursor cells from the bone marrow to

future metastatic sites. When transplanted into lethally irradiated

na€ıve mice, MET+ EVP-educated BMDCs promote primary tumor

growth as well as metastasis to multiple organ sites, including dis-

tant lymph nodes and brain (Peinado et al, 2012).

The brain has been known for a long time to be a sanctuary site

for cancer metastasis, where tumor cells are protected from

chemotherapy and immune surveillance. The mechanisms leading

to preparation of a favorable soil for tumor dissemination are not

yet fully understood. By employing an organotypic brain slice cul-

ture system, Rodrigues and colleagues have shown that brain tissue

preconditioned with EVPs from brain tropic breast cancer cell, but

not from their parental counterpart, is more receptive to tumor cell

colonization (Rodrigues et al, 2019). CEMIP, which was found

restricted to brain-tropic EVPs, was the culprit of brain precondi-

tioning by inducing transcriptional changes in brain endothelial

cells consistent with altered morphogenesis, junction formation,

and vascular permeability. The clinical implication of these findings

is illustrated by the observation that CEMIP levels were much

higher in brain metastasis tissue and their EVPs than adjacent and

distant tissues and correlated with shorter survival (Rodrigues et al,

2019).

Finally, the contribution of neutrophil extracellular traps

(NETs), which have been detected at primary and distant sites in a

series of cancers, to pre-metastatic niche formation is still lacking

(Yang et al, 2015a; Tohme et al, 2016). In a seminal paper, Park

and colleagues have shown that tumor-driven NET formation in

the lung vasculature is an essential step for breast cancer metasta-

sis (Park et al, 2016). Recently, Leal and colleagues have deter-

mined that breast cancer cell–derived EVPs induce NET formation

in vitro and in mice (Leal et al, 2017), but the underlying mecha-

nisms are not yet known. Further research might unveil the role of

EVP-induced NETs in the establishment of pre-metastatic niches at

different sites.

Metabolic reprogramming

Similar to their role within the tumor microenvironment, cancer-

derived EVPs promote the metabolic reprogramming of stromal and

immune cells at distant sites prior to tumor cell colonization. For

example, prostate-cancer-derived EVPs transfer functional pyruvate

kinase M2 (PKM2) to bone marrow fibroblasts, where it drives HIF-

1a-dependent production of CXCL12 and stimulates tumor cell pro-

liferation via the CXCL12:CXCR4 axis (Dai et al, 2019). Further-

more, melanoma-derived EVPs and their miR-155 and miR-210

cargo promote glycolysis and inhibit oxidative phosphorylation in

fibroblasts, inducing extracellular acidification that has been previ-

ously associated with pre-metastatic niche formation (Shu et al,

2018).

Looking at immune cells, CD11b+ cells in the bone marrow take

up EVPs from Pan02 murine pancreatic cancer cells and shift toward

a tumor permissive phenotype. In particular, Pan02 EVPs induced

significant transcriptional changes in bone marrow mono-

cytes/macrophages, consistent decreased differentiation, increased

polarization towards a tumor-suppressive M1-like phenotype, and

upregulation of immunoglobulins (Ig) genes, which have been

implicated in inflammation, immune cell recruitment, and activation

(Maia et al, 2020). The role of EVPs in inducing macrophage polar-

ization is reverted in hypoxic conditions, where tumor-derived EVPs

instead steer macrophage differentiation toward an M2-like pro-

tumorigenic phenotype, with increased oxidative phosphorylation

and suppressed mTOR pathways (Park et al, 2019). Finally, educa-

tion with prostate-cancer-derived EVPs induces NF-kB signaling and

versican (VCAN) expression in myeloid cells and drives osteoclast

proliferation and differentiation to a bone resorption phenotype.

These effects lead to increased metastatic colonization of bones via

tumor cell adhesion to VCAN-rich bone marrow niche (Henrich

et al, 2020). Interestingly, prostate cancer-derived EVPs do not

affect tumor cells directly, further supporting the idea that long-

distance changes in the pre-metastatic stromal and immune com-

partments are essential for tumor cell seeding and metastasis (Dai

et al, 2019).

ECM remodeling

A prerequisite for pre-metastatic niche establishment is the forma-

tion of a remodeled ECM backbone that allows for improved tumor

cell and immune infiltration and provides sufficient tissue stiffness

for tumor cell invasion (Kai et al, 2019). Considering the dis-

tinct integrin expression profile of tumor cells and their EVPs with

different organ tropism, ECM alteration at the distant sites might

also direct tissue homing. Thus, by altering ECM of distant organs,

tumor-derived EVPs might achieve both increased and directional

colonization.

Fibroblasts in the lungs and HSCs in the liver are major orches-

trators of ECM composition. Fibroblasts educated with EVPs from

p53 mutant lung and pancreatic cancer cells produce an ECM mesh

that is dramatically different in structure, binding, and composition

to fibroblasts educated with EVPs from p53 competent cells. In par-

ticular, fibrillar collagen in educated lungs appeared to have a more

punctate and less organized structure, reminiscent of the unstruc-

tured vasculature of tumors. EVP sialomucin podocalyxin was found

responsible for these changes (Novo et al, 2018). Similar fibroblast

activation was observed in correlation with enhanced pulmonary

metastasis in animal models, suggesting that Mutp53s potentially
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drive this phenomenon via EVPs. In support of this observation,

Capaci and colleagues recently showed in a breast cancer model that

Mutp53s induce Golgi tubule vesiculation and alter the secretome of

tumor cells, ultimately enhancing tumor growth and metastatic col-

onization via ECM remodeling (Capaci et al, 2020). Though the con-

tribution of EVPs in this process was not investigated, it is

reasonable to speculate that EVPs as a major component of the

secretome play an important role here.

Education of the pre-metastatic liver with pancreatic cancer cell–

derived EVPs induces activation of HSCs via Kupffer cell-derived

TGF-b, allowing for a 10-fold increase in fibronectin and collagen I

deposition and repressing the deposition of vitronectin and tenascin

C (Costa-Silva et al, 2015; Xie et al, 2021). Activation of IGF-1/

PI3K/AKT pathways has been reported in PDAC EVP-educated HSCs

(Xie et al, 2021). HSC activation was also observed in LLC tumor-

bearing mice, where EVPs from myeloid BMDCs drive their produc-

tion of collagen I, promoting recruitment of granulocytic MDSCs

and cancer cell adhesion and extravasation. Enrichment of miR-92a

in BMDC-derived EVPs, which decreases expression and phosphory-

lation of SMAD7 in HSCs, was responsible for their metastatic

niche-promoting activity. miR-92a-enriched EVPs were also found in

the serum of lung cancer patients and induce a similar reprogram-

ming of HSCs (Hsu et al, 2020). The mechanism through which pri-

mary lung cancer cells influence BMDCs to release pro-metastatic

EVPs is still unknown. Intratumor hypoxia might increase the ECM

remodeling properties of EVPs, as shown by evidence that EVPs

from hypoxic PC-3 cells caused MMP-dependent deposition of fibro-

nectin and collagen IV at various pre-metastatic sites (Deep et al,

2020).

In the bone niche, bone formation and resorption are the main

ECM remodeling events. Certain cancers, such as prostate cancer,

take advantage of osteoblast proliferation or activation and ECM

mineralization to metastasize to bones, while other cancers, such as

breast, lung, and kidney cancer, favor increased osteoclast activity.

The EVP miRNA profiles of cancer cell lines inducing either pheno-

type are dramatically different. In particular, miR-940 and -1260a

were found enriched in EVPs from cells promoting osteoblastic

lesions and were associated with osteoblast differentiation and

osteogenesis (Hashimoto et al, 2018). In the pre-metastatic bone,

miR-375+ prostate-cancer-derived EVPs directly promote formation

of calcium nodules in osteoblasts, leading to ECM mineralization (Li

et al, 2019e).

EVPs can be themselves carriers of ECM proteins and remodeling

enzymes. Laminin, collagens, and cathepsin hydrolases were

detected (Hood et al, 2011; Latifkar et al, 2019). In clinical settings,

EVPs from pancreatic duct fluid, plasma, and tumor tissue of PDAC

patients were enriched in tenascin C, laminin subunits, THBS1/2

and versican, consistent with the alteration of ECM composition in

PDAC and pre-metastatic liver (Zheng et al, 2018a; Hoshino et al,

2020).

Induction of pre-metastatic niche by chemotherapy

Chemotherapy has been found associated with a higher risk of meta-

static disease in preclinical models and in patients that do not

achieve complete response (Liedtke et al, 2008; Volk-Draper et al,

2014; Karagiannis et al, 2017; Keklikoglou et al, 2019; D’Alterio

et al, 2020). It is believed that therapy-induced tissue damage mim-

ics early events associated with the establishment of pre-metastatic

niches, including release of cytokines, chemokines, and EVPs (Rata-

jczak et al, 2013). Doxorubicin treatment induces the overexpres-

sion of the pro-inflammatory glycoprotein PTX3 in MDA-MB-231-

derived EVPs, which then establishes a favorable pulmonary pre-

metastatic niche for both highly metastatic and poorly metastatic

TNBC cell lines (Wills et al, 2021). Similarly, mouse education with

EVPs from paclitaxel-treated breast cancer cells or from tumors of

paclitaxel- or doxorubicin-treated MMTV-PyMT mice increases lung

colonization. These EVPs were found to be enriched in annexin A6

(ANXA6), which induces release of CCL2 by endothelial cells, pro-

moting the recruitment and expansion of Ly6C+CCR2+ monocytes in

the pre-metastatic lungs. ANXA6-positive EVPs were also found in

the plasma of breast cancer patients undergoing neoadjuvant

chemotherapy (Keklikoglou et al, 2019). Furthermore, EVPs derived

from rapamycin-treated HCT116 cells are enriched in miRNAs that

can functionally decrease expression of histone genes in lung fibrob-

lasts, reprogramming them toward decreased DNA packaging and

chromatin assembly. This epigenetic reprogramming might reduce

the ability of fibroblasts to differentiate into myofibroblasts in pre-

metastatic sites (Tubita et al, 2019).

Not only chemotherapy itself, but also resistance to chemother-

apy alters the amount and cargo of circulating EVPs, shifting it to a

pre-metastatic niche promoting one. To illustrate, ovarian cancer

patients have higher serum concentration of EVPs in comparison to

cisplatin sensitive patients, potentially due to intra-tumor hypoxic

conditions (Dorayappan et al, 2018). Moreover, temozolomide-

resistant glioblastoma cells selectively package lncRNA HOTAIR into

their EVPs, which propagate chemoresistance and, potentially,

metastatic ability of tumor cells (Yuan et al, 2020). Conversely,

EVPs from doxorubicin- and panabinostat-resistant cells are

enriched in Bcl2-associated athanogene 6 (BAG6), which induces

transcriptomic changes in pre-metastatic lungs consistent with

reduced recruitment and activation of pro-metastatic neutrophils

and increased accumulation of Ly6Clow anti-tumor patrolling mono-

cytes. As a result, education with BAG6-expressing EVPs reduced

lung metastasis (Schuldner et al, 2019).

Determining the right destination: organotropic metastasis
Over the years, different theories have been proposed to explain the

selective metastatic distribution of different cancer types. By propos-

ing the “anatomical and mechanical” theory in 1858, Virchow and

others speculated that metastatic tropism relied on the physical

arrest of tumor cells in the vasculature of distant organs, and that

circulatory patterns drive organ distribution (Ewing, 1928; Virchow,

1989). This theory could not explain the selective colonization of

organs with similar blood supply and was then challenged by the

famous “seed and soil” theory by the British surgeon Stephen Paget

(Paget, 1989). Many experimental evidences have supported this

theory by showing that the genetic makeup of tumor cells, the struc-

tural and molecular properties of the distant niches and the interac-

tion of tumor cells with the metastatic microenvironment all drive

metastasis organotropism (Gao et al, 2019). Recent evidence has

added to this paradigm showing that distant sites are not always

intrinsically receptive to tumor cells, but are rather remotely edu-

cated by primary tumor-derived soluble factors and EVPs. In a semi-

nal paper, Hoshino and colleagues have shown that EVPs share the

same organ distribution pattern of the secreting cells and that EVP

integrins are major determinants of this selective homing (Hoshino
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et al, 2015). In more details, integrins a6b4 and a6b1 were abundant

in lung tropic EVPs, while integrin avb5 was found enriched in liver-

tropic EVPs. Similarly, Rodrigues and colleagues identified exosomal

CEMIP as driver of brain metastatic colonization (Rodrigues et al,

2019). Other evidence has shown that in the complex ecosystem of

the tumor microenvironment specific subpopulations of EVPs have

different organotropism. For example, among all circulating EVPs in

CCRCC patients, CSC-derived CD103+ EVPs specifically home to pri-

mary tumors and pre-metastatic lungs, while CD103� EVPs lack this

selectivity (Wang et al, 2019a).

As reviewed in the previous sections, organotropic EVPs set the

stage for tumor cell colonization by inducing vascular remodeling

and inflammation in the pre-metastatic niche (Peinado et al, 2012;

Hoshino et al, 2015; Rodrigues et al, 2019). For example, lung-

tropic EVPs drive the colonization of the lungs by bone-tropic tumor

cells, showing for the first time that tumor-derived EVPs can redirect

the organotropic pattern of tumor cells and allow dissemination of

tumor cells with poor intrinsic metastatic potential (Hoshino et al,

2015). At the same time, pre-education of mice with B16F10-derived

EVPs allows their seeding not only to lungs, but also to contralateral

lymph nodes, brain, and mesentery (Peinado et al, 2012). This evi-

dence adds a new layer of complexity to the seed and soil theory,

suggesting that the “congenial soil” is actively prepared by EVPs

with selective organotropism. EVPs can define the pattern of organ

distribution regardless of the innate organotropism of tumor cells,

suggesting that intrinsic tumor features might not be sufficient prog-

nostic markers of metastasis site. Instead, the levels of integrin b4,
integrin av, and CEMIP were found significantly higher in plasma

EVPs of patients with lung, liver, and brain metastasis, respectively

(Hoshino et al, 2015; Rodrigues et al, 2019). Together, these reports

indicate that EVP markers are both drivers and bona fide predictors

of organotropic metastasis.

A new life: metastatic colonization
The survival and outgrowth of tumor cells that have infiltrated a dis-

tant organ are critical bottlenecks in the metastatic cascade. Once in

the parenchyma of a distant organ, tumor cells have to face a dra-

matic reduction in nutrient availability, as well as withstand an

inhospitable and immune-reactive microenvironment, resulting in

only a few tumor cells being able to expand to a macrometastatic

status. The establishment of a pre-metastatic niche partially over-

comes this limitation by manipulating distant tissues and allowing

for better survival of colonizing immune cells. Our knowledge of

early stages of metastatic outgrowth is still limited, but it appears

that tumor cell- or stroma-derived signaling is essential to clinically

manifest metastasis. Similar to EVPs derived from primary tumor

cells, those derived from metastatic cells themselves may shape the

metastatic niche to allow survival and overt growth or, alterna-

tively, maintain a temporary dormancy status leading to metastatic

latency.

Metastasis-initiating cells

Of the millions of tumor cells shed by a primary tumor per day, only

a few metastasis-initiating cells (MICs) will proceed to form

macrometastasis. Although the features, emergence, and selection

of these metastatic progenitor cells are not fully understood, some

MIC traits are starting to emerge more clearly. Ganesh and col-

leagues have shown that L1CAM expression in CRC epithelial cells

triggers the tissue regenerative, chemoresistant, and disseminating

abilities of MICs (Ganesh et al, 2020). They showed that L1CAM

mediates the interaction of MICs with laminin-rich ECMs, such as in

EVP-educated pre-metastatic lungs (Hoshino et al, 2015; Ganesh

et al, 2020). L1CAM was detected in B16F10 Exo-Ls (Zhang et al,

2018b), supporting the notion that EVPs from primary tumors may

directly influence the emergence and metastatic spreading of MICs.

Likewise, thrombospondin and collagen-interacting CD36, a bona

fide marker and driver of the MIC phenotype (Pascual et al, 2017),

are ubiquitous markers of human EVPs, both from non-tumor and

tumor tissue sources (Hoshino et al, 2020).

It is also possible that tumor- or stroma-derived EVPs may alter

the expression profile of a proportion of CTCs, either before or after

intravasation, transforming them into MICs. In breast cancer

patients, circulating tumor cells (CTCs) with bone-metastasis-

initiating potential were found to express CD44, CD47, and MET

(Baccelli et al, 2013). Fibroblasts are a major source of CD47+ EVPs

that can horizontally transfer CD47 to tumor cells, where it helps

evade immune surveillance in the blood circulation and at distant

organs (Kamerkar et al, 2017). In addition, EVPs from highly meta-

static melanoma cell lines increase the expression of CD44 and MET

in bone marrow progenitor cells, suggesting a similar transfer from

breast cancer cells (Peinado et al, 2012).

Interestingly, the cargo of EVPs from metastatic sites can differ

dramatically from the EVPs from primary sites. In a murine model

of CRC, EVPs from metastasis-bearing livers were found enriched in

tumor-suppressive miRNAs (e.g., miR-19 and miR-193a) and

depleted of oncogenic miRNAs (e.g., miR-21) in comparison to EVPs

from primary colon tumor tissue. Teng and colleagues found that

this difference relies on differential packaging of miRNA, whereby

tumor suppressive miRNAs are actively shed by MICs and their pro-

genitor cells via overexpression of miR-binding major vault protein

(MVP). As a consequence, human CRCs, which are poor in tumor

suppressive miRNAs and rich in MVP, have a higher risk of metasta-

sis (Teng et al, 2017). Understanding the mechanisms that lead to

selection or adaptation of MICs with a different EVPs packaging pro-

file will help identify how metastases initiate and progress.

Metastatic microenvironment

In the secondary site, co-option of the metastatic microenvironment

allows MICs to either maintain dormancy or sustain growth.

Metastasis-associated fibroblasts (MAFs) play a central role in pro-

moting MIC outgrowth. Pein and colleagues have shown that, early

in dissemination, factors such as IL-1a and IL-1b derived from

micrometastatic lesions trigger the transition of lung fibroblasts into

activated and pro-inflammatory MAFs, which promote progression

to macrometastasis via CXCL9/10 secretion (Pein et al, 2020). Simi-

lar cancer cell-derived factors were detected in EVPs from ovarian

cancer patients (Bretz et al, 2013) and lung-tropic EVPs were found

to induce activation of fibroblasts (Hoshino et al, 2015). Although

direct evidence is still missing, a growing body of work has revealed

a direct effect of cancer cell-derived EVPs in the metabolic repro-

gramming of fibroblasts at primary and distant sites and suggests

that EVP-associated factors may be involved in inducing MAF differ-

entiation.

In the bone niche, osteolytic activity of osteoclasts promotes

release of growth factors and nutrients that support the initial divi-

sion of tumor cells (Esposito et al, 2018). EVPs from prostate cancer
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MICs are rich in RANK ligand (RANKL) and EVPs from NSCLC cells

promote osteocyte expression of RANKL (Taverna et al, 2017), a

potent inducer of macrophage differentiation into osteoclasts (Shiao

et al, 2016). Prostate cancer cell–derived EVPs induce osteoblast dif-

ferentiation directly (Itoh et al, 2012; Inder et al, 2014; Ye et al,

2017; Hashimoto et al, 2018; Li et al, 2019e; Borel et al, 2020),

while both breast cancer cell– and lung cancer cell–derived EVPs

promote osteoclast differentiation (Taverna et al, 2017; Xu et al,

2018b; Tiedemann et al, 2019; Guo et al, 2019b; Loftus et al, 2020),

reflecting the osteoblastic and osteoclastic metastatic niches induced

by these different types of cancer.

EVPs also contribute to metastasis initiation and sustained

growth in the brain. Conditioned medium of brain metastasis cells

containing factors, such as EGF, TGF-a, and MIF, the latter of

which has been previously detected in EVPs from breast and pan-

creatic cancer cells (Costa-Silva et al, 2015), stimulates STAT3

activation in astrocytes to support the initial steps of MIC growth.

The hypothesis that cancer-derived EVPs may be major drivers of

astrocyte activation, even at pre-metastatic stages, is supported by

the observation that EVPs from brain-tropic MDA-MB-231 cells

are actively taken up by astrocytes, albeit in lower amounts than

by endothelial cells and microglia (Rodrigues et al, 2019). In

response, astrocyte-derived EVPs induce PTEN loss in cancer cells

locally by shuttling miR-19a to MICs. As a result, NF-jB phospho-

rylation and CCL2 secretion by cancer cells promote infiltration of

CCR2+ myeloid cells in the brain metastases, further supporting

metastasis growth and reducing survival (Zhang et al, 2015b). In

addition, reactive astrocytes promote outgrowth of brain meta-

static nodules via recruitment of Iba1+ microglia and reduction of

CD8+ T cell anti-tumor response (Priego et al, 2018). In a similar

manner, VEGF-A, TIMP-1, and the ECM proteins collagen and

tenascin-C, all of which are found in the conditioned medium of

reactive astrocytes and of patient brain metastasis explants,

dampen CD8+ T cell activation (Priego et al, 2018; Hoshino et al,

2020).

The angiogenic switch is an essential event to sustain metastatic

outgrowth and exit from dormancy and relies on local release of

growth factors and recruitment of endothelial progenitor cells from

the bone marrow (Gao et al, 2008). In primary tumors, EVPs are

prime carriers of pro-angiogenic factors, such as miRNAs, VEGF-A,

and IL-6 (Skog et al, 2008; Umezu et al, 2014; Mao et al, 2019b;

Zhang et al, 2020d), or induce their synthesis by endothelial cells

(Tang et al, 2018a; Sato et al, 2019; He et al, 2019a; Xie et al,

2020a; Song et al, 2021). Moreover, EVPs from primary and poten-

tially secondary melanoma tumors influence the expression of MET

oncoproteins in vasculogenic c-Kit+Tie2+ bone marrow precursors,

inducing the activation of a signaling pathway involved in cell

motility. Indeed, the numbers of CD45�c-Kit+/TIE2+/low progenitor

cells with increased MET activation were the highest in the blood of

patients with Stage IV metastatic melanoma, suggesting that MIC-

derived EVPs may be involved in sustained angiogenesis in the

metastatic niche (Peinado et al, 2012).

In conclusion, EVP cargo has potential roles in the bilateral

tumor–microenvironment interplay at metastatic sites, with the

lethal consequence of metastatic progression. Functional experi-

ments will need to be conducted to understand the change in EVP

release between cancer cells in the primary tumor and MICs as well

as to fully puzzle out their role in metastatic growth.

Tumor cell dormancy

As discussed above, the metastasis microenvironment is a key deter-

minant of MIC fate. MICs undergo metastatic dormancy via entry

into a proliferative quiescence or failure to sustain proliferation due

to tissue-resident immunity, lack of angiogenesis, or nutrient defi-

ciency (Goddard et al, 2018). Both direct and indirect evidences sug-

gest that EVPs contribute to maintaining or awakening dormant

tumor cells, particularly in breast cancer, where bone metastasis is

a main cause of minimal residual disease and relapse. Ono and col-

leagues have shown that EVPs from human bone marrow MSCs

induce dormancy and cell cycle arrest and impair tumor growth

in vivo by targeting cell-cycle-related genes via exosomal miR-23b

(Ono et al, 2014). Noticeably, breast cancer cells with high miR-23b

levels and MSCs were found in close contact in the bone marrow of

patients with breast cancer. More recently, Bliss and colleagues con-

firmed that miR-222/-223 encapsulated in EVPs from cancer-

educated MSCs, and to a lesser extent na€ıve MSCs, promotes cell

cycle arrest and decreases chemosensitivity of breast cancer cells

(Bliss et al, 2016). EVPs from bone marrow stromal cells, in particu-

lar macrophages polarized toward an M2-like phenotype, maintain

quiescence of breast cancer cells (Lim et al, 2011; Walker et al,

2019), while pro-inflammatory macrophages tend to awaken dor-

mant cells by activating NF- jB pathway and cell cycle progression

(Walker et al, 2019). Sansone and colleagues have shown that, in

hormonal therapy-resistant breast cancer, mitochondrial genes

packaged into CAF-derived EVPs may be responsible for inducing

oxidative phosphorylation in breast cancer CSCs, provoking the

tumor cells to exit from dormancy and consequently fostering the

recurrence of metastatic cancer (Sansone et al, 2017). The perivas-

cular niche is a sanctuary for tumor cell quiescence at the metastatic

site (Ghajar et al, 2013; Ghajar, 2015), with endothelial-derived

thrombospondin-1 as a main inducer of breast cancer dormancy and

TGF-b1 and periostin inducing exit from senescence. All of these

factors have been recently characterized in human cancer cell–

derived EVPs (Hoshino et al, 2020). Similarly, a seminal paper by

Lawson and colleagues reported that breast cancer cells from early-

stage metastasis harbor a dormant-like expression signature with a

high expression of quiescence-associated genes, such as CDKN1B,

CHEK1, TGFBR3, and TGFB2, while progression to macrometastatic

disease is accompanied by expression of genes involved in dor-

mancy escape, such as MYC, CDK2, and MMP-1 (Lawson et al,

2015). It is tempting to speculate that EVPs from the primary tumor

may be involved in the exit from dormancy, as suggested by the evi-

dence that human cancer-associated EVPs are enriched in MYC tar-

gets, CDK2, and MMPs (Hoshino et al, 2015; Rodrigues et al, 2019).

Similarly, TGF-b has cytostatic effects and has been directly linked

to induction of dormancy in tumor cells (Massague & Ganesh,

2021). Both TGF-b and proteins involved in TGF-b signaling have

also been found in various cancer cell-derived EVPs (Webber et al,

2010; Wang et al, 2016b; Li et al, 2017e; Ringuette Goulet et al,

2018; Batlle & Massague, 2019; Ferguson Bennit et al, 2021;

Hoshino et al, 2020). Anti-mitogenic DKK is packaged into cancer

cell-derived EVPs, particularly those that display organotropisms to

the brain, bone, and lung, major sites of tumor cell dormancy (Lim

et al, 2012; Faict et al, 2018; Gan et al, 2020). Finally, NETs have

been associated with the tumor cell exit from dormancy via proteol-

ysis of extracellular laminin in the metastatic lung niche, which acti-

vates intracellular integrin a3b1 signaling in cancer cells (Albrengues
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et al, 2018). By inducing NET formation (Leal et al, 2017), cancer

cell-derived EVPs may prepare an environment that is permissive

for dormancy evasion and metastatic progression.

Whether inhibiting or promoting exit from dormancy is better for

targeting dormant cells is still under debate (Ghajar, 2015), our cur-

rent knowledge indicates that EVPs may drive tumor cell dormancy

in both directions, but further experiments are needed to address

their contribution in different types of cancer and metastatic niches.

Within circulating distances: EVPs as mediators of the systemic
effects of cancer
Due to their ability to signal at a long-range distance, cancer-

associated EVPs mediate the most systemic and deadly aspects of

cancer. It has been estimated that tumor-derived EVPs represent up

to 10% of the total EVPs found in plasma of cancer patients (Fraser

et al, 2019). Moreover, Hoshino and colleagues have shown that

among cancer-associated EVPs in plasma, approximately 50% are

from the primary tumor and its tumor microenvironment, whereas

other cancer-associated EVPs are produced by distant organ sites,

such as the liver and immune organs (Hoshino et al, 2020). This

evidence indicates that EVP-mediated signaling in cancer is rarely

the product of a single site, but rather is an orchestrated, multi-

organ process.

Thrombosis

Cancer patients have a higher risk of being affected by a hypercoagu-

lable state, with deep vein thrombosis and pulmonary embolism

being the most frequent and lethal complications (Caine et al, 2002).

Preliminary evidence suggests that tumor-derived EVPs may induce

systemic thrombosis. Breast cancer cell–derived EVPs directly inter-

act with platelets and induce their activation and subsequent aggre-

gation (Gomes et al, 2017). Interestingly, the pro-thrombotic effect of

EVPs correlates with the metastatic potential of the releasing cells

(Gomes et al, 2017). Moreover, induction of thrombosis in mice by

EVPs from murine 4T1 breast cancer cells is associated with the for-

mation of NETs (Leal et al, 2017), which have been previously impli-

cated in cancer-associated thrombosis (Thalin et al, 2019). Despite

this evidence, our knowledge of the factors leading to EVP-induced

thrombosis is still lacking. EVPs from a variety of cancer cell lines

and tumor tissues express coagulation factors, such as factor X,

thrombospondin, and collagens (Zhang et al, 2018b; Hoshino et al,

2020). PS, a membrane lipid that supports the assembly of coagula-

tion factor complexes during the coagulation cascade, is preferen-

tially exposed on the outer leaflet of the tumor cell membrane and

found in a range of EVPs, including tumor and immune cell-derived

EVPs (Utsugi et al, 1991; Tripisciano et al, 2017; Zhang et al, 2018b;

Skotland et al, 2019). Furthermore, several breast cancer cell lines

release EVPs carrying TF, a major initiator of the coagulation cascade

(Garnier et al, 2012; Gomes et al, 2017; Leal et al, 2017; Tawil et al,

2021). TF seems to be preferentially associated with Exo-L and EVPs

from highly invasive cancer cell lines (Gomes et al, 2017; Zhang

et al, 2018b). Neoadjuvant and adjuvant therapies can increase the

ratio of TF/TF pathway inhibitor in plasma EVPs of patients with

breast cancer, partially explaining the link between chemotherapy

and thrombosis (Aharon et al, 2017). TF-expressing EVPs directly

induce platelet activation and blood clotting ex vivo and can transfer

TF to endothelial cells, increasing their pro-coagulant activity

(Garnier et al, 2012; Gomes et al, 2017; Iyer et al, 2021; Tawil et al,

2021). However, this effect was not observed in patients as demon-

strated by the evidence that TF is not present in EVPs from a wide

range of cancers and tissues, not even in cancer types associated with

the highest risk of thrombosis, such as pancreatic cancer and lung

cancer (Hoshino et al, 2020). These observations suggest the exis-

tence of TF-independent pathways of EVP-induced thrombosis. Fur-

ther research is needed to address this important but understudied

field of cancer research.

Cancer cells are likely not the only source of pro-thrombotic

EVPs. For example, TAM-derived EVPs are enriched in enzymes

and lipid substrates of TXA2 synthesis pathway, which is a major

activator of platelet aggregation (Cianciaruso et al, 2019), suggest-

ing that they contribute to immuno-thrombosis similar to their par-

ent cells. Furthermore, activated platelets are a major source of

blood EVPs, which can be taken up by several cell types, including

other platelets, vascular smooth muscle cells, and endothelial cells

(Heijnen et al, 1999; Srikanthan et al, 2014; Tan et al, 2016; Li et al,

2017c). Platelet-derived EVPs are enriched in TF and PS and lead to

the generation of thrombin in vesicle-free plasma. This effect was

inhibited by incubation with PS-blocking Annexin V, but not with

anti-TF antibody (Tripisciano et al, 2017), further supporting the

notion that TF might not be the main pro-coagulant factor in EVPs.

The release of EVPs by cancer-educated platelets, the protein

expression profile of platelet-derived EVPs, and the role of platelet-

derived EVPs in cancer still need to be determined.

Immune dysregulation

DAMPs include a broad range of factors that are released by dam-

aged or activated cells and that interact with pattern recognition

receptors (PRRs) on immune cells to achieve their activation and

defense response. Just like a wound that does not heal, primary and

metastatic tumors release large amounts of EVPs enriched in differ-

ent DAMPs. Among other DAMPs, dsDNA detected on the surface

of cancer cell-derived EVPs is a potent inducer of immune

responses, including inflammatory responses and type-I interferon

signaling (Thakur et al, 2014; Lou & Pickering, 2018; Wang et al,

2018c; Maire et al, 2021). EVP DNA may induce systemic activation

of STING in DCs, eliciting an anti-tumor response via DC activation

and CD8+ T-cell infiltration, but also may induce the release of pro-

inflammatory cytokines by innate immune cells (Hernandez et al,

2016; Sharma & Johnson, 2020). The release of EVP-associated DNA

by CRC tumors during the course of irinotecan therapy and its

uptake by intestinal macrophages and DCs, followed by activation

of the AIM2 inflammasome, may partially explain the intestinal

damage associated with chemotherapy (Lian et al, 2017). Similar

responses may be achieved by extracellular DNA produced during

the process of NETosis in response to cancer-derived EVPs (Leal

et al, 2017). DAMP proteins, such as versican and galectin 9, have

also been found to be expressed in EVPs from pancreatic and lung

cancer tissue, but not in EVPs from adjacent or distant tissues

(Hoshino et al, 2020). These molecules can trigger secretion of pro-

and anti-inflammatory cytokines by distant immune cells and pro-

mote systemic inflammation and evasion from T cell anti-tumor

activity (Wight et al, 2020; Yang et al, 2021d).

Cachexia

Cancer-associated cachexia is a systemic disorder associated with

body weight loss and unbalanced energy expenditure, which cannot
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be reversed via nutritional intervention (Argiles et al, 2018; Baracos

et al, 2018). Inflammation and metabolic alterations in the skeletal

muscle, liver, gut, and adipose tissues together contribute to the

pathology of this paraneoplastic disorder. EVPs may be important

mediators in the communication between different organs in

cachexia, as suggested by evidence that EVPs from CRC, gastric

cancer, and pancreatic cancer cells induce weight loss and muscle

atrophy in mice (Argiles et al, 2018; Zhang et al, 2019b; Di et al,

2021). The role of EVPs in cancer-induced cachexia is further sup-

ported by the finding that mice harboring tumors and treated with

GW4869 or mice injected with Rab27 knockdown tumors did not

develop muscle wasting (Zhang et al, 2017a; Qiu et al, 2020a).

The metabolic changes occurring in both adipose tissue and mus-

cle are affected by cancer-derived EVPs. To illustrate, white adipose

tissue (WAT) browning is induced by EVPs from colon cancer and

gastric cancer cell lines both in vitro and in mice, and it can be

reversed by inhibiting exosome release via GW4869 (Zhang et al,

2019b; Di et al, 2021). These functions were driven by EVP cargo of

miR-146-5p and ciRS-133, which regulate genes involved in oxygen

and glucose consumption, differentiation, and transcriptomic

changes consistent with WAT browning (Zhang et al, 2019b; Di

et al, 2021). In gastric cancer patients, EVP ciRS-133 was found

enriched more than 120 folds in comparison to healthy controls and

was an independent biomarker of brown adipose tissue mass and

body fat percentage (Zhang et al, 2019b). Lipolysis and adipogene-

sis by adipose tissue-derived MSCs (hAD-MSCs) are also perturbed

in patients with cachexia. Pancreatic cancer EVPs, including those

from patient blood, activate lipolysis of subcutaneous adipocytes via

transfer of the hormone adrenomedullin early on during cancer pro-

gression (Sagar et al, 2016). Lipolysis and cachexia induced by LLC-

derived exosomes were suppressed by GW4869 in vitro and in vivo

(Hu et al, 2018), while A549 lung cancer cell–derived EVPs activate

TGF-b signaling in hAD-MSCs, reducing adipogenic differentiation

and thus contributing to adipose tissue loss (Wang et al, 2017c).

Another aspect of cancer-associated cachexia known to be

affected by EVPs is muscle wasting, associated with degradation of

myofibrillar proteins and changes in muscle metabolism (Fearon

et al, 2012). The transfer of EVP miRNAs from oral squamous carci-

noma cells induces endoplasmic reticulum stress in recipient muscle

cells, resulting in myotube atrophy and apoptosis (Qiu et al, 2020a).

Moreover, EVP-associated Hsp70/90 released by a range of cachexic

tumor types induces myotube catabolism and muscle wasting via

TLR4/p38 MAPK signaling in muscle cells (Zhang et al, 2017a).

Muscle-derived stem cells are also affected by cancer-derived EVPs,

such as in the case of osteosarcoma-derived EVPs that induce Notch

signaling in MDSCs, leading to decreased myogenesis and muscle

atrophy (Mu et al, 2016).

Organ failure

Secondary organ failure is a major cause of death in cancer patients

and is linked to systemic tumor-derived factors and to tissue injury

upon surgery, chemotherapy, or radiotherapy. Acute liver failure is

a common condition in patients at advanced stages of cancer and

can develop in the absence of malignant invasion of the liver (Smith

& James, 1998), suggesting the involvement of distant signaling via

cytokines and EVPs. Hepatic failure can develop following microem-

boli, which can be directly induced by tumor-derived EVPs (Gomes

et al, 2017; Leal et al, 2017), or might be induced by the infiltration

of immune cells in the liver in response to EVP inflammatory and

chemoattractant mediators, such as DAMPs (Hoshino et al, 2020;

Wu et al, 2010). Cardiovascular failure is another major aspect of

cancer at late stage. By inducing thromboembolism, EVPs may con-

tribute to the most fatal aspects of cardiovascular failure. Evidence

also shows that, in patients under immune checkpoint blockade

therapy, EVPs from PD-1 inhibitor-treated macrophages induce car-

diac senescence in cardiomyocytes and may partially explain the

cardiovascular adverse events of immunotherapy (Xia et al, 2020).

The expression profile of serum EVPs from heart failure patients

after transplant differs from patients with no organ rejection, in par-

ticular in terms of proteins involved in inflammation and immunity

(Kennel et al, 2018), further pointing to a role for EVPs in the etiol-

ogy of immune-driven cardiac complications.

EVPs as promising nanotools in oncology

EVPs hold tremendous potential as prognostic and deliverable tools

for the clinical management of cancer. Three major lines of research

are actively pursued and will be the subject of this section. First of

all, the involvement of EVPs in cancer progression and in response

to clinical intervention is reflected in altered EVP levels or EVP car-

goes in blood and tissues of cancer patients. These EVPs collectively

form a reservoir of biomarkers to be mined for early cancer detec-

tion, treatment monitoring, and prognosis of disease development.

Secondly, endogenous and engineered EVPs have been explored as

delivery vehicles for various types of therapeutics and imaging

reagents in animal models. They hold greater potential than conven-

tional nanoparticles such as liposomes due to their low immuno-

genicity and toxicity, unique targeting specificity, which can be

further engineered by expressing specific surface features, and capa-

bility to deliver a variety of therapeutics ranging from drugs, nucleic

acids, to immune adjuvants and imaging molecules. Lastly, we will

review the research effort on targeting the EVP production and

uptake for cancer management. Given the fact that EVPs mediate

the intercellular communication in many fundamental physiological

processes, understanding how to target the production and uptake

of EVPs specifically involved in cancer progression will be critical in

this line of research.

Cancer diagnostic and prognostic biomarkers
Tissue-derived biomarkers

The use of tissue biopsies to analyze the production and content of

EVPs is an important tool in the discovery of cancer biomarkers.

Tumor tissue-derived EVPs in fact have protein expression profiles

that are distinct from adjacent and distant tissues and thus can be

utilized for cancer diagnosis (Figure 4). In the case of pancreatic

cancer, pro-inflammatory mediators, such as S100A13 and periostin,

were exclusively found in tumor-tissue-derived EVPs (Hoshino et al,

2020). Several ubiquitous tissue-derived EVP proteins (e.g., throm-

bospondin and versican) could be used to discriminate tumor tissue

versus non-tumor tissues with 90% sensitivity and 94% specificity,

while other EVP proteins could discriminate between different

tumor types (Hoshino et al, 2020). Among them, EVPs from pancre-

atic cancer tissues were particularly enriched in factors involved in

coagulation and EMT, while lung cancer tissues produced EVPs

enriched in RNA processing proteins, which suggests selective
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packaging or different microenvironmental sources of EVPs in these

two cancer types.

The profile of tissue-derived EVPs is directly related to the com-

position of circulating EVPs. By analyzing the proteome of tissue-

and plasma-derived EVPs of pancreatic and lung cancer patients,

Hoshino and collaborators demonstrated that several protein mark-

ers were present in both tissue-derived and plasma-derived EVPs

and that they were selective for the cancer cell of origin (Hoshino

et al, 2020). In contrast, other proteins were only present in plasma

EVPs. In pancreatic cancer, many proteins restricted to immune cell

lineages were found exclusively expressed in plasma EVPs, suggest-

ing systemic immune dysregulation. EVP size distribution can also

potentially distinguish EVPs derived from tumor cells and other cells

or organs. In NSCLC, pulmonary vein EVPs were smaller than EVPs

from peripheral veins and were associated with a higher risk of

relapse and shorter overall survival (Navarro et al, 2019). It could

be speculated that, during lung cancer progression, tumor-derived

EVPs become enriched in smaller particles, such as exomeres, with

metabolism-reprogramming and tumor-promoting properties. These

findings further underscore the heterogeneity of cell and organ

sources that contribute to the pool of circulating EVPs.

Liquid biopsies

The use of EVPs from bodily fluids as predictive markers of cancer,

cancer type, and stage of disease is of particular importance in the

absence of tissue biopsies and for large-scale screening of the gen-

eral population, providing that the latest Minimal Information for

Studies of Extracellular Vesicles (MISEV) guidelines are met for EVP

preparation, analysis, and reporting (Thery et al, 2018). The use of

EVPs as biomarkers might overcome some limitations associated

with CTCs, including their very low concentration (Pantel & Alix-

Panabieres, 2019). To illustrate, 1 milliliter of plasma from glioblas-

toma patients contains more than 10 billion circulating EVPs and it

has been estimated that at least 1 billion of them are cancer cell-

derived EVPs (Fraser et al, 2019). The high persistence of EVPs in

blood is probably due to the fact that they may evade clearance by

patrolling NK cells and phagocytes in the circulation and thus may

represent a more stable picture of homeostasis. Moreover, EVP

cargo reflects the contents of the cell of origin, including surface

markers and oncogenes, thus allowing to capture the phenotypic

heterogeneity and invasive potential of the primary tumor and aid-

ing in the estimation of metastatic risk. In contrast, no more than

17% of CTCs in peripheral blood have a phenotype consistent with

MICs (Lawson et al, 2015), suggesting that liquid biopsies based on

CTCs may largely miss patients at high risk of metastasis. On a tech-

nical note, EVPs are stable and retain functional activity if stored

frozen for several months and can thus be used in retrospective

studies (Mendt et al, 2018). Finally, prognostic EVP markers may be

more potent than cancer- and CTC-derived biomarkers. Melo and

colleagues showed that EVP glypican-1 could be used to distinguish

samples from healthy controls and from patients with pancreatic

pre-cancerous lesions, allowing for early detection, which is not

achievable with the current CA19-9 PDAC biomarker (Melo et al,

2015). Thus, EVPs can be utilized as bona fide liquid biopsies for

cancer diagnosis and prognosis.

Many studies have highlighted the association between EVP-

based liquid biopsies and disease. Various EVP cargos, including

RNAs (miRNAs, mRNAs, lncRNAs, circRNAs, and tsRNAs), DNA,

proteins, enzymes, glycoproteins (Ko et al, 2018; Chen et al,

2020g), and lipids (Skotland et al, 2017a), are dysregulated in bod-

ily fluids of cancer patients, as summarized in Figure 4. Other

parameters found to be associated with cancer diagnosis and poor

prognosis include increased EVP mRNA or protein (Peinado et al,

2012; Dijkstra et al, 2014), increased absolute EVP numbers (Khar-

mate et al, 2016; Galbo et al, 2017; Navarro et al, 2019; Moloney

et al, 2020), and EVP size (Navarro et al, 2019). Notably, RNA edit-

ing in originating cells was also reflected by EVP cargo. Nigita and

colleagues have shown that the edited forms of three miRNAs, miR-

381-3p, miR-589-3p, and miR-411-5p were dysregulated in EVPs

from patients with lung cancer, despite no changes in their rate of

editing (Nigita et al, 2018). Hoshino and colleagues have recently

characterized the complete proteomic profile of EVPs from plasma

samples of 16 different cancer types and identified predictive pro-

teins, mainly immunoglobulins, overrepresented or downregulated

in cancer-associated EVPs that could discriminate cancer versus

non-cancer or different types of cancers with more than 95% sensi-

tivity and 90% specificity (Hoshino et al, 2020). This large study

has provided evidence of the feasibility and potential use of liquid

biopsy markers for the early diagnosis of cancer of unknown origin,

which might have applications in the large-scale screening of the

general population (Figure 5).

Sequential tumor stages are also associated with specific EVP

markers. To illustrate, stage III and stage IV melanoma patient EVPs

had increasing amounts of tumor cell markers TYRP2 and pro-

metastatic MET/pMET, and patients with stage IV disease had EVPs

with high levels of VLA-4 and HSP70, supporting the value of these

markers for the diagnosis and prognosis of melanoma (Peinado

et al, 2012). In PDAC patient samples, EVP markers, such as

S100A13, periostin, and basigin, could differentiate between various

PDAC stages and distinguish between PDAC and chronic pancreati-

tis with high specificity and selectivity (Jiao et al, 2019; Hoshino

et al, 2020; Yu et al, 2020; Huang et al, 2020a). For example, MIF

has been found to be present at significantly higher levels in EVPs

from patients with PDAC and in mouse models of pancreatic

intraepithelial neoplasia (PanIN) and PDAC relative to healthy con-

trols (Costa-Silva et al, 2015). Preliminary evidence suggests that

▸Figure 4. EVPs contribute to organotropism and pmn formation.

(A) Several EVP surface receptors drive organotropism to different metastatic sites. EVP integrins a6b4 and a6b1 drive lung tropism, integrin b5 drive liver tropism, and

CEMIP drives brain tropism. The determinants of EVP bone tropism are yet not known. The tissue-specific uptake of EVPs promotes pre-metastatic niche formation and

defines organotropism of disseminating tumor cells. (B) EVP uptake by stroma and immune cells at distant sites induces the generation of a favorable pre-metastatic

niches, highly receptive for tumor cell seeding and outgrowth. Endothelial and lymphatic cell proliferation and vascular permeability, recruitment of BMDCs, activation

of resident immune cells, remodeling of ECM, and metabolic reprogramming of fibroblasts and immune cells are the major phenotypical changes associated with pre-

metastatic niche formation. EVPs released by the primary tumor after chemotherapy and radiotherapy are also involved in pre-metastatic niche formation. CEMIP, Cell

migration-inducing and hyaluronan-binding protein; ECM, extracellular matrix.
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metastatic progression could be predicted by EVP markers in

osteosarcoma (Wang et al, 2020f), gastric cancer (Ohzawa et al,

2020), CRC (Teng et al, 2017), oral squamous cell carcinoma

(Li et al, 2019c), and PDAC (Melo et al, 2015). Larger studies are

needed to determine the ability of EVP markers to predict the onset

of metastatic disease or diagnose occult metastasis.

Interestingly, mutated oncogenes have also been detected in

plasma of cancer patients. EGFRvIII, the mutant form of EGFR, was

detected in tumor samples and plasma EVPs from glioblastoma

patients (Skog et al, 2008; Fraser et al, 2019). KRASG12D and

TP53R273H mutated DNAs were specifically detected in EVPs from

the plasma of patients with chronic pancreatitis and PDAC, suggest-

ing early onset of these mutations in the pancreatic microenviron-

ment (Yang et al, 2017b). Similarly, mutant KRAS mRNA (either the

KRASG12D or KRASG12V variant) was found in serum EVPs of patients

with PDAC, but interestingly they were restricted to cancer cell-

derived EVPs expressing glypican-1. Using c-Met expression in

plasma EVPs, Lux and colleagues were able to diagnose PDAC with

a sensitivity of 72.4% and specificity of 89.5% (Lux et al, 2019).

Thus, EVP DNA has the potential to provide clinical information on

the mutational status of the tumor cell of origin and help drive per-

sonalized therapy. Mutated genes or proteins, however, may not be

good targets to predict cancer incidence, as they are not detected in

EVPs from healthy individuals (Yang et al, 2017b).

Measures of therapeutic responses

Therapeutic intervention changes the profile of circulating EVPs

(see Build it up: Cancer promotion). Overall, levels of EVPs markers

are decreased significantly in gastric and breast cancer patients after

surgery, suggesting that they are mostly cancer-derived (Tang et al,

2019a; Zheng et al, 2020a). Similarly, Gumireddy and colleagues

showed that levels of AKAP4+ EVPs decrease after NSCLC resection

but undergo a surge later only in patients experiencing recurrence

(Gumireddy et al, 2015). After chemotherapy, patients with progres-

sive disease had higher levels of expression of EVP markers than

patients with partial or complete responses in CRC (Yang et al,

2018b), breast cancer (Aharon et al, 2017; Tang et al, 2019a), lung

cancer (Yuwen et al, 2017, 2019; Ma et al, 2019b; Zhao et al,

2020d), rectal cancer (Kral et al, 2018), prostate cancer (Khan et al,

2012), ovarian cancer (Yang et al, 2019a), and rhabdomyosarcoma

(Ghamloush et al, 2019). Similarly, circulating EVP numbers and

size increase in patients with CRC and breast cancer after

chemotherapy (Aharon et al, 2017; Bar-Sela et al, 2020). EVP

miRNAs and proteins were also found to be dysregulated in relation

to radiotherapy response in several cancer types, including glioma

(Li et al, 2020f), esophageal squamous cell carcinoma (Luo et al,

2019; Chen et al, 2021c), NSCLC (Dinh et al, 2016), and brain

metastasis (Chen et al, 2021d). Importantly, EVPs may be used as

liquid biopsies to determine the feasibility and efficacy of

immunotherapy. Not only does blood EVP PD-L1 reflect PD-L1 and

CD8+ T cell infiltration in tumors, but the EVP PD-L1 and miRNA

signature in plasma is also informative with respect to PD-L1

expression and efficacy of immunotherapy, especially in NSCLC,

allowing for the selection of patients most likely to benefit from

checkpoint blockade inhibitors (Katakura et al, 2020; Peng et al,

2020; Shimada et al, 2021).

In conclusion, there is emerging evidence that EVP profiles

change in response to therapeutic interventions, with more pro-

nounced alterations in protein and RNA/miRNA levels in response

to chemotherapy and radiation therapy. We could speculate that this

effect is due to either induction of transcriptomic changes in treated

cells (tumor adaptation) or a Darwinian selection of resistant clones,

and thus EVP cargo might provide information of tumor evolution

over the course of therapy (Vendramin et al, 2021). Although the

exact nature, cause, and applicability of this expression change need

to be further determined, we could hypothesize that EVPs might be

employed as liquid biopsies to measure therapeutic readouts that

cannot currently be assessed by conventional imaging methods,

such as presence of occult residual disease or minimal (< 10%)

tumor shrinkage (Martens et al, 2014). Additionally, circulating

EVPs might offer early response prediction within days from treat-

ment onset, instead of at the end of the therapy cycle, allowing for

faster determination of therapeutic strategies and treatment plan

adjustments.

Therapeutic delivery strategies

Advances in nanotechnology have led to the engineering of a new

generation of therapeutics-loaded nanomaterials with improved sta-

bility, tissue penetration, and intracellular targeting compared to tra-

ditional agents (Mitchell et al, 2021). Despite the potential of

engineered nanoparticles to become a new frontier of precision

medicine, some limitations, including clearance, toxicity, and non-

specific distribution, still remain. As a natural vehicle for proteins,

lipids, and nucleic acids, EVPs present a few advantages over other

delivery nanotools. First, EVPs are endowed with very low immuno-

genicity and can deliver cargoes to various cell types at distant sites

without prior clearance by innate immune cells (Lai et al, 2014).

EVP size may matter in this regard, as EVPs are in an optimal size

range to avoid rapid excretion by the kidneys, while being suffi-

ciently small to avoid opsonization and immune cell recognition

(Mitchell et al, 2021). The presence of the “self” marker CD47 and

the exposure of negatively charged lipids (e.g., PS) and proteins on

EVP surfaces may also explain the resistance to phagocytosis

(Kamerkar et al, 2017; Zhang et al, 2018b).

Further, EVPs have a broad tissue biodistribution, including most

hematopoietic organs (i.e., liver, spleen, bone marrow, lymph

nodes), lungs, and kidneys (Lai et al, 2014; Hoshino et al, 2015;

Zhang et al, 2018b). Exomeres preferentially localize to the liver

(Zhang et al, 2018b), but their mechanism of tissue homing needs

to be further investigated. High accumulation in the liver and spleen

has also been observed with engineered nanoparticles (Mitchell

et al, 2021). EVPs can cross the blood–brain barrier after intranasal

▸Figure 5. EVPs serve as biomarkers in cancer.

List of the most recent EVP cargoes found dysregulated in bodily fluids or tissue biopsies in different cancer types. Only EVP biomarkers significantly correlating with

clinicopathological parameters (such as overall survival or relapse-free survival) are shown. Parameters correlating with therapeutic response are indicated. Arrows

denote upregulated or downregulated markers.
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inhalation (Zhuang et al, 2011; Haney et al, 2015), with some limi-

tations, however, due to dosing variability (Mitchell et al, 2021).

Importantly, brain homing can be achieved after intracardiac deliv-

ery of EVPs from brain-tropic cells, which preferentially localize to

endothelial cells and microglia (Hoshino et al, 2015; Rodrigues

et al, 2019), indicating a permeability of the blood–brain barrier to

EVPs that has not yet been observed with engineered nanoparticles

(Mitchell et al, 2021). Thus, EVPs could be particularly useful as

delivery systems for organs with low-permeability physical barriers,

such as the central nervous system and the gastrointestinal tract.

Finally, non-engineered nanoparticle drug carriers become con-

centrated preferentially at certain sites, such as the spleen and liver,

by virtue of an enhanced permeability and retention effect of the

vasculature as well as phagocyte accumulation (Schroeder et al,

2011; Mitchell et al, 2021). In contrast, EVPs have an innate organ

distribution, with integrins being major determinants of their

tropism (Hoshino et al, 2015). Furthermore, these EVP surface inte-

grins and receptors achieve activation of intracellular signaling cas-

cades with potential therapeutic applications (Costa-Silva et al,

2015; Hoshino et al, 2015; Rodrigues et al, 2019).

Altogether, this growing evidence suggests that endogenous or

engineered EVPs represent promising delivery tools for precision

medicine in oncology.

Endogenous EVPs as therapeutic tools

Despite their distinctive tissue homing, cancer cell-derived EVPs are

not desirable therapeutic or delivery tools due to their systemic

effects on oncogenesis, pre-metastatic niche establishment, and

thrombosis. EVPs from other cell sources have been evaluated and

have shown endogenous functions.

MSCs have often been used as a source of therapeutic EVPs due

to their self-renewal and multipotent properties (Gabrilovich &

Nagaraj, 2009). Moreover, MSC-derived EVPs can mimic the regen-

erative and immunosuppressive properties of MSCs, but with

increased tissue permeability due to their smaller size. A growing

body of literature shows promising therapeutic properties of endoge-

nous cargo of adipose-, bone marrow–, or umbilical cord–derived

EVPs from MSCs in ischemic stroke (Xin et al, 2013; Chen et al,

2016a; Huang et al, 2020b; Li et al, 2020b; Zhao et al, 2020e), dia-

betic retinopathy (Safwat et al, 2018; Gu et al, 2020), Alzheimer’s

Disease (Wendeln et al, 2018; Feng et al, 2020), and arthritis (Wu

et al, 2020e). EVPs derived from MSCs ameliorate the severity of

IBD in mice by reducing infiltration of macrophages in colon tissue

and decreasing their expression of pro-inflammatory mediators,

such as TNF- a, IL-1b, and IL-7 (Mao et al, 2017; Ma et al, 2019c).

MSC-derived EVPs prevent development of pulmonary complica-

tions, such as bronchopulmonary dysplasia (Willis et al, 2020).

MSC-derived EVPs can also prevent liver fibrosis by reactivating

HSC autophagy (Qu et al, 2017) and suppressing HSC activation

and collagen deposition (Lou et al, 2017). While a beneficial effect

of MSC-derived EVPs has been identified in these pre-cancerous

conditions, multiple findings have shown a deleterious effect of

these EVPs on cancer progression. In particular, MSC-derived EVPs

from different sources, including cancer-associated MSCs, bone mar-

row aspirates, and adipose tissue, were found to promote cancer cell

proliferation (Roccaro et al, 2013), increase tumor growth in mice

(Roccaro et al, 2013; Vallabhaneni et al, 2015), suppress CD4+ T cell

proliferation (Cheng et al, 2020), promote EMT and migration (Lin

et al, 2013; Gu et al, 2016), support ECM remodeling (Yang et al,

2015b), potentiate angiogenesis (Zhang et al, 2015a), and sustain

chemoresistance (Ji et al, 2015). Conversely, studies on glioma have

reported anti-tumor effects of MSC-derived EVPs, such as a reduc-

tion of tumor cell proliferation and migration (Lee et al, 2013; Xu

et al, 2019a). The nature of this dichotomy is not known. Roccaro

and colleagues proposed that pro-tumorigenic properties could be

restricted to tumor-educated MSCs, while normal MSCs mainly have

anti-tumorigenic effects (Roccaro et al, 2013). Nevertheless, MSC-

derived EVPs, especially from autologous sources, may not be an

ideal candidate for cancer treatment.

Another main issue with MSC-derived EVP isolation is that MSCs

have limited self-renewal capacity and undergo senescence within a

few passages in culture. EVPs from senescent MSCs might have

deleterious properties, including cancer induction (Severino et al,

2013). Different approaches have been employed to avoid MSC

senescence and improve EVP manufacturing, including MSC immor-

talization via lentiviral MYC transduction (Chen et al, 2011), expo-

sure to hypoxia (Gonzalez-King et al, 2017; Zhu et al, 2018a), and

treatment with small-molecule inhibitors (Wang et al,

2020e). Despite successfully increasing EVP release, some of these

approaches were shown to alter the cargo and functional effect of

MSC-derived EVP and thus strategies to improve EVP manufacturing

need to be further evaluated. Among them, the embryonic cell line

HEK293T has been tested for safety and efficacy in preclinical exper-

iments (Liang et al, 2020a), but the role of their endogenous cargo

still needs to be elucidated. Similarly, reticulocytes have been used

to produce EVPs with low immunogenicity as scaffolds for drug and

magnetic particle loading (Blanc et al, 2005; Qi et al, 2016). Finally,

Pan and colleagues have shown high purity and yield of urinary

EVPs for autologous delivery, with more than 3 mg of EVPs per half

liter of urine (Pan et al, 2020).

Immune cells may be another valuable source of EVPs for cancer

management, mainly due to their endogenous anti-inflammatory

and anti-tumor properties, but their applicability entirely depends

on the immune cell source. EVPs from bone marrow-derived macro-

phages reduce hematopoiesis in atherosclerotic mice (Cianciaruso

et al, 2019) and promote an anti-tumor T cell response (Boucharey-

chas et al, 2020) via their cargo of miRNAs and lipid biosynthesis

enzymes. On the contrary, EVPs from M2-polarized macrophages

mediate resistance to cisplatin and apoptosis of gastric cancer cells

via miR-21 delivery and activation of the PI3K/AKT signaling path-

way (Zheng et al, 2017) and thus may not be an ideal tool for

biomolecule delivery. EVPs from Treg cells reduced DSS-induced

IBD in mice by decreased apoptosis of intestinal epithelial cells

through miR-195a-3p transfer (Liao et al, 2020). EVPs from NK cells

also have high potential as therapeutic tools, as they share the same

tumor cytotoxic properties of the producing cells (Lugini et al, 2012;

Shoae-Hassani et al, 2017; Zhu et al, 2017, 2018b). Other advan-

tages of NK cell-derived EVPs also include their selective uptake by

tumor cells, but not by other resting PBMCs, and their selective

homing to tumors in vivo (Lugini et al, 2012; Zhu et al, 2018b). To

overcome the low availability of NK cell EVPs, Zhu and colleagues

designed a novel protocol with a higher efficiency of isolation of NK

EVP mimetics. Finally, further information on the immune proper-

ties of EVPs has been gained by studies on DC-derived exosomes

(Dex). Zitvogel and colleagues were the first to show that Dex from

immature DCs expresses MHC-I and MHC-II complexes and that,
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when mature DCs are exposed to tumor-specific antigens, their EVPs

can halt tumor growth in vivo by inducing CD8+ T cell activation

and immunize the host after a single injection, alone or in conjunc-

tion with adjuvants (Zitvogel et al, 1998; Chaput et al, 2004).

Remarkably, Dex immunization was more effective at controlling

tumor progression than DC adoptive transfer (Zitvogel et al, 1998).

Further work by Thery and colleagues and other groups elucidated

that Dex can activate CD4+ and CD8+ T cells in vivo via autocrine

and paracrine mechanisms, with potential innate anti-tumor effects.

First, Dex from mature DCs, and to a lesser extent immature DCs,

are taken up by other DCs, especially the CD8a� subtype, and B

cells to present EVPs markers on their MHCs and engage CD4+ T cell

activation into effector T cells (Thery et al, 2002; Segura et al,

2005a). Further, MHCs on Dex taken up by DCs work directly as

adjuvant for their antigen-presenting activity (Thery et al, 2002).

Moreover, Dex themselves present peptides to T cells to induce T

cell activation and proliferation, a process also dependent on Dex

expression of ICAM-1 and B7.2 surface proteins (Hwang et al, 2003;

Segura et al, 2005a,b). Lastly, Dex can also prime NK cells via their

cargo of IL-15a and NKG2D ligand, thus eliciting an anti-tumor

immune response (Viaud et al, 2009). Several clinical trials using

DC-derived EVPs as cancer vaccines have been designed, with

increasing levels of T cell responses due to improved Dex manufac-

turing (Lamparski et al, 2002; Escudier et al, 2005; Viaud et al,

2011; Damo et al, 2015).

Finally, EVPs from dietary sources hold great promise as natural

nanoparticles for treatment and delivery. EVPs containing RNA

(miRNA, mRNA, and lncRNA) and proteins are found in the whey

fraction of human and animal milk (Izumi et al, 2015; van Herwij-

nen et al, 2016; Zeng et al, 2019). Milk EVPs are resistant to gastric,

bile, and pancreatic juices, thus contributing to a major portion of

nucleic acids in blood cells and tissues (Baier et al, 2014; Zeng et al,

2019; Wu et al, 2019a), and are well tolerated in vivo upon oral

administration (Arntz et al, 2015; Somiya et al, 2018; Stremmel

et al, 2020). Cow milk may represent the most available and cost-

effective source of EVPs. A number of studies have provided evi-

dence that bovine milk-derived EVPs are taken up by cecal micro-

biota and intestinal cells, where they reduce oxidative stress, and by

immune cells, including human PBMCs (Arntz et al, 2015; Somiya

et al, 2018; Zhou et al, 2019b; Wang et al, 2021c). The endogenous

cargo of milk-derived EVPs was shown to have immunoregulatory

properties by reducing systemic inflammation and preventing the

onset of arthritis and IBD (Arntz et al, 2015; Wu et al, 2019a; Strem-

mel et al, 2020). Importantly, milk EVPs were found to induce acti-

vation of NK cells and CD8+ T cells directly (Komine-Aizawa et al,

2020), suggesting that these EVPs may directly mediate anti-tumor

immune responses. The uptake of EVPs from bovine raw milk was

also observed for several cancer cell lines, including leukemia

(Izumi et al, 2015), colon carcinoma (Wolf et al, 2015), and ovarian

cancer cells (Benmoussa et al, 2020), although further investiga-

tions are necessary to determine the effect of the endogenous cargo

of milk EVPs on cancer progression.

Similar to all other eukaryotes, plant cells are endowed with

MVBs and can release exosome-like vesicles (An et al, 2007). EVPs

have been successfully isolated from the juice of edible plants, such

as carrots, ginger root, grapes, and citrus fruits, including grapefruit,

clementine, and lemon, and contain a cargo of RNAs and proteins

(Mu et al, 2014; Baldini et al, 2018; Stanly et al, 2019). Lemon

juice-derived EVPs have distinctive antioxidant properties on MSCs

due to their naturally occurring cargo of citrate, vitamin C, small

RNAs, and protein transporters (Baldini et al, 2018). Although sur-

face proteins might be altered at low pH in the stomach and intes-

tine, Mu and colleagues showed active uptake of plant-derived EVPs

in intestinal macrophages and stem cells (Mu et al, 2014). In partic-

ular, ginger-derived EVPs induce the synthesis of immunomodula-

tory IL-10 and IL-6 and promote activation of macrophage Nrf2 and

intestinal Wnt/TCF4 pathways, inducing an anti-inflammatory

response in the gut. Although the nature and function of protein

and nucleic acid cargo in plant-derived EVPs need further elucida-

tion, they may represent the new frontier of inter-species deliver-

ables with beneficial innate properties.

Engineered EVPs

Exogenous EVP cargo allows for tissue distribution and cellular

uptake that is not achievable by naturally occurring EVPs or by

unshielded therapeutic agents, making engineered EVPs ideal carri-

ers for cancer therapeutic and imaging agents. Different EVP engi-

neering workflows have been devised for this objective. Autologous

EVPs may represent the best approach to ensure increased targeting

(Liu et al, 2019d), high biocompatibility, and low toxicity, but other

types of EVPs also may be valid alternatives in terms of availability,

cost-effectiveness, and endogenous beneficial properties.

Genetic engineering of EVP-releasing cells allows for enhanced

targeting and bioactive properties of EVPs. Lysosome-associated

membrane glycoprotein 2 (Lamp2) is highly packaged into EV mem-

branes and has been used as part of an expression construct for the

introduction of targeting moieties on EVs. Alvarez-Erviti and col-

leagues were the first group to report the generation of autologous

Dexs engineered to express a fusion construct between the extracel-

lular N-terminus of Lamp2 and peptides binding specific acetyl-

choline receptors in the brain and muscle of mice. These EVs were

found to selectively home to these tissues in vitro and in vivo

(Alvarez-Erviti et al, 2011). Along the same lines, EVPs expressing

CD63-Apo-A1 were found to have increased uptake in liver cancer

cells via interaction of Apo-A1 with their scavenger class B type 1

receptor (Liang et al, 2018), while expression of lipotropic peptide-

TNF-a vectors in EVP-producing cells allows anchorage of TNF-a to

the EVP membrane (Zhuang et al, 2020). Through a similar

approach, other groups have engineered EVPs to express several tar-

geting molecules: RGD peptides specific for aVb3 integrin on breast

cancer and gastric cancer cells (Tian et al, 2014b; Xin et al, 2021;

Gong et al, 2019); Her2-binding antibody mimetics and designed

ankyrin repeated proteins (DARPins) to target Her2+ colorectal and

breast cancer cells, respectively (Gomari et al, 2018; Limoni et al,

2019; Liang et al, 2020a); aminoethylanisamide, a ligand for sigma

receptors in NSCLC (Choi et al, 2018); folic acid that recognizes

folate receptors expressed on tumor cells (Pi et al, 2018; Li et al,

2018f; Feng et al, 2021), and tumor MUC-1-interacting 5TR1

aptamer (Schindler et al, 2019; Bagheri et al, 2020). These EVPs

showed better uptake by cancer cells in vitro and accumulation in

tumors in mice, were well tolerated in vivo, and did not cause any

organ toxicity or hematological or histopathological abnormalities

(Liang et al, 2020a).

EVPs can also be directly decorated with molecules not incorpo-

rated into their membranes. For example, allowing cells to produce

EVPs in the presence of azide-choline drives the incorporation of
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azide groups on membrane lipids of the EVP surface, followed by

conjugation with antibodies for targeted delivery (Nie et al, 2020).

This approach results in the local release of antibodies at low pH

conditions, such as in the acidic tumor microenvironment. EVPs can

be conjugated with PEGylated antibodies for direct cancer antigen

targeting, such as in the case of antibodies against somatostatin

receptor 2 on neuroendocrine tumor cells (Si et al, 2020). Similarly,

EVPs can be coated with Fe3O4 superparamagnetic nanoparticles

coupled with antibodies against A33 antigen, expressed in more

than 95% of CRC biopsies (Li et al, 2018d). Other engineered EVP

products have been reported. Morishita and colleagues successfully

achieved the synthesis of EV particles expressing a fusion product of

exosome-specific lactadherin bound to extracellular streptavidin

(Morishita et al, 2016), which works as a platform for EV coating

with biotinylated DNAs, RNAs, and proteins. Astutely, Pi and col-

leagues devised a workflow to decorate EVPs with nucleic acids,

peptides, or naturally occurring vitamins. Their innovative method

makes use of the arrow-shaped motor packaging RNA (pRNA) of

the bacteriophage phi29 (pRNA-3WJ), engineered to display cancer-

selective ligands, such as folate, selective for folate receptor on

cancer cells, and RNA aptamers of prostate-specific membrane anti-

gen (PSMA) and EGFR. Additionally, cholesterol conjugation to dif-

ferent extremities of the arrow-shaped pRNA-3WJ allows for

different conformations of RNA loading on EVP membranes or par-

tial internalization in the EVP lumen (Pi et al, 2018).

Most intravenously injected tumor cell-derived EVPs are quickly

cleared by macrophages, especially in the liver and spleen (Imai

et al, 2015). To overcome this, genetic engineering of donor cells or

direct EVP manipulation can be employed to improve their circula-

tion half-life. In this regard, the expression of the “do not eat me”

signal CD47 on EVPs results in better tumor distribution and lower

clearance by circulating myeloid cells (Kamerkar et al, 2017; Mendt

et al, 2018; Lv et al, 2020a). Kim and colleagues incorporated PEG

into EVPs as a method to decrease immunogenicity and blood clear-

ance and to add vector moieties to EVPs altogether (Choi et al,

2018).

The targeting ability of EVPs has also been achieved by coupling

them with magnetic nanoparticles, such as superparamagnetic iron

oxide nanoparticles, and driving their tumor infiltration via applica-

tion of a local magnetic field (Li et al, 2018d; Zhuang et al, 2020).

Through a different approach, Qi and colleagues employed the pres-

ence of transferrin receptors on the surface of reticulocyte-derived

EVs, which are produced during maturation of reticulocytes into

erythrocytes, to achieve EV coating with superparamagnetic mag-

netite colloidal nanocrystal clusters (SMCNCs). These SMCNC-

coupled EVs could be directed to hepatoma tumors in mice upon

application of a mild magnetic field (Qi et al, 2016). Similarly, EVPs

loaded with sinoporphyrin sodium could be induced to accumulate

in tumors via guided ultrasound (Liu et al, 2019d).

EVPs as therapeutic carriers

EVPs are naturally occurring carriers of functional genetic informa-

tion and are endowed with low toxicity and broad tissue distribution

in vivo. EVPs show more than 30 times higher cell uptake than

other vectors, such as nanoparticles or liposomes (Kim et al, 2016b;

Pan et al, 2020). Moreover, EVPs are resistant to harsh environmen-

tal conditions, such as low pH in gastric juices and shear stress in

the blood, and it is thus conceivable that they can be employed as

delivery vehicles for drugs, nucleic acids, and imaging agents in

cancer patients. EVPs hold particularly great promise as delivery

vehicles for anti-cancer drugs, especially for compounds with low

solubility. Because of their targeted delivery and their ability to

cross most physical barriers in the body, EVP-encapsulated drugs

have the potential to improve localized treatments while minimizing

side effects from off-target delivery, which is the main limitation of

cancer chemotherapy (Hadla et al, 2016; Schindler et al, 2019).

EVP-loaded chemotherapeutics also have a stronger cytotoxic effect

than free drugs (Saari et al, 2015), providing room for reduced clini-

cal doses. Drug loading has been achieved by incubation and co-

centrifugation of EVPs with drugs, leading to passive surface bind-

ing, EVP permeabilization, or EVP sonication or electroporation in

the presence of soluble drugs, which achieves drug loading inside

the EVP membrane (Tian et al, 2014b; Saari et al, 2015; Kim et al,

2016b; Liang et al, 2020a). Based on these approaches, EVPs from

various cancer or macrophage cell lines have been successfully

loaded with drugs, including doxorubicin (Hadla et al, 2016;

Schindler et al, 2019; Wei et al, 2019; Bagheri et al, 2020; Tian

et al, 2014b; Qi et al, 2016; Kim et al, 2016b; Gomari et al, 2018,

2019; Gong et al, 2019), paclitaxel (Saari et al, 2015; Kim et al,

2016b; Choi et al, 2018; Schindler et al, 2019; Bagheri et al, 2020;

Zhang et al, 2020c), 5-fluorouracil (Liang et al, 2020a), erastin (Yu

et al, 2019a), aspirin (Tran et al, 2019), cisplatin (Li et al, 2020c;

Zhang et al, 2020e), romidepsin (Si et al, 2020), cabazitaxel (Qiu

et al, 2020b), and atorvastatin (Nooshabadi et al, 2020). EVP-bound

drugs were shown to be released into the cell cytoplasm after EVP

endocytosis and caused cancer cell death, with higher efficiency and

lower doses than drugs alone (Saari et al, 2015; Kim et al, 2016b;

Gomari et al, 2019; Yu et al, 2019a). Growth of primary tumors and

lung metastasis in mice was found to be reduced in response to

EVPs loaded with doxorubicin (Tian et al, 2014b; Qi et al, 2016;

Gong et al, 2019; Schindler et al, 2019; Bagheri et al, 2020) and

paclitaxel (Kim et al, 2016b; Choi et al, 2018), respectively. Impor-

tantly, EVPs could be loaded with drug payloads that would be too

toxic in their free form but caused no side effects if selectively deliv-

ered to tumors (Si et al, 2020). More indirectly, EVPs can be loaded

with nanoparticle-carrying drugs or other therapeutic agents, which

makes them functional carriers of membrane-soluble agents. Zhao

and colleagues have reported the generation of breast cancer cell–

derived EVPs encapsulating cationic bovine serum albumin (CBSA)

conjugated with anti-S100A4 siRNA, with EVPs dictating organ dis-

tribution while CBSA served as a non-antigenic and biodegradable

deliverable. These EVPs successfully localized to the lungs of mice

and prevented metastasis formation in a breast cancer mouse model

(Zhao et al, 2020b).

EVPs can also be employed for the sensitization of tumor cells to

other types of chemotherapy, such as sonodynamic and hypother-

mic therapy. Cancer cell-derived EVPs loaded with sinoporphyrin

sodium, an organic sonosensitizer, spontaneously distributed to

homotypic primary and metastatic tumors and simultaneously trig-

gered DVDMS intracellular distribution to mitochondria and induc-

tion of cytotoxic ROS in response to ultrasound. The application of

therapeutic ultrasound further potentiated the cytotoxic effect of

EVP-associated DVDMS, reducing growth of primary and metastatic

tumors (Liu et al, 2019d). Lv and colleagues showed the efficacy of

EVP-thermosensitive liposomal hybrids to localize to metastatic

peritoneal carcinoma and release their cargo of GM-CSF and
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docetaxel in response to localized hypothermia. In turn, the EVP

content inhibited tumor cell proliferation directly (via doxorubicin),

while activating the phagocytic activity of macrophages against

tumor cells and promoting an anti-tumor adaptive immune response

(via GM-CSF) (Lv et al, 2020a).

EVP-encapsulated nucleic acids are more protected from degra-

dation by blood nucleases, ensuring better tissue delivery and

achieving selective organotropism and thus have the potential to

serve as tools for gene therapy delivery. For example, injection of

siRNA encapsulated in Lamp2-ligand-expressing exosomes achieves

a much more restricted tissue distribution than naked siRNA in mice

and effectively depletes targets in recipient cells (Alvarez-Erviti

et al, 2011). Survivin siRNA-loaded EVPs with tumor tropism dic-

tated by surface PSMA aptamer-pRNA-3WJ, EGFR aptamer-pRNA-

3WJ, and folate- pRNA-3WJ abrogated the growth of prostate,

breast, and colorectal cancer, respectively (Pi et al, 2018). Impor-

tantly, EVP siRNA did not induce immune stimulation in vivo and

achieved a level of target silencing comparable to fivefold higher

amounts of naked siRNA. Kamarkar, Mendt and colleagues success-

fully hindered pancreatic cancer development and metastasis by

silencing oncogenic KrasG12D via siRNA and shRNAs loaded into

fibroblast and MSC-derived EVPs and with much higher efficiency

than engineered liposomes (Kamerkar et al, 2017; Mendt et al,

2018). Anti-miRNAs work as traps for endogenous miRNAs

with known pro-cancerous effects. Liang and colleagues used 5-

fluorouracil and anti-miR-21 loaded HEK293T EVPs to induce

expression of tumor-suppressor PTEN, growth arrest, and apoptosis

of colorectal cancer cells, and reduction of tumor growth in vivo,

while anti-miR-21 alone failed to reach a sufficient therapeutic effect

(Liang et al, 2020a). Loading of miRNA-26 on Apo-A1-engineered

EVPs allowed selective silencing of their targets Cyclin E2 and CDK6

and reduced migration and proliferation in liver cancer HepG2 cells

(Liang et al, 2018). Several other miRNAs with anti-tumor functions

were overexpressed in donor cells or directly transfected in EVPs,

leading to their enrichment in EVPs that further induced cancer cell

apoptosis and chemo- and radio-sensitivity, and reduced tumor

growth in vivo (Gong et al, 2019; Pomatto et al, 2019; Liu et al,

2019b; Kobayashi et al, 2020; Konishi et al, 2020; Kulkarni et al,

2020; Yao et al, 2020; Sharif et al, 2021). Nucleic acids were also

loaded into EVPs from dietary sources. Some studies have shown

successful transfection of exogenous miRNA or pro-apoptotic and

oncogene-directed siRNAs into raw bovine milk EVPs and delivery

to cancer cells in vitro and in vivo (Aqil et al, 2019; Tao et al,

2020a; Del Pozo-Acebo et al, 2021; Munagala et al, 2021). In a simi-

lar manner, ginger-derived EVPs were conjugated with cholesterol-

pRNA-3WJ constructs and folic acid to deliver survivin siRNA to

CRC cells expressing folate receptors (Li et al, 2018f). Together,

these reports provide proof-of-principle evidence that engineered

dietary EVPs are a nontoxic and cost-effective delivery tool for ther-

apeutic nucleic acids.

Preclinical studies suggest that EVPs could also be engineered to

induce phagocytosis of tumor cells. HEK293T EVPs overexpressing

signal regulatory protein a (SIRPa) interact with the “don’t eat me”

CD47 signal on tumor cells, thus enhancing tumor cell phagocytosis

in vitro and inhibiting tumor growth in immunocompetent mice.

Both direct macrophage phagocytosis and infiltration of anti-tumor

T cells were observed in tumors from mice treated with SIRPa-EVPs
(Koh et al, 2017). Similarly, RAW264.7-derived EVPs decorated

with anti-CD47 and anti-SIRPa antibodies induced phagocytosis of

4T1 cells via pH-responsive antibody release and reduced tumor

growth in vivo (Nie et al, 2020).

Finally, some studies have demonstrated successful use of

EVPs as immune adjuvants, with potential applications for cancer

immunotherapy. Exosomes from DCs exposed to or expressing

tumor antigens induce T cell activation and anti-tumor immuniza-

tion (Zitvogel et al, 1998; Thery et al, 2002; Segura et al, 2005a;

Lu et al, 2017; Li et al, 2018a). Additionally, by loading murine

melanoma-derived EVPs with immunomodulatory cytosine–guanine

dinucleotide (CpG) DNA, Morishita and colleagues achieved immu-

nization of mice to tumor-specific antigens, protecting them from

tumor initiation, growth, and metastasis. Specifically, CpG-loaded

EVPs activated DCs and induced antigen presentation to T cells, elic-

iting an anti-tumor Th1 response (Morishita et al, 2016). Although

similar results were obtained in response to CpG-conjugated lipo-

somes and nanoparticles co-injected with tumor-associated antigens

(de Jong et al, 2007; Yan et al, 2014a), CpG-loaded cancer EVPs

contain a complete cargo capable of inducing activation and tumor

antigen presentation within the same antigen-presenting cell for

anti-tumor immunization.

EVPs as imaging tools

Engineered EVPs can be used as imaging agents. As discussed previ-

ously, optical imaging of fluorescence- or bioluminescence-labeled

EVPs is an invaluable tool to study EVP functions in preclinical

models, but it has the limitations of rapid photobleaching and low

tissue penetration that render it impractical for clinical imaging.

Instead, positron emission tomography (PET) imaging of EVP-

encapsulated radioactive isotopes, such as 64Cu and 68Ga, allows for

higher sensitivity localization of EVPs in animals (Shi et al, 2019;

Jung et al, 2020). Despite these advantages, nuclear imaging may

have safety limitations due to radionuclide handling and radiation

exposure. Among all the available imaging techniques, intravital

visualization of EVPs encapsulating or coated with superparamag-

netic nanoparticles via magnetic resonance imaging (MRI) and CT

scanning may be the safest (Qi et al, 2016; Li et al, 2018d; Zhuang

et al, 2020; Cohen et al, 2021). Engineering of MSC exosomes to

express a fusion product of membrane lactadherin and ferritin, natu-

rally occurring MRI reporters, allows for exosome tracing in vivo via

MRI imaging (Liu et al, 2020b). Alternatively, near-infrared (NIR)

laser irradiation for cancer imaging has been tested. EVPs labeled

with photoluminescent quantum dots engineered to target cell

nuclei enabled concomitant intratumoral visualization and

hyperthermia-mediated necrosis of tumor cells, due to their pho-

tothermal conversion when irradiated with an NIR laser (Cao et al,

2019). Autologous urinary EVPs were successfully loaded with

nanocomposites of gold nanoparticles and the photosensitizer chlo-

rine e6 to produce passion fruit-like EVPs with low immunogenicity

and high tumor homing and retention. The release of nanoparticle-

chlorine e6 complexes in response to laser irradiation induced ROS

generation and apoptosis of cancer cells (Pan et al, 2020). Through

a different approach, re-assembled EVPs from pancreatic cancer

cells were deprived of internal cargo and loaded with chlorine e6,

enabling the photoacoustic imaging of subcutaneous murine mela-

noma tumors, due to their innate and potent tumor tropism. Simul-

taneously, these EVPs achieved active control of tumor growth by

inducing both production of ROS in tumor cells upon laser
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irradiation and systemic release of macrophage-derived chemoat-

tractants, potentially owing to the transfer of tumor antigens to

antigen-presenting cells (Jang et al, 2021b). Although these experi-

ments were performed using human EVPs injected into mice, which

may achieve a stronger immune response, they provide proof-of-

principle evidence for the application of EVPs to in vivo imaging

and immunostimulation. It is anticipated that, in the future, labeling

EVPs with distinct tropism via these methods will allow visualiza-

tion of different tumor types, pre-metastatic niches, and tumor prog-

nostic features, such as vascular leakiness and dormancy.

Another potential frontier of cancer imaging is the labeling of

endogenous EVPs. Chen and colleagues described the generation of

a hydrogel-gold nanoparticle-based biosensor coupled with tumor-

specific DNA aptamers, such as PSMA found in prostate cancer cells

and EVPs, which could be visualized via surface plasmon resonance

imaging. When incubated with prostate cancer patient serum or cell

conditioned medium, the biosensor allowed the measurement of

cancer cell-derived EVP levels in serum. This biosensor could poten-

tially be applied to the magnetic separation of EVPs from bodily flu-

ids, with possible analytical and therapeutic applications (Chen

et al, 2020e). Further research in EVP-specific prognostic biomark-

ers and probes compatible with intravital EVP imaging will open the

way to a new era of cancer imaging and management, where

labeled EVPs might allow visualization of sites of vascular leakiness

and PMN formation, currently not detectable via conventional clini-

cal imaging.

Prevention of EVP uptake and production for cancer management
Overall, the available data on EVP-mediated cancer progression

highlight the potentially immense utility of targeting EVP secretion

and uptake for cancer treatment. Indeed, multiple studies have pro-

vided in vivo proof-of-principle evidence that interfering with EVP

secretion and uptake reduces tumor growth, impedes metastatic

progression, and inhibits systemic effects of cancer (Figure 2C).

Notably, tumor cell depletion of Rab27 or Ral GTPases attenuated

spontaneous lung metastasis of melanoma and mammary carci-

noma in mice (Bobrie et al, 2012; Peinado et al, 2012; Ghoroghi

et al, 2021). Similarly, treatment with GW4869 decreased tumor

growth (Matsumoto et al, 2017; Richards et al, 2017) and impaired

systemic effects of cancer, namely cachexia, in tumor-bearing mice

(Hu et al, 2018; Qiu et al, 2020a). Conversely, enhancement of EVP

uptake by decreasing 25-hydroxycholesterol, which blocks EVP

internalization, on target cells via genetic deletion of cholesterol 25-

hydroxylase was shown to potentiate spontaneous melanoma

metastasis to the lungs (Ortiz et al, 2019), suggesting that inhibiting

uptake is anti-metastatic.

However, several challenges in effectively targeting EVP biogen-

esis and uptake exist. First, EVPs influence key developmental,

physiological, and homeostatic functions. For example, exosomal

secretion of the transferrin receptor is necessary for maturation of

reticulocytes into erythrocytes (Harding et al, 1983; Pan & John-

stone, 1983). Transfer of exosomes plays an important role in opti-

mizing communication between immune cells (Raposo et al, 1996;

Zitvogel et al, 1998; Th�ery et al, 2002). EVPs also can contribute

to cellular fitness by removing cytotoxic DNA (Takahashi et al,

2017; Yokoi et al, 2019). In addition, many of the molecular medi-

ators of EVP biogenesis serve additional functions, which could

lead to inappropriate inhibition of other pathways upon their

blockade (Jahn & Scheller, 2006; Hurley, 2015; Zhen & Stenmark,

2015). Hence, the biological functions of EVPs and of molecular

regulators of biogenesis raise important questions about systemic

side effects associated with their inhibition. Furthermore, as

detailed above, there are redundant pathways for seemingly all

steps of biogenesis, as well as uptake, which could complicate

effective target selection and pathway inhibition. Development of

EVP-targeted therapies may therefore require a comprehensive

understanding of how such pathways are regulated specifically in

cancer and further interrogation into cancer-associated inducers of

EVP production and uptake may reveal novel targets that can be

safely inhibited.

Interestingly, there have been some investigations into repurpos-

ing already developed drugs for targeting EVP biogenesis or uptake.

Screening of compound libraries has identified multiple candidates,

including the microbial metabolite manumycin A, tipifarnib, neti-

conazole, climbazole, ketoconazole, and triademenol, which all

reduce biogenesis (Datta et al, 2017, 2018). The mechanisms of

action of some of these drugs appear to involve inhibition of Ras-

mediated signaling, which results in reduced levels of biogenesis

mediators, such as Alix, nSMase2, and Rab27. They may therefore

be primarily active in cancer cells compared with normal cells, mak-

ing them attractive candidates for further investigation of preclinical

efficacy in mouse models of metastasis. The statin simvastatin also

was shown to impair EVP biogenesis, and this reduction was associ-

ated with decreased levels of Alix (Kulshreshtha et al, 2019).

Finally, multiple drugs, including the anti-hypertensive drug reser-

pine and the anti-coagulant heparin, can block EVP uptake. Reser-

pine was shown to reduce uptake of cancer-cell-derived EVPs by

non-cancer cells, preventing melanoma metastasis in vivo (Ortiz

et al, 2019). Heparin can impair uptake of EVPs from glioblastoma

and oral squamous cell carcinoma cell lines by other cancer and

non-cancer cells, leading to diminished in vitro tumor cell prolifera-

tion, migration, and invasion and reduced oral squamous cell carci-

noma xenograft tumor growth in vivo (Christianson et al, 2013;

Sento et al, 2016).

In addition to establishing how best to target EVP biogenesis and

uptake, it will also be critical to define when to provide treatments

blocking these pathways. Other common treatments such as

chemotherapy can increase secretion of pro-metastatic EVPs that

enhance pre-metastatic niche formation in the lungs and consequent

breast cancer lung metastasis (Keklikoglou et al, 2019). Thus, tar-

geting EVP biogenesis or uptake in combination with standard ther-

apies against the primary tumor may potentially mitigate pro-

metastatic side effects that could result from therapy-induced EVP

biogenesis. Also, inhibiting EVP uptake using reserpine as an adju-

vant/neoadjuvant therapy in combination with tumor resection was

found to markedly reduce lung metastasis and improve survival of

mice with melanoma tumors, whereas reserpine treatment alone

only had marginal effects on survival (Ortiz et al, 2019). These

results further indicate that targeting EVP-dependent pathways for

metastasis prevention may be most effective in the context of other

standard treatments.

Conclusions and future perspectives
This review has summarized evidence that highlights the multi-

faceted effect of EVPs in cancer initiation, progression, and metasta-

sis. One of the major revolutions in the field is the considerable
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technological advancement in the separation, analysis, and in vivo

tracking of EVPs. This has led to the discovery of a previously unap-

preciated EVP heterogeneity and facilitated the molecular and func-

tional characterization of distinct EVP subsets. As a result, EVP

nomenclature is constantly evolving to fairly encompass and distin-

guish among the various EVP subclasses (Thery et al, 2018). The

improvement of isolation strategies with higher resolution to

remove contaminants and further separate specific EVP subsets is

warranted to enhance the reproducibility and quality of studies

involving EVPs and will further address the relevance of EVP sub-

sets in cancer development. New visualization methods including

super-resolution microscopy and real-time imaging will further

advance our understanding of cargo packaging and biogenesis

mechanisms, opening new avenues for therapeutic intervention,

such as the discovery of more cell-specific and safer druggable tar-

gets of EVP biogenesis. Our knowledge on EVPs from different

sources has also rapidly expanded. EVPs from most tumor cells,

stroma cells, immune cells, microorganisms, and dietary sources

play pivotal roles in cell–cell communication, even between life

domains, during cancer development. In addition to promoting

tumor growth, a major property of EVPs is to travel long distances

via the hematogenous and lymphatic routes in order to shape the

physiology of distant organs with the formation of PMNs and the

induction of systemic effects of cancer. As shown by multiple pre-

clinical studies, tumor-derived EVPs are determinants of organ-

otropic metastasis, making them potential predictive/prognosis

biomarkers and targets for metastasis-preventive therapies.

Research into the organotropic distribution of EVPs has also opened

the way to engineering “designer EVPs,” which can be loaded with

therapeutic or imaging molecules and endowed with the ability to

image pre-metastatic sites, to tailor treatment to a selective organ

site, and to reduce systemic toxicity associated with free drugs in

preclinical models. The introduction of EVPs as therapeutic deliver-

able tools has not reached the clinic, with a few exceptions (Lam-

parski et al, 2002; Escudier et al, 2005; Viaud et al, 2011; Damo

et al, 2015). Further strategy development on the cellular source

and standardization of manufacturing pipelines for EVPs with high

clinical quality are prerequisites for their further therapeutic applica-

tion. Finally, by representing the phenotypic heterogeneity and inva-

sive potential of cells of origin and the effect of therapeutic

intervention in cancer patients, EVPs are among the most promising

sources of liquid biomarkers for cancer detection and therapeutic

response assessment. Standardization of EVP isolation and analysis

pipelines, developing assays with acceptable specificity and sensitiv-

ity, and addressing the reproducibility and rigor of assays in large

patient cohort studies will be necessary to introduce EVP biomark-

ers as diagnostic and prognostic tools in clinical settings.
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