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ABSTRACT: Studies on deep eutectic solvents (DESs), a new
class of “green” solvents, are attracting increasing attention from
researchers, as evidenced by the rapidly growing number of
publications in the literature. One of the main advantages of DESs
is that they are tailor-made solvents, and therefore, the number of
potential DESs is extremely large. It is essential to have
computational methods capable of predicting the physicochemical
properties of DESs, which are needed in many industrial
applications and research. Surface tension is one of the most
important properties required in many applications. In this work,
we report a relatively generalized artificial neural network (ANN)
for predicting the surface tension of DESs. The database used can
be considered comprehensive because it contains 1571 data points
from 133 different DES mixtures in 520 compositions prepared from 18 ions and 63 hydrogen bond donors in a temperature range
of 277−425 K. The ANN model uses molecular parameter inputs derived from the conductor-like screening model for real solvents
(Sσ‑profiles). The training and testing results show that the best performing ANN architecture consisted of two hidden layers with 15
neurons each (9−15−15−1). The proposed ANN was excellent in predicting the surface tension of DESs, as R2 values of 0.986 and
0.977 were obtained for training and testing, respectively, with an overall average absolute relative deviation of 2.20%. The proposed
models represent an initiative to promote the development of robust models capable of predicting the properties of DESs based only
on molecular parameters, leading to savings in investigation time and resources.

1. INTRODUCTION
The chemical industry is highly dependent on organic solvents,
and most of these solvents are harmful, toxic, expensive, and
generate waste residues, which can cause significant damage to
health and safety and contribute to atmospheric pollution.1

Therefore, applying green chemistry and engineering concepts
to more sustainable and environmentally friendly studies
becomes necessary. Consequently, one of the 12 green
chemistry concepts is that baleful solvents must be avoided,
substituted with more sustainable alternatives, or used in
limited quantities. Therefore, many researchers have focused
their attention on developing greener solvents. These solvents
must meet specific conditions to qualify as eco-efficient green
media with characteristics such as biodegradability, recycla-
bility, low price, accessibility, and nontoxicity.2

Due to the aforementioned reasons, research on ionic liquids
(ILs) has accelerated and attracted considerable attention as a
class of green solvents due to their unique physicochemical
characteristics.3 ILs are salts in the liquid state, consisting
mainly of organic cations with organic or inorganic anions with
a low melting point (<373 K). Also, because of their lower
vapor pressure, ILs are recyclable, making them more effective

and environmentally friendly. However, the poor biodegrad-
ability and toxicity of some families of IL remain a challenge
that obstructs their industrial application.4 Another problem
with some ILs is their complex and expensive synthesis
procedure.

To overcome the drawbacks of ILs, deep eutectic solvents
(DESs) have been developed and are considered alternative
green solvents to conventional organic solvents and ILs. Most
DESs are generally inexpensive and simple to prepare from
natural substances that are easily accessible.5 Abbott and his
team reported in 2003 the first DES, where they considered a
eutectic mixture composed of a quaternary salt (choline
chloride) that functions as a hydrogen bond acceptor (HBA)
and urea that functions as a hydrogen bond donor (HBD) in a
molar ratio of (1:2).6 DESs can be defined as a mixture of two
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or more compounds with a melting point lower than the ideal
mixture, where its eutectic point temperature deviates
significantly from the ideal behavior. The depression is created
by strong intermolecular force (H-bond) interactions between
HBD and HBA and, in some cases, by other noncovalent
interactions. DESs have been applied in the literature as an
alternative to traditional solvents in many applications, such as
catalysis, separation, biochemistry, electrochemistry, and nano-
technology. Therefore, understanding the physical properties
of DESs in general and surface tension, in particular, is crucial
to evaluating their feasibility in various applications.

Surface tension (γ) is defined as the tendency of the fluid to
obtain the minimum possible surface area.7 Many experimental
studies have reported on the surface tension of DESs.8

According to their findings, the main factors that affect the
surface tension of DESs are their constituents, the composition
of the mixtures, and the intermolecular interactions between
HBAs and HBDs.8 For example, extremely viscous DESs (such
as choline chloride-based ESs with polyols/sugars) have high
surface tension.9 Nevertheless, obtaining experimental surface
tension data for each DES is time-consuming and expensive
because of the theoretically infinite combinations of HBA/
HBDs and their molar ratios. Thus, the development of
computational models to predict the surface tension of DESs is
essential for their use in various applications.

Table 1 lists the predictive models available in the literature
(to the best of our knowledge) for predicting the surface

tension of DESs. Haghbakhsh et al.10 have developed three
models utilizing a data set including 553 data points from 112
DES compositions. The first model utilizing corresponding
states as inputs (Tc, Pc, Vc, and ω) demonstrated an average
absolute relative deviation (AARD) of 8.80%. In their second
paper, the authors developed another two models using group
contribution and atomic contribution inputs, and their results
showed that the group-contribution-based model performed
the best with an AARD of 7.59%. Cea-Klapp et al.11 predicted
the surface tension of DESs by combining the density gradient
theory with the perturbed-chain statistical associating fluid
theory (PC-SAFT + DGT). Their results showed that an
AARD of 1.26% with a maximum variation of 8% was achieved
for 34 DES compositions with 334 experimental data points.
Also, because their method utilizes the PC-SAFT equation of
state, the surface tension prediction trend for DESs with other

co-solvent mixtures can also be qualitatively captured giving it
an advantage over other approaches. Nonetheless, the method
requires the density data in order to fit the PC-SAFT binary
interaction parameters (kij) for each DES system. More
recently, Khajeh12 developed two multiple linear regression
(MLR) models with one model utilizing descriptors obtained
from the Dragon Software and the other utilizing group
contribution. The database utilized consisted of 126 DES
compositions prepared from 781 experimental data points, and
their results showed that the quantitative structure−property
relationship (QSPR) model outperformed the group con-
tribution model with AARD values of 3.67 and 5.16%,
respectively.

Artificial neural networks (ANNs) have been developed as a
powerful method for modeling complex processes. By applying
experimental data throughout the learning phase, ANNs help
determine the outputs of a system by finding patterns and
interactions within a given data set.14 Numerous reports in the
literature showed the high accuracy of molecular-based ANNs
models for property prediction.15−17 For example, Bagh et al.16

evaluated the applicability of an ANN model to predict the
electrical conductivities of 18 ammonium- and phosphonium-
based DES and reported an AARD of 4.4%. Adeyemi et al.17

developed an ANN bagging model to predict the density of
amine-based DES and reported an R2 value of 0.999 for nine
DES. As for the surface tension property, to the best of our
knowledge, no molecular-based machine learning (ML) model
for predicting the surface tension of DESs has yet been
reported. For the case of Ils, Atashrouz et al.18 predicted the
surface tension of 59 ILs (801 data points) using an ANN
model based on thermodynamic properties (lower boiling
temperature, molar density, critical pressure, acentric factor,
and critical compressibility factor). Their model achieved a
remarkable performance with an AARD of 4.5%. Nonetheless,
as with any modeling technique, ANN also suffer from several
disadvantages such as their tendency to be overfitted, their
high computational requirements, and their low interpretability
that stems from their “black box” nature.19

Due to the critical role that surface tension plays in
identifying the suitability of solvents, especially, in the
operation and design of mass transfer processes such as
extraction, absorption, and distillation,15 in this work, we
develop the first ANN model that can predict the surface
tension of DESs by simply correlating their molecular-level
structure. The inputs of the ANN model are selected to be
Sσ‑profiles, which are molecular-based parameters that can easily
be computed from COSMO-RS “conductor-like screening
model for real solvents”. Sσ‑profiles have previously been used in
ML models such as MLR, support vector machines, genetic
algorithms, and ANNs for their reliability in describing solvents
and their mixtures.20 Also, to ensure that the developed ANN
model is reliable and robust, the database used includes all the
surface tension measurements of DESs published in the
literature to the best of our knowledge up to the time of
writing. Following model development, the ANN model was
then externally validated and also tested through an
applicability domain assessment. A schematic summary of
the method used in this work is shown in Figure 1.

2. METHODS
2.1. Database. In this work, 1571 experimental data points

on surface tension (γ/mN m−1) extracted from 133 different
DES mixtures with 520 compositions prepared from 4 anions,

Table 1. Comparison between the State-of-the-Art Models
in the Literature for Predicting the Surface Tension of
DESsa

year
number
of DESs

data
points method AARD % refs

2020 112 553 CS 8.80 Haghbakhsh et
al.10

2021 112 553 GC, AC 7.59,
7.80

Haghbakhsh et
al.13

2022 34 334 PC-SAFT-DGT 1.26 Cea-Klapp et
al.11

2022 126 781 QSPR, GC 3.67,
5.16

Khajeh et al.12

2022 520 1571 ANN 2.20 this work
aAbbreviations: CS: corresponding states, GC: group contribution,
AC: atomic contribution, PC-SAFT-DGT: perturbed chain statistical
associating fluid theory coupled with density gradient theory, QSPR:
quantitative structure−property relationship, and ANN: artificial
neural network.
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14 cations, and 63 HBDs were used to develop the ANN
model. Table 2 lists the compositions and references of the
DESs used. The data set covers a wide range of surface tension
measurements (17.62−80.68 mN m−1) and temperatures
(277−425 K) for binary and ternary DES compositions.
Note that the data set does not account for the influence of
pressure on the surface tension of DESs because pressure-
dependent experimental data are not widely reported in the
literature. Thus, the pressure has been fixed at 100 kPa for the
data set. Additionally, because water is a critical factor that
influences surface tension, the water content of all DESs was
also considered in the mixture compositions. The experimental
surface tension, DES compositions, temperatures, and
corresponding references are given in full detail in Table S1
in the Supporting Information. Additionally, the surface
tensions of all 520 DES compositions at 298 K are compiled
and summarized in Table S2.

All DESs constituents involved are summarized as follows:
(a) anions (bromide [Br], chloride [Cl], hydrogen sulfate
[HSO4], and bis(trifluoromethylsulfonyl)imide [N-
(SO2CF3)2]); (b) cations (acetylcholine [AcCh], allyltriphe-
nylphosphonium [ATPP], benzyltriphenylphosphonium
[BTP], butylammonium [BA], choline [Ch], N,N-diethylene-
thanolammonium [DEEA], ethylammonium [EA], n-methyl-n-
propylpyrrolidinium [MPPyr], methyltriphenylphosphium
[MTP], N,N-diethylethanolammonium [N-DEEA], propylam-
monium [PA], tetrabutylammonium [TBA], tetraethylammo-
nium [TEA], and tetrapropylammonium [TPA]; (c) HBDs
(1,2-butanediol [1,2-ButOH], 1,3-butanediol [1,3 ButOH],
1,4-butanediol [1,4-ButOH], 2,3-butanediol [2,3-ButOH],
acetic acid [AA], acetamide [Ace], acetone [Act], arginine
[Arg], aspartic acid [AspA], benzilic acid [BenA], betaine
[Bet], borneol [bor], citric acid [CA], capric acid [CaA],
camphor [Cam], caprylic acid [CapA], diethylene glycol
[DEG], diglycolic acid [DGA], ethylene glycol [EG], ethyl
acetate [EtAc], ethanol [Eth], formic acid [FA], iron(III)
chloride [FeCl3], fructose [Fru], 2-furoic acid [FuA], glucose
[Glu], glutamic acid [GluA], glycerol [Gly], glycolic acid
[GlyA], water [H2O], 1,6-hexanediol [HexOH], isopropanol

[IsoOH], lactic acid [LacA], levulinic acid [LevA], maltose
[Mal], malonic acid [MalA], D-(+)-mandelic acid [ManA],
matrine [Mat], n-methyl diethanolamine [MDEA], mono-
ethanolamide [MEA], DL-menthol [Men], methionine [Met],
ninhydrin [Nin], N-methyl acetamide [NMA], oxalic acid
[OA], octanoic acid [OcA], propionic acid [PA], phenylacetic
acid [PAA], paeonol [Pae], 1,3-propanediamine [PDA],
polyethylene glycol 200 [PEG200], polyethylene glycol 400
[PEG400], 1,5-pentanediol [PenOH], phenol [Ph], triethylene
glycol [TEG], 2,2,2-trifluoroacetamide [TFA], thiourea
[ThU], thymol [Thy], trimethyl glycine [TMG], urea [U],
xylitol [Xyl], and finally zinc chloride [ZnCl2].
2.2. Development of the σ-Profiles. The COSMO-RS

theory predicts thermodynamic properties by creating a virtual
conductor around each molecule, where the surface area and
density charge of each formed surface segment are then
calculated, and based on that the σ-profile is determined.62 To
perform the COSMO-RS calculations, building the 3D
molecular structures is the first step in optimizing the ground
state geometry of the molecule. In this work, the calculation of
molecular energy and geometric optimization was carried out
for each molecule using the def-TZVP basis “triple-ζ valence
polarized” and the generalized gradient approximation BP86
“Becke-Perdew 86”.20 Geometrical optimizations were carried
out using Turbomole software (TmoleX version 4.5.1). The
density convergence threshold for the self-consistent field was
set at 10−6 hartree.20 The files obtained for each molecule were
then exported as “COSMO” files and imported into
COSMOThermX 2022. Examples of the 3D structures of the
modeled anions, cations, and HBD molecules using
COSMOThermX are presented in Figure 2. The molecular
polarity is graphically represented by the colors blue and red,
where blue is the positive “hydrogen-donating” polarity
surface, while red represents the negative “hydrogen-accepting”
surface. The green areas characterize neutral or “nonpolar”
molecular surfaces.
2.3. Calculation of the Sσ‑profile Descriptors. Using the

generated molecular surfaces shown in Figure 2, the polarity
distributions (σ-profiles) of the anion, cation, and HBDs were
calculated. The σ-profile of a molecule is a probability
distribution that quantifies the relative probability of a
molecular surface segment having a certain screening charge
density.63 The curves in σ-profile also indicate the concen-
tration of a particular atom in the molecule.64 As a result, the
integrated area under the σ-profile curve may be used to obtain
a description of the surface of a molecule, which is designated
as Sσ‑profiles. The Sσ‑profiles molecular parameter is an a priori
quantum chemistry parameter that characterizes the concen-
tration and type of atoms within a certain σ-range. For more
information on the Sσ‑profiles molecular descriptor, the reader is
directed to the work of Torrecilla et al.64

It should be noted that the accuracy of the developed
models can be substantially increased if the σ-profiles were
partitioned into 51 regions of 0.001 e/Å2 widths as it would
allow for a more detailed description of the molecule,65

however, that would also lead to the development of a very
complex model as a result of having 51 inputs. Therefore, a
comprise should be made between the complexity and the
accuracy of the developed model. Several research groups in
the literature utilized Sσ‑profiles in 6 regions,66 8 regions,67 and
10 regions.68 In our previous work, we have tested several
Sσ‑profiles discretizations in 4, 6, 8, 10, and 12 regions for the
prediction of the pH of DESs using MLR and ANN

Figure 1. Summary of the methodology scheme used in this work.
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Table 2. List of Investigated DESs with Their temperature Range, Experimental Surface Tensions, Number of Data Points, and
Corresponding Referencesa

# abbreviation T/K γ/mN m−1 n refs

DES1 [AcCh][Cl]:U 313 65.10 1 21
DES2 [ATPP][Br]:DEG 298−243 40.86−49.37 30 22
DES3 [ATPP][Br]:TEG 298−243 40.11−48.25 30 23
DES4 [BA][Br]:Gly 298 44.90 1 24
DES5 [BTP][Cl]:DEG 293−353 32.71−66.68 7 25
DES6 [BTP][Cl]:EG 298 66.93 1 26
DES7 [Ch][Cl]:1,2-ButOH 293−311 31.10−34.70 40 27
DES8 [Ch][Cl]:1,3-ButOH 293−311 31.90−40.10 40 27
DES9 [Ch][Cl]:1,4-ButOH 293−311 45.30−47.60 50 27
DES10 [Ch][Cl]:2,3-ButOH 293−311 32.30−35.60 40 27
DES11 [Ch][Cl]:BenA:H2O 333−353 46.90−51.53 5 28
DES12 [Ch][Cl]:CA:H2O 278−338 46.72−70.49 27 29, 30
DES13 [Ch][Cl]:CA 313 60.35 1 31
DES14 [Ch][Cl]:DEG 293−353 34.16−48.40 7 25
DES15 [Ch][Cl]:DGA 303−343 58.30−67.69 5 32
DES16 [Ch][Cl]:EG:H2O 278−338 54.15−56.90 25 33
DES17 [Ch][Cl]:EG 277−298 45.70−51.40 64 27, 34
DES18 [Ch][Cl]:Fru 298−358 59.00−75.00 28 35
DES19 [Ch][Cl]:Glu:H2O 298−338 65.80−78.70 17 36
DES20 [Ch][Cl]:Glu 293−358 68.60−75.00 18 37, 38
DES21 [Ch][Cl]:Gly:H2O 313−333 42.55−56.12 2 30
DES22 [Ch][Cl]:Gly 293−328 45.60−63.70 56 27
DES23 [Ch][Cl]:HexOH 316−334 41.00−43.60 40 27
DES24 [Ch][Cl]:LacA:H2O 313−333 32.02−42.42 2 30
DES25 [Ch][Cl]:LacA 298−338 45.70−48.00 9 39
DES26 [Ch][Cl]:LevA:H2O 298 39.35 1 40
DES27 [Ch][Cl]:Mal:H2O 313−333 37.36−74.49 2 30
DES28 [Ch][Cl]:MalA:H2O 323 57.10−68.20 4 41
DES29 [Ch][Cl]:MalA 298−425 52.30−65.70 3 42
DES30 [Ch][Cl]:MEA 298−358 44.40−49.60 28 43
DES31 [Ch][Cl]:Nin:H2O 308−333 61.02−63.70 6 44
DES32 [Ch][Cl]:OA:H2O 298 60.80 1 45
DES33 [Ch][Cl]:OA 298 75.30 1 46
DES34 [Ch][Cl]:PAA:Act 298 41.86 1 47
DES35 [Ch][Cl]:PEG200:Act 298 22.55−45.56 9 48
DES36 [Ch][Cl]:PEG200:EtAc 298 20.26−43.54 9 48
DES37 [Ch][Cl]:PEG200:Eth 298 20.94−43.15 9 48
DES38 [Ch][Cl]:PEG200:FeCl3:Act 298 22.54−39.97 9 48
DES39 [Ch][Cl]:PEG200:FeCl3:EtAc 298 20.70−41.68 9 48
DES40 [Ch][Cl]:PEG200:FeCl3:Eth 298 21.15−37.45 9 48
DES41 [Ch][Cl]:PEG200:FeCl3:H2O 298 41.46−49.84 9 48
DES42 [Ch][Cl]:PEG200:FeCl3:IsoOH 298 18.18−40.31 9 48
DES43 [Ch][Cl]:PEG200:H2O 298 33.88−34.46 5 48
DES44 [Ch][Cl]:PEG200:H2O 298 45.83−49.21 9 48
DES45 [Ch][Cl]:PEG200:IsoOH 298 19.19−40.05 9 48
DES46 [Ch][Cl]:PEG200 298−353 35.97−55.03 28 49
DES47 [Ch][Cl]:PEG200:FeCl4 298−338 31.32−35.59 5 48
DES48 [Ch][Cl]:PEG400 298−338 43.12−45.62 5 48
DES49 [Ch][Cl]:PenOH 298 47.50 1 45
DES50 [Ch][Cl]:Ph 298 35.46 1 40
DES51 [Ch][Cl]:TFA:H2O 313 35.90 1 21
DES52 [Ch][Cl]:U:H2O 307−337 52.84−74.43 16 50
DES53 [Ch][Cl]:U:H2O 293−425 38.70−57.20 8 51
DES54 [Ch][Cl]:Xyl:H2O 278−338 70.36−80.68 25 29
DES55 [DEEA][Cl]:DEG 293−353 33.67−64.95 7 25
DES56 [EA][Br]:Gly 298 57.60 1 24
DES57 [EA][Cl]:Ace 313 46.30 1 21
DES58 [EA][Cl]:TFA 313 30.10 1 21
DES59 [EA][Cl]:U 313 52.90 1 21
DES60 [MPPyr][N(SO2CF3)2]:EG 298 38.00−38.40 3 34
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Table 2. continued

# abbreviation T/K γ/mN m−1 n refs

DES61 [MTP][Br]:DEG 293−353 29.92−62.74 7 25
DES62 [MTP][Br]:EG 298−328 44.64−51.29 14 15, 38
DES63 [MTP][Br]:Gly 298−328 55.95−59.35 7 38
DES64 [MTP][Br]:MDEA 298−353 39.19−43.06 21 23
DES65 [MTP][Br]:MEA 298−358 44.00−55.30 28 43
DES66 [MTP][Br]:TEG 298−328 47.03−49.85 7 15
DES67 [N-DEEA][Cl]:EG 298−328 44.57−51.29 14 15, 38
DES68 [N-DEEA][Cl]:Gly 298−328 55.16−59.35 14 38
DES69 [N-DEEA][Cl]:TFA 298−328 37.51−40.27 7 15
DES70 [PA][Br]:Gly 298 51.70 1 24
DES71 [TBA][Br]:AA 298 34.50 1 52
DES72 [TBA][Br]:DEG 298−353 32.23−53.50 7 25
DES73 [TBA][Br]:EG 298 53.31 1 26
DES74 [TBA][Br]:FA 298 37.20 1 52
DES75 [TBA][Br]:MalA 298 38.20 1 52
DES76 [TBA][Br]:MEA 298−358 33.20−36.10 28 43
DES77 [TBA][Br]:OA 298 42.70 1 52
DES78 [TBA][Br]:PA 298 32.40 1 52
DES79 [TBA][Cl]:Arg 313−353 35.80−40.40 15 53
DES80 [TBA][Cl]:AspA 313−353 33.90−43.40 15 53
DES81 [TBA][Cl]:GluA 313−353 31.20−39.10 15 53
DES82 [TBA][Cl]:Met 313 41.80 1 53
DES83 [TBA][HSO4]:BA 333−353 38.98−42.60 5 28
DES84 [TBA][ HSO4]:DGA 303−343 42.82−43.89 5 32
DES85 [TBA][ HSO4]:Nin 308−333 38.18−43.23 6 44
DES86 [TEA][Br]:BA 333−353 42.11−52.59 10 28
DES87 [TPA][Br]:EG 303−353 41.91−46.99 18 54
DES88 [TPA][Br]:Gly 303−353 45.77−53.15 18 54
DES89 [TPA][Br]:TEG 303−353 42.07−46.55 18 54
DES90 Bet:CA 293−333 42.90−46.30 5 8
DES91 Glu:Pae:H2O 288−338 62.30−71.30 21 36
DES92 Mat:Pae 303−343 37.88−43.36 27 55
DES93 Men:CaA 298 27.50−29.04 4 56
DES94 Men:CapA 298 29.41 1 56
DES95 Men:OcA 298 28.04 1 57
DES96 Men:OcA 298−333 18.98−26.67 40 58
DES97 PDA:1,4-ButOH 293−318 38.98−46.79 114 59
DES98 PEG200:LacA:Act 298 23.73−43.41 9 48
DES99 PEG200:LacA:EtAc 298 19.93−39.88 9 48
DES100 PEG200:LacA:Eth 298 20.98−42.11 9 48
DES101 PEG200:LacA:H2O 298 44.46−48.40 9 48
DES102 PEG200:LacA:IsoOH 298 18.23−39.61 9 48
DES103 PEG200:NMA 298−338 42.30−45.17 5 48
DES104 PEG200:NMA:Act 298 20.53−40.95 18 48
DES105 PEG200:NMA:EtAc 298 19.66−39.34 18 48
DES106 PEG200:NMA:Eth 298 19.66−40.09 18 48
DES107 PEG200:NMA:H2O 298 39.85−47.40 18 48
DES108 PEG200:NMA:IsoOH 298 17.62−38.60 18 48
DES109 PEG200:NMA 298−338 38.02−44.17 10 48
DES110 PEG200:ThU:Act 298 22.22−44.16 9 48
DES111 PEG200:ThU:EtAc 298 20.33−40.52 9 48
DES112 PEG200:ThU:Eth 298 21.21−41.65 9 48
DES113 PEG200:ThU:H2O 298 45.06−49.98 9 48
DES114 PEG200:ThU:IsoOH 298 18.81−39.64 9 48
DES115 PEG200:ThU 298−338 41.79−45.08 5 48
DES116 PEG400:ThU:Act 298 23.02−44.04 9 48
DES117 PEG400:ThU:EtAc 298 21.46−42.84 9 48
DES118 PEG400:ThU:Eth 298 19.43−43.68 9 48
DES119 PEG400:ThU:H2O 298 36.15−42.12 9 48
DES120 PEG400:ThU:IsoOH 298 18.13−42.12 9 48
DES121 PEG400:bor 298−338 40.70−42.22 5 48
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approaches, and our results showed that an 8-level
discretization of the Sσ‑profile was the best compromise between
accuracy and the number of fitting parameters inputs.
Additionally, the 8-level discretization was found to be
sufficient to effectively represent the polarization influence of
all functional groups constituting the solvent’s structure.20 This
discretization also provides a clear representation of the 3 main
categorical regions; (1) the HBA region, (2) the nonpolar
region, and (3) the HBD region, with each region being further
divided into [S1, S2, and S3], [S4 and S5], and [S6, S7, and S8],
respectively. For example, the HBD region can be considered
as the addition of three regions, where the chemical
information of strong HBD groups is compiled within [S1],

standard HBD groups are compiled within [S2], and weak
HBD groups are compiled within [S3].

Therefore, in this work, an 8-level discretization of the
Sσ‑profiles was also utilized. First, the COSMO files (Figure 2)
were loaded into the BIOVIA COSMOtherm software
(version 2022) to calculate the σ-profiles of all the 81
constituents (anions, cations, and HBD molecules), and then
they were imported into Excel. Then, the Sσ‑profile of each
constituent was then calculated by entering the σ-profile data
into MATLAB and computing the integral under the curves in
each of the 8 distinct regions using the trapz() function.
Thereafter, the Sσ‑profiles of the modeled DESs are then defined
as the molar weighted average of the constituents, which is the

Table 2. continued

# abbreviation T/K γ/mN m−1 n refs

DES122 Thy:CaA 298 31.75 1 56
DES123 Thy:Cam 298 28.43 1 57
DES124 Thy:CapA 298 30.35 1 56
DES125 Thy:FuA 298 29.09 1 57
DES126 TMG:GlyA 298 32.30 1 60
DES127 TMG:ManA 298 55.92 1 60
DES128 TMG:PAA 298 64.50 1 60
DES129 TMG:Ace 298 40.74 1 60
DES130 ZnCl2:EG 293−307 49.04−53.00 6 61
DES131 ZnCl2:HexOH 293−305 53.59−57.90 5 61
DES132 ZnCl2:U 297−303 45.71−49.44 6 61
DES133 ZnCl2:U 296−303 68.80−73.12 4 61

aAll data points were reported at approximately 100 kPa.

Figure 2. Examples of the developed COSMO structures in this work of four representative (a) anions, (b) cations, and (c) HBDs.
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conventional method utilized in the literature.20 The equation
is expressed as follows
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where xHBA and xHBD are the mole fractions of the HBA (anion
+ cation) and the HBD, respectively, while Si is the descriptor
in the region i from 1 to 8 (e/Å2). Table S3 lists the calculated
Sσ‑profile descriptors for the 81 DES constituents investigated in
this work.
2.4. Artificial Neural Network. The ANN model, inspired

by the biological neuron anatomy, is composed of a network of
mathematical functions called “neuron nodes” that relate the
various components and layers of the network together.
Neurons are directly connected through links that go through
an activation function. The activated and deactivated neuron
nodes are collected to create the necessary output response.19

The primary feature of this pattern is to analyze the data and
find patterns and interactions within the data sets.19 ANNs
have been widely used to address various engineering
challenges and are well known for their high accuracy and
robustness in solving complex problems. ANNs may effectively
replace statistical analysis techniques such as autocorrelation,
multivariable regression, trigonometric, and linear regression.69

In this work, the hidden neurons within the neural network
(Hn,p and HHn,p) are defined as follows17
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where tanh is the activation function that binds the neuron
values to a range between −1 and 1 (−1 denotes a deactivated
neuron while 1 denotes an activated neuron), W represents the
weight coefficient of the connection between the input of the
layer and the hidden neuron, b represents the intercept bias of
the hidden neuron, the subscript m represents the number of
the weight coefficient, the subscript n represents the number of
the neuron, the subscript p represents the hidden layers (1 or
2), and Hn,1 and HHn,2 denote the neurons in hidden layer 1
and hidden layer 2, respectively. The final surface tension
output (γ) of the ANN is expressed as follows

= +
=

W HH b( )( )
n 1

N

m n 3 n 2 n 3, , , ,
(4)

In this study, the 8 Sσ‑profiles descriptors and the temperature
in K were selected as the network’s inputs, while the surface
tension of the DESs was chosen as the output. The neural
network toolbox of the John’s Macintosh Project statistical
software (JMP SAS 15) was used to design the fully connected
multilayer perceptron ANN models, where 25% of the training
data set was used for internal cross-validation (271 data
points). The training algorithm used was the Broyden−
Fletcher−Goldfarb−Shanno (BFGS) algorithm. The network’s
learning rate was fixed at 0.1, the number of tours was set to

100,000, and a squared penalty method ( )2
exp pred

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ was

used for optimization. Input normalization was not used, and
the ANN layers were fully connected without using node drop-
out. All other options in the JMP SAS 15 software were kept as
default.
2.5. Applicability Domain. The applicability domain

(AD) is a critical concept in ML, as it enables evaluating the
uncertainty in a molecule’s prediction based on its similarity to
the compounds used in training.70 AD has been widely used in
ML models to detect structural outliers and define the range of
molecules for which the prediction may be considered
accurate. Different techniques have been used to determine
the AD, although the most prevalent is the leverage approach
in which the model is tested based on the leverage value (hi)
for each chemical.70

For example, lower hi values (hi < h*) imply more similarity
to the training set. In contrast, hi values higher than the critical
leverage value (hi > h*) represent molecules that are “different”
from the molecules in the training set, and their prediction may
be perceived as less reliable owing to the high degree of
extrapolation. The leverage value is defined as follows70

= ×h v V V v( )i i
1

i
T T (5)

where vi is a matrix with dimensions of 1 × d* containing the
input parameters, d* denotes the number of inputs in the ANN
model, which is 9 in this work, V is a p × d* matrix where p
denotes the number of experimental data points in training,
and the superscript “T” indicates the transpose of the
matrices.70 The crucial leverage value (h*) is determined
using the formula below70

* =
* +

h
3 d 1

p
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The William plot illustrates a model’s domain of applicability
by plotting the standardized residuals (SDR) versus the
leverage values (hi) of each data point. The SDR boundaries in
the William plot are between −3 < SDR < +3 and 0 < hi < h*.
The SDRs are determined using the following formula20

=
=

SDR

p

pred exp

( )m 1
n 2

pred exp

(7)

where γpred and γexp represent the predicted and the
experimental surface tensions, respectively.

3. RESULTS AND DISCUSSION
3.1. σ-Profiles. The σ-profile of a molecule is a probability

distribution that quantifies the relative probability of a
molecular surface segment having a certain screening charge
density. The σ-profile can be divided into three areas: (1) the
HBA area σ > 0.001 e/Å2; (2) the nonpolar area −0.001 < σ <
0.001 e/Å2; and (3) the HBD area σ < −0.001 e/Å2.20 To
determine the input parameters for the ANN model (Sσ‑profiles),
the σ-profiles of the DES constituents were divided into eight
areas and then by calculating the integral area under the curves.
The Sσ‑profiles can then be classified into five classes depending
on their charges: (1) the strong donor region [S1 and S2], the
weak donor region [S3], the nonpolar region [S4 and S5], the
weak acceptor region [S6], and the strong acceptor region [S7
and S8]. From the 81 modeled DES constituents in this work,
the σ-profiles of four anions, four cations, and four HBDs are
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shown in Figure 3 as representative examples, while the rest of
the Sσ‑profile are listed in Table S3. The charge distribution is
coded in colors: red denotes the HBA area, blue denotes the
HBD area, and green denotes the nonpolar region.

As shown in Figure 3a, most anion peaks are located on the
right-hand side of the curves, indicating the nonpolar [S4 and
S5], and HBA areas [S6, S7, and S8]. Additionally, it can be seen
that the negative charges of the chlorine and bromine ions
provide [Cl]−and [Br]− a much stronger screening charge
density peak than other anions in the S7 region. In Figure 3b,
the peaks of the cations are noticeable on the left-hand side,
covering a large area in the nonpolar [S4 and S5] and HBD [S1,
S2, and S3] regions. It can be seen that [Ch]+ and [EA]+ show
the highest peaks in the [S2] region, indicating their high
positive polarities, while [BTP]+ and [MTP]+ show peaks in
the weak donor region [S3], this is due to the charge
stabilization of the neighboring CH and CH2 groups nearby
their cationic cores, which explains the large peaks in the
nonpolar [S4] region. Moving on to Figure 3c, the σ-profiles of
AA, EG, H2O, and U are illustrated as wide profiles. The
observed peaks are between −0.0015 < σ < 0.0015 e/Å2, which
means that they can exhibit weak HBA and HBD abilities. For
example, the left peaks of EG are due to the partial negative
charge on the oxygen lone pair of electrons, and the right peaks
are due to the positively charged hydrogen. The peak located
around 0 e/Å2 is due to the nonpolar CH2 surfaces of EG.
3.2. Artificial Neural Network. 3.2.1. First Hidden Layer.

Conducting experimental validation of the model’s predicted
values is always necessary. Therefore, to test the performance
of the ANN model in predicting the surface tension of DESs,

the data of the 133 DES mixtures were separated into two
subsets: a training set including 80% of the DESs and a testing
set including the remaining 20%. The testing subset was
selected using the “ordered response” method,71 where the
surface tension values of all DES at 298 K were sorted from
lowest to highest, and then, one of five DESs was selected for
the external testing subset. The advantage of using this method
is that it ensures a meaningful and diverse selection of training
and testing subsets.71 The data division is shown in Table 3.

The performance of an ANN model is highly dependent on
the number of neurons in the hidden layer, which substantially
influences the accuracy and complexity of the developed

Figure 3. Examples of the developed σ-profile in this work of four representative (a) anions, (b) cations, and (c) HBDs.

Table 3. Statistical Parameters for the Developed ANN
Model

training

number of
DESs

93

data points
of DES

1084

DESs
considered

DESs 4, 6−13, 15, 17, 19, 21, 23−28, 30−38, 48−52, 54, 56,
58−59, 62−71, 73−79, 81−82, 84−87, 89−97, 99−101,
105−106, 108, 112−117, and 121−133

testing

number of
DESs

40

data points
of DES

487

DESs
considered

DESs 1−3, 5, 14, 16, 18, 20, 22, 29, 39−47, 53−57, 60−61, 72,
80, 83, 88, 98, 102−104, 107, 109−111, 115, and 118−120
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model.19 A small number of neurons may cause the model to
be underfitted and thus to have low performance on training
and testing data. On the other hand, having a high number of
neurons will cause the model to be overfitted, thus having high
performance on training data but low performance on external
testing data. However, note that there is no direct technique
for selecting the most appropriate architecture (number of
neurons and number of hidden layers), and thus, the most
common method applied in the literature is often through trial
and error. In this section, several network architectures with a
single hidden layer are tested with 5, 10, 15, 20, 25, 30, 35, 40,
45, and 50 neurons, and the results are shown in Figure 4. It

can be seen from the figure that the ANN model with 25
neurons achieved the lowest root-mean-square error (RMSE)
in predicting the surface tension of the testing set with an
RMSE value of 3.69 mN/m.
3.2.2. Second Hidden Layer. To study the effect of adding a

second hidden layer, the number of neurons in the first hidden
layer and the second hidden layer was varied between 10 and
50, with 5−5 as a minimum and 25−25 as the maximum.
Figure 5 shows the values of the training and testing sets for
the RMSE.

It can be seen from Figure 5 that the ANN architecture with
15−15 neurons achieved the lowest RMSE in predicting the

surface tension of the testing set with an RMSE value of
approximately 1.87 mN/m, which is substantially lower than
that of the optimal 1-hidden layer model with 25 neurons
model that achieved an RMSE of 3.69. Therefore, it was
concluded that the optimal architecture in predicting the given
data set is 9−15−15−1, which is schematically presented in
Figure 6. The slope weight coefficients and biases of each
neuron for the developed model are available in Table S4.

3.2.3. Input Importance. To verify the importance of the 8
Sσ‑profiles descriptors, the temperature, and their effect on the
surface tension, a relative contribution analysis was performed
using the “predictor screening” function in the JMP SAS
software. The influence of each input on the surface tension is
indicated by the sign, where a positive sign indicates that
increasing this input variable increases the surface tension,
while a negative sign indicates that increasing this input
variable causes the surface tension to decrease. Figure 7
presents the relative contribution of the 8 Sσ‑profiles descriptors
and the temperature to the surface tension of the DESs.

Figure 4. Effect of the number of hidden neurons on the model’s
RMSE.

Figure 5. Contour plot of the effect of the number of neurons in layers 1 and 2 on the RMSE for (a) training and (b) testing.

Figure 6. Schematic diagram of the best performing ANN model with
a 9−15−15−1 configuration.
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It can be seen from the figure that the most important
descriptors are S2, S3, S4, S5, and S7 as they have the largest
contributions, while S1, S6, and S8 have much lower
contributions. It can also be seen that the non-neutral surfaces
pertaining to the HBD [S1, S2, and S3] and the HBA [S6, S7,
and S8] regions tend to increase the surface tension of the
DES, while the neutral surfaces [S4 and S5] have a negative
effect on the surface tension. As for the effect of temperature, it
can be seen that an increase in temperature tends to decrease
the surface tension of the DESs. This result is in accordance
with other studies reported in the literature.28,48,49,55,58,59 This
could be attributed to the accompanying increase in kinetic
energy between the molecules, which in turn weakens the DES
intermolecular interactions.
3.3. Model Evaluation. 3.3.1. Training and Testing of

the ANN Model. Figure 8 illustrates a comparison of the
experimental and predicted surface tension values in both
training and testing. Additionally, the model’s statistical
parameters, including RMSE, regression coefficient (R2),
average standard deviation (SDavg), and AARD are listed in
Table 4.

As shown in Figure 8a, the training set predictions are
largely similar to those for the experimental set, with an R2

value of 0.986. In the case of the testing subset shown in Figure
8b, it can be seen that the predictions still have a narrow range
scattering around the diagonal line with an R2 of 0.977,
indicating that the predictions for the external DESs have an

acceptable error. The R2 and AARD for the total data set
(including training and testing) are 0.983 and 2.20%,
respectively, which can be considered reliable and satisfactory.
The other statistical parameters for both the training and the
testing subsets are listed in Table 4. To further check that the
ANN is not correlated by chance, the y-scrambling method70

has been used, where the experimental data were modified by
randomly reordering the surface tension values, and then a new
9−15−15−1 model was developed for the randomly sorted
response. As can be seen in Table 4, low values of the y-
scrambling regression coefficient (Rscramble

2) indicate that the
ANN is not correlated by chance.

The residual plot was used to analyze the model accuracy for
further model evaluation. Figure 9 shows the remarkable
performance of the proposed model in predicting the surface
tension of DESs, where the majority of the residuals were in a
range of ±5 mN m−1, with an overall SDavg of ±0.627. Based
on these findings, it can be concluded that the developed ANN
model can adequately predict the surface tension of DESs with
an acceptable error.
3.3.2. Applicability Domain. An essential feature of any

model is to predict the modeled property of external DESs
reliably, and thus an accurate evaluation of a model’s true
predictive capability is crucial. To verify the applicability of
external DESs, the AD of an ANN model can be tested using
both the leverage (hi) and SDRs method. The Williams plot for
each data point is shown in Figure 10, where the AD limits are

Figure 7. Relative contributions of the input parameters for the
developed ANN model.

Figure 8. Parity graph of experimental and predicted surface tension values of the ANN model in (a) training and (b) testing.

Table 4. Statistical Parameters for the Developed ANN
Model

training

Rtraining
2 0.986

Rscramble
2 0.058

RMSE (γ/mN m−1) 1.464
SDavg (γ/mN m−1) ±0.385
AARD 1.43%
ADcoverage 96.9%

testing

Rtesting
2 0.977

Rscramble
2 0.073

RMSE (γ/mN m−1) 1.873
SDavg (γ/mN m−1) ±0.869
AARD 3.04%
ADcoverage 96.6%
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as follows: 0 < hi < h* = 0.03 for the x-axis and −3 < SDR < +3
for the y-axis.70

As can be observed, almost all DESs in the external testing
set of the ANN model were within the AD limits, as the
ADcoverage in the testing was determined to be 96.6% of all data
points. However, the predictions of a few DESs in training and
testing at various exception temperatures were considered
response and structural outliers because they had a leverage
value higher than h*, or SDRs greater than three limits.
However, these outliers only account for less than 4% of the
total data points. Overall, the results of the AD evaluation
suggest that the developed ANN demonstrates ample robust-
ness and generalizability due to its large AD and structural
coverage, which is a consequence of the 520 DES
compositions included in the development of the ANN.

4. CONCLUSIONS
The demand for computational methods capable of predicting
the physicochemical properties of solvents for screening
purposes is rapidly increasing, particularly given the theatrically
infinite nature of designer solvents, such as DESs. This work
presents an ANN model for predicting the surface tension of
DESs. To ensure that the developed ANN is reliable and
robust, a database was used that, to the best of our knowledge,
contains all surface tension measurements of DESs reported in
the literature. The data set includes 1571 points from 133
different DES mixtures with 520 different compositions and
temperatures prepared from 4 anions, 14 cations, and 63

HBDs. The ANN uses molecular-based parameters as inputs,
easily obtained from COSMO-RS (Sσ‑profiles), and does not
require the input of experimental data into the model. Based
on the external testing results, the optimal ANN architecture
was determined to be two hidden layers with 15 neurons in
each layer (9−15−15−1 configuration). The ANN model
demonstrated high performance in both training and testing,
with an AARD of 1.43% in training and 3.04% in testing. The
ANN model also demonstrated a wide domain of applicability
covering a large range of DES molecular structures. In
summary, the statistical performance of the model indicates
that the surface tension predictions can be considered reliable
and can be used to estimate the surface tension of DESs in the
absence of experimental data.
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