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Abstract

The efficacy of deep brain stimulation (DBS) depends on electrode placement accuracy, which 

can be jeopardized by brain shift due to burr hole and dura opening during surgery. Brain 

shift violates assumed rigid alignment between preoperative image and intraoperative anatomy, 

negatively impacting therapy.

Objective: This study presents a deformation-atlas biomechanical model-based approach to 

address shift.

Methods: Six patients, who underwent interventional magnetic resonance (iMR) image-guided 

DBS burr hole surgery, were studied. A patient-specific model was employed under varying 

surgical conditions, generating a collection of possible intraoperative shift estimations or a 

‘deformation atlas.’ An inverse problem was driven by sparse measurements derived from iMR to 

determine an optimal fit of solutions of the atlas. This fit was then used to obtain a volumetric 

deformation field, which was utilized to update preoperative MR and estimate shift at surgical 

target region localized on iMR. Model performance was examined by quantitatively comparing 

intraoperative subsurface measurements to their model-predicted counterparts, and qualitatively 

comparing iMR, preoperative MR, and model updated MR. A nonrigid image registration was 

introduced as a comparator.

Results: Model-based approach reduced general parenchyma shift from 8.2±2.2 to 2.7±1.1 

mm (~66.8% correction), and produced updated MR with better agreement to iMR than that of 

preoperative MR. The average model estimated shift at target region was 1.2 mm.
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Conclusions: This study demonstrates the feasibility of a model-based shift correction strategy 

in DBS surgery with only sparse data.

Significance: The developed strategy has the potential to complement and/or enhance current 

clinical approaches in addressing shift.

Index Terms—

Brain shift; computational modeling; deep brain stimulation; image-guided neurosurgery

I. Introduction

The quality of deep brain stimulation (DBS) therapy is highly dependent on the accurate 

placement of electrode contacts into the region of interest, e.g. subthalamic nucleus 

(STN), a common target structure for Parkinson’s disease (PD). This task is particularly 

challenging considering the size of DBS target structure (e.g. the STN is ~6×4×5 mm) 

and the dimensions of the DBS electrodes (e.g. length and diameter of electrode contacts 

of Medtronic 3389 (Medtronic Inc., Minneapolis, MN, USA) are 1.5 and 1.27 mm 

respectively) [1, 2]. Accurate placement of electrodes is critical in achieving effective 

therapy: Balachandran et al. indicated that modulation treatment may be rendered ineffective 

due to misplacement of electrodes by 3–4 mm; Anderson et al. and McClelland et al. 

similarly argued that mistargeting of greater than 3 mm would significantly and negatively 

impact the clinical efficacy of DBS therapy [2–4]. While Ivan et al. further suggested 

misplacement by as little as 2 mm can cause inadequate treatment and poor outcome; 

similarly in Kremer et al., where intraoperative CT (iCT) was utilized for the verification 

of DBS electrode position, lead repositioning was performed if a deviation of greater than 

2 mm from intended target was detected [5, 6]. Moreover, accurate targeting can aid and 

facilitate achieving optimal postoperative programming to minimize side effects and prolong 

battery life (e.g. reducing the need for higher current to compensate for suboptimal lead 

placement), potentially reducing the frequency of battery replacement surgery [2, 3].

Compounding the challenge of accurate electrode placement is brain shift, which is 

introduced by burr hole (small craniotomy ~14-mm in size) and dura opening during surgery 

[5]. Brain shift compromises the spatial alignment between the preoperative imaging data, 

which are used for surgical planning, targeting and navigation, and intraoperative patient 

anatomy. Previously groups have observed brain shift in DBS burr hole surgery: Winkler 

et al. reported brain shift of 2 mm in the STN (n=1) [7]; Khan et al. observed average 

displacement of 1.8 and 1.6 mm at anterior commissure (AC) and posterior commissure 

(PC), respectively, and up to 4 mm in deep brain structures (n=25) [8]; Elias et al. found 

7.6% of patients with AC shift over 2 mm and 13.6% with AC shift over 1.5 mm (n=66) 

[9]. Most of the above and similar studies used preop- and postop-magnetic resonance (MR) 

images to estimate shift of critical deep brain structures. Intraoperative shift estimation was 

achieved in a comprehensive study by Ivan et al. via interventional MR (iMR) [5]. The study 

found shift ranging 0.0–10.1 mm (n=44) with the greatest shift in the frontal lobe; the study 

also found 9% of patients with shift over 2 mm in deep brain structures and 20% with shift 

1–2 mm [5]. An additional finding shared among these studies was that the majority of shift 

was in the direction of gravity.
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The potential detrimental impact of brain shift is typically confronted clinically by 

two approaches, namely microelectrode recording (MER)-assistance or iMR-guidance. 

Awake-MER assisted procedure is a widely used technique and is considered the gold 

standard. However, MER requires: (i) prior to surgery, patients must be off medication, 

which negatively affects their ability to tolerate the procedure; (ii) during surgery, patient 

participation is required, thus limiting treatment availability to those who cannot tolerate 

such distress [10, 11]; (iii) MER can involve multiple electrode passes to optimize lead 

placement, and an increased number of passes has shown to increase the risk of intracranial 

hemorrhage and other complications [10–12]. These deficiencies of MER are addressed 

in iMR-guided procedures where direct target visualization and brain shift monitoring are 

possible with patients under general anesthesia [10, 13]. However, burdens associated with 

cost, training and workflow posed by iMR must be considered.

An alternative approach, albeit less explored, to address brain shift in DBS burr hole 

surgery is to employ a biomechanical model-based method. Model-based approaches that 

leverage sparse data obtained via low-cost and convenient intraoperative instrumentation 

to account for deforming neuroanatomy, if accurate, could complement and/or reduce the 

reliance on current clinical approaches (e.g. for centers without iMR-guidance systems) 

while overcoming the above deficiencies without disrupting existing clinical infrastructure 

or workflow.

Efforts to employ model-based brain shift correction strategy in DBS are limited. Early 

work was reported by Bilger et al., where brain shift due to cerebrospinal fluid (CSF) 

loss was simulated [14]. The later work of Bilger et al. was then further developed in 

Hamze et al. for DBS trajectory planning with a linear stress and strain description of 

the brain [15, 16]. Independently from the group above, model-based approach proposed 

by Bennion et al. attempted to consider different material models for different structures 

such as dural septa and ventricles [14–17]. However, these studies suffered from the same 

limitation: the lack of realistic in vivo patient data for validation, as they largely focused 

on the feasibility of forward model solution, or preliminary validation with limited synthetic/

simulated data [14–17]. Recent work using preoperative MR and iMR in [18], and preop- 

and postop-computed tomography (CT) in [19], both used model-based approaches in a 

single patient to investigate shift compensation in DBS. The results provided in both studies 

showed promise for a model-based approach. It should be noted the former in [18] is a 

preliminary version of this work with one patient presented at SPIE Medical Imaging 2018.

Here we further developed and examined a model-based shift correction strategy in 6 

patients who underwent iMR-guided DBS surgery. These patients were considered as 

having experienced significant asymmetric shift, both observed clinically and measured 

by high fidelity iMR data. While the construction of the finite element model in the 

proposed approach relies solely on the preoperative MR without the dependency of iMR, 

the aforementioned iMR imaging data afforded the comparison between iMR measured 

shift (considered gold standard measurements) and corresponding model predicted shift, 

specifically here, model performance was retrospectively examined: (i) quantitatively by 

comparing intraoperative subsurface general parenchyma shift measurements to their model-
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predicted counterparts, and (ii) qualitatively by comparing iMR, preoperative MR, and 

model updated MR.

The objective of this study is to demonstrate the feasibility of a model-based shift correction 

strategy for DBS surgery using only sparse data, which would enable possible intraoperative 

deployment of the method, and provide a model updated MR that more accurately represents 

the intraoperative patient anatomy to aid surgical navigation and targeting, as well as direct 

visualization.

II. Methodology

A. Data

Six patients who underwent iMR-guided DBS burr hole surgery at University of California, 

San Francisco (UCSF) and experienced significant asymmetric brain shift were studied. 

Preoperative and iMR imaging volumes were acquired with patient consent and IRB 

approval. The specifications of the imaging data are shown in Table I. The details of the 

surgical procedure may be found in [5].

Here case 1 was a unilateral implantation while the remaining five cases were bilateral. It 

should also be noted here that preoperative MR and iMR imaging data were acquired with 

the patient’s head immobilized in a head frame and with no patient or table movement 

between image acquisitions.

An example of the acquired data is shown in Fig. 1, where significant asymmetric shift is 

readily observable. Moreover, the corresponding crosshairs indicate subsurface deformation 

occurring at the lateral ventricle. Midline shift is also observed. Here it should be noted 

that the insertion path of the electrode leads and resultant imaging artifacts are visible (red 

arrows) on the iMR imaging volume.

B. Biomechanical Model-based Deformation Atlas

Fundamental to the developed deformation-atlas model-based approach is the construction 

of patient-specific finite element (FE) biomechanical model and the appropriate boundary 

condition assignment that reflects the understanding of the physics of shift phenomenon in 

DBS burr hole surgery.

To construct the biomechanical model, patient brain volume was manually segmented from 

the preoperative MR image. A surface was then extracted from the segmented brain via 

a marching cubes algorithm. The surface mesh was provided to a custom-build mesh 

generator to obtain a volumetric tetrahedral mesh [20]. An atlas brain volume was rigidly 

and nonrigidly registered to the patient image [21]. Subsequently the rigid and nonrigid 

transformations were applied to the brain stem, falx and tentorium segmented from the 

atlas image to obtain patient specific representations of these structures, shown in Fig. 2(a) 

[21–24]. Once patient specific FE mesh was obtained, displacement and pressure boundary 

conditions were assigned based on an algorithm developed and tested in previous work for 

tumor surgery but significantly modified to the unique nature of shift in DBS herein [18, 

24–27].
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Specifically, previous reports have observed and hypothesized that contributing factors to 

brain shift in DBS, in particular asymmetric shift, are gravity, CSF loss and intracranial 

air invasion or pneumocephalus [5, 8, 28–32]. In the model-based approach reported here, 

displacement and pressure boundary conditions were designated: (i) brain surface above 

a preset level was stress free (i.e. freely deforming); (ii) brain stem region was fixed 

in displacement; (iii) the rest of brain surface and tentorium were given slip conditions 

(tangential movement allowed but no normal motion); (iv) nodes above a fluid drainage level 

had a defined pressure reference value and below had a Neumann condition, i.e. no drainage 

allowed. Material properties used in the model may be found in [24].

To accommodate the unique shift phenomenon in DBS, the following conditions were also 

prescribed: (i) to simulate asymmetric shift, CSF loss was also modeled in an asymmetric 

manner, i.e. one hemisphere was fully saturated. Furthermore, in the biphasic biomechanical 

model employed here [33], CSF loss precipitates brain tissue sag, i.e. CSF loss decreases 

buoyancy, thus causing the brain tissue to sag due to gravity. (ii) With the observation of 

ventricular shape change (e.g. in Fig. 1, specifically hemispheric asymmetric deformation), 

additional boundary descriptions were given to the ventricle. The lateral ventricle was 

segmented from preoperative MR and modeled as a void and further divided into four 

segments spatially, shown in different colors in Fig 2. Different assigned Dirichlet pressure 

conditions (direct pressure values that are specified) [34] were considered for these segments 

in order to describe an apparent presence of a pressure gradient due to pneumocephalus. 

(iii) Based on previous studies, it has been suggested that material properties near/of 

the lateral ventricle warrant additional consideration, therefore the elements surrounding 

the structure of the lateral ventricle in the FE mesh were determined and given a stiffer 

material property [17, 35]. (iv) While our previous protocol had assigned slip displacement 

boundary condition to falx [18, 24], such assignment would prevent movement in the 

normal direction, thus disabling the model to recover midline shift such as observed in 

Fig. 1. However entirely removing this constraint is also unreasonable due to the natural 

structural integrity presented by the falx [26]. To reconcile, elements surrounding the 

patient-specific falx representation were determined and given stiffer material property, thus 

allowing normal motion yet offering resistance due to falx structure similar to [36]. To 

supplement the descriptions of the above steps in boundary condition generation, a sample 

of the boundary conditions deployed is shown in Fig. 2(b)–(d), where Fig. 2 (b) depicts 

displacement boundary condition: green represents stress free condition, black represents 

slip condition and red or brain stem region has fixed displacement. Fig. 2(c) describes fluid 

drainage, specifically asymmetric drainage simulated in the model where orange represents 

the tissue submerged in CSF. Fig. 2(d) depicts pressure boundary condition, where dark 

green represents the reference pressure, black represents no drainage condition, lastly four 

segments of the ventricle (illustrated in different colors of neon green, pink, blue and red 

corresponding to Fig. 2(a)) are given additional Dirichlet pressure considerations described 

previously.

With the aforementioned modifications, a DBS-specific model-based approach that accounts 

for neuroanatomical constraints, gravity, asymmetric CSF loss, and pneumocephalus 

interaction was realized. The deformation-atlas approach calls for a collection of possible 

intraoperative shift solutions reflecting systematically varying surgical conditions. Thus 
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here, 3 different CSF drainage levels and 21 CSF fluid configurations, as well as 5 modestly 

varied head configurations relative to gravity were created assuming the patient was in 

supine position (i.e. direction of gravity shown as the blue vector in Fig. 2) [5]. Additionally, 

for the ipsilateral ventricle associated with asymmetric shift, the ventricle was separated into 

two segments. Each segmental partition was assigned a Dirichlet pressure condition with 

3 different possible nonzero pressure levels considered. Given the combinations available, 

this provided a total of 9 pressure configurations in the solution distribution. With respect 

to the two segments associated with the contralateral ventricle, both were given pressure 

value of zero. To some degree, the absolute pressure values are secondary to the proposed 

established gradient due to the pneumocephalus. The prescribed gradients however reflected 

ranges within 7.5 mmHg.

Finally, with conditions reflecting the aforementioned configurations defined, specifically 

a total of 2835 biophysical driving states, a biphasic biomechanical model was driven to 

resolve the volumetric displacement field for each configuration; collectively the solutions 

form the deformation atlas. While the duration of this pre-computing phase (i.e. deformation 

atlas construction) varies based on numerous factors such as mesh size, on average the time 

to generate such deformation atlas was ~ 4 hours.

C. Inverse Problem Approach

An inverse problem approach was employed to estimate intraoperative brain shift. 

Specifically in (1), the objective function is designed to minimize the difference between 

the sparse intraoperative shift measurement and the optimized model prediction (i.e. a linear 

combination of the deformation atlas obtained above) in a least-squared manner [37]:min

min Mw − u 2∃ wi ≥ 0 and ∑i = 1
n wi ≤ 1 (1)

where M is an m×n deformation atlas (m represents the number of measurement points, 

and n is the total number of solutions in the deformation atlas), w are the combinatory 

coefficients, and u are the measured intraoperative displacements. Here constraints on 

the coefficients safeguard reasonable prediction and prevent extrapolation outside of the 

represented atlas.

In this study, the sparse intraoperative measurement used to drive the inverse problem was 

derived from iMR data, i.e. homologous surface and subsurface points were designated on 

preoperative and iMR images (e.g. in Fig 3) in a process similar to [27, 38]. In particular, 

corresponding discernible subsurface features in Fig. 3(a) and (b) were found in the anterior 

frontal lobe on the ipsilateral side at various depths on preoperative MR and iMR. An 

example of the distribution of designated subsurface points is shown as red points in Fig. 

3(c). Fig. 3(c) also illustrates the spatial relations of these points to the approximated 

surgical target region, i.e. electrode implant, shown as the blue point, localized via iMR and 

a process explained in details later.

The number of designated surface and subsurface points used for this study is summarized in 

Table II.
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The rationale for the use of surface and subsurface sparse data, instead of the whole iMR 

dataset, is twofold: (i) while we have previously demonstrated the ability to collect inverse 

problem driving data without significantly disrupting workflow [24, 39, 40], it is always 

desirable to reduce the quantity of data needed to drive the model in order to minimize 

workflow-related burdens posed by the model-based approach; and (ii) the small size of burr 

hole impedes the ability to use surface data in the operating room (OR), an input source 

that most model-based methods rely on, therefore subsurface input was also used here 

in anticipation of a data acquisition approach that would provide subsurface information 

without presenting the cost and workflow burdens of iMR, i.e. a transcranial or burr hole 

ultrasound (US) driven approach.

The utilization of subsurface data however required modification to the inverse problem 

approach used previously, which was driven exclusively by surface data [24, 27, 39]. 

Specifically, in the fitting process of previous work, the optimization constructed the M 

matrix in (1) based on the mesh nodes closest to the measurement points. If such approach 

were used for subsurface measurement points, the model’s predictive accuracy would be 

impacted by the mesh resolution. The magnitude and trajectory of measured shift could 

be affected in the process of finding the closest mesh node to a measurement point. Thus, 

a new implementation of the inverse problem to accommodate input data of both surface 

and subsurface measurements was created. This new approach centers around constructing 

the M matrix in (1) at the measurement point instead of the closest mesh node. To 

achieve: (i) for a subsurface measurement point, the mesh element containing this point 

and thus the four nodes forming this tetrahedral element were determined. The barycentric 

coordinate coefficients of this local tetrahedron were computed and displacement solutions 

at the four vertices in the deformation atlas could then be interpolated and mapped to the 

measurement point via weighted combination; and (ii) for a surface measurement point, 

the surface triangle closest to the point based on projection distance was found and the 

three nodes forming this triangle were determined. Similar to the treatment of subsurface 

data, local barycentric coordinate coefficients were computed based on the measurement 

point projected onto the triangle and displacement solutions at the projected point were 

subsequently obtained. Another advantage provided by this new approach is that with the 

specification of surface and subsurface input, the inverse problem can be driven solely with 

surface data, or solely with subsurface data, or a mixture of the two.

Finally, once the optimal coefficients for the linear combination of the deformation atlas 

were found in (1), these coefficients were used to obtain a whole brain displacement field 

prediction. Subsequently this displacement field was used to (i) deform the designated 

preoperative points to facilitate comparisons of model predicted updated positions and their 

intraoperative measured counterparts; and (ii) deform the preoperative MR in obtaining 

a model updated MR reflecting model predicted presentation of patient intraoperative 

anatomy.

D. Model Performance Assessment

Quantitative and qualitative assessments were conducted to examine the model’s 

performance of brain shift compensation. Quantitatively, since a particular interest of the 
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study is to assess the model’s ability to correct intraoperative subsurface shift, subsurface 

points in the previous section were used to gauge model shift correction performance. 

An additional consideration of utilizing and evaluating these subsurface points is that a 

comparison study was conducted between model-based approach and a nonrigid image 

registration technique where registration of preoperative MR and iMR was performed. In 

that study described later, since the nonrigid image registration would enjoy the information 

provided by whole image volumes (both preoperative MR and iMR), to facilitate a 

comparable and fairer comparison, the model-based approach was afforded both the sparse 

surface and subsurface data. Specifically, for points of interest, the difference between 

preoperative and intraoperative feature points represented a displacement measurement. 

Upon reconstruction with (1), this measurement could be compared to the model-derived 

counterpart. We also note that this is a fitting process from a finite representation of 

deformations. Here, the differences between intraoperative and model-predicted positions 

represent the residual error of the model-based approach. An additional quantitative metric 

employed is percent correction in (2), which relates the residual error to the measured shift:

Percent correction  = 1 − u predicted − u measured
u measured

× 100% (2)

where vector, u  is the displacement vector, subscript predicted represents the reconstructed 

model predicted vector, measured represents the expert measured vector, and ||·|| is the L2 

norm of the vector or the Euclidean distance.

Qualitatively, model updated MR was compared to iMR in conjunction with preoperative 

MR, where misalignment between iMR and preoperative MR would indicate brain shift, 

and agreement between iMR and model updated MR would illustrate the recovery of said 

shift by the model-based approach. These comparisons represent qualitative evaluations of 

image-based anatomical feature alignments.

E. Estimation of Brain Shift at Surgical Target Region

The estimation of brain shift at surgical target region, i.e. region of interest where electrode 

implants would exert therapeutic impact, is challenging since such target region is not 

designated in the preoperative space in this study. Here to estimate shift at target region, 

we leveraged the localization of the tip of electrode leads on iMR imaging data. Briefly, 

given the insertion path of the electrode leads was visible on iMR (shown in Fig. 1), the 

tip was localized with the assumption that it would be the most distal end of the insertion 

path. The target region was then defined as the region within a capture radius of 1.5 mm 

of the localized tip (i.e. within a 3-mm diameter sphere). This region-based definition of 

target via the localized tip was selected for analysis as that within a given brain target, 

the ideal electrode placement is within a region roughly 3 mm in diameter. Yet, placement 

outside of this ideal region may lead to suboptimal clinic benefit with stimulation and/or 

bothersome side effects from stimulation of structures immediately adjacent to the target. 

It should also be noted however that the model estimation of target region shift here aims 

to provide an understanding of bulk tissue movement in deep brain structure, instead of 

shift experienced by an individual electrode contact. With target region defined in the iMR 
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space, predicted displacement field was used to determine its counterpart in the preoperative 

space. Subsequently the tissue displacement trajectories that result in the co-location of these 

corresponding target regions in the undeformed and deformed spaces can be computed. 

Similarly, the nonrigid image registration methodology adopted in the following section can 

provide shift estimation at target region via the same process.

F. Comparison to Nonrigid Image Registration

As alluded to in the above sections, with iMR data available, it was also possible to estimate 

a displacement map via nonrigid image registration of preoperative MR and iMR. While 

this nonrigid image registration process is not required to generate a predicted shift profile 

for the proposed model-based approach, here the purpose of this independent comparator 

is twofold: (i) the performance of the nonrigid image registration at designated subsurface 

points would inform the fidelity of the measurements, i.e. better performance would indicate 

that the measurement derived from expert designated points is in agreement with the 

predicted movement through nonrigid image registration; and (ii) the displacement at target 

region predicted by the image registration technique could serve as a comparator to the 

model-based approach as discussed in the previous section.

To achieve, the Advanced Normalization Tools (ANTs) was used to nonrigidly register 

preoperative MR and iMR data [41]. Additional care was taken to address image artifacts 

introduced by the electrode leads (e.g. shown in Fig. 1). Specifically, regions impacted by 

image artifacts were manually segmented and an inpainting technique was used to limit 

the impact due to electrode lead presence to the registration, in particular with respect to 

surgical target region [42, 43]. With that, once nonrigid image registration was complete, 

(i) preoperative points could be deformed based on displacement map predicted by ANTs, 

and the deformed positions could be compared to measured intraoperative positions; and (ii) 

trajectory of surgical target region could be obtained and compared as discussed previously.

III. Result

A. Shift Correction Performance on Parenchymal Targets

The impact of model-based correction strategy can be observed by comparing the surface 

meshes generated from preoperative MR (white) and iMR (red), with model deformed 

preoperative MR mesh (blue) shown in Fig. 4 (a) and (b).

Here it is worth noting better agreement between model deformed mesh and iMR mesh 

(blue and red), as well as asymmetric shift predicted by the model, demonstrating the 

recovery of brain shift by the model-based approach on the brain surface. This observation 

was further supported by comparing preoperative MR, iMR and model updated MR in Fig. 

4(c)–(e) where the corresponding crosshairs indicate the surface shift experienced by the 

patient from preoperative state to intraoperative state, and this shift was better recovered on 

the model updated MR.

Quantitively, a total of 85 subsurface points were examined. Individual case and overall 

performances are summarized in Table III. Briefly, the model reduced misalignment due 

to brain shift from 8.2±2.2 to 2.7±1.1 mm when comparing the 2nd and 3rd columns for 
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percent correction of ~66.8±13.2% seen in the 4th column. Furthermore, when breaking 

down into components of x (medial-lateral), y (anterior-posterior) and z (inferior-superior), 

we found the model reduced measured shift of 2.4 (medial-lateral shift, 8.5% of overall 

measured shift), 6.6 (anterior-posterior, 67.4%) and 4.0 (inferior-superior, 24.1%) mm to 

1.6, 1.4 and 1.2 mm for ~31.9%, 79.6% and 69.3% correction. Here it also should be noted 

that majority of the shift is in the direction of gravity (anterior-posterior), which is consistent 

with previous reports.

Moreover, Table III 5th and 6th columns represents the counterpart results of residual error 

and percent correction provided by ANTs for the same 85 targets. The residual error due to 

ANTs displacement field was 1.5±0.8 mm (~81.6±10.1% correction). This provides some 

sense of the fidelity of shift correction possible to discern.

Qualitatively, preoperative MR, iMR and model updated MR were compared, different 

examples shown in Fig. 5. Model updated MR exhibits better feature agreements 

(particularly in the frontal lobe) using only sparse measurements with iMR data as compared 

to preoperative MR. Crosshairs in Fig. 5 indicate better shift recovery at lateral ventricle by 

the model updated MR. While not exact, it was pleasing to see midline shift was recovered 

to a good degree by the model-based approach.

Lastly, to speak to performance, the computational speed of the model-based approach 

(specifically intraoperative components that would be executed in surgery to obtain a full 

volumetric shift prediction profile) was analyzed across 6 cases averaged from 3 trials. The 

mean duration of computing barycentric coordinate coefficients (the number of input points 

varied from 19–31 with an average of 26.7, see Table II) is 0.7 seconds, subsequently the 

average time of computing a whole brain displacement is 27.1 s, and the average time of 

updating preoperative MR is 5.0 s. Overall the duration from sparse data input to model 
updated MR is 32.9 s using a standard desktop computer running Windows 7 with 8GB 
RAM and Intel Core i7 CPU at 3.60GHz.

B. Shift Estimation at Surgical Target Region

By localizing the tip of electrode leads and applying the inverse predicted displacement field 

(both model and ANTs), shift experienced by surgical target region can be computed. The 

predicted shifts by the model-based approach and ANTs for each case is summarized in 

Table IV across the 2nd and 3rd column for the right and left implants respectively. The 

angular differences between the displacement solution provided by the model and ANTs is 

provided in the 4th and 5th column for the two implants. The positional difference between 

the predicted target locations between model and ANTs is shown in the 6th and 7th column.

IV. Discussion

A biomechanical model-based brain shift correction strategy tailored for DBS burr 

hole surgery has been developed, and subsequently evaluated using high fidelity iMR 

data in 6 patients. The model-based approach, built to account for physical events 

hypothesized to introduce asymmetric brain shift in DBS, namely gravity, asymmetric 

CSF loss and pneumocephalus, was able to reduce misalignment due to brain shift from 
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8.2±2.2 to 2.7±1.1 mm for ~66.8±13.2% correction across 6 cases analyzed with sparse 

input (surface and subsurface) data for general parenchymal targets. Furthermore, model 

updated MR image demonstrated better agreement with iMR compare to preoperative 

MR, which suggests that as a complementary technology to existing clinical approaches, 

model-based method may aid and enable better direct visualization, as well as enhanced 

surgical navigation and targeting. When displacement at surgical target region, i.e. at/near 

critical deep brain structure, was examined via the model-based approach and a separate 

independent nonrigid image registration technique serving as a comparator, while some 

differences in magnitude and direction were observed and will be discussed later, results 

indicated an average bulk tissue shift between 1–2 mm at the surgical target region of 

interest. These shift magnitude observations are consistent with previous literatures and 

illustrate the existence and thus the need to correct for intraoperative brain shift for deep 

brain structure in DBS surgery. Another encouraging aspect of this study is the examination 

of model’s ability to use both surface and subsurface data to estimate volumetric brain shift 

in a time efficient manner that would not impede clinical workflow, enhancing its potential 

for intraoperative deployment. It should also be noted that while the pre-computing phase 

(prior to surgery and only needing preoperative MR imaging data) of deformation atlas 

construction of ~4 hours is quite workflow-friendly, future improvements of our method, 

such as the utilization of semi-automated approach in brain segmentation demonstrated 

in [23, 24], can further facilitate and expedite this pre-computing phase. Despite these 

promising outcomes, there are several aspects of this study that can be improved and should 

be discussed.

First, the designation of surface and subsurface targets is a subjective process and intra- and 

inter- operator error should be assessed. We have previously examined the intra-operator 

error [27], where the same point set in the preoperative space was presented to the same 

operator, its intraoperative corresponding point set was then designated three different times 

with sufficient time in between selections to prevent bias. We found the intra-operator 

error to be approximately 0.8 mm. As for inter-operator error, we believe the result from 

ANTs, whose registration leverages the information of the entire preoperative MR and 

iMR imaging volumes, demonstrate the fidelity of point designation. Specifically, when 

presented with preoperative designation of points and blinded to intraoperative designations, 

the error between deformed point position based on registration outputs (virtually as a 

second operator) and intraoperative designation was merely 1.5 mm on average, shown 

in Table III, especially considering the axial spacing of the preoperative MR and iMR 

ranges from 1.5 to 2.0 mm in Table I. Additionally, considering the imperfect nature of 

nonrigid registration as well as the aforementioned potential intra-operator error, the residual 

error of ANTs with respect to the subsurface points suggests the fidelity and validity 

of the point designation. While we considered examining the model-based approach at 

the AC and PC, the localization error due to image resolution (image spacing varying 

from 1.00 mm to 2.00 mm shown in Table I), coupled with potential intra-operator error 

described above, would complicate the assessment at these points whose movement is 

believed to be on the order of 1–2 voxels. Furthermore, a study by Pallavaram et al. found 

significant variability in designating AC and PC even among trained neurosurgeons [44]. 

When 43 neurosurgeons (38 attendings and 5 residents or fellows) were presented with 2 
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high resolution MR volumes and asked to designate the AC and PC, the study found the 

average inter-surgeon variability (pairwise deviation) to be 1.92±1.96 and 2.27±3.92 mm 

for AC and PC, respectively, for the first image volume; and 1.44±1.05 and 2.05±3.46 

mm for the second image volume. Such variability even among experienced neurosurgeons 

suggests potential challenges in using these points for the purpose of model validation 

here. Moreover, numerous previous studies relied on AC and PC as surrogates for shift 

measurement due to (i) poor soft tissue contrast of the imaging modality used (e.g. CT) 

to extract additional features for analysis; and (ii) the ambiguity in localizing the clinical 

therapeutic target region. Here the utilization of feature- and data- rich iMR imaging data 

addresses (i) and the identification and extraction of the tip of the electrode leads on 

iMR offer an improvement in (ii), especially considering the introduction of a secondary 

comparator, namely ANTs, which uses a different principle of re-aligning the preoperative 

and intraoperative information than the biophysics-based model.

In addition to surgical targeting, a less discussed yet potentially important topic is surgical 

navigation. Studies have suggested that the penetration of the lateral ventricle can increase 

the risk of intracranial hemorrhage and negatively impact the quality of DBS therapy, 

yet it can be readily observed that brain shift significantly impacts the structure of the 

lateral ventricle (Fig. 1 and Fig. 5), illustrating the potential usefulness of the model-based 

approach in updating the preoperative MR volume to better align imaging data with 

intraoperative state of the patient [8, 45, 46].

The methodology presented here represents our current understanding of shift phenomenon 

in DBS and its modeling, in achieving, several interesting biomechanical events unique to 

DBS burr hole surgery have been potentially discovered and implemented accordingly: 

(i) a major improvement in this work compared to our previous one patient proof-of-

concept work [18] is in the shift recovery in the medial-lateral direction via a different 

implementation for pneumocephalus. Moreover, as the understanding and implementation 

of the biophysics contributing to shift are advanced, corresponding refinement of the model 

and subsequently better correction results are possible. (ii) Changes in our falx description, 

originated from the observation of midline shift in iMR data, also provided better shift 

prediction when modeled as herein. (iii) The observation of the falx behavior could also 

lead to additional considerations of compartmentalization, such as the partition of the falx 

structure (anterior vs. posterior) to allow different degree of rigidity [26]. (iv) Related to 

(iii), the stiffness assigned to the elements associated with falx and ventricle in this study 

could be further investigated through a possible parametric sweep to determine optimality 

and to compare to a wide range of material properties of brain components previously 

reported [47]. (v) With respect to compartmentalization, in the current implementation, the 

left and right lateral ventricles were treated as one entity, however from Fig. 1 and Fig. 5, 

it appears the septum pellucidum, which separates left and right lateral ventricle, is also 

impacted by brain shift and its incorporation may further improve model performance. 

Nevertheless, the methodology presented here provides the following contribution to the 

field: (i) the study here incorporates multiple biophysical events such as CSF drainage, 

gravity, pneumocephalus-induced pressure phenomenon, material stiffness consideration to 

different components of the brain, into one comprehensive modeling approach to account 

for factors believed to introduce shift in DBS; (ii) to our knowledge, the consideration of 
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ventricle, in particular in a segmental fashion, to simulate pneumocephalus-induced pressure 

phenomenon, is a novel approach and potentially provides insight on the underlying physics 

of shift in DBS; (iii) compare to previous studies in Introduction, considerable efforts 

are made in this study to ensure the intraoperative deployability of the methodology and 

its potential clinical appeal via the pre-computed deformation atlas as well as efficient 

intraoperative execution; (iv) also compare to previous studies, validation effort with 6 

patients with high fidelity iMR data, which is considered the gold standard measurement 

tool, is a significant improvement, especially considering iMR measured shift is not subject 

to the potential drawback of postoperative shift recovery if shift were to be measured 

between preop- and postop- image volumes [48]; (v) the technical details employed here 

to enable subsurface data to be used in the inverse problem framework, specifically the 

interpolative method at sparse data points extracted from the deformation atlas, have not 

been previously reported.

With respect to shift estimated at the target region, the accuracy of this estimation is 

inferred from the correction results (Table III) of identified features (points shown in Fig. 

3) that can be localized within the imaging data with high confidence (considering imaging 

resolution in Table I). In this feasibility study, approaching validation via targets of high soft 

tissue contrast in regions with considerable deformation is a logical first step in evaluating 

the modeling framework. With that understanding, although satisfying to observe that the 

bulk tissue movement at deep brain target predicted by both model-based approach and 

ANTs is similar and within the range of literature findings summarized in Introduction, the 

difference in magnitude and direction between model-based approach and ANTs warrants 

closer examination of the shortcomings of each approach. For model-based approach, it 

is apparent from the residual error and percent correction result that further improvements 

are needed to better account for the physics of shift, and the introduction of increasingly 

sophisticated modeling may help resolve the differences. For ANTs, while great care was 

taken to minimize the impact of image artifacts introduced by electrode leads, it is likely 

that image artifacts degraded the quality of registration and prediction, especially at surgical 

target region. Moreover, ANTs registration may be impacted by the manual identification 

of image artifacts for inpainting, manual segmentations of preoperative and intraoperative 

brains for image registration, as well as sensitivity to tunable parameters in both registration 

and inpainting. For example, in parameterization experiments not reported in detail here, 

ANTs registration parameters were varied over a realistic range yielding acceptable nonrigid 

image registration results. Within these experiments, parenchymal target shift correction 

(e.g. Table III) was observed to vary on the order of 0.2 mm on average with respect to 

residual error, and on the order of 0.3 mm when intra-operator target noise was introduced 

for added scrutiny (i.e. half of the intra-operator error described previously was analyzed 

with respect to true target location). Within the backdrop of this variability in expert-defined 

parenchymal target error with respect to realistic parameter prescription with ANTs, it is 

important to estimate the impact of that variability regarding shift at therapeutic target 

region. With respect to results in Table IV and allowing for realistic driving parameters for 

ANTs, the variation in average positional difference of predicted positions was 0.4±0.2 mm 

with respect to the centroid over the parameter space, and the average angular difference 

between these individual predictions was 32.5±23.3 deg. These variations showed that while 
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the comparison between model and ANTs is informative and interesting, in particular with 

respect to the evaluation of bulk tissue movement, the differences in Table IV should not 

be regarded as a ground truth error per se but rather as a comparator method with a 

limited understanding of ground truth. It would be appropriate however to state that ANTs 

registration performance utilizing the entirety of 3D imaging data outperformed the sparse-

data driven model at expert-defined parenchymal target shifts. It is difficult to assert however 

that an analogous performance increase is present at therapeutic target region given that 

features that drive registration are less rich in the target area, and an added inpainting image 

alteration has been performed to handle the electrode artifact. Furthermore, when angular 

difference was examined for the subsurface points, the difference between intraoperative 

measured vector and ANTs predicted vector was found to be 9.3 deg, intraoperative 

measured vector and model predicted vector was 17.4 deg, and model and ANTs vectors 

was 17.3 deg. While this was not surprising, as indicated by the residual error result (ANTs 

1.5 mm vs. model 2.7 mm), the directional difference of 17.3 deg between ANTs and model 

may partly explain the directional difference at surgical target as well. However, it also 

should be noted the nonrigid image registration via ANTs requires full image volumes of 

preoperative MR and iMR with computation time > 1 hour, while the computation time to 

generate a whole brain displacement field for the model-based approach was ~30 seconds 

with only sparse input data needed. In addition, it must also be recognized that parenchymal 

shift prediction by ANTs using the entirety of the data did still have on average of ~18% 

residual error remaining.

Considering the shortcomings or deficiencies of each method discussed above, the ultimate 

arbiter of the angular difference between the two methods could be the functional impact—

a future study could retrospectively examine and relate shift estimation at surgical target 

region provided by the two methods to therapy outcome via electrophysiological mapping 

and monitoring such as MER, or postoperative programming optimization, e.g. electrode 

contact selection and subsequent adjustment needed with corresponding patient response. 

Nevertheless, with data currently available and limited in this study (preoperative and iMRs), 

the average bulk tissue movement predicted by both methods at deep brain structure is 

similar (model 1.2 mm and ANTs 1.4 mm overall). This general agreement between two 

methods, as well as with previous reports in the literature, indicates that brain shift and 

its correction must be considered in a non-negligible portion of patients undergoing DBS 

burr hole surgery to optimize treatment outcome. To better understand the impact of brain 

shift on functional outcome with the potential of consequently optimizing therapy, we have 

worked towards establishing an integrated framework of biomechanical and bioelectric 

models where both brain shift and volume of tissue activation (VTA), subsequently 

tractography, due to neuromodulation may be accounted for in [49]. Preliminary results 

using this multi-physics framework in 2 patients further illustrate and reinforce the need to 

account for brain shift in DBS as shift impacts the extent, number, and volume of neuronal 

pathways affected [49].

Lastly, although the objective of this study is to examine the feasibility and to establish 

potential accuracy metrics for a model-based approach to confront brain shift in DBS under 

an experimental design compatible with the data sparsity expected in surgery, to ensure the 

clinical translatability of the method, it is important to assess and consider the potential 
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challenges associated with the deployablity and usability of the proposed approach in the 

OR, especially with respect to obtaining sparse intraoperative measurements needed to drive 

the inverse problem via OR-compatible and -friendly means, as it likely will be the rate 

limiting step of the proposed approach. While we have previously demonstrated abilities 

to acquire intraoperative surface data in the OR via laser range scanning [39], stereovision 

[50], or optically tracked stylus [51], it is recognized that the extent of surface data used 

in this study may not be available in the OR. However there exist several OR-compatible 

approaches to acquire and augment sources of data that are needed to drive the inverse 

problem. (i) One possibility to address this problem is the use of iCT. The use of iCT in 

DBS burr hole surgery has been demonstrated by groups such as Burchiel et al. [32], and the 

potential use of CT data (via preop- and postop- CTs) in providing input surface data to a 

model-based approach is illustrated by Li et al. [19, 52]. However, a potential shortcoming 

of iCT should be noted here: the soft tissue discrimination of CT is such that the brain target 

being implanted is not directly visible. The iCT image set must therefore be co-registered 

with a preoperative MR image set, which introduces the potential for error associated with 

the image registration and fusion process, particularly if pneumocephalus is present on iCT 

images. For the model-based approach proposed here, iCT will likely offer intraoperative 

surface deformation information to drive the inverse problem; however, again the poor soft 

tissue contrast of iCT would limit finding corresponding features. (ii) Another alternative 

route is the use of subsurface data via US (transcranial or burr hole). A difficulty associated 

with this approach is finding corresponding features as model input. However in one recent 

study conducted, a SIFT Rank algorithm was employed to detect and track corresponding 

features from multiple ultrasound acquisitions [53] and validated in [54], subsequently 

the model was able to provide fairly good brain shift reduction when driven solely with 

subsurface features and validated with independently designated subsurface targets in 15 

patients and 24 individual surgical scenarios [55, 56]. This framework may be utilized here 

to provide an input data stream to the inverse problem.

V. Conclusion

A biomechanical model-based brain shift correction strategy for DBS burr hole surgery 

was developed, where volumetric shift estimation was achieved by leveraging sparse 

intraoperative measurement in an inverse problem approach framework. The established 

method was evaluated in six patients with high fidelity iMR data. The model-based approach 

was able to account for shift appreciably at subsurface points as well as provide updated MR 

image that presents better agreement with iMR compared to preoperative MR, illustrating 

its potential as a complementary technology to existing clinical methods in addressing brain 

shift to enhance surgical navigation and targeting, as well as enable direct visualization. 

The model-based approach was also able to estimate shift experienced at critical deep 

brain structure, and its estimated average bulk tissue movement at surgical target region 

is comparable to results produced by a sophisticated nonrigid image registration algorithm 

given access to complete volumetric pre- and post- intervention data. Furthermore, the 

model-based approach is able to provide shift prediction with a mixture of surface 

and/or subsurface data, enabling the flexibility of the possible utilization of iCT and/or 

iUS, and in an efficient execution manner that presents minimal disruption to existing 
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clinical infrastructure and workflow. While demonstrating its potential, further validation 

with a larger patient population with iMR, an increased sophistication of modeling to 

better account and understand the physics of shift phenomenon in DBS, as well as the 

incorporation of iCT and/or US into the proposed brain shift correction framework, are 

desired.
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Fig. 1. 
Comparison of preoperative MR and iMR imaging data on a corresponding slice. Significant 

asymmetric shift can be observed. Subsurface shift, e.g. at the lateral ventricle, is indicated 

by the crosshairs. Midline shift is also observed. The insertion path of the electrode leads 

and resultant imaging artifacts can be observed (red arrows) on iMR imaging data.
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Fig. 2. 
(a) Computational domain of the patient specific biomechanical model. Patient specific falx, 

tentorium and brain stem structures determined via an automated process using rigid and 

nonrigid image registration between patient imaging data and an atlas image. The lateral 

ventricle is further partitioned into four segments (illustrated with different colors) for 

additional boundary condition considerations. (b)-(d) An example of boundary conditions 

considered, where the blue vector represents the direction of gravity with the patient 

in supine position. (b) Displacement condition: green is stress free nodes, black is slip 

condition nodes, red or brain stem region is for fixed displacement. (c) Fluid condition: 

asymmetric drainage simulated in the model where orange represents the tissue submerged 

in CSF. (d) Pressure condition: dark green is Dirichlet reference pressure, black is no 

drainage condition and four segments of the ventricle (different colors of neon green, blue, 
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pink and red) are given additional Dirichlet pressure considerations to simulate the effect of 

pneumocephalus.
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Fig. 3. 
(a) and (b) Homologous subsurface point designation (red dots) on preoperative MR and 

iMR, respectively. (c) Distribution of designated subsurface points (red) and its spatial 

relation to approximated surgical target region (blue) in translucent brain mesh with the 

incorporation of the lateral ventricle also shown.
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Fig. 4. 
(a)-(b) Comparison of surface meshes generated from preoperative MR (white), model 

updated MR (blue) and iMR (red), where brain shift experienced is illustrated in the 

comparison between preoperative (white) and intraoperative (red) meshes, and the recovery 

of shift is demonstrated by comparing model (blue) and intraoperative (red) meshes. (c)-

(e) Comparison of preoperative MR, iMR and model updated MR with corresponding 

crosshairs on the surface indicating better surface recovery by the model.
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Fig. 5. 
Comparison of preoperative MR, iMR and model updated MR. For each case, better 

feature agreement was observed between model updated MR and iMR vs. preoperative MR, 

particularly in the frontal lobe. Crosshairs indicate better subsurface recovery at the lateral 

ventricle by the model. The model was also able to recover the observed midline shift to 

some extent.
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Table I

Preoperative MR and iMR Imaging Data Information

Preoperative MR iMR

Case # Dimension Spacing (mm) Dimension Spacing (mm)

1 240×240×85 1.00×1.00×2.00 256×256×107 1.02×1.02×1.50

2 240×240×80 1.00×1.00×2.00 256×256×107 1.02×1.02×1.50

3 256×256×75 1.02×1.02×2.00 256×256×120 1.02×1.02×1.50

4 256×256×120 1.02×1.02×1.50 256×256×120 1.02×1.02×1.50

5 240×240×85 1.00×1.00×2.00 256×256×107 1.02×1.02×1.50

6 240×240×85 1.00×1.00×2.00 256×256×107 1.02×1.02×1.50
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Table II

Summary of Homologous Points

Case # Total points Surface points Subsurface points

1 27 12 15

2 19 11 8

3 27 11 16

4 29 14 15

5 27 12 15

6 31 15 16

Overall 160 75 85
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Table III

Correction Performance Summary

Case # Measured shift (mm) [# of 
points]

Model residual 
error (mm)

Model percent 
correction (%)

ANTs residual 
error (mm)

ANTs percent 
correction (%)

1 9.1±2.4 [15] 3.4±0.7 62.8±7.50 1.7±1.0 80.5±11.5

2 5.7±0.9 [8] 2.3±0.7 59.0±13.0 1.4±0.8 76.0±14.5

3 6.7±1.9 [16] 1.9±0.7 71.8±10.1 1.5±0.7 78.2±10.7

4 8.9±1.6 [15] 2.5±1.0 72.0±11.1 1.3±0.7 85.6±8.4

5 9.2±2.3 [15] 3.5±1.4 61.5±14.8 1.8±1.0 80.0±11.3

6 8.6±1.4 [16] 2.6±0.9 69.5±10.8 1.3±0.5 85.0±6.0

Overall 8.2±2.2 [85] 2.7±1.1 66.8±13.2 1.5±0.8 81.6±10.2
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