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Abstract

Objective.—The effectiveness of deep brain stimulation (DBS) depends on electrode placement 

accuracy, which can be compromised by brain shift during surgery. While there have been efforts 

in assessing the impact of electrode misplacement due to brain shift using preop- and postop-

imaging data, such analysis using preop- and intraop-imaging data via biophysical modeling has 

not been conducted. This work presents a preliminary study that applies a multi-physics analysis 

framework using finite element biomechanical and bioelectric models to examine the impact of 

realistic intraoperative shift on neural pathways determined by tractography.

Approach.—The study examined six patients who had undergone interventional magnetic 

resonance-guided DBS surgery. The modeling framework utilized a biomechanical approach to 

update preoperative MR to reflect shift-induced anatomical changes. Using this anatomically 

deformed image and its undeformed counterpart, bioelectric effects from shifting electrode leads 

could be simulated and neural activation differences were approximated. Specifically, for each 

configuration, volume of tissue activation was computed and subsequently used for tractography 

estimation. Total tract volume and overlapping volume with motor regions as well as connectivity 
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profile were compared. In addition, volumetric overlap between different fiber bundles among 

configurations was computed and correlated to estimated shift.

Main results.—The study found deformation-induced differences in tract volume, motor region 

overlap, and connectivity behavior, suggesting the impact of shift. There is a strong correlation 

(R = −0.83) between shift from intended target and intended neural pathway recruitment, where 

at threshold of ~2.94 mm, intended recruitment completely degrades. The determined threshold 

is consistent with and provides quantitative support to prior observations and literature that 

deviations of 2–3 mm are detrimental.

Significance.—The findings support and advance prior studies and understanding to illustrate 

the need to account for shift in DBS and the potentiality of computational modeling for estimating 

influence of shift on neural activation.
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1. Introduction

Deep brain stimulation (DBS) presents an adjustable and reversible surgical treatment 

option for symptom relief in patients with movement disorders. One particularly impactful 

application of DBS is the treatment of Parkinson’s disease (PD), especially those with 

medically refractory tremor (Collins et al 2010). PD impacts 0.1%–0.2% of the population 

and 1% of the population over the age of 60 (Bratsos et al 2018). While there is a 

wealth of literature reports illustrating the effectiveness of DBS therapy, in a comprehensive 

recent review by Bratsos et al, eight randomized controlled trials were analyzed comparing 

outcome measures between DBS and best medical therapy (Bratsos et al 2018). Overall the 

study found in a total of 1189 patients (with sample sizes ranging 19–366 in eight different 

studies), DBS was determined to significantly improve the total Unified Parkinson’s Disease 

Rating Scale, including all sub-scores (I–IV), as well as Parkinson’s Disease Questionnaire 

while decrease levodopa equivalent dose (Bratsos et al 2018). While highly effective in 

providing better motor control and functionality for patients, the quality of DBS therapy may 

be compromised, i.e. dissatisfactory outcome or adverse events, by misplacement of DBS 

electrodes.

To probe the scope of the impact of suboptimal electrode placement on surgical outcome, 

Rolston et al performed an analysis to examine data on over 28 000 cases of DBS 

procedures from the Centers for Medicare and Medicaid Services (CMS) and the National 

Surgical Quality Improvement Program (NSQIP) databases, and reported that revision or 

removal occurred in 15.2% and 34.0% from CMS and NSQIP, respectively (Rolston et al 
2016). The study speculated that ~48.5% of these revisions or removals was likely due to 

poor positioning of the electrode or inadequate clinical outcome and noted that this result is 

similar to previous analyses on failed DBS treatment where 46% of revisions were due to 

suboptimal placement of electrodes (Rolston et al 2016).
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One contributing factor to the misplacement of electrodes is brain shift that ensues after 

burr hole and dural opening in DBS surgery. In a report by Luo et al (2020), a summary of 

various studies using preop- and postop-imaging data to gauge shift in DBS was provided, 

where shift at deep brain structures ranges from 1.5 to up to 4 mm. For example, Elias 

et al found anterior commissure shift above 2 mm in 7.6% of patients and above 1.5 mm 

in 13.6% (n = 66) (Elias et al 2007). When preop- and intraop-imaging data were used to 

assess brain shift, Ivan et al found deep brain structure shift above 2 mm in 9% of the study 

population and 1–2 mm in 20% (n = 44); additionally, cortical surface shift up to 10 mm 

was observed (Ivan et al 2014). From Elias et al and Ivan et al, it is apparent that brain 

shift during DBS burr hole surgery occurs in a considerable population of patients (Elias 

et al 2007, Ivan et al 2014). Addressing brain shift may reduce the incidents of revision or 

removal due to poorly positioned electrodes as stated in Rolston et al (2016), which would 

lead to better patient experience, reduce further potential surgical risk, enhance short- and 

long- term therapy outcome, and improve overall and longitudinal cost-effectiveness of DBS 

therapy. To date, the deviation threshold from an intended target has been based on clinical 

observations and speculations, and varies among studies as summarized in Luo et al (2020): 

e.g. 3 mm is mentioned in Balachandran et al, Anderson et al and McClelland et al; while 2 

mm is suggested in Ivan et al and Kremer et al (McClelland et al 2005, Balachandran et al 
2009, Ivan et al 2014, Anderson et al 2018, Kremer et al 2019). Developing a computational 

model based on soft tissue mechanics and bioelectric transport to estimate modulation effect 

changes would be highly desirable.

There are several groups that have developed sophisticated computational bioelectric models 

to better understand the biophysics of neuromodulation, where the models compute (a) 

tractography due to volume of tissue activation (VTA); and/or (b) activation of specific fiber 

pathways (Butson et al 2007, Chaturvedi et al 2010, Astrom et al 2015).

A few studies have attempted to examine and address the impact of brain shift on 

tractography. In Choi et al, shift was measured by anatomical control points using preop- 

and postop-imaging data in subcallosal cingulate DBS surgeries; the impact of electrode 

displacement was analyzed and found to alter pathway activation patterns (Choi et al 
2018). In Horn et al outlining a DBS post-processing pipeline named Lead-DBS, brain 

shift correction capability was introduced to account for the misalignment between preop- 

and postop-imaging data (Horn et al 2019).

While these efforts to understand and/or correct for the impact of brain shift on potential 

treatment outcome are encouraging advances, these studies represented analyses that 

employed shift measurements from preop- and postop-imaging data. This study aims 

to advance the understanding of the effect of electrode misplacement with realistic 

intraoperative shift derived from the gold standard measurement provided by interventional 

magnetic resonance (iMR). Specifically, the impact of brain shift on functional response 

predicted by tractography via neural pathway recruitment is assessed. To achieve, the 

work presented here utilizes a multi-physics analysis framework, i.e. biomechanical and 

bioelectric finite element (FE) models. Subsequently this analysis framework is applied to 

six patients who had undergone iMR-guided DBS procedures. Based on the preliminary 

framework first reported in Luo et al (2019), the methodology in this study has been 
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expanded and then employed to analyze a six-case series of patients that experienced 

significant intraoperative brain shift during DBS implant.

The objective of this study is to provide qualitative and quantitative support linking 

the effects of shift-induced electrode misplacement to the degradation of targeted neural 

pathway recruitment. The work also provides valuable theoretical support toward a critical 

target deviation threshold whereby treatment quality significantly degrades. Lastly, the work 

establishes the potential utility and power of multi-physics modeling frameworks to help 

guide DBS treatments in the presence of intraoperative brain deformations.

2. Methodology

2.1. Overview

The overall analysis framework used for the study is shown in figure 1, which consists of a 

multi-physics patient-specific biomechanical and bioelectric FE models.

The biomechanical model (black block in figure 1) aims to provide realistic data-driven 

intraoperative brain shift predictions from intracranial changes in soft tissue mechanics due 

to burr hole and dural opening during DBS surgery. Specifically, a sparse-data constrained 

biomechanical model is used to estimate volumetric shift to better reflect intraoperative 

patient neuroanatomy. During surgery, the deployment of such model could allow for the 

accurate mapping of preoperative MR (pMR) targets to intraoperative physical space in the 

form of patient updated MR (uMR) to improve surgical navigation and targeting.

The bioelectric model (blue blocks in figure 1) aims to provide the spatial distribution of 

electric potential due to neuromodulation with and without shift adjustment.

Subsequently, VTA and associated neural pathway recruitment via tractography (orange 

block in figure 1) can be estimated and employed to establish a better understanding for 

functional impact of DBS therapy as well as potentially degrading events such as brain shift.

2.2. Data

The study population consists of n = 6 patients, who had undergone iMR-guided DBS 

electrode implantation through a burr hole targeting the subthalamic nucleus (STN) and 

experienced detectable shift observed from iMR. Imaging volumes of the patients were 

acquired with consent and IRB approval. The surgical details can be found in Ivan et al 
(2014). MR image specifications such as voxel spacing of imaging data (pMR and iMR) are 

described in Luo et al (2020). Briefly, pMRs and iMRs in this study were acquired using 

a 1.5 T MR scanner; the voxel spacing for pMR ranges from 1.00 to 2.00 mm, and for 

iMR ranges from 1.02 to 1.50 mm. An example of the acquired data is shown in figure 2, 

where brain shift due to burr hole procedure is demonstrated both on the surface as well 

as subsurface (indicated by corresponding crosshairs at the lateral ventricle). The imaging 

artifacts due to DBS electrode leads are illustrated by red arrows.
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2.3. Brain shift estimation via biomechanical model

To account and estimate for shift during DBS electrode placement through a burr hole 

(small cranial opening), an inverse problem approach rooted in a biphasic biomechanical 

model was employed. This modeling approach accounts for biophysical phenomenon such 

as CSF drainage, gravity, pneumocephalus, and stiffness considerations of different brain 

components (Luo et al 2020). The complete work regarding the implementation details of 

the biomechanical modeling method such as boundary condition assignment is described in 

Luo et al (2020).

Briefly, patient pMR was utilized to construct a volumetric patient-specific FE mesh 

(Sullivan et al 1997). This mesh was then placed under varying surgical conditions, such 

as permutations of displacement and pressure conditions. Under each unique surgical 

condition, a biphasic biomechanical model was employed to compute the volumetric shift 

profile (Miga 1998). The collection of volumetric deformations from the distribution of 

boundary and forcing conditions is assembled into a ‘deformation atlas’ (Dumpuri et 
al 2007, Chen et al 2011, Narasimhan et al 2020). Specifically, the modeling approach 

leveraged here intends to capture the effect of CSF loss, gravity and pneumocephalus. 

In particular, the impact of CSF loss and gravity are accounted for as CSF loss reduces 

buoyancy, therefore introducing tissue sag. Within the aforementioned deformation atlas, 

different extents of CSF loss were simulated to contribute and ensure the fair distribution 

required to account for different intraoperative surgical conditions.

To estimate volumetric brain shift during surgery, sparse shift measurements (surface and 

subsurface) derived from iMR were determined by matching corresponding tissue landmarks 

(Luo et al 2020). Using these data, an inverse problem approach was employed whereby 

a linear combination of potential brain shift solutions is determined to best match the 

aforementioned measurements in a constrained least-squared error manner (Luo et al 2017, 

2020). The model-predicted volumetric shift was then used to update pMR to better reflect 

intraoperative patient anatomy, as well as to estimate shift at target region for DBS therapy.

Finally, as an additional layer of rigor to the analysis, Advanced Normalization Tools 

(ANTs, employed as a state-of-the-art and robust nonrigid image-to-image registration 

utility) (Avants et al 2011) were utilized to co-register pMR and iMR to produce a 

displacement field to independently estimate deep brain target shift for a comparative 

evaluation to the model-based analysis (Luo et al 2020).

2.4. Potential distribution via bioelectric model

To compute electric potential distribution, a bioelectric FE model based on the Poisson 

equation using standard conductive biophysics was constructed:

∇ ⋅ −σ∇V e = I

where Ve is the electric potential (Volts), σ is the conductivity tensor (S m−1), and I is the 

injected current from a source such as an electrode contact. Here the conductivity tensor was 

incorporated to model tissue heterogeneity and anisotropy. To achieve, the linear relationship 
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described by Tuch et al (2001) was used that relates diffusion tensor to the electrical 

conductivity tensor:

σ =
σe
de

D

where σ is the electrical conductivity tensor (S m−1), D is the diffusion tensor (m2 s−1), σe 

is the effective extracellular electrical conductivity (S m−1), de is the effective extracellular 

diffusivity (m2 s−1) (Tuch et al 2001, Astrom et al 2012). Here in this experiment, σe/de was 

set to 0.844 as empirically determined by Tuch et al (2001). Limitations regarding this linear 

assumption will be further discussed later.

The performance and analysis of tractography were conducted in Montreal Neurological 

Institute (MNI) space (Fonov et al 2011). The limitation of data availability here, 

specifically only pMR and iMR, necessitated the need of these evaluations in MNI space, 

where a number of atlases are available and can be leveraged for this investigation.

To facilitate this process, essential information from previous section (shown in the top 

panel in figure 3, corresponding to the biomechanical modeling block in black on the left 

in figure 1) was transformed from patient data to MNI space. Specifically, the displacement 

3D fields determined by model- and ANTs- predictions (Dmodel and DANTs in figure 3), 

as well as positions of DBS leads (end point and trajectory, shown as PANTs and Pmodel 

in figure 3) were mapped to MNI space. For the latter, briefly, the end point of the 

electrode path visible on iMR was determined and a second point along the electrode 

path (such as indicated via red arrows on figure 2) was identified to establish trajectory. 

The transformation of this information was achieved by registering segmented brains of 

patient and ICBM 152 (International Consortium for Brain Mapping) T1 weighted images 

(voxel spacing: 1 × 1 × 1 mm; image dimension: 193 × 229 × 193), the latter is associated 

with the HCP 1021 template (Human Connectome Project) available in DSI Studio (http://

dsi-studio.labsolver.org/) via ANTs, shown in green arrows in figure 3 (Fonov et al 2011, 

Yeh et al 2013).

Once the displacement profiles were mapped to MNI space, a volumetric brain mesh 

reflecting the transformed model-predicted displacement profile was constructed and served 

as the basis of the computational domain of the bioelectric model (blue block in figure 3). In 

summary, as patient-specific diffusion tensor imaging (DTI) data were not available in this 

retrospective cohort, the process in figure 3 was specifically designed to estimate that data 

using an atlas DTI (HCP 1065 template, voxel spacing: 1 × 1 × 1 mm; image dimension: 182 

× 218 × 182) available via FSL (Smith et al 2004, Woolrich et al 2009, Jenkinson et al 2012, 

Glasser et al 2013, Sotiropoulos et al 2013).

Once mapped, the effects of anisotropic and heterogenous conductive modeling 

environments are incorporated. While a limitation, as utilization of the atlas does not allow 

for a patient-specific assessment of change, this does allow for a realistic and reasonable 

approximation of that change.
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To complete the computational domain, DBS leads were reconstructed: the transformed end 

point and trajectory (PANTs and Pmodel) were used in addition to the known manufacturer 

specifications of Medtronic 3389 (Medtronic Inc., Minneapolis, MN, USA). DBS electrodes 

were reconstructed and incorporated into the model above. In addition, to account for tissue 

encapsulation effect, another sub-domain around the electrode contact with the thickness of 

0.5 mm was introduced and assigned a conductivity of 0.1 S m−1 (Butson et al 2006, Butson 

and McIntyre 2008). For mesh generation, a Free Tetrahedral operation was performed using 

COMSOL Multiphysics (version. 5.4, COMSOL AB, Stockholm, Sweden). Specifically, the 

element size for the brain domain was calibrated for general physics with predefined size of 

normal; electrode contacts and the encapsulation layer were given the element size of extra 

fine. Furthermore, an additional mesh refinement was performed for the domains around 

electrode contacts where the number of refinements was set to two. The node number for 

the 18 meshes generated (two deformation possibilities and one undeformed state for six 

patients) is ~66 654 ± 12 991.

An example of the constructed bioelectric FE mesh model representing deformed patient 

anatomy (with asymmetric shift in the left frontal lobe) with reconstructed electrode leads 

(active contact 1 is shown as red and other contacts are shown in black) is demonstrated in 

figure 4 and is represented in the blue block in figures 1 and 3.

Lastly, with transformed displacement profiles via model and ANTs, locations of 

reconstructed electrode leads could be adjusted accordingly within the bioelectric model 

for simulation.

2.5. VTA and tractography

To better understand the bioelectrical behavior near the electrode contacts, a regular grid 

of 20 × 20 × 20 mm (Anderson et al 2018, 2019) was defined with the active contact 

(here contact 1 was active while the brain surface served as the ground) as the centroid. 

Along each dimension of the grid, 200 evenly distributed grid points were examined for 

a total of 8 000 000 points. The stimulation configuration in this study was monopolar 

current stimulation at 3 mA (Butson and McIntyre 2005a). The electric potential profile 

from the bioelectric model was then used to estimate the VTA, which was based on an 

isolevel of 0.2 V mm−1 (Astrom et al 2015, Alonso et al 2018). Subsequently deterministic 

tractography as well as fiber trimming were performed in DSI Studio (Yeh et al 2013) 

with the estimated VTA as the region of interest (ROI). Here the parameters used were 

default quantitative anisotropy (qa) threshold, angular threshold of 60°, step size 0.5 mm, 

smoothing parameter 0.2, length 20.0–200.0 mm, and fiber count of 5000 with an additional 

termination consideration of seed count of 500 000 (Yeh et al 2013, Luo et al 2019).

The estimation of VTA and tractography were completed in three different configurations of 

lead reconstructions as noted in the previous section: without shift consideration, with shift 

consideration via model prediction, and with shift consideration via ANTs prediction.
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2.6. Assessing shift impact on neural pathway

Once tractography was estimated in each of the three configurations described in the 

previous section, tract volume outputted by DSI Studio was directly compared as well as 

in terms of relative percent change in an effort to assess the differences due to brain shift.

Furthermore, to probe potential impacts on motor functions, volumetric overlap between 

predicted fiber bundles and regions associated with motor functions (i.e. precentral and 

postcentral gyri, available through AAL2 (Rolls et al 2015) provided in DSI Studio) was 

computed. The differences due to brain shift were calculated using the configuration of 

without shift as the baseline and were related to estimated shift measurements.

Connectivity matrix was obtained using the parcellation atlas of AAL2 (Rolls et al 2015) 

counting the number of tracts that end in defined regions with the default threshold. Using 

the connectivity profile without shift consideration as the baseline, comparative changes in 

each shift-considered connectivity matrix were calculated and further examined.

In order to correlate target region shift or bulk tissue movement at deep brain target reported 

in Luo et al (2020) with changes in neural pathway prediction, the fiber bundles were 

converted into a binary mask image and transformed to patient space. To compute the 

similarity between two fiber bundles, specifically with and without shift consideration (recall 

for comparison, shift consideration is provided via two configurations: model prediction or 

ANTs prediction), the Jaccard index (Kosub 2019), or Intersection over Union (IoU), was 

used as a metric. Jaccard index is defined as follows (Kosub 2019):

J A, B = def A ∩ B
A ∪ B

where A and B are two finite sets, or here the mask images representing the predicted fiber 

bundles of interest, and J is the Jaccard index. In this study, the Jaccard index is also referred 

to as the volumetric overlap as it measures similarity between two sets of fiber bundle of 

interest: ranging from 0 to 100%, higher percentage presents a greater degree of similarity 

between two sets. It should be noted that while metrics were examined within the context of 

each shift prediction method, i.e. model and ANTs, the results were also combined to assess 

the overall impact of reasonable shift estimations provided by two distinct methods.

3. Results

3.1. Estimated shift at deep brain target

Estimated brain shifts using the biophysics-based model approach and ANTs are reproduced 

from Luo et al (2020) in table 1. The results in table 1 represent an understanding of bulk 

tissue movement at deep brain target region and are leveraged later as a variable in the 

correlation study where the impact of brain shift on recruited pathway is assessed.

Overall, the average bulk tissue movement at deep brain target region predicted by the model 

is 1.2 ± 0.9 mm and ANTs is 1.4 ± 0.7 mm. The findings in Luo et al (2020) stated that with 

respect to model and ANT prediction comparisons in areas with high feature image contrast, 
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ANTs outperformed the model-based approach at designated tissue feature targets. However, 

this result was expected given the distinct difference in the density of data driving the two 

registration methods (i.e. ANTs uses full volumetric intensity data, while the model uses a 

sparse set of surface and subsurface points). With respect to deep brain targets, the improved 

performance was not nearly as certain as tissue feature intensity contrast is not as profound 

(Luo et al 2020). Nevertheless, despite differences, the previous study revealed that each 

provided a viable shift at the deep brain target region, which provides credence to estimating 

the impact of these shifts on neural pathway recruitment analyzed herein.

3.2. VTA estimation

VTA estimation (in purple) is illustrated in figure 5, using contact 1 shown in red 

superimposed with patient MR in the HCP 1021 template space with zoomed perspective.

3.3. Tractography prediction

An example of predicted tractography due to estimated VTAs resulted from activation 

of both implants is shown in figure 6(a). An example of the difference in predicted 

tractography due to different reconstructed DBS leads as a result of shift consideration is 

shown in figure 6(b), where blue represents tractography due to reconstructed electrode 

leads without shift consideration, and red represents leads with model-predicted shift 

consideration.

An examination of tract volume outputted by DSI Studio illustrates the potential impact 

of shift, which is reported in table 2 (columns 2 and 3). Furthermore, percent change 

from shift-considered tracts to their counterparts without shift consideration was computed, 

shown in table 2 (columns 4 and 5).

Analyzing changes in tract volume further, figure 7(a) demonstrates its strong relation with 

estimated shift: (a) Pearson correlation coefficient (CC) was computed where R = 0.70, 0.83 

and 0.67 for absolute difference in tract volume for model prediction, ANTs prediction, and 

combined data, respectively; (b) for thoroughness, similarly Spearman’s rank CC was also 

computed where ρ = 0.91, 0.60 and 0.80, respectively for model, ANTs, and combined data, 

thus both indicating the strong correlative impact of shift.

Since one objective of this study is to assess a possible threshold where tractography 

output (e.g. tract volume) may be impacted considerably by brain shift, here the combined 

data points in figure 7(a) were partitioned into two regions to determine such delineation. 

Specifically, the data points were divided into two cluster regions via k-means, shown in 

figure 7(b) in pink and blue; interestingly the partition occurred as shift approached ~2 mm 

and change in volume approached ~2485 mm3.

In addition to tract volume, the volumetric overlap between predicted fiber bundles and 

regions associated with motor functions, specifically precentral (in orange) and postcentral 

gyri (in cyan) shown in figure 8(a), was examined. Here the absolute difference in 

volumetric overlap of two different configurations (no shift vs. model-predicted shift, and 

no shift vs. ANTs-predicted shift) were computed and summarized in table 3. Figure 8(b) 

correlates the combined data of the absolute differences in motor ROI volumetric overlap 
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with estimate target shift in table 1. The results suggest the correlative impact of shift on 

change of fiber bundles’ overlap associated with motor regions (via Pearson CC as R = 

0.53).

3.4. Volumetric overlap (Jaccard index)

For each patient, the recruited pathway due to implants without shift consideration and 

its counterpart with shift consideration (model or ANTs) are compared for similarity via 

the Jaccard index or volumetric overlap. Here, when comparing two fiber bundles/sets in 

table 4, the combined set of two bundles is considered at 100%, and (a) the subset that 

is unique to the pathway from without shift consideration is labeled as ‘Unshifted-unique 

volume fraction’ in table 4. (b) Similarly, the subset that is unique to the pathway with 

shift consideration is labeled as ‘Shifted-unique volume fraction.’ (c) Lastly, the shared 

component of the two sets is labeled as ‘Volumetric overlap,’ effectively representing the 

Jaccard index. This relationship of the three components of interest is further illustrated in 

the Venn diagram in table 4.

Results for each patient are summarize in table 4, where volumetric overlap (Jaccard index) 

is shown in column 5 (model) and column 8 (ANTs), recall differences in displacement 

profile for model and ANTs predictions. Moreover, the volumetric overlap is plotted 

with corresponding shift estimation in figure 9. A linear regression was performed with 

Pearson CC (in figure 9), with model-prediction (red) and ANTs-prediction (blue) separately 

considered, as well as together.

Here the Pearson CCs were R = −0.88, −0.78 and −0.83 for volumetric overlap resulted 

from model-prediction, ANTs prediction and combined data, respectively. Moreover, the 

thresholds at which the estimated volumetric overlap became 0%, i.e. the inverse of the slope 

in the linear regression shown in figure 9 are 3.02, 2.87, and 2.94 mm, respectively for 

model-prediction, ANTs prediction and combined data.

3.5. Connectivity profile

Using the multi-physics models and fiber tract recruitment strategies in the previous 

sections, a connectivity matrix can be determined via DSI Studio with respect to precentral 

and postcentral gyri, considered to contribute to motor response in DBS (Accolla et al 
2016, Younce et al 2019). Structural connectivity change within the context of model- and 

ANTs-based predictions was computed. This connectivity profile that represents changes 
from baseline to its shifted counterpart normalized in a connecto-gram (Kassebaum 2020) is 

illustrated in figure 10. The width of the line represents the strength of change. The details 

describing regions in the parcellation atlas of AAL2 in figure 10 can be found in Rolls et al 
(2015).

4. Discussion

An analysis on the impact of intraoperative brain shift, derived from pMR and iMR 

imaging data, on fiber tract recruitment was conducted using a multi-physics FE modeling 

approach. When this framework was applied to six patients with pMR and iMR data, 

a critical threshold was characterized where deviation from the intended target could 
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potentially result in sharp decreases in efficacy. It was determined that a strong linear 

relation exists between the deviation from intended target and changes in intended neural 

pathway activation with Pearson CC of −0.83. With respect to the degradation of activation, 

figure 9 predicts that at a target error of ~2.94 mm, all intended activation would 

be affected. This threshold, determined via realistic shift estimated from two different 

shift prediction methods (biophysics-modeling and ANTs), provides quantitative evidence 

supporting previous observations that deviation/misplacement of ~2–3 mm may introduce 

inadequate treatment or poor outcome. While these conventional thresholds have been noted, 

to our knowledge the linear relationship found in figure 9 is quite profound in that it 

estimates an approximate 34% degradation in intended intentional functional activation per 

1 mm of targeting error in electrode positioning. It should also be noted that in data not 

reported here, activation of remaining contacts (i.e. contacts 0, 2 and 3) were also examined 

and yielded similar trends to that of contact 1. As a comparator, equivalent Pearson CCs of 

active −0.82, −0.92 and −0.94 were calculated for active contacts 0, 2 and 3, respectively. 

In addition, the estimated threshold at which intended activation degrades to 0%, was 3.10, 

2.75 and 2.61 mm for active contacts 0, 2 and 3, respectively. Given limitations and errors 

associated with data processing and modeling that will be discussed later, this estimation 

ranging from 2.61 to 3.10 mm at which intended neural pathway recruitment is lost is 

remarkably consistent with experiences in the literature. For example, in Kremer et al, an 

intraoperative CT (iCT) system was employed to verify lead placement, lead repositioning 

was deemed necessary if misplacement error of greater than 2 mm from intended target was 

detected (Kremer et al 2019).

In addition to the volumetric overlap metric, it is important to note the changes induced by 

brain shift on other metrics: (a) for tract volume in table 2, the average relative change 

of tract volume can be up to 33.2%. Furthermore, when correlation between absolute 

difference in volume and estimated deep brain target region shift was examined among 

conditions without and with shift considerations, correlative impact of shift on tract volume 

was observed and is shown in figure 7. For tract volume, specifically for Pearson CC, 

R = 0.67 for the combined data points and for Spearman’s rank CC, ρ = 0.80. (b) For 

overlapping volume with motor regions in table 3, correlative impact of shift on changes 

of the overlapping volume was examined and a moderate Pearson CC of R = 0.53 was 

determined in figure 8. (c) Moreover, figure 10 illustrates the changes in connectivity profile 

due to shift (model and ANTs) with respect to precentral and postcentral gyri. A notable 

connection alteration between configurations with and without shift consideration is the 

cerebellum. Recent studies have shown that in addition to basal ganglia (including STN), 

cerebellum may have functional implications on pathophysiology of PD such as motor 

learning (Wu and Hallett 2013, Sweet et al 2014, Marcelino et al 2019). Such connectivity 

alteration to cerebellum with its potential therapeutic implications further illustrate the need 

to account for brain shift in electrode placement and stimulation.

However, it is important to note several limitations of the study. First, additional 

considerations for stimulation modeling are desired. While considering nature of the 

medium with current or voltage input, the model here only evaluates purely conductive 

medium without considering frequency-dependency of both the capacitive effects in the 

medium and stimulus waveform utilized clinically. As noted by Butson et al, the approach 
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taken here may overestimate VTA where error may be attributed to stimulation pulse width 

and electrode capacitance (Butson and McIntyre 2005b). Fourier FEM (finite element 

modeling) should be considered in the future to account for frequency-dependence of 

stimulus waveform as well as capacitive effects of the computational medium (Butson and 

McIntyre 2005b, Howell and McIntyre 2016). Lastly, we would like to acknowledge that 

the simple linear relation used for obtaining conductivity properties from diffusion tensor 

can be improved. Studies (Wu et al 2018, Nordin et al 2021) have observed some impacts/

deficiencies in the relation derived by Tuch et al (2001): e.g. Wu et al (2018) noted that 

it is based on effective medium theory and does not directly and adequately account for 

the impact of the structures and natures of the brain tissues. Therefore, more sophisticated 

methods such as in Schmidt and Rienen (2012) and Howell and McIntyre (2016) relating 

diffusion tensor to the conductivity tensor can further improve and refine the establishment 

of the anisotropic and heterogenous medium. Nevertheless, while important, as the purpose 

of this study was to demonstrate relative changes, the work reported has considerable 

independent value.

A second limitation is with respect to the estimation of VTA. A number of methods 

reviewed in Gunalan et al have been proposed to obtain VTA or to estimate neural responses 

due to stimulation (Gunalan et al 2018). The VTA estimation similar to Astrom et al 
(2015) and (2018) was selected here for its computational efficiency in this initial analysis. 

However, it is recognized that VTA-based method has limitations noted by Gunalan et al 
(2018), particularly with bipolar and multipolar stimulation conditions (Duffley et al 2019). 

Field-cable (FC) model, i.e. multi-compartment cable models of axons in the NEURON 

modeling environment, considered the gold standard, would provide better estimation of 

neural activation (McNeal 1976, McIntyre and Foutz 2013, Sweet et al 2016, Howell and 

McIntyre 2016, Gunalan et al 2018, McIntyre 2018). In particular, impact and sensitivity 

of fiber orientation on functional outcome of DBS therapy could be further considered, 

similar to in Lehto et al (2017) and Slopsema et al (2021) where functional MRI (fMRI) 

was leveraged. The approach of leveraging NEURON modeling environment as well as 

accounting for fiber orientation where pathway activation percentage can be assessed 

should be a part of further retrospective analysis on the impact of shift on neural pathway 

recruitment (Lehto et al 2017, Gunalan et al 2018, Anderson et al 2019, Duffley et al 2019, 

Slopsema et al 2021).

Another limitation of the study is the lack of patient-specific diffusion weighted imaging 

(DWI) data, which necessitated a number of registrations performed here to the population-

averaged template space (indicated by the green arrows in figure 3), which could contribute 

to potential registration bias. Specifically, given the pathology of the patients in this study, 

they may deviate from healthy DWI on a patient level due to possible atrophy from disease 

duration. However, a recent report examined the connectivity analysis via patient specific 

information vs. normative atlases, the latter being the approach taken in this work, and 

found that while not interchangeable, the connectivity profiles produced by each method 

can yield similar conclusions with respect to clinical outcome (Wang et al 2020). This does 

provide some credence to the overall conclusions drawn in this study with the use of the 

population-averaged template. Nevertheless, this comparison report described above (Wang 

et al 2020) does note that, while results are not statistically significant, patient-specific 
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information may lead to slightly better prediction of clinical outcomes. Therefore, future 

work will involve the acquisition of patient-specific DWI and conduct a similar comparison 

study to extend the findings of this study.

Moreover, for future directions, there are two possibilities to consider: (a) for shift 

assessment, a better understanding with final lead position via postop imaging data could 

provide further data points, in addition to intraoperative brain shift, of the impact of shift on 

clinical outcome in a longitudinal manner, similar to a promising study recently conducted 

by (Goransson et al 2020); (b) clinical effects, instead of simulated tractography, would be 

preferred and desired.

Despite the limitations outlined above, the experimental design reported provides a 

consistent and identical modeling environment for all simulations within this comparison 

study. In this context, similar estimation errors and limitations (i.e. registration, localization, 

shift measurements, etc) are present and expected among all groups; thus, the overall 

conclusions regarding the impact of brain shift on neural pathway recruitment, while not 

absolute, do become informative rather than definitive.

5. Conclusion

A retrospective analysis was performed to assess the impact of brain shift on DBS functional 

outcome as evaluated by tractography. The analysis leverages a multi-physics biomechanical 

and bioelectric modeling framework. The former provides realistic intraoperative brain shift 

estimation, and the latter is used to predict electric potential. The potential solution profile is 

subsequently used to estimate VTA and predict the recruitment of neural pathways. With the 

application of this analysis framework to the preop- and intraop-imaging data of six patients, 

shift consideration at deep brain target region is demonstrated to introduce differences in 

tract volume, motor ROI volumetric overlap, as well as connectivity profile. A strongly 

negative correlation is found between deviation from intended target and recruitment of 

neural pathways, where a threshold average of ~2.85 mm across all lead electrodes is 

determined to critically degrade intended neural pathway recruitment. In addition, an 

estimate of the rate of intended neural pathway recruitment degradation as a function of 

target error was determined, i.e. an approximate 34% degradation in neural recruitment for 

every 1 mm in electrode positioning error. This finding provides quantitative evidence to 

support literature reports that deviations of 2–3 mm from intended target produces poor 

or inadequate clinical outcomes. This is important as such deviations can result in lead 

position revision or removal altogether. Finally, while the framework provided has served 

as an analysis tool for data taken intraoperatively, the fidelity of the results does provide an 

exciting prospect for the use of multi-physics models as an inexpensive planning, guidance, 

and delivery platform for DBS therapy.
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Figure 1. 
A predictive multi-physics FE modeling framework for brain shift prediction via 

biomechanical model (left—black block), electric potential computation via bioelectric 

model (middle—blue block), with subsequent analysis of VTA estimation and tractography 

(right—orange block).
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Figure 2. 
An example of imaging data in this study: demonstration of the impact of brain shift during 

DBS burr hole surgery on the surface as well as subsurface (corresponding crosshairs at 

the lateral ventricle). Red arrows indicate the imaging artifacts resulted from implanted 

electrode leads.
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Figure 3. 
A flowchart of the study: accounting for different shift considerations (model- and 

ANTs- predictions in black block) within the bioelectric model (blue block) for VTA 

estimations in HCP 1021 template (grey block), for subsequent examination of tractography 

(orange block). Overall analysis and modeling are performed in MNI space achieved by 

co-registration of T1 weighted images via ANTs (represented in green arrows).
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Figure 4. 
A patient-specific bioelectric model representing deformed patient anatomy (noting 

asymmetric shift in the left frontal lobe) with reconstructed electrode leads incorporated. 

Contact 1 is shown as the active contact in red, while other contacts are shown in black.
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Figure 5. 
(a) VTA estimation (purple) superimposed with patient MR in HCP 1021 template space. 

VTA is due to activation of contact 1 (shown in red). (b) Zoomed perspective.
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Figure 6. 
(a) Predicted tractography due to estimated VTAs from neuromodulation of left and 

right implants. (b) Comparison of tracts without shift consideration (red) and with model-

predicted shift consideration (blue).
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Figure 7. 
Absolute difference in tract volume vs. estimated shift at deep brain target region. (a) Data 

points associated with model prediction shown in black and ANTs in red. Pearson and 

Spearman’s CCs for configurations of model, ANTs, and combined data are also shown, 

all indicting the impact of shift on tract statistics from baseline without shift consideration. 

(b) The same data points in (a) are partitioned into two cluster regions via k-means shown 

in blue and pink, indicating two distinct clusters as shift approaches ~2 mm and change in 

volume approaches ~2485 mm3.
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Figure 8. 
(a) Predicted fiber tracts shown with precentral (orange) and postcentral (cyan) gyri. (b) 

Absolute change in volumetric overlap with motor regions (no-shift consideration as the 

baseline) analyzed with estimated shift at target region, suggesting the impact of brain shift, 

i.e. deviation from surgical plan.
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Figure 9. 
Volumetric overlap vs. estimated shift at deep brain target region. Prediction via model-

based approach in red; prediction via ANTs in blue. Linear regression is performed with 

Pearson CC for model (red), ANTs (blue) and combined data (black).
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Figure 10. 
Connectivity change of shift-considered connectivity matrices from without shift 

consideration with respect to precentral and postcentral gyri, where line width represents 

the extent of change.

Luo et al. Page 26

J Neural Eng. Author manuscript; available in PMC 2022 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luo et al. Page 27

Table 1.

Estimated shift at deep brain target region.

Case #
Right implant (mm) Left implant (mm)

Model ANTs Model ANTs

1 3.2 2.5 a a 

2 0.4 0.5 2.0 1.2

3 1.1 1.1 0.3 1.4

4 0.2 0.6 1.6 2.7

5 1.8 1.3 0.5 1.0

6 0.5 1.2 1.8 1.6

Average 1.2 ± 1.1 1.2 ± 0.7 1.2 ± 0.8 1.6 ± 0.7

a
Indicates a unilateral implant.
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Table 3.

Absolute change in volume overlap between predicted fiber bundles and motor regions of precentral and 

postcentral gyri.

Overlapping volume difference (mm3)

No shift vs. model-predicted shift
No shift vs. ANTs-predicted shift

Case # Right implant Left implant

1 208 a 

421

2 235 151

115 151

3 115 87

206 374

4 0 372

0 397

5 847 17

246 278

6 190 212

75 392

a
Indicates a unilateral implant.
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