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v

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the Institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related research;

• Integrates HEI’s research results with those of other institutions into broader evaluations; 
and

• Communicates the results of HEI’s research and analyses to public and private decision 
makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United 
States and around the world also support major projects or research programs. HEI has funded 
more than 340 research projects in North America, Europe, Asia, and Latin America, the results 
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel 
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more than 
260 comprehensive reports published by HEI, as well as in more than 2,500 articles in the peer-
reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Review Committee, which has no role in selecting or overseeing 
studies, works with staff to evaluate and interpret the results of funded studies and related 
research.

All project results and accompanying comments by the Review Committee are widely 
disseminated through HEI’s website (www.healtheffects.org), printed reports, newsletters and other 
publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 209, Associations of Air Pollution on the Brain in Children: A Brain Imaging Study, 
presents a research project funded by the Health Effects Institute and conducted by Dr. Mònica 
Guxens of Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain, and her colleagues. 
This research was funded under HEI’s Walter A. Rosenblith New Investigator Award Program, 
which provides support to promising scientists in the early stages of their careers. The report 
contains three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the study 
and its findings; it also briefly describes the Review Committee’s comments on the study.

The Investigators’ Report, prepared by Guxens and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Critique, prepared by members of the Review Committee with the assistance of HEI 
staff, places the study in a broader scientific context, points out its strengths and limitations, and 
discusses remaining uncertainties and implications of the study’s findings for public health and 
future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Review 
Committee, an independent panel of distinguished scientists who are not involved in selecting 
or overseeing HEI studies. During the review process, the investigators have an opportunity to 
exchange comments with the Review Committee and, as necessary, to revise their report. The 
Critique reflects the information provided in the final version of the report.
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H E I  S TAT E M E N T 
Synopsis of Research Report 209

Air Pollution and Brain Outcomes in Children

What This Study Adds
• The goal of the study was to assess whether early 

life air pollution exposure affects brain outcomes us-
ing neuroimaging data from an existing birth cohort 
(Generation R) in Rotterdam, the Netherlands.

• The study focused on brain structural and functional 
measures in children.

• Strengths of the study were the availability of 
high-resolution neuroimaging data for a large subset 
of the cohort, the wealth of individual-level covariate 
data, and estimation of a large suite of air pollution 
exposure metrics.

• The study found some evidence of associations 
between early life air pollution exposure and various 
measures of brain structural morphology, structural 
connectivity, and functional connectivity in children. 
For example, exposure to air pollution during early 
life was associated with a thinner cortex in various 
regions of the brain in both school-age children and 
pre-adolescents. The clinical relevance of the findings 
remains unclear.

• The results add to the limited evidence of air pollu-
tion effects on the developing brain, with only a few 
MRI studies in children so far.

BACKGROUND

Although several epidemiological studies 
have assessed the association between air 
pollution exposure during early life and child 
neurological development, it is yet unclear 
whether brain structural alterations underlie 
the observed associations. Advances in neu-
roimaging that allow in vivo investigation of 
brain structure and function have emerged. 
Such studies provide additional information 
about the possible mechanisms and add 
biological plausibility to the nervous system 
outcomes reported in epidemiological studies. 
So far, only a few studies have used magnetic 
resonance imaging techniques to evaluate the 
effect of air pollution on the developing brain.

Dr. Mònica Guxens of ISGlobal, a recipient 
of HEI’s 2016 Walter A. Rosenblith New Inves-
tigator Award, and colleagues have assessed 
the possible relationship of early life air 
pollution exposure with brain outcomes using 
neuroimaging data in children.

APPROACH

The study by Dr. Guxens assessed the possible 
relationship of air pollution exposure during 
pregnancy and childhood with brain outcomes 
in children. Brain structural and functional mea-
sures were studied in Generation R — an existing 
birth cohort in Rotterdam, the Netherlands. 
Mother–child pairs were recruited during preg-
nancy or at birth from 2002–2006 and followed 
up until 2015.

Dr. Guxens and colleagues used air pollu-
tion data and high-resolution neuroimaging 
data collected in about 800 school-age children 
and in about 3,100 pre-adolescents. About 
400 children underwent imaging at two time 
points. To increase statistical power in the first 
round, a potential sampling bias was intro-
duced by deliberately selecting more school 
children with child behavior problems and 
with mothers who reported certain exposures 

during pregnancy (e.g., exposure to drugs, nicotine, 
alcohol, and psychiatric medication).

Early life exposure was estimated at the residential 
address level for various air pollutants using existing 
land-use regression models, mainly from the European 
ESCAPE project. Those models were based on air pollu-
tion measurements between February 2009 and February 
2010 at 40 to 80 sites spread across the Netherlands and 
Belgium. Guxens and colleagues applied single pollutant 
regression models to assess the association between 
early life air pollution exposure and brain structural and 
functional measures corrected for important potential 
confounders, such as maternal smoking, prepregnancy 
body mass index, and socioeconomic status. Because 

1

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Mònica 
Guxens at Barcelona Institute for Global Health, Barcelona, Spain, and colleagues. Research Report 209 contains both the detailed 
Investigators’ Report and a Critique of the study prepared by the Institute’s Review Committee.



the number of outcome measurements was very large, 
analyses of most brain outcomes were corrected 
for multiple comparisons. Additionally, they used 
multipollutant models using a deletion/substitution/
addition approach.

MAIN RESULTS AND INTERPRETATION

In its independent review of the study, the HEI 
Review Committee thought the research was well 
motivated and addressed important and novel ques-
tions about the potential relationships between air pol-
lution and the developing brain. This type of research 
is emerging but remains distinctive — with only a 
few MRI studies in children so far. The availability of 
high-resolution neuroimaging data for a large subset of 
the cohort — the largest sample to date — was unprec-
edented; the wealth of individual-level covariate data 
and the large suite of air pollution exposure metrics 
estimated were strengths of the study.

The study documented associations between early 
life air pollution exposure and various measures of 
brain structural morphology, structural connectivity, 
and functional connectivity in children. For example, 
exposure to air pollution during early life was asso-
ciated with a thinner cortex in various regions of the 
brain in both school-age children and pre-adolescents. 
Moreover, in pre-adolescents, exposure to air pollu-
tion during early life was associated with differences 
in region-specific brain volumes, such as a smaller 
volume in the hippocampus and corpus callosum. 
In addition, associations were documented between 
exposure and white matter microstructure and higher 
brain functional connectivity among several brain 
regions. Although the Review Committee broadly 
agrees with the investigators’ conclusions, it noted a 
few limitations that should be considered when inter-
preting the results.

The Committee had concerns about the exposure 
assessment because of the substantial temporal and 
spatial misalignment of the data. That issue is partic-
ularly important when studying the developing brain, 
which is exceptionally complex with potentially 
critical time windows of development. Furthermore, 
all brain outcomes, including brain volume outcomes, 
should have been corrected for multiple comparisons 
because of the large number of analyses. The Com-
mittee was not convinced that the multipollutant 
approach added much, because, for example, it 
remains unclear how stable the identified specific 
exposure associations in the multipollutant analyses 
really are. High correlations were noted among many 
pollutants in the analyses and between prenatal and 
childhood exposure. Thus, it was not possible to tease 
out independent pollutant associations and identify a 
susceptible exposure window during pregnancy and 
early childhood. Additionally, some study design 
features affected the generalizability of the findings.

CONCLUSIONS

Overall, the insights drawn from the current 
study, along with a few other brain imaging studies in 
children, are noteworthy and should provide impetus 
for further research. Because the brain has a dynamic 
structure that is constantly evolving throughout life, 
longitudinal studies beginning as early as possible are 
the best means to assess the effect of air pollution on 
the developmental trajectories of the brain outcomes 
included in the current cross-sectional analysis. Also, 
further analyses should be encouraged, for example, 
to investigate whether children with worse brain 
outcomes showed poorer cognitive function or other 
adverse neurological development outcomes. Those 
analyses would shed light on whether the brain out-
come findings are clinically relevant, but this so far 
remains unclear.
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INVESTIGATORS’ REPORT

Associations of Air Pollution on the Brain in Children: A Brain Imaging Study
Mònica Guxens1,2,3,4, Małgorzata J. Lubczyńska1,2,3,4, Laura Pérez-Crespo1,2,3, Ryan L. Muetzel4, 
Hanan El Marroun4,5,6, Xavier Basagaña1,2,3, Gerard Hoek7, Henning Tiemeier4,8

1Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; 2Pompeu Fabra University, Barcelona, Spain; 3Spanish 
Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain; 
4Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; 
5Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus 
University, Rotterdam, the Netherlands; 6Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, 
the Netherlands; 7Institute for Risk Assessment Sciences, Utrecht University, the Netherlands; 8Department of Social and 
Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts

ABSTRACT

Introduction    Epidemiological studies are highlighting the 
negative effects of the exposure to air pollution on children’s 
neurodevelopment. However, most studies assessed chil-
dren’s neurodevelopment using neuropsychological tests or 
questionnaires. Using magnetic resonance imaging (MRI*) to 
precisely measure global and region-specific brain develop-
ment would provide details of brain morphology and connec-
tivity. This would help us understand the observed cognitive 
and behavioral changes related to air pollution exposure. 
Moreover, most studies assessed only a few air pollutants. 
This project investigates whether air pollution exposure to 
many pollutants during pregnancy and childhood is associ-
ated with the morphology and connectivity of the brain in 
school-age children and pre-adolescents.

Methods    We used data from the Generation R Study, a 
population-based birth cohort set up in Rotterdam, the 
Netherlands in 2002–2006 (n = 9,610). We used land-use 
regression (LUR) models to estimate the levels of 14 air 
pollutants at participant’s homes during pregnancy and 
childhood: nitrogen oxides (NOx), nitrogen dioxide (NO2), 
particulate matter with aerodynamic diameter ≤10 µm 
(PM10) or ≤2.5 µm (PM2.5), PM between 10 µm and 2.5 µm 
(PMCOARSE), absorbance of the PM2.5 fraction — a measure 
of soot (PM2.5absorbance), the composition of PM2.5 such as 

This Investigators’ Report is one part of Health Effects Institute Research 
Report 209, which also includes a Critique by the Review Committee and 
an HEI Statement about the research project. Correspondence concerning 
the Investigators’ Report may be addressed to Dr. Mònica Guxens, 
Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, 
08003 Barcelona, Spain; e-mail: monica.guxens@isglobal.org. No potential 
conflict of interest was reported by the authors.

Although this document was produced with partial funding by the Unit-
ed States Environmental Protection Agency under Assistance Award CR–
83467701 to the Health Effects Institute, it has not been subjected to the 
Agency’s peer and administrative review and therefore may not necessarily 
reflect the views of the Agency, and no official endorsement by it should 
be inferred. The contents of this document also have not been reviewed by 
private party institutions, including those that support the Health Effects 
Institute; therefore, it may not reflect the views or policies of these parties, 
and no endorsement by them should be inferred.

polycyclic aromatic hydrocarbons (PAHs), organic carbon 
(OC), copper (Cu), iron (Fe), silicon (Si), zinc (Zn), and the 
oxidative potential of PM2.5 evaluated using two acellular 
methods: dithiothreitol (OPDTT) and electron spin resonance 
(OPESR). We performed MRI measurements of structural 
morphology (i.e., brain volumes, cortical thickness, and 
cortical surface area) using T1-weighted images in 6- to 
10-year-old school-age children and 9- to 12-year-old pre-
adolescents, structural connectivity (i.e., white matter 
microstructure) using diffusion tensor imaging (DTI) in pre-
adolescents, and functional connectivity (i.e., connectivity 
score between brain areas) using resting-state functional MRI 
(rs-fMRI) in pre-adolescents. We assessed cognitive function 
using the Developmental Neuropsychological Assessment 
test (NEPSY-II) in school-age children. For each outcome, we 
ran regression analysis adjusted for several socioeconomic 
and lifestyle characteristics. We performed single-pollutant 
analyses followed by multipollutant analyses using the 
deletion/substitution/addition (DSA) approach.

Results    The project has air pollution and brain MRI data for 
783 school-age children and 3,857 pre-adolescents.

First, exposure to air pollution during pregnancy or 
childhood was not associated with global brain volumes (e.g., 
total brain, cortical gray matter, and cortical white matter) in 
school-age children or pre-adolescents. However, higher preg-
nancy or childhood exposure to several air pollutants was 
associated with a smaller corpus callosum and hippocampus, 
and a larger amygdala, nucleus accumbens, and cerebellum in 
pre-adolescents, but not in school-age children.

Second, higher exposure to several air pollutants during preg-
nancy was associated with a thinner cortex in various regions of 
the brain in both school-age children and pre-adolescents. Higher 
exposure to air pollution during childhood was also associated 
with a thinner cortex in a single region in pre-adolescents. A 
thinner cortex in two regions mediated the association between 
higher exposure to air pollution during pregnancy and an 
impaired inhibitory control in school-age children.

* A list of abbreviations and other terms appears at the end of this volume.

mailto:monica.guxens@isglobal.org
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Third, higher exposure to air pollution during childhood 
was associated with smaller cortical surface areas in various 
regions of the brain except in a region where we observed a 
larger cortical surface area in pre-adolescents.

In relation to brain structural connectivity, higher expo-
sure to air pollution during pregnancy and childhood was 
associated with an alteration in white matter microstructure 
in pre-adolescents.

In relation to brain functional connectivity, a higher 
exposure to air pollution, mainly during pregnancy and early 
childhood, was associated with a higher brain functional 
connectivity among several brain regions in pre-adolescents.

Overall, we identified several air pollutants associated 
with brain structural morphology, structural connectivity, 
and functional connectivity, such as NOx, NO2, PM of various 
size fractions (i.e., PM10, PMCOARSE, and PM2.5), PM2.5absor-
bance, PAHs, OC, three elemental components of PM2.5 (i.e., 
Cu, Si, Zn), and the oxidative potential of PM2.5.

Conclusions    The results of this project suggest that exposure to 
air pollution during pregnancy and childhood play an adverse 
role in brain development. We observed this relationship even 
at levels of exposure that were below the European Union 
legislations. We acknowledge that identifying the independent 
effects of specific pollutants was particularly challenging. 
Most of our conclusions generally refer to traffic-related air 
pollutants. However, we did identify pollutants specifically 
originating from brake linings, tire wear, and tailpipe emissions 
from diesel combustion. The current direction toward innova-
tive solutions for cleaner energy vehicles is a step in the right 
direction. However, our findings indicate that these measures 
might not be completely adequate to mitigate health problems 
attributable to traffic-related air pollution, as we also observed 
associations with markers of brake linings and tire wear.

INTRODUCTION

More than half of the world’s population now lives in cit-
ies, and this fraction is projected to increase (United Nations 
2018). This makes the urban environment an important deter-
minant of human health and wellbeing (McMichael 2000). Of 
particular interest is the exposure to air pollution. In the last 
decades, several regulatory policy measures have been imple-
mented; however, air pollution still remains the biggest envi-
ronmental health challenge (Cohen et al. 2017). It is the main 
environmental contributor to the global burden of disease 
and one of the top preventable causes of disease (Cohen et al. 
2017). In 2017, 98% of the cities in low- and middle-income 
countries and 56% of the cities in high-income countries did 
not meet the air quality standards established by the World 
Health Organization (European Environment Agency 2019).

Children are among the most vulnerable groups. Brain 
structures are forming and growing during fetal development 

and childhood. Exposure to environmental factors, such as 
air pollution, may cause permanent damage (Rice and Barone 
Jr. 2000). Fine particles may deposit in the respiratory tracts 
of children and pregnant women; soluble components may 
translocate into the circulation and generate systemic inflam-
mation (U.S. Environmental Protection Agency [U.S. EPA] 
2019). In pregnant women, both systemic inflammation and 
the translocation of the air pollutants might directly affect 
fetal development by impairing placental function, decreasing 
transplacental oxygen and nutrient transport, and producing 
oxidative stress and epigenetic changes in the placenta (Car-
valho et al. 2016; Hettfleisch et al. 2017; Saenen et al. 2019; van 
den Hooven et al. 2012). A recent study showed for the first 
time that air pollutants can reach the fetal side of the human 
placenta (Bové et al. 2019). The systemic inflammation and 
the air pollutants that translocated into the circulation might 
cross the blood–brain barrier and directly reach the fetal 
brain. Moreover, in children, fine particles may also deposit 
on the olfactory epithelium, and soluble components may be 
directly transported via the olfactory nerve to the olfactory 
bulb of the brain (U.S. EPA 2019). Air pollution can have a 
deleterious impact on the central nervous system through 
chronic neuroinflammation, oxidative stress, microglia 
activation, chronic activation of the hypothalamic–pituitary–
adrenal axis, alterations in myelin sheaths, and neuronal 
damage (Block et al. 2012; Costa et al. 2017; Thomson 2019; 
U.S. EPA 2019).

Epidemiological studies are highlighting the negative 
effects of the exposure to air pollution on children’s 
neurodevelopment (Costa et al. 2019; de Prado Bert et al. 
2018; Donzelli et al. 2020; Herting et al. 2019; Pagalan et al. 
2019; Suades-González et al. 2015; U.S. EPA 2019). However, 
most studies assessed children’s neurodevelopment using 
neuropsychological tests or questionnaires. Using MRI 
to precisely measure global- and region-specific brain 
development would provide details of brain morphology and 
connectivity. This would help us understand the observed 
cognitive and behavioral changes related to air pollution 
exposure. In children, maturation of the white and gray 
matter is essential to properly develop cognitive function 
(Yurgelun-Todd 2007) and underlies the initiation of many 
psychiatric disorders (Paus et al. 2008). Brain development 
shows complex patterns of change over the lifespan (Lenroot 
and Giedd 2006). Interestingly, white and gray matter develop 
in different ways. The volume and maturation of white matter 
increase throughout childhood and adolescence, axons and 
synapses are overproduced during puberty, and extensive 
pruning of synaptic connectivity in several brain regions 
is completed in later adolescence (Fuhrmann et al. 2015; 
Lenroot and Giedd 2006; Paus 2005). In contrast, the volume 
of gray matter increases from infancy through childhood and 
then declines throughout adolescence (Fuhrmann et al. 2015; 
Lenroot and Giedd 2006; Paus 2005).
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Recently, animal and human studies investigated 
the relationship of exposure to air pollution with brain 
morphology and connectivity. Exposure to air pollution 
has been related to an alteration of several brain structures 
at different ages, such as cortical gray matter, cortical white 
matter, thalamus, caudate, putamen, pallidum, hippocampus, 
amygdala, corpus callosum, and cerebellum (Allen et al. 2017; 
Beckwith et al. 2020; Brown et al. 2020; Calderón-Garcidueñas 
et al. 2008; Casanova et al. 2016; Chen et al. 2017; Cserbik et 
al. 2020; Erickson et al. 2020; Gale et al. 2020; Hedges et al. 
2019; Long et al. 2014; Mortamais et al. 2017, 2019; Peterson 
et al. 2015; Power et al. 2018; Pujol et al. 2016b; Wilker et al. 
2015). Also, in children, it was suggested that exposure to air 
pollution was associated with brain structural and functional 
connectivity (Pujol et al. 2016a,b).

However, many unanswered questions remain on the 
effect of air pollution on children’s neurodevelopment. There 
are still too few studies, most of them with a small sample 
size, to draw conclusions. Most of these studies analyzed only 
few pollutants without examining their composition or trying 
to identify the independent effects of specific pollutants. 
This knowledge gap impedes identifying the most toxic 
components and understanding simultaneous exposures. 
Also, the association between exposure to air pollution and 
compromised neurodevelopment might be present during 
both pregnancy and childhood, but previous studies looked 
at either one period or the other. In this project, we aim to 
confront these knowledge gaps and to expand the current 
body of evidence on the effect of air pollution on children’s 
neurodevelopment.

SPECIFIC AIMS

The overarching aim of the project was to investigate 
whether exposure to air pollution during pregnancy and 
childhood is associated with the morphology and connec-
tivity of the brain in childhood. To do so, we pursued the 
following specific aims:

Aim 1    To assess the relationship of exposure to air pollu-
tion during pregnancy and childhood with brain structural 
morphology in 6- to 10-year-old school-age children and 9- to 
12-year-old pre-adolescents. Specifically:

• the relationship of exposure to air pollution during preg-
nancy with brain volumes in school-age children and 
pre-adolescents,

• the relationship of exposure to air pollution during 
pregnancy and childhood with brain cortical thickness 
and cortical surface area in school-age children and pre- 
adolescents, and

• the mediation role of brain cortical thickness on the as-
sociation of exposure to air pollution during pregnancy 
with cognitive function in school-age children.

We hypothesized that exposure to air pollution during 
pregnancy and childhood was associated with reduced vol-
umes of the global brain and of specific areas, such as the 
cortical and subcortical gray matter, the total white matter, the 
corpus callosum, the cerebellum, the thalamus, the pallidum, 
and the hippocampus. Also, we expected to observe a larger 
volume for the caudate nucleus, the putamen, the amygdala, 
and the nucleus accumbens.

We postulated that exposure to air pollution during 
pregnancy and childhood was associated with lesser cortical 
thickness and smaller cortical surface area.

We posited that brain cortical thickness mediates the 
association of exposure to air pollution during pregnancy and 
impaired cognitive function.

Aim 2    To assess the relationship of exposure to air pollution 
during pregnancy and childhood with brain structural con-
nectivity in 9- to 12-year-old pre-adolescents.

We hypothesized that exposure to air pollution during 
pregnancy and childhood was associated with lower frac-
tional anisotropy (FA) and higher mean diffusivity (MD).

Aim 3    To assess the relationship between exposure to air 
pollution during pregnancy and childhood and brain func-
tional connectivity in 9- to 12-year-old pre-adolescents.

We hypothesized that exposure to air pollution during 
pregnancy and childhood was associated with altered brain 
functional connectivity, but we did not have an a priori 
hypothesis on the direction of the association.

METHODS AND STUDY DESIGN

HUMAN STUDY APPROVAL

The Medical Ethics Committee of the Erasmus Medical 
Centre in Rotterdam, the Netherlands, granted ethical approval 
for the Generation R study (no. MEC 198.782/2001/31), 
which includes the studies described in this report. Mothers 
provided written informed consent for themselves and their 
children.

STUDY DESIGN AND POPULATION

We used data from the Generation R Study, a  
population-based birth cohort from pregnancy onward, set up 
in the urban area of Rotterdam, the Netherlands (Kooijman 
et al. 2016). A total of 8,879 women were enrolled during 
pregnancy, and 899 women were recruited shortly after 
the delivery. Children were born between April 2002 and 
January 2006. We included only singleton pregnancies for 
this research, resulting in 9,610 mother–child pairs. Children 
were examined at several time points after birth. We gathered 
data for the Generation R brain MRI substudy. A brain MRI 
protocol was developed that included brain morphology, DTI, 
and rs-fMRI.
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A select group of children enrolled in the Generation R 
study, who were between the ages of 6 and 10 years, was 
recruited for the first wave of the brain MRI substudy (White 
et al. 2013). The whole cohort of children between the ages of 
9 and 12 years was recruited for the second wave of the brain 
MRI substudy (White et al. 2018). Due to the logistics of the 
visits, there was some overlap on the age of the participants 
between waves.

The first wave included 1,932 children. This was an 
oversample based on certain maternal exposures during 
pregnancy, such as cannabis, nicotine, selective serotonin 
reuptake inhibitors, depressive symptoms, plasma folate 
levels, and child behavior problems, such as attention deficit 
hyperactivity disorder, pervasive developmental problems, 
dysregulation problems, and aggressive problems. Exclusion 
criteria comprised contradictions for the MRI procedure, 
severe motor or sensory disorders, neurological disorders, 
head injuries with loss of consciousness, and claustrophobia. 
Of the 1,932 children, the invitation call was not answered 
for 155, participation was refused for 447, and 5 could not 
participate due to contraindications for the MRI procedure. 
Of the 1,325 that attended the MRI visit, we excluded twins 
and children with poor brain MRI data quality and major 
abnormalities. We had brain MRI measurements available for 
1,070 children. Finally, after excluding those without air pol-
lution estimations, we included 783 children in the project.

In the second wave, the brain MRI measurements were 
offered to all children still involved in the Generation R study 
who were 9 to 12 years old (n = 8,548) (White et al. 2018). The 
invitation call was not answered for 911; participation was 
refused for 244; 1,531 did not visit the research center; and 
1,875 did not undergo the MRI procedure. We excluded twins 
and children with poor brain MRI data quality and major 
abnormalities. We had brain MRI measurements available for 
3,888 children. Finally, after excluding those without air pol-
lution estimations, we included 3,857 children in the project. 
We obtained brain structural morphology data for 3,133 of 
them, structural connectivity data for 2,954, and functional 
connectivity data for 2,197. The reduction in the number of 
children for which data of each imaging modality were avail-
able was due to attrition along the MRI session.

For 387 children, we had information on air pollution and 
brain imaging data from both waves. However, we did not 
combine that information because of the small sample size 
and because the scanners differed between waves.

AIR POLLUTION ASSESSMENT

We used LUR models to estimate the levels of air pollution 
at all reported home addresses of each participant during the 
pregnancy and childhood following a standardized procedure 
in the context of the ESCAPE (European Study of Cohorts for 
Air Pollution Effects) and the TRANSPHORM (Transport 
related Air Pollution and Health impacts — Integrated Meth-

odologies for Assessing Particulate Matter) projects (Beelen et 
al. 2013; Brunekreef 2008; de Hoogh et al. 2013; Eeftens et al. 
2012a; Jedynska et al. 2014b; Yang et al. 2015). We performed 
2-week measurements of NOx and NO2 in three different 
seasons (i.e., warm, cold, and intermediate). We performed 
these measurements between February 2009 and February 
2010 at 80 sites spread across the Netherlands and Belgium 
(Appendix Figure A1; see Additional Materials on the HEI 
website) (Cyrys et al. 2012). Additionally, at 40 of those sites, 
we carried out measurements of PM10 and PM2.5 (Eeftens et 
al. 2012b). We calculated PM mass between 10 and 2.5 µm 
(PMCOARSE) by subtracting PM2.5 from PM10. We measured 
different parameters in the PM2.5 filters: PM2.5absorbance, the 
composition of PM2.5 including PAHs, OC, Cu, Fe, Si, and Zn, 
and the oxidative potential of PM2.5 (de Hoogh et al. 2013; 
Jedynska et al. 2014a; Yang et al. 2015). PM2.5absorbance is a 
measure of the reflectance of the PM2.5 filter, and it is highly 
correlated with elemental or black carbon, also referred to as 
soot (Cyrys et al. 2003). The oxidative potential of PM2.5 is a 
quantification of the potentiality of fine particles to induce 
oxidative stress (Yang et al. 2015). We evaluated oxidative 
potential using two acellular methods: OPDTT and OPESR (Yang 
et al. 2015).

Measurement sites were selected to represent the antici-
pated spatial variation of air pollution at the home addresses 
of subjects in the epidemiological studies set up in the study 
area. Measurement sites reflected a large diversity of potential 
sources of air pollution (e.g., population density, traffic inten-
sity, industry, proximity to ports, etc.), selecting regional 
background, urban background, and street sites. Regional 
background sites were located outside major urban areas 
and were not directly influenced by traffic sources. Urban 
background sites were located inside an urban area, but at 
least 50 meters from major roads. Street sites were selected 
at building facades representative for homes, in streets with 
traffic intensities of 10,000 or more vehicles per day. Street 
sites were overrepresented compared with the fraction of 
addresses on major roads, as the goal was to describe spatial 
variation in the area of which traffic is a main source. Mea-
surements were performed simultaneously in 20 NOx–NO2 
sites and in 10 NOx–NO2–PM sites. Thus, we performed four 
rounds of 2-week measurements to complete a measurement 
period for one season (i.e., to complete the measurements 
in 80 sites for NOx–NO2 and 40 sites for PM). Each round 
included different types of sites, for example, regional, urban 
background, and traffic sites. To adjust for the temporal vari-
ability of concentrations, a centrally located reference site was 
chosen at a regional background location that was not directly 
influenced by local sources, and measurements were taken 
over the entire year. For each round, we applied a temporal 
correction in two steps: (1) calculating the difference between 
the concentration for a 2-week specific sampling period and 
the annual average of the continuous-reference site, and (2) 
subtracting that difference from each measurement (Beelen et 
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al. 2013; Brunekreef 2010; de Hoogh et al. 2013; Eeftens et 
al. 2012a; Jedynska et al. 2014b; Yang et al. 2015). Next, for 
each pollutant, we averaged the concentrations of the three 
2-week corrected measurements resulting in one annual mean 
concentration.

We assigned to each monitoring site a variety of potential 
land-use predictors, such as proximity to the nearest road, 
traffic intensity on the nearest road, and population density. 
Then, we applied LUR models by using linear regression 
models to determine which combination of predictors best 
explained the annual average concentration of each pollutant 
(Appendix Table A1). The cross-validation R2 of the LUR 
model varied between pollutants and ranged between 0.31 for 
PAHs and 0.89 for PM2.5absorbance (Appendix Table A2). We 
then applied LUR models to each geocoded address where 
participants lived during the period of interest (i.e., since 
conception until date of the MRI assessments) to estimate 
the exposure of each air pollutant at each address (Figures 
1 and 2 and Appendix Figure A2). Addresses were geocoded 
using the cadaster of all buildings of the Netherlands. For the 
participants who were recruited shortly after birth, we used 

their birth address for the pregnancy period. We considered 
the number of days that the participant spent at each address 
and weighted the pollution exposures accordingly. Then, we 
calculated the mean exposure of each pollutant for each par-
ticipant for several time periods: (1) for the entire pregnancy 
period, (2) from birth until 2 years of age, (3) from 2 until 5 
years of age, (4) from 5 until 9 years of age, and (5) for the 
entire childhood period (i.e., from birth until the date of the 
second-wave MRI assessment).

No historical data were available for most of the pollut-
ants. Therefore, we could not perform back and forward 
extrapolation of the concentrations to match the exact periods 
of interest. For most analyses, we assumed that the spatial 
contrast remained constant over time. This assumption was 
previously demonstrated in the Netherlands for a period up to 
8 years (1999–2007) (Eeftens et al. 2011), and in Great Britain 
for a period up to 18 years (1991–2009) (Gulliver et al. 2013). 
Exceptionally, in a couple of analyses, we could perform back 
and forward extrapolation of the concentrations for some pol-
lutants that had historical data available (i.e., NOx, NO2, PM10, 
PMCOARSE, PM2.5, and PM2.5absorbance). To do this, we used 
daily data from the seven continuous-reference monitoring 
sites (Brunekreef 2012). We combined the estimated yearly 
air pollution concentration at each home address i (Cyearly, i) 
with time-specific measurements from the seven continuous 
-reference monitoring sites. This was done by averaging the 
daily concentrations during different periods: (1) the year 
corresponding to the LUR yearly concentration (Cyearly), 
and (2) each time period ti considered (Cti). The ratio Cti/
Cyearly constituted the temporal component of the model. 
For each pollutant, the concentration estimated at the home 
address i (Cti, i) during each time period was estimated as the 
product of the temporal (Cti/Cyearly) and spatial (Cyearly, i) 
components. When data from the continuous-reference mon-
itoring sites were unavailable for a given pollutant, we used 
measurements for another one during the same time period 
as a replacement. We based the choice of the pollutant used 
to back and forward extrapolate another one on an extensive 
study of temporal correlations between pollutants that were 
simultaneously available. Specifically, we used NOx when 
PM2.5absorbance was missing and PM10 when PM2.5 was 
missing.

BRAIN MRI

In both waves, we wanted participants to be familiarized 
with the magnetic resonance environment to reduce the pos-
sibility of not being able to complete the scanning session. 
Therefore, each child underwent a half-hour mock scanning 
session prior to the actual MRI (White et al. 2013, 2018). To 
limit the movement of the head, we accommodated children 
by: (1) providing them with a thorough explanation before the 
scanning session, (2) offering to let them watch a movie or 
listen to music during the session, and (3) placing cushions 
around the head to fix it in a comfortable way.

Figure 1. Spatial distribution of density of addresses per munici-
pality across the study area: (A) At recruitment; and (B) At the MRI 
assessment at 9–12 years. To ensure anonymization, a municipality 
was not depicted if too few participants lived there (i.e., addresses 
at the MRI assessment at 9–12 years were also distributed in several 
other municipalities across the whole study area).



 8

Associations of Air Pollution on the Brain in Children: A Brain Imaging Study

The brain MRI protocol involved different measurements, 
such as structural morphology (i.e., brain volumes, cortical 
thickness, and cortical surface area) using T1-weighted 
images, structural connectivity (i.e., white matter microstruc-
ture) using DTI, and functional connectivity (i.e., connectivity 
score between brain areas) using rs-fMRI. In both waves, we 
used a scanner specifically dedicated for the study. In the first 
wave, we used a 3 Tesla General Electric scanner (Discovery 
750; GE Worldwide, Milwaukee, WI); in the second wave, we 
used a different 3 Tesla General Electric scanner (Discovery 
MR750W; GE Worldwide, Milwaukee, WI). Both scanners 
had an 8-channel head coil. At each wave, the entire session 

took about 26 minutes. The refined protocol minimized the 
burden on the participant while allowing for high-quality 
data collection.

Brain Structural Morphology

In the first wave, we obtained high-resolution T1-weighted 
images of the whole brain by using the following sequence 
parameters: repetition time = 10.3 msec, echo time = 4.2 
msec, inversion time = 350 msec, flip angle = 16°, in-plane 
resolution = 0.9 × 0.9 mm, number of slices = 186, and slice 
thickness = 0.9 mm. In the second wave, we used instead the 
following sequence parameters: repetition time = 8.77 msec, 

Figure 2. Air pollutant concentrations in Rotterdam where most of the participants lived: (A) NOx; (B) NO2; (C) PM2.5; and (D) PM2.5absorbance. 
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echo time = 3.4 msec, inversion time = 600 msec, flip angle = 
10°, in-plane resolution = 1 × 1 mm, number of slices = 230, 
and slice thickness = 1.0 mm (White et al. 2013, 2018).

We then performed cortical reconstruction and volumetric 
segmentation with FreeSurfer Image Analysis Suite 6.0 (Fischl 
2012; Muetzel et al. 2019). We performed automatic parcellation 
and segmentations protocols using the recon-all stream with 
preprocessing steps that included the removal of nonbrain 
tissue, and the normalization of the B1 field in homogeneities. 
We calculated global brain volumes such as total brain volume, 
cortical and subcortical gray matter volumes, total white matter 
volume, corpus callosum volume, and cerebellum volume. 
We then calculated subcortical brain volumes including the 
thalamus, caudate nucleus, putamen, pallidum, hippocampus, 
amygdala, and nucleus accumbens. In the case of bilateral 
structures, we summed the volumes of the left and right hemi-
spheres. In addition, surface-based morphometric data repre-
sented the cortical thickness and cortical surface area at each 
of the 163,842 vertices per hemisphere. We computed cortical 
thickness as the shortest distance between white matter and 
pial surface. We obtained cortical surface area by calculating 
the average area of the triangles touching the specific vertex. 
We labeled each vertex in accordance with the Desikan-Killiany 
atlas (Desikan et al. 2006). For all participants, we coregistered 
the surface-based maps to a standard stereotaxic space and con-
sequently smoothed with a 10-mm, full-width half-maximum 
Gaussian (Rosseel 2012) kernel. For every image, we analyzed 
the accuracy in surface reconstruction through automated and 
manual methods (Muetzel et al. 2019).

Brain Structural Connectivity

We obtained DTI data with an axial spin echo with 35 
noncollinear diffusion direction echo planar imaging sequence 
by using the following sequence parameters: repetition time = 
12.500 msec, echo time = 72 msec, field of view = 240 × 240 
mm, acquisition matrix = 120 × 120, acceleration factor = 2, 
number of slices = 65, slice thickness = 2 mm, and b = 0 and 900 
sec/mm2 (White et al. 2018). The b = 0 sec/mm2 was acquired 
3 times. We preprocessed the data with the FMRIB Software 
Library, version 5.0.9 (Jenkinson et al. 2012). First, we modified 
the images to exclude nonbrain tissue. Then we rectified them 
for artifacts induced by eddy currents, and for translations 
or rotations that potentially arose from minor movements of 
the head during the scanning session. The B-table was then 
rotated considering the rotations calculated and applied to the 
diffusion data during the eddy current correction step. Next, 
we fitted a diffusion tensor at each voxel using the RESTORE 
method from the Camino diffusion MRI toolkit (Cook et al. 
2006). Finally, we computed common parameters describing 
white matter microstructure (i.e., FA and MD). We identified 
12 major white matter tracts (i.e., forceps major, forceps minor, 
and bilateral cingulum bundles, corticospinal tracts, inferior 
longitudinal fasciculi, superior longitudinal fasciculi, and 

uncinate fasciculi) via probabilistic tractography with the 
FMRIB Software Library plugin AutoPtx (de Groot et al. 2015; 
Muetzel et al. 2018). We then computed the average values per 
tract of FA and MD, weighted by connectivity distribution. We 
performed a confirmatory factor analysis with the Lavaan R 
package (Rosseel 2012) to model a single latent FA and MD 
measure across the 12 tracts. This represented global FA and 
MD across the brain (Muetzel et al. 2015). FA indicates the 
tendency for preferential water diffusion in white matter tracts. 
It is lower in white matter tracts where axons are less densely 
packed, and the directionality of the water diffusion is not 
uniform compared to well-organized tracts. MD describes the 
magnitude of average water diffusion in all directions within 
brain tissue, with higher values generally observed in white 
matter tracts showing a less organized structure.

Brain Functional Connectivity

During the rs-fMRI scan, we instructed children to stay 
awake with their eyes closed (White et al. 2018). The rs-fMRI 
technique relies on a phenomenon called intrinsic brain 
activity (i.e., activity that is not induced by an external stim-
ulus). We used an echo planar imaging sequence sensitive to 
the blood oxygen level dependent signal with the following 
parameters: repetition time = 2,000 msec, echo time = 30 msec, 
flip angle = 85°, number of slices = 37, slice thickness = 4 mm, 
in-plane resolution = 3.6 × 3.6 mm, and number of volumes = 
200. The sequence had a duration of 6 minutes and 2 seconds. 
This time was long enough to produce stable resting-state 
networks (White et al. 2014). We processed the data with the 
standardized fMRIPrep software (Esteban et al. 2019). Then we 
applied despiking, regressing out of the data the cerebrospinal 
fluid and white matter signal and the motion parameters (and 
their temporal derivatives) (Satterthwaite et al. 2013). We 
included volumes tagged as outliers in subsequent pair-wise 
correlation estimations (Power et al. 2012). Subsequently, we 
applied the Human Connectome Project multimodal parcella-
tion to the data for functional connectivity analysis in CIFTI 
grayordinate space (Glasser et al. 2016). Finally, we computed 
pair-wise correlation coefficients among the 382 brain areas in 
the parcellation, excluding two areas for which we lacked data 
from a high number of children (58.2% and 80.6%). There-
fore, the pair-wise correlation coefficients resulted in 72,200 
connectivity scores indicating strength and direction of the 
functional connectivity among the different brain areas. We 
grouped the brain areas into 31 regions based on location and 
common properties (e.g., architecture, task-fMRI profiles, or 
functional connectivity) (Glasse et al. 2016).

COGNITIVE FUNCTION

 We assessed the cognitive function of children on the day 
of the scanning, or shortly after, by using an array of tasks from 
the Dutch version of the NEPSY-II (Brooks et al. 2010). The tasks 
were chosen to tap into specific domains, such as: attention 
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and executive functioning, language, memory and learning, 
sensorimotor function, and visuospatial processing (White et 
al. 2013). We individually tested the children in a quiet room 
by trained investigators. As described in the section Statistical 
Methods and Data Analysis, for the post hoc mediation analysis 
we selected two specific domains: the attention and executive 
functioning and the memory and learning domains.

Attention and Executive Functioning Domain

We assessed the attention and executive function of chil-
dren with two tasks: auditory attention and response set tasks 
(Brooks et al. 2010; Mous et al. 2017; White et al. 2013). The 
auditory attention is designed to assess selective auditory 
attention and the ability to sustain it (vigilance) and it was 
administered first. Selective attention is the ability to focus 
on a specific activity while suppressing irrelevant stimuli; 
sustained attention is the ability to attend to an activity for a 
long period of time. Children were presented with the record-
ing of a long list of words either referring to colors or other 
things. Then, they were asked to respond to the word “red” by 
touching the red circle on the sheet that also contained blue, 
black, and yellow circles. Touching the red circle within two 
seconds indicated a correct response.

Afterward, we administered the response set task. This 
serves to assess response inhibition and working memory. 
Inhibition is the ability to suppress automatic behavior; 
whereas working memory is the ability to actively keep infor-
mation in mind as long as it is needed to complete an activity. 
Children must respond to the words “red,” “yellow,” and 
“blue” by touching the red, the yellow, and the blue circles, 
respectively. All the other colors or words should be ignored. 
Touching the correct circle within two seconds indicates a 
correct response. Touching another color or having a delayed 
response are incorrect responses.

For each task, we calculated four scores corresponding to 
the number of correct responses, commission errors (i.e., erro-
neous answers to a nontarget), omission errors (i.e., failure to 
respond to a target), and inhibition errors (i.e., inappropriate 
responses to a color word, indicating failure in inhibiting 
inappropriate responses).

Memory and Learning Domain

We assessed children’s memory and learning with two 
tasks: memory for faces and memory for faces delayed (Brooks 
et al. 2010; Mous et al. 2017; White et al. 2013). These are 
designed to assess encoding of facial features, as well as face 
discrimination and recognition. The first one serves to assess 
immediate recall, which is the skill to retrieve information 
from memory shortly after learning. Children were first pre-
sented with multiple series of three faces and asked to look 
closely at each face for five seconds. They were then imme-
diately provided with another set of three faces and asked 
which one they had seen before.

The memory for faces delayed task is designed to assess 
long-term memory for faces. It uses the same process as the 
previous task, but with a delay of 15 to 25 minutes between 
the two series of faces. This determines the child’s ability to 
retrieve information after a longer period of time. All pre-
sented faces showed a neutral expression.

We calculated a total correct score for each task.

POTENTIAL CONFOUNDING VARIABLES

For each analysis, we defined a priori potential confounding 
variables, using a direct acyclic graph (e.g., Hernán et al. 2002, 
Figure A2). We used questionnaires to collect parental char-
acteristics during pregnancy. These characteristics included 
parental educational levels (primary education or lower, 
secondary education, higher education), monthly household 
income (<900€, 900–1,600€, 1,600–2,200€, >2,200€), parental 
ethnicity (Dutch, other Western, non-Western), parental ages 
(in years), maternal psychological distress using the Brief 
Symptom Inventory (De Beurs 2004), maternal smoking use 
during pregnancy (never, smoking use until pregnancy known, 
continued smoking use during pregnancy), maternal alcohol 
use during pregnancy (never, alcohol use until pregnancy 
known, continued alcohol use during pregnancy), maternal 
parity (0, ≥1), and family status (married, living together, no 
partner). Parental weights (kg) and heights (cm) were self-re-
ported or measured in the research center at the first trimester 
of pregnancy. We then calculated prepregnancy body mass 
index (kg/m2). We obtained data about the child’s sex (boy, 
girl) and date of birth from hospital or national registries. We 
estimated the child’s genetics ancestry on the basis of data 
on genome-wide single nucleotide polymorphism from whole 
blood at birth, including four principal components of ances-
try to better correct for population stratification (Neumann et 
al. 2017; Price et al. 2006). We finally assessed the maternal 
intelligence quotient when the child was six years old using 
the Ravens Advanced Progressive Matrices Test, set I (Prieler 
2003). We also annotated the child’s age at scanning.

STATISTICAL METHODS AND DATA ANALYSIS

MISSING DATA

For each analysis, we applied multiple imputation using 
chained equations to impute the missing values of all poten-
tial confounding variables among all participants with avail-
able data on the exposure and the outcome (Spratt et al. 2010; 
Sterne et al. 2009). We obtained 25 complete datasets that 
were analyzed following the standard procedure for multiple 
imputation. The percentage of missing values of the imputed 
potential confounding variables was below 30% except for 
paternal ethnicity, paternal education level, paternal psy-
chological distress, and child genetics ancestry, which had 
30%, 38%, 41%, and 36% of missing values, respectively. 
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The distribution of the imputed values looked plausible and 
was similar to the distribution of the observed values (data 
not shown).

NONRESPONSE ANALYSIS

Compared with the study population initially recruited 
(9,610 children), children who were included in the current 
analyses were more likely to have parents with a higher edu-
cation level and a higher household income, from Dutch eth-
nicity, younger, with lower body mass index, higher height, 
and lower psychological distress, as well as more likely to 
have mothers with a partner, nulliparous, who did not smoke 
during pregnancy, and with higher IQ (data not shown). 
Selection bias potentially arises when the study includes only 
the population with available data on exposure and outcome 
instead of the full initial cohort recruited at pregnancy. To 
correct such bias, we used inverse probability weighting in 
each analysis (Weisskopf et al. 2015; Weuve et al. 2012). First, 
we imputed the missing covariates to all eligible participants 
recruited at pregnancy. Then, we used all the available 
information to predict the probability to participate in each 
analysis. Finally, we used the inverse of those probabilities 
as weights in the analyses. This way, the results would be 
representative for the initial population of the cohort.

EXPOSURE–OUTCOME ASSOCIATIONS

Air Pollution Exposure and Brain Structural Morphology

Exposure during pregnancy and childhood — brain vol-
umes in school-age children and pre-adolescents    First, we 
used linear regression models to study the association of the 
exposure to each air pollutant (i.e., NO2, PMCOARSE, PM2.5, and 
PM2.5absorbance temporally adjusted) during pregnancy with 
each brain volume in school-age children (Table 1).

Second, we again used linear regression models to study 
the association of the exposure to each air pollutant (i.e., NOx, 
NO2, PM10, PMCOARSE, PM2.5, PM2.5absorbance, PAHs, OC, Cu, 
Fe, Si, Zn, OPDTT, OPESR — not temporally adjusted) during 
pregnancy and childhood separately, with each brain volume 
in pre-adolescents. All models were adjusted for all potential 
confounding variables described in the corresponding section. 
Additionally, corpus callosum volume, cerebellum volume, 
and subcortical brain volumes were adjusted for intracranial 
volume to ascertain relativity to the head size. Total brain 
volume, cortical gray matter volume, and total white matter 
volume were not adjusted for intracranial volume because of 
their high correlations (>0.80) with intracranial volume. The 
assumptions of the linear regression modeling were fulfilled 
(i.e., normality and homoscedasticity of residuals, linearity 
between exposure and outcome, and no multicollinearity). 
We took a hypothesis-based approach, selecting all the brain 
structures that had previously been associated with exposure 
to air pollution; thus, we did not correct for multiple testing.

Third, we performed multipollutant analyses using the DSA 
approach of Sinisi and van der Laan (2004) on each brain vol-
ume in pre-adolescents. This algorithm has shown a relatively 
good compromise between sensitivity and false discovery pro-
portion, in comparison with other similar methods, providing 
better results than some multiple-testing corrections (Agier et 
al. 2016). It is an iterative selection method that selects the vari-
ables that better predict the outcome by cross-validation. At 
each iteration, the algorithm allows one to perform three steps: 
(1) delete a variable, (2) substitute one variable with another 
one, and (3) add a variable to the pending model. The optimal 
model represents a combination of variables with the smallest 
value of root mean square deviation. The exploration of such 
a model begins with the intercept model and continues with 
the deletion, substitution, and addition processes, to identify 
the optimal combination of variables. As the algorithm is based 
on a cross-validation process, which is subject to random 
variations, we ran each model 200 times. We then selected the 
final model using the variables that had been selected in at 
least 10% of the runs. To ensure the adjustment for all poten-
tial confounding variables, these were forced into the model, 
allowing only the exposures to air pollution to be involved in 
the selection process. Since PM10 showed a correlation of more 
than 0.90 with PM2.5absorbance and PM2.5absorbance showed 
a better LUR performance based on the R2 of the model, we 
excluded PM10 from the multipollutant analyses. We performed 
two multipollutant analyses for each brain volume, including 
all air pollutants either during pregnancy or during childhood. 
When more than one pollutant was identified in one of these 
two time periods, we ran a linear regression model mutually 
adjusting for them.

Fourth, when pollutants were associated with a brain 
volume in both the pregnancy and the childhood periods, we 
ran a linear regression model of that brain volume mutually 
adjusting for those pollutants.

Finally, as a post hoc analysis, we used generalized addi-
tive models to assess the relationship between the age at the 
MRI scanning session and the brain volumes associated with 
air pollution.

Exposure during pregnancy and childhood — cortical 
thickness and surface area in school-age children and 
pre-adolescents    First, we used a whole-brain, vertex-wise 
approach to study the association of the exposure to each 
air pollutant during pregnancy (i.e., NO2, PMCOARSE, PM2.5, 
and PM2.5absorbance — temporally adjusted) with cortical 
thickness in school-age children (Table 1). We used the 
FreeSurfer QDEC (Query, Design, Estimate, Contrast) module 
adjusting for a child’s sex and age at scanning. As there are 
many vertices per hemisphere (~160,000), we corrected the 
analyses for multiple testing using the built-in Monte Carlo 
null-Z simulations with 10,000 iterations (P < 0.01). There 
were some limitations in the modeling strategy with the 
FreeSurfer QDEC module (types of variables, number of 
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confounding variables, and inability to impute missingness 
in the latter). Therefore, we imported participant-level data 
from the regions associated with each air pollutant into Stata 
version 14 (StataCorp, College Station, TX) for the subsequent 
analysis. We then used linear regression models to study the 
association of the exposure to each air pollutant during preg-
nancy with the cortical thickness of each region. We adjusted 
all models for all potential confounding variables described 
in the corresponding section.

Second, we used a whole-brain, vertex-wise approach to 
study the association of the exposure to each air pollutant 
(i.e., NOx, NO2, PM10, PMCOARSE, PM2.5, PM2.5absorbance, PAHs, 
OC, Cu, Fe, Si, Zn, OPDTT, OPESR — not temporally adjusted), 
during pregnancy and childhood separately, with cortical 
thickness and cortical surface area in pre-adolescents. We 
used a QDEC module developed into an in-house R package 
(https://github.com/slamballais/QDECR), so all models were 
directly adjusted for all potential confounding variables 
described in the corresponding section. As there are many 
vertices per hemisphere (~160,000), we corrected the analy-
ses for multiple testing using the built-in Monte Carlo null-Z 
simulations with 10,000 iterations (P < 0.001).

Exposure during pregnancy — cortical thickness and 
cognitive function in school-age children    In school-age 
children, we identified some brain regions with lesser cortical 
thickness that were related to exposure to air pollution during 
pregnancy. On this basis, we selected two specific domains of 
the NEPSY-II test, the attention and executive functioning and 
the memory and learning domains. These domains contained 
tasks that assessed the cognitive processes involved with each 
region, based on the literature. Specifically, the frontal brain 
regions and the (pre)cuneus are involved in attention and 
executive functions (Cavanna and Trimble 2006; Chayer and 
Freedman 2001), whereas the fusiform gyrus is involved in 
the face perception, object recognition, and memory (Weiner 
and Zilles 2016). We assessed whether both exposure to air 
pollution and the cortical thinness of these regions were 
associated with the selected cognitive function tasks. For the 
outcomes of the attention and executive functioning tasks 
(i.e., total number of correct responses, total number of com-
mission errors, total number of omission errors, total number 
of inhibition errors) we used adjusted negative binomial mod-
els. Instead, for the outcomes of the memory for faces tasks 
(i.e., memory for faces total score, memory for faces delayed 
total score) we used linear regression models. We then applied 
mediation analysis to estimate the natural direct effect (NDE), 
the natural indirect effect (NIE), and the total effect (Valeri 
and Vanderweele 2013). We assessed the direct and indirect 
effects of exposure to air pollution during pregnancy on cog-
nitive function. We tested whether part of the indirect effect 
was mediated by cortical thinness. We used negative bino-
mial regression for the outcome regression model and linear 
regression for the mediator regression model. We calculated 

standard errors using bootstrapping. We adjusted all models 
for all potential confounding variables described in the cor-
responding section. The total effect resulted as the product 
of NDE and NIE. We also calculated the proportion mediated 
as incidence rate ratio (IRR)NDE(IRRNIE − 1)/(IRRNDEIRRNIE − 1).

Air Pollution Exposure and Brain Structural 
Connectivity

First, we used linear regression models to assess the 
association between exposure to each air pollutant (i.e., NOx, 
NO2, PM10, PMCOARSE, PM2.5, PM2.5absorbance, PAHs, OC, Cu, 
Fe, Si, Zn, OPDTT, OPESR — not temporally adjusted), during 
pregnancy and childhood separately, and each global white 
matter microstructure outcome (i.e., global FA and global MD) 
(Table 1). We adjusted all models for all potential confound-
ing variables described in the corresponding section. The 
assumptions of the linear regression modeling were fulfilled 
(i.e., normality and homoscedasticity of residuals, linearity 
between exposure and outcome, and no multicollinearity).

Second, we performed multipollutant analyses using 
the DSA approach (see details in section Exposure During 
Pregnancy and Childhood — Brain Volumes in School-Age 
Children and Pre-adolescents). In brief, we excluded PM10 

from the multipollutant analyses because PM10 showed a 
correlation of more than 0.90 with PM2.5absorbance, and 
PM2.5absorbance showed a better LUR performance based on 
the R2 of the model. We performed two multipollutant anal-
yses for white matter microstructure outcome, including all 
air pollutants either during pregnancy or during childhood. 
When more than one pollutant was identified in one of these 
two time periods, we ran a linear regression model mutually 
adjusting for them.

Third, when pollutants were associated with a global 
white matter microstructure outcome in both the pregnancy 
and childhood time periods, we ran a linear regression model 
of that global white matter microstructure outcome, mutually 
adjusting for those pollutants.

Fourth, we ran linear regression models between the pol-
lutants associated with the global white matter microstructure, 
and the twelve individual white matter microstructure tracts.

Fifth, we used a bootstrap method to quantify the mea-
surement error in the assessment of air pollution (LUR model 
predictions) and to transfer the resulting uncertainty to the 
exposure–outcome associations (Szpiro et al. 2011b). This 
method includes the following iterative steps: (1) simulate a 
new health outcome variable and the exposure at the mon-
itoring locations on the basis of fitted models and residual 
errors; (2) build a new LUR model that predicts the simulated 
exposure; (3) use the new LUR model to predict exposure for 
the whole cohort; and (4) estimate the exposure–outcome 
association with the newly generated health outcome variable 
and predicted exposure. The variance in the estimates result-

https://github.com/slamballais/QDECR
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ing from the different iterations is used as the measurement 
error corrected variance. This variance or, equivalently, the 
confidence interval (CI), was compared with the variance 
obtained when measurement error was not considered. As 
the measurement error is expected to be mostly of Berkson 
type, bias in exposure–outcome coefficient estimates was not 
expected and, therefore, it was not corrected (Szpiro et al. 
2011b). We quantified the measurement error for the adjusted 
associations between exposure to each air pollutant (i.e., NOx, 
NO2, PM10, PMCOARSE, PM2.5, PM2.5absorbance, Cu, Fe, Si, and 
Zn) during pregnancy and childhood separately, and each 
global white matter microstructure outcome (i.e., global FA 
and global MD).

Air Pollution Exposure and Brain Functional 
Connectivity

We used linear regression models to assess the associa-
tion of exposure to each air pollutant (i.e., NOx, NO2, PM10, 
PMCOARSE, PM2.5, and PM2.5absorbance — temporally adjusted) 
during pregnancy and for three childhood periods separately 
(i.e., from birth to 2 years of age, from 2 to 5 years of age, 
and from 5 to 9 years of age) with each correlation coefficient 
(Table 1). We adjusted all models for all potential confounding 
variables described in the corresponding section. In this anal-

ysis, we used several periods of exposure during childhood 
because brain function experiences greater changes in the 
first years of life, in comparison with brain morphology. The 
assumptions of the linear regression modeling were fulfilled 
(i.e., normality and homoscedasticity of residuals, linearity 
between exposure and outcome, no multicollinearity). As 
there are many connectivity scores (72,200), we corrected 
the analyses for multiple testing using a false discovery 
rating where a new critical q-value for each association was 
obtained.

STATISTICAL PACKAGES

We carried out all analyses with R (versions 3.4.2 and 
3.4.3 R Core Team [2017] and version 3.5.3 R Core Team 
[2018]) using an in-house R package https://github.com/
slamballais/QDECR and with STATA (versions 13.0 and 
14.0; StataCorporation, College Station, TX).

RESULTS

DESCRIPTIVE ANALYSIS

Participants’ characteristics at recruitment, at the 1st MRI 
wave, and at the 2nd MRI wave are shown in Table 2.

2
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Table 1. Summary of Data Included in Each Analysis

Analysis

Exposure

Outcome Age nPollutants
Temporal 

Adjustment
Time

Periods

Brain structural 
morphology

NO2, PMCOARSE, 
PM2.5, 
PM2.5absorbance

Yes Pregnancy Volumes
Thickness
Cognitive 
function

School-age 
children

783

NOx, NO2, PM10, 
PMCOARSE, PM2.5, 
PM2.5absorbance, 
PAHs, OC, Cu, Fe, Si, 
Zn, OPDTT, OPESR

No Pregnancy
Childhood

Volumes
Thickness
Surface area

Pre-
adolescents

3,133

Brain structural 
connectivity

NOx, NO2, PM10, 
PMCOARSE, PM2.5, 
PM2.5absorbance, 
PAHs, OC, Cu, Fe, Si, 
Zn, OPDTT, OPESR

No Pregnancy
Childhood

FA 
MD

Pre-
adolescents

2,954

Brain functional 
connectivity

NOx, NO2, PM10, 
PMCOARSE, PM2.5, 
PM2.5absorbance

Yes Pregnancy 
0–2 years 
2–5 years 
5–9 years 

Connectivity 
scores

Pre-
adolescents

2,197

https://github.com/slamballais/QDECR
https://github.com/slamballais/QDECR
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Mean air pollution levels during pregnancy were 34.6 µg/
m3 for NO2 (range 21.3–81.2), and 17.0 µg/m3 for PM2.5 (range 
16.2–21.7) (Table 3). During childhood, mean levels were 32.5 
µg/m3 for NO2 (range 13.9–104.8), and 16.8 µg/m3 for PM2.5 
(range 10.1–20.3). Spearman correlations of the levels of the 
air pollutants between the two time periods were generally 
moderate, ranging between 0.48 for NO2 and 0.67 for PAHs. 
Correlations between the levels of the air pollutants within 
each time period varied considerably depending on the pol-
lutant (Figure 3).

AIR POLLUTION EXPOSURE AND BRAIN STRUC-
TURAL MORPHOLOGY

Exposure During Pregnancy and Childhood — Brain 
Volumes in School-Age Children and Pre-adolescents

Exposure to air pollution during pregnancy was not asso-
ciated with global brain volumes, such as total brain, cortical 
gray matter, subcortical gray matter, and total white matter 
volumes, in school-age children and pre-adolescents (Table 
4 and Appendix Table A3 [available on the HEI website]). 

Likewise, exposure to air pollution during childhood was not 
associated with global brain volumes in pre-adolescents.

While air pollution during pregnancy was not associated 
with region-specific brain volumes in school-age children 
(data not shown), exposure to air pollution during pregnancy 
and childhood was associated with some region-specific brain 
volumes in pre-adolescents (Table 5). Among the subcortical 
structures, we observed no association of the exposure to air 
pollutants during pregnancy or childhood with the volumes 
of thalamus and caudate nucleus. Higher exposure to PMCOARSE 
during pregnancy was associated with a larger putamen 
and pallidum in the single-pollutant analysis, although 
these associations did not remain using the multipollutant 
approach. We did not find any association of exposure to air 
pollution during childhood with the volumes of putamen and 
pallidum. Higher exposure to PAHs and Cu during pregnancy 
and to PMCOARSE and OPDTT during childhood was associated 
with a smaller hippocampus in the single-pollutant analysis. 
After the multipollutant approach, we could only confirm the 
associations of higher exposure to PAHs during pregnancy 
and to OPDTT during childhood with a smaller hippocampus, 

3
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Table 2. Participant Characteristicsa

Recruitment
(n = 9,610)

1st MRI Wave
(n = 783)

2nd MRI Wave
(n = 3,857)

Maternal education level
Primary education 11.3 7.0 7.1
Secondary education 46.0 44.8 41.4
University education 42.7 48.2 51.5

Monthly household income
<1,200€ 20.8 14.1 14.1
1,200€–2,000€ 18.5 17.7 16.8
>2,000€ 60.7 68.1 69.1

Maternal ethnicity
Dutch 50.0 65.2 56.8
Other western 8.6 14.5 8.4
Nonwestern 41.4 20.3 34.9

29.9 (5.4) 30.7 (4.9) 31.1 (4.9)
14.5 13.5 11.4
44.8 39.5 42.4

Maternal age (years)
Family status (monoparental) 
Maternal parity (multiparous) 
Maternal smoking use during pregnancy

Never 73.5 75.3 77.3
Smoking use until pregnancy known 8.5 6.5 8.8
Continued smoking use during pregnancy 18.0 18.2 13.9

Maternal alcohol use during pregnancy
Never 49.8 37.6 43.0
Alcohol use until pregnancy known 13.6 14.3 14.7
Continued alcohol use during pregnancy 36.6 48.1 42.3

Maternal prepregnancy body mass index (kg/m2) 23.7 (4.4) 24.6 (4.3) 23.5 (4.2)
Maternal overall psychological distress 0.3 (0.4) 0.3 (0.4) 0.3 (0.4)
Maternal intelligence quotient score 95.7 (15.4) 98.4 (13.9) 97.4 (14.9)

a Values are percentages for the categorical variables and mean (standard deviation) for the continuous variables.
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Table 3. Air Pollutant Concentrations Without Temporal Adjustment During Pregnancy and Childhood with Spearman 
Correlations of the Average Concentrations Between the Two Time Periodsa 

Air Pollutant
Pregnancy

[Mean (Minimum–Maximum)]
Childhood

[Mean (Minimum–Maximum)]
Spearman 

Correlation

NOx (μg/m3) 0.55
NO2 (μg/m3) 0.48

PM10 (μg/m3) 0.52
PMCOARSE (μg/m3) 0.56
PM2.5 (μg/m3)

51.0 (26.4 to 130.6) 
34.6 (21.3 to 81.2)

27.1 (24.3 to 38.2)
9.9 (7.6 to 14.8) 

17.0 (16.2 to 21.7)

46.8 (21.2 to 130.4) 
32.5 (13.9 to 104.8)

26.5 (16.0 to 36.0)
9.5 (5.0 to 14.8) 

16.8 (10.1 to 20.3) 0.60
PM2.5absorbance (10−5/m−1) 1.7 (1.2 to 4.2) 1.6 (1.0 to 4.6) 0.53

PAHs (ng/m3) 1.0 (0.6 to 3.8) 0.67
OC (μg/m3) 1.7 (0.5 to 2.8) 0.59
Cu (ng/m3) 4.9 (3.5 to 12.2)

1.0 (0.0 to 2.9) 
1.6 (0.5 to 2.5) 
4.6 (1.8 to 11.4) 0.54

Fe (ng/m3) 123.5 (86.6 to 311.8) 116.7 (45.8 to 384.1) 0.52

Si (ng/m3) 0.61
Zn (ng/m3)

93.1 (81.2 to 279.1) 
20.1 (12.8 to 43.2)

91.6 (50.8 to 337.1) 
19.9 (7.4 to 58.0) 0.56

OPDTT (nmol DTT/min/m3) 1.3 (0.6 to 1.7) 0.58
OPESR (units/m3) 1,080.7 (811.1 to 3,528.9)

   1.3 (0.4 to 1.6)
1,037.2 (616.7 to 3,746.4) 0.58

a Pregnancy = from conception until birth; childhood = from birth until 9–12 years.

Figure 3. Spearman correlations between air pollutant concentrations without a temporal adjustment: (A) estimated during pregnancy (from 
conception until birth); and (B) estimated during childhood (from birth until 9–12 years). 
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−69 mm3 (95% CI = −129 to −9) per 1-ng/m3 increase in PAHs, 
and −198 mm3 (95% CI = −371 to −25) per 1-nmol DTT/min/
m3 increase in OPDTT (Appendix Table A4). Higher exposure 
to Si during pregnancy was associated with a larger amygdala 
in both the single and multipollutant approaches (111 mm3 

[95% CI = 41 to 181] per 100-ng/m3 increase in Si). Also, in 
the multipollutant model, exposure to PAHs and OC during 
pregnancy was associated with a smaller amygdala. We did not 
find any association between either exposure to air pollution 
during childhood and volume of the amygdala or exposure 
to air pollution during pregnancy and volume of the nucleus 

accumbens. On the contrary, higher exposure to Zn during 
childhood was associated with a larger nucleus accumbens, 
after both the single and multipollutant approaches (17 mm3 

[95% CI = 3 to 30] per 10-ng/m3 increase in Zn).

Higher exposure to OPESR during pregnancy and to OC 
during childhood was associated with smaller corpus callo-
sum in both the single and multipollutant approaches (−101 
mm3 [95% CI = −185 to −16] per 1,000-units/m3 increase 
in OPESR, and −56 mm3 [95% CI = −97 to −14] per 1-µg/m3 
increase in OC) (Table 5 and Appendix Table A4). In the 
single-pollutant analysis, higher exposure to PM10, PMCOARSE, 

5
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Table 4. Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and Childhood and Global Brain 
Volumes in School-Age Children and Pre-adolescentsa 

Global brain volumes / 
Air pollutants 
(per unit of change) 

School-Age Childrenb

(n = 783)
Pre-adolescentsb,c

(n = 3,133)

Pregnancy Exposure
Coefficient (95% CI)

Pregnancy Exposure
Coefficient (95% CI)

Childhood Exposure
Coefficient (95% CI)

Total Brain (mm3)
NO2 (10 μg/m3) 124 (−1,118 to 1,135) −793  (−6,522 to 4,937)
PMCOARSE (5 μg/m3) −4,868 (−10,337 to 822)

  5,745 (−767 to 12,257) 

15,026 (−380 to 30,432) −2,815 (−19,051 to 13,422)

PM2.5 (5 μg/m3) −3,079 (−7,790 to 1,632) 11,437 (−14,435 to 37,309) −1,604  (−34,765 to 31,557)

PM2.5absorbance (10−5m−1) −2,861 (−18,745 to 24,467) 1,005  (−10,727 to 12,738)

Cortical Gray Matter (mm3)
NO2 (10 μg/m3) −60 (−853 to 733)

PMCOARSE (5 μg/m3) −3,542 (−7,059 to 8)

7,715 (−2,923 to 18,353)

2,288 (−945 to 5,521) 

6,181 (−1,454 to 13,816)
−1,354 (−4,198 to 1,489)

−3,823 (−11,875 to 4,229)
PM2.5 (5 μg/m3) −2,598 (−5,583 to 387) 693 (−12,166 to 13,552) −5,661 (−22,095 to 10,773)

PM2.5absorbance (10−5m−1) −2,683 (−16,377 to 11,012) 2,439 (−2,845 to 7,723) −1,373 (−7,196 to 4,451)

Subcortical Gray Matter (mm3)
NO2 (10 μg/m3) 36 (−17 to 89)

PMCOARSE (5 μg/m3) −92 (−325 to 148)

47 (−129 to 222) 

87 (−411 to 585)

PM2.5 (5 μg/m3) −60 (−258 to 138) −31 (−1,052 to 990)

PM2.5absorbance (10−5m−1) 418 (−497 to 1,334)

95 (−106 to 296) 

419 (−53 to 892) 

285 (−515 to 1,085)

53 (−275 to 382) 48 (−313 to 409)

Total White Matter (mm3)
NO2 (10 μg/m3) 199 (−287 to 685) 430 (−2,219 to 3,080)

PMCOARSE (5 μg/m3) −1,129 (−3,215 to 1,127)

PM2.5 (5 μg/m3) −268 (−2,096 to 1,559)
−67  (−7,584 to 7,450)

−69  (−15,431 to 15,294)
PM2.5absorbance (10−5m−1) 5,807 (−2,566 to 14,180)

2,045  (−969 to 5,099) 

5,097  (−2,036 to 12,231) 

5,569  (−6,428 to 17,567) 

3,009  (−1,922 to 7,939) 1,492 (−3,938 to 6,923)

a The expected direction of the associations was higher air pollution exposure during pregnancy and smaller global brain volumes.
b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal education, ethnicity, 

age, height, body mass index, and psychological distress during pregnancy; maternal smoking and alcohol use during pregnancy; 
maternal parity, maternal intelligence quotient, family status, and household income; and child's genetic ancestry, sex, and age at 
the scanning session. 

c Subcortical gray matter was additionally adjusted by intracranial volume in the pre-adolescents analysis. 
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Table 5. Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and Childhood and 
Volume of Subcortical Structures, Corpus Callosum, and Cerebellum in Pre-adolescentsa

Region-Specific Brain Volumes / 
Air Pollutants (per unit of change) 

Pregnancy Exposureb,c Childhood Exposureb,c

Coefficient (95% CI) Coefficient (95% CI)

Thalamus (mm3)
NOx (20 μg/m3) 1 (−42 to 44) −3 (−50 to 44)
NO2 (10 μg/m3) −18 (−74 to 39)
PM10 (10 μg/m3) −49 (−270 to 171)
PMCOARSE (5 μg/m3) −6 (−166 to 155)
PM2.5 (5 μg/m3) −88 (−417 to 241)
PM2.5absorbance (10−5m−1) −36 (−153 to 80)
PAHs (1 ng/m3) −75 (−185 to 36)
OC (1 μg/m3)

−19 (−84 to 46)
5 (−188 to 197)

80 (−73 to 232)
40 (−218 to 297)
−20 (−125 to 86)
− 2  (−91 to 94)
−26 (−109 to 58) −34 (−119 to 51)

Cu (5 ng/m3)
Fe (100 ng/m3)
Si (100 ng/m3)
Zn (10 ng/m3)
OPDTT (1 nmol DTT/min/m3)
OPESR (1,000 units/m3)

−111 (−291 to 70)
−111 (−267 to 46)
−102 (−291 to 87)
−18 (−95 to 60)
−53 (−317 to 211)
−120 (−292 to 52)

Caudate nucleus (mm3)
NOx (20 μg/m3) 11 (−28 to 50)
NO2 (10 μg/m3) 42 (−16 to 100)
PM10 (10 μg/m3) 51 (−123 to 225)
PMCOARSE (5 μg/m3) 82 (−55 to 220)
PM2.5 (5 μg/m3) 83 (−150 to 315)
PM2.5absorbance (10−5m−1) 44 (−52 to 139)
PAHs (1 ng/m3) 16 (−68 to 99)
OC (1 μg/m3) −31 (−107 to 44)
Cu (5 ng/m3) 70 (−92 to 233)
Fe (100 ng/m3) 72 (−69 to 213)
Si (100 ng/m3) 40 (−130 to 210)
Zn (10 ng/m3) −6 (−76 to 64)

−102  (−306 to 101)
−20  (−166 to 125)

30  (−163 to 224)
− 8  (−80 to 64)
−247(−513 to 20)
−59(−237 to 119)

−5   (−47 to 37)
21 (−30 to 73)

−44 (−243 to 155)
−17 (−161 to 128)
−64 (−361 to 233)

26 (−79 to 131)
−4   (−104 to 96)
−58 (−135 to 18)

24 (−159 to 207)
20 (−112 to 151)
−8   (−183 to 167)

5   (−60 to 70)
OPDTT (1 nmol DTT/min/m3) 100 (−138 to 338)
OPESR (1,000 units/m3) 98 (−57 to 253)

126   (−114 to 366)
  98   (−62 to 258)

(Table continues next page)

a The expected direction of the associations was higher air pollution exposure during pregnancy and childhood and 
smaller thalamus volume, larger caudate nucleus volume, larger putamen volume, smaller pallidum volume, smaller 
hippocampus volume, larger amygdala volume, larger nucleus accumbens volume, smaller corpus callosum volume, 
and smaller cerebellum volume.

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal 
education, ethnicity, age, height, body mass index, and psychological distress during pregnancy, maternal smoking and 
alcohol use during pregnancy, maternal parity, maternal intelligence quotient, family status, household income, and 
child’s genetic ancestry, sex, and age at the scanning session, and intracranial volume. 

c Bolded values indicate P value < 0.05.
d The association was identified in the multipollutant approach (see Appendix Table A4). PM10 was not included (see

Statistical Methods and Data Analysis section).
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Table 5 (Continued). Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and 
Childhood and Volume of Subcortical Structures, Corpus Callosum, and Cerebellum in Pre-adolescentsa

Region-Specific Brain Volumes / 
Air Pollutants (per unit of change)

Pregnancy Exposureb,c Childhood Exposureb,c

Coefficient (95% CI) Coefficient (95% CI)

Putamen (mm3)
NOx (20 μg/m3) 43 (−3 to 88)  41 (−9 to 91)
NO2 (10 μg/m3) 49 (−20 to 118)
PM10 (10 μg/m3) 156 (−50 to 362)
PMCOARSE (5 μg/m3) 166 (3 to 329)
PM2.5 (5 μg/m3) 256 (−19 to 531)

35 (−26 to 95) 
171 (−64 to 407) 
154 (−18 to 326) 
257 (−95 to 608)

PM2.5absorbance (10−5m−1) 61 (−52 to 174)
PAHs (1 ng/m3) 78 (−21 to 176)

 59 (−65 to 183)
 31 (−88 to 149)

OC (1 μg/m3)
Cu (5 ng/m3)
Fe (100 ng/m3)
Si (100 ng/m3)
Zn (10 ng/m3)

−16 (−106 to 73)
29 (−164 to 221)
−12 (−179 to 156)

18 (−184 to 220)
50 (−34 to 133)

OPDTT (1 nmol DTT/min/m3) 3 (−279 to 286)
OPESR (1,000 units/m3) 11 (−173 to 196)

Pallidum (mm3)
NOx (20 μg/m3) −2 (−18 to 15)
NO2 (10 μg/m3) 8 (−17 to 33)
PM10 (10 μg/m3)
PMCOARSE (5 μg/m3)
PM2.5 (5 μg/m3)
PM2.5absorbance (10−5m−1)
PAHs (1 ng/m3)
OC (1 μg/m3)
Cu (5 ng/m3)
Fe (100 ng/m3)
Si (100 ng/m3)
Zn (10 ng/m3)
OPDTT (1 nmol DTT/min/m3)
OPESR (1,000 units/m3)

−16 (−91 to 58)
60 (1 to 119)
23 (−77 to 122)
−7 (−48 to 33)

3 (−32 to 39)
7 (−25 to 40)
4 (−66 to 74)

15 (−45 to 76)
16 (−57 to 89)

−11 (−41 to 19)
51 (−51 to 153)
15 (−52 to 81)

−12 (−103 to 79)
−23 (−240 to 195)

7 (−149 to 162)
110 (−97 to 317)
  46 (−31 to 123)
−20 (−305 to 265)
−20 (−210 to 171)

−10 (−28 to 8)
−10 (−32 to 11)
−43 (−128 to 43)

21 (−41 to 82)
−16 (−143 to 111)
−36 (−81 to 9)
−22 (−65 to 20)

14 (−19 to 47)
−31 (−110 to 47)

2 (−54 to 58)
27 (−48 to 102)
−9 (−37 to 19)
−22 (−126 to 81)
−34 (−103 to 35)

(Table continues next page)

a The expected direction of the associations was higher air pollution exposure during pregnancy and childhood and 
smaller thalamus volume, larger caudate nucleus volume, larger putamen volume, smaller pallidum volume, smaller 
hippocampus volume, larger amygdala volume, larger nucleus accumbens volume, smaller corpus callosum volume, 
and smaller cerebellum volume.

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal 
education, ethnicity, age, height, body mass index, and psychological distress during pregnancy, maternal smoking and 
alcohol use during pregnancy, maternal parity, maternal intelligence quotient, family status, household income, and 
child’s genetic ancestry, sex, and age at the scanning session, and intracranial volume. 

c Bolded values indicate P value < 0.05.
d The association was identified in the multipollutant approach (see Appendix Table A4). PM10 was not included (see

Statistical Methods and Data Analysis section).
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Table 5 (Continued). Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and 
Childhood and Volume of Subcortical Structures, Corpus Callosum, and Cerebellum in Pre-adolescentsa

Region-Specific Brain Volumes / 
Air Pollutants (per unit of change)

Pregnancy Exposureb,c Childhood Exposureb,c

Coefficient (95% CI) Coefficient (95% CI)

Hippocampus (mm3)
NOx (20 μg/m3) −16 (−44 to 12)
NO2 (10 μg/m3) −22 (−64 to 19)

−7 (−38 to 23)
−8 (−45 to 28)

PM10 (10 μg/m3) −89 (−232 to 53)
PMCOARSE (5 μg/m3)
PM2.5 (5 μg/m3)
PM2.5absorbance (10−5m−1

PAHs (1 ng/m3)
OC (1 μg/m3)
Cu (5 ng/m3)
Fe (100 ng/m3)
Si (100 ng/m3)
Zn (10 ng/m3)
OPDTT (1 nmol DTT/min/m3)
OPESR (1,000 units/m3)

Amygdala (mm3)
NOx (20 μg/m3)
NO2 (10 μg/m3)
PM10 (10 μg/m3)
PMCOARSE (5 μg/m3)
PM2.5 (5 μg/m3)
PM2.5absorbance (10−5m−1)
PAHs (1 ng/m3)
OC (1 μg/m3)
Cu (5 ng/m3)
Fe (100 ng/m3)
Si (100 ng/m3)
Zn (10 ng/m3)
OPDTT (1 nmol DTT/min/m3)
OPESR (1,000 units/m3)

−105 (−230 to 19)
−49 (−147 to 50)
−158 (−325 to 9)
−57 (−126 to 11)
−69 (−129 to −9)d

40 (−15 to 94)
−121 (−238 to −4)
−73 (−174 to 29)
−80 (−203 to 42)
−19 (−69 to 31)
−54 (−226 to 117)
−90 (−202 to 21)

−7 (−21 to 8)
−4 (−26 to 18)
−41 (−106 to 25)
−2 (−54 to 50)
−56 (−144 to 31)
−14 (−50 to 22)
−14 (−46 to 17)d

−28 (−57 to 0)d

−15 (−77 to 46)
38 (−15 to 92)
72 (8 to 136)d

3 (−24 to 29)
−35 (−125 to 55)

10 (-49 to 68)

−107 (−211 to −3)
−184 (−397 to 29)
−13 (−88 to 62)
−44 (−116 to 27)
−1 (−56 to 54)
−41 (−173 to 91)

6 (−88 to 100)
45 (−80 to 170)
−20 (−67 to 27)
−198 (−371 to −25)d

−2 (−118 to 113)

− 3  (−19 to 13)
− 7  (−26 to 13)
− 5  (−80 to 70)
−26 (−81 to 29)
−19 (−131 to 93)
− 5  (−45 to 34)
−29 (−66 to 9)
−22 (−51 to 7)
−23 (−92 to 47)

18 (−31 to 68)
63 (−3 to 129)
12 (−12 to 37)
−77 (−167 to 14)
−10 (−71 to 51)

(Table continues next page)

a The expected direction of the associations was higher air pollution exposure during pregnancy and childhood and 
smaller thalamus volume, larger caudate nucleus volume, larger putamen volume, smaller pallidum volume, smaller 
hippocampus volume, larger amygdala volume, larger nucleus accumbens volume, smaller corpus callosum volume, and 
smaller cerebellum volume.

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal 
education, ethnicity, age, height, body mass index, and psychological distress during pregnancy, maternal smoking and 
alcohol use during pregnancy, maternal parity, maternal intelligence quotient, family status, household income, and 
child’s genetic ancestry, sex, and age at the scanning session, and intracranial volume. 

c Bolded values indicate P value < 0.05.
d The association was identified in the multipollutant approach (see Appendix Table A4). PM10 was not included (see

Statistical Methods and Data Analysis section).
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Table 5 (Continued). Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and 
Childhood and Volume of Subcortical Structures, Corpus Callosum, and Cerebellum in Pre-adolescentsa

Region-Specific Brain Volumes / 
Air Pollutants (per unit of change)

Pregnancy Exposureb,c Childhood Exposureb,c

Coefficient (95% CI) Coefficient (95% CI)

Nucleus accumbens (mm3)
NOx (20 μg/m3) 3 (−5 to 11) 5 (−4 to 14)
NO2 (10 μg/m3) 9 (−3 to 21) 8 (−3 to 18)
PM10 (10 μg/m3) 22 (−13 to 58) 26 (−15 to 67)
PMCOARSE (5 μg/m3) 16 (−12 to 44) 18 (−12 to 48)
PM2.5 (5 μg/m3) 32 (−15 to 80) 24 (−37 to 85)
PM2.5absorbance (10−5m−1) 12 (−8 to 32) 15 (−7 to 37)
PAHs (1 ng/m3) 4 (−13 to 21) −5 (−25 to 16)
OC (1 μg/m3) 3 (−12 to 19) −4 (−20 to 11)
Cu (5 ng/m3) 8 (−25 to 42) 12 (−26 to 50)
Fe (100 ng/m3) 5 (−24 to 34) 17 (−10 to 44)
Si (100 ng/m3) 6 (−29 to 41) 18 (−18 to 54)
Zn (10 ng/m3) 1 (−13 to 16) 17 (3 to 30)d

OPDTT (1 nmol DTT/min/m3) 30 (−19 to 79) 36 (−14 to 85)
OPESR (1,000 units/m3) 4 (−28 to 35) 23 (−10 to 56)

Corpus callosum (mm3)
NOx (20 μg/m3) −14 (−35 to 7) −18 (−41 to 5)
NO2 (10 μg/m3) −28 (−59 to 4) −14 (−42 to 14)
PM10 (10 μg/m3) −31 (−126 to 64) −52 (−161 to 56)
PMCOARSE (5 μg/m3) 39 (−36 to 114) −11 (−90 to 68)
PM2.5 (5 μg/m3) 31 (−96 to 158) −98 (−260 to 64)
PM2.5absorbance (10−5m−1) −32 (−84 to 20) −28 (−85 to 30)
PAHs (1 ng/m3) 14 (−32 to 59) 7 (−47 to 62)
OC (1 μg/m3) −29 (−70 to 12) −55  (−97 to −14)d

Cu (5 ng/m3) −76 (−164 to 13) −74 (−174 to 26)
Fe (100 ng/m3) −61 (−138 to 16) −28  (−99 to 44)
Si (100 ng/m3) 6 (−87 to 99) 31  (−65 to 126)
Zn (10 ng/m3) −22 (−60 to 17) −25  (−61 to 10)
OPDTT (1 nmol DTT/min/m3) −50 (−180 to 80) −84  (−215 to 47)
OPESR (1,000 units/m3) −101 (−185 to −16)d −63  (−151 to 24)

(Table continues next page)

a The expected direction of the associations was higher air pollution exposure during pregnancy and childhood and 
smaller thalamus volume, larger caudate nucleus volume, larger putamen volume, smaller pallidum volume, smaller 
hippocampus volume, larger amygdala volume, larger nucleus accumbens volume, smaller corpus callosum volume, and 
smaller cerebellum volume.

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal 
education, ethnicity, age, height, body mass index, and psychological distress during pregnancy, maternal smoking and 
alcohol use during pregnancy, maternal parity, maternal intelligence quotient, family status, household income, and 
child’s genetic ancestry, sex, and age at the scanning session, and intracranial volume. 

c Bolded values indicate P value < 0.05.
d The association was identified in the multipollutant approach (see Appendix Table A4). PM10 was not included (see

Statistical Methods and Data Analysis section).
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Table 5 (Continued). Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and 
Childhood and Volume of Subcortical Structures, Corpus Callosum, and Cerebellum in Pre-adolescentsa

Region-Specific Brain Volumes / 
Air Pollutants (per unit of change)

Pregnancy Exposureb,c Childhood Exposureb,c

Coefficient (95% CI) Coefficient (95% CI)

Cerebellum (mm3)
NOx (20 μg/m3) 458 (−28 to 944) 263 (−268 to 795)
NO2 (10 μg/m3) 582 (−149 to 1,312) −15  (−656 to 626)
PM10 (10 μg/m3) 2,603 (429 to 4,776) 1,759  (−741 to 4,259)
PMCOARSE (5 μg/m3) 1,891 (168 to 3,613)d 967  (−850 to 2,784)
PM2.5 (5 μg/m3) 3,446 (539 to 6,353) 3,165 (−570 to 6,900)
PM2.5absorbance (10−5m−1) 1,242 (48 to 2,436) 406 (−911 to 1,724)
PAHs (1 ng/m3) 886 (−154 to 1,927) 756 (−495 to 2,007)
OC (1 μg/m3) −278 (−1,223 to 666) −486 (−1,440 to 467)
Cu (5 ng/m3) 1,346 (−685 to 3,378) −171 (−2,464 to 2,123)
Fe (100 ng/m3) 626 (−1,141 to 2,392) −444 (−2,084 to 1,196)
Si (100 ng/m3) 921 (−1,209 to 3,051) 130 (−2,054 to 2,314)
Zn (10 ng/m3) 817 (−61 to 1,696) 671 (−148 to 1,489)
OPDTT (1 nmol DTT/min/m3) −1,374 (−4,360 to 1,611)d −1,050 (−4,074 to 1,975)
OPESR (1,000 units/m3) 889 (−1,051 to 2,829) −79  (−2,088 to 1,930)

a The expected direction of the associations was higher air pollution exposure during pregnancy and childhood and smaller 
thalamus volume, larger caudate nucleus volume, larger putamen volume, smaller pallidum volume, smaller hippocampus 
volume, larger amygdala volume, larger nucleus accumbens volume, smaller corpus callosum volume, and smaller 
cerebellum volume.

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal education, 
ethnicity, age, height, body mass index, and psychological distress during pregnancy, maternal smoking and alcohol use 
during pregnancy, maternal parity, maternal intelligence quotient, family status, household income, and child’s genetic 
ancestry, sex, and age at the scanning session, and intracranial volume. 

c Bolded values indicate P value < 0.05.
d The association was identified in the multipollutant approach (see Appendix Table A4). PM10 was not included (see

Statistical Methods and Data Analysis section).

PM2.5, and PM2.5absorbance during pregnancy was associated 
with a larger cerebellum. Nevertheless, only the association 
with higher exposure to PMCOARSE remained after the multi-
pollutant approach (2,501 mm3 [95% CI = 447 to 4,555] per 
5-µg/m3 increase in PMCOARSE). In the multipollutant model, 
exposure to OPDTT during pregnancy was also associated with 
a smaller cerebellum. No associations were found between 
exposure to air pollution during childhood and volume of the 
cerebellum.

By simultaneously analyzing the air pollutants that showed 
associations with a certain structure during pregnancy or 
childhood, we found that both higher exposure to PAHs and 
to OPDTT remained associated with a smaller hippocampus. 
Moreover, both higher exposure to OPESR and to OC during 
childhood remained associated with a smaller corpus callo-
sum (Appendix Table A5).

In the post hoc analysis, we observed that higher age at 
the MRI scanning session was associated with a larger hippo-
campus, corpus callosum, and cerebellum but with a smaller 
amygdala and nucleus accumbens (Appendix Figure A3).

Exposure During Pregnancy and Childhood — Cortical 
Thickness and Surface Area in School-Age Children and 
Pre-adolescents

Exposure during pregnancy — cortical thickness in school-
age children    Higher exposure to PM during pregnancy was 
associated with thinner cortices in several brain regions in 
both hemispheres of school-age children (e.g., cerebral cortex 
of the precuneus region of the right hemisphere was 0.045 
mm thinner [95% CI = −0.062 to −0.028] per 5-µg/m3 increase 
in PM2.5) (Figure 4 and Table 6). These regions had a mean size 
between 532 and 2,995 mm2 and a mean thickness between 
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2.31 and 3.17 mm2 (with a minimum of 1.61 to 2.23 mm2 and 
a maximum of 3.23 to 3.97 mm2) (data not shown).

Exposure during pregnancy and childhood — cortical thick-
ness and surface area in pre-adolescents    Higher exposure 
to OC, PM2.5absorbance, and Cu during pregnancy, and to 
OPDTT during childhood was associated with thinner cortices 
in three brain regions in pre-adolescents (e.g., cerebral cortex 
of the postcentral gyrus of the right hemisphere was 0.06 mm 
thinner [95% CI = −0.11 to −0.01] per 1-µg/m3 increase in OC) 
(Figure 5 and Table 7). These regions had a mean size between 
164 and 198 mm2.

Higher exposure to Zn and OPESR during childhood was 
associated with a larger cortical surface area in three brain 
regions (e.g., cortical surface area of the precentral gyrus of 
the right hemisphere was 0.01 mm2 larger [95% CI = 0.00 
to 0.02] per 10-ng/m3 increase in Zn). Higher exposure to 
PMCOARSE during childhood, instead, was associated with 
a smaller cortical surface area in one brain region (cortical 
surface area of the pars triangularis of the right hemisphere 
was 0.10 mm2 smaller [95% CI −0.18 to −0.02] per 5-µg/m3 
increase in PMCOARSE) (Figure 5 and Table 7). These regions 
had a mean surface area between 157 and 289 mm2.

Exposure During Pregnancy — Cortical Thickness and 
Cognitive Function in School-Age Children

Higher exposure to PM2.5 during pregnancy was associated 
with a higher number of inhibition errors in the response set 
task for school-age children (IRR 1.07 [95% CI = 1.01 to 1.14] 

per 5-µg/m3 increase in PM2.5). No significant associations 
were observed for the other cognitive outcomes (data not 
shown). A thinner cortex in the precuneus region and in the 
rostral middle frontal region was also associated with a higher 
number of inhibition errors (IRR 1.32 [95% CI = 1.00 to 1.77] 
per 1-mm decrease in the cortex of the precuneus region and 
IRR 1.69 [95% CI = 1.09 to 2.61]) per 1-mm decrease in the 
cortex of the rostral middle frontal region).

The reduced cortical thickness in the precuneus and 
rostral middle frontal regions partially mediated the associ-
ation between exposure to PM2.5 during pregnancy and the 
increased number of inhibition errors (NIE: IRR 1.01 [95% CI 
= 1.00 to 1.02]) per 1-mm decrease in the cortex of the pre-
cuneus and the rostral middle frontal regions). We estimated 
that the proportion mediated through the reduced cortical 
thickness in each of the regions was 15%.

AIR POLLUTION EXPOSURE AND BRAIN  
STRUCTURAL CONNECTIVITY

Exposure during Pregnancy and Childhood — Global FA

In the single-pollutant analysis, higher exposure to NOx, 
PM10, PM2.5, and PM2.5absorbance during pregnancy was asso-
ciated with lower global FA in pre-adolescents (Table 8). After 
the multipollutant approach, higher exposure to PM2.5 during 
pregnancy was associated with lower global FA (−0.71 [95% 
CI = −1.26 to −0.16] per 5-µg/m3 increase in PM2.5). When 
exposure to PAHs during pregnancy was simultaneously 
included in the model with PM2.5, we observed an inverse 

Figure 4. Brain regions identified on the adjusted associations between exposure to PM2.5, PMCOARSE, and PM2.5absorbance during pregnancy 
and cortical thickness (mm) in school-age children. Blue indicates negative coefficients; a darker blue color indicates a stronger association. 
Associations from linear regression models were adjusted for maternal and paternal education, ethnicity, age, height, body mass index, and 
psychological distress during pregnancy, maternal smoking and alcohol use during pregnancy, maternal parity, maternal intelligence quotient, 
family status, household income, and child’s genetic ancestry, sex, and age at the scanning session. All brain regions survived the correction for 
multiple testing (built-in Monte Carlo null-Z simulation with 10,000 iterations, P < 0.01). The expected direction of the association was higher 
air pollution exposure during pregnancy and smaller cortical thickness.
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and positive association with global FA (0.33 higher global 
FA [95% CI = 0.06 to 0.60] per 1-ng/m3 increase in PAHs) 
(Appendix Table A6).

In the single-pollutant analysis, higher exposure to NOx, 
NO2, PM2.5absorbance, and OC during childhood was associ-
ated with lower global FA. After the multipollutant approach, 
only higher exposure to NOx during childhood was associated 
with lower global FA (−0.14 [95% CI = −0.23 to −0.04] per 
20-µg/m3 increase in NOx) (Appendix Table A6).

When exposures to PM2.5 during pregnancy and NOx during 
childhood were simultaneously added in the same model, none 
remained associated with global FA (Appendix Table A7).

Exposure During Pregnancy and Childhood — Global MD

In the single-pollutant analysis, higher exposure to NOx, 
NO2, PM10, PM2.5, PM2.5absorbance, Cu, Fe, Si, and OPESR during 
pregnancy was associated with higher global MD in pre- 
adolescents (Table 8). After the multipollutant approach, only 
higher exposure to Si during pregnancy remained associated 
with higher global MD (0.06 [95% CI = 0.01 to 0.11] per 100-
ng/m3 increase in Si) (Appendix Table A6).

In the single-pollutant analysis, higher exposure to NOx, 
NO2, PM10, PMCOARSE, PM2.5, PM2.5absorbance, Si, Zn, and 
OPDTT during childhood was associated with higher global 
MD (Table 8). After the multipollutant approach, only higher 
exposure to Zn and OPDTT was associated with higher global 
MD (0.03 [95% CI = 0.01 to 0.04] per 10-ng/m3 increase in 
Zn, and 0.07 [95% CI = 0.00 to 0.14) per 1-nmol DTT/min/m3 

increase in OPDTT) (Appendix Table A6).

When we simultaneously added in the same model expo-
sures to Si during pregnancy, Zn during childhood, and OPDTT 
during childhood, only Si and Zn remained associated with 
global MD (Appendix Table A7).

Exposure During Pregnancy and Childhood — Specific 
FA and MD Tracts

Higher exposure to PM2.5 during pregnancy was associated 
with four FA tracts in pre-adolescents (i.e., superior longitu-
dinal fasciculus tract of the right hemisphere, forceps minor 
tract, and corticospinal tracts of the left and right hemispheres) 
(Figure 6 and Appendix Table A8). Higher exposure to NOx 
during childhood was associated with five FA tracts (i.e., 
uncinated fasciculus tracts of the left and right hemispheres, 
superior longitudinal fasciculus tract of the right hemisphere, 
inferior longitudinal fasciculus tract of the right hemisphere, 
and corticospinal tract of the left hemisphere).

Higher exposure to Si during pregnancy was associated 
with five MD tracts (i.e., cingulate gyrus part of the cingulum 
tracts of the left and right hemispheres, superior longitudinal 
fasciculus tract of the left hemisphere, forceps minor tract, 
and inferior longitudinal fasciculus tract of the left hemi-
sphere) (Figure 6 and Appendix Table A9). Higher exposure 
to Zn during childhood was associated with nine MD tracts 
(i.e., uncinated fasciculus tracts of the left and right hemi-
spheres, cingulate gyrus part of the cingulum tracts of the 
left and right hemispheres, superior longitudinal fasciculus 
tracts of the left and right hemispheres, forceps minor tract, 
and inferior longitudinal fasciculus tracts of the left and right 
hemispheres). Higher exposure to OPDTT during childhood 11
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Table 6. Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and Cortical Thickness (mm) in 
School-Age Childrena

Brain Region – Hemisphere
Air Pollutant 

(per unit of change)
Region Size 

(mm2)
Coefficient (95% CI)b

(mm)

Precuneus – Right PM2.5 (5 μg/m3) 936 −0.045 (−0.062 to −0.028)

Pars opercularis – Right PM2.5 (5 μg/m3) 753 −0.024 (−0.033 to −0.014)

Pars orbitalis – Right PM2.5 (5 μg/m3) 651 −0.028 (−0.043 to −0.012)

Rostral middle frontal – Right PM2.5 (5 μg/m3) 2,995 −0.029 (−0.041 to −0.018)

Superior frontal – Right PM2.5 (5 μg/m3) 722 −0.029 (−0.043 to −0.016)

Lateral orbitofrontal – Right PMCOARSE (5 μg/m3) 565 −0.037 (−0.059 to −0.016)

Cuneus – Left PM2.5 (5 μg/m3) 843 −0.022 (−0.035 to −0.009)

Fusiform – Left PM2.5absorbance (10−5m−1) 532 −0.105 (−0.160 to −0.049)

a The expected direction of the association was higher air pollution exposure during pregnancy and smaller cortical thickness.

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal education, ethnicity,
age, height, body mass index, and psychological distress during pregnancy; maternal smoking and alcohol use during pregnancy; 
maternal parity, maternal intelligence quotient, family status, household income; and child's genetic ancestry, sex, and age at the 
scanning session. All brain regions survived the correction for multiple testing (built-in Monte Carlo null-Z simulation with 10,000 
iteration, P value < 0.01). 

11
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Table 6. Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and Cortical Thickness (mm) in 
School-Age Childrena

Brain Region – Hemisphere
Air Pollutant 

(per unit of change)
Region Size 

(mm2)
Coefficient (95% CI)b

(mm)

Precuneus – Right PM2.5 (5 μg/m3) 936 −0.045 (−0.062 to −0.028)

Pars opercularis – Right PM2.5 (5 μg/m3) 753 −0.024 (−0.033 to −0.014)

Pars orbitalis – Right PM2.5 (5 μg/m3) 651 −0.028 (−0.043 to −0.012)

Rostral middle frontal – Right PM2.5 (5 μg/m3) 2,995 −0.029 (−0.041 to −0.018)

Superior frontal – Right PM2.5 (5 μg/m3) 722 −0.029 (−0.043 to −0.016)

Lateral orbitofrontal – Right PMCOARSE (5 μg/m3) 565 −0.037 (−0.059 to −0.016)

Cuneus – Left PM2.5 (5 μg/m3) 843 −0.022 (−0.035 to −0.009)

Fusiform – Left PM2.5absorbance (10−5m−1) 532 −0.105 (−0.160 to −0.049)

a The expected direction of the association was higher air pollution exposure during pregnancy and smaller cortical thickness.

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal education, ethnicity,
age, height, body mass index, and psychological distress during pregnancy; maternal smoking and alcohol use during pregnancy; 
maternal parity, maternal intelligence quotient, family status, household income; and child's genetic ancestry, sex, and age at the 
scanning session. All brain regions survived the correction for multiple testing (built-in Monte Carlo null-Z simulation with 10,000 
iteration, P value < 0.01). 
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Figure 5. Brain regions identified on the adjusted associations between exposure to OC, PM2.5absorbance, and Cu during pregnancy and 
cortical thickness (mm), OPDTT during childhood and cortical thickness (mm), and Zn, OPESR, and PMCOARSE and cortical surface area (mm2) in 
pre-adolescents. Blue indicates negative coefficients and green indicates positive coefficients. Associations from linear regression models were 
adjusted for maternal and paternal education, ethnicity, age, height, body mass index, and psychological distress during pregnancy, maternal 
smoking and alcohol use during pregnancy, maternal parity, maternal intelligence quotient, family status, household income, and child’s 
genetic ancestry, sex, and age at the scanning session. All brain regions survived the correction for multiple testing (built-in Monte Carlo null-Z 
simulation with 10,000 iterations, P < 0.001). The expected direction of the association was higher air pollution exposure during pregnancy and 
childhood and smaller cortical thickness and smaller cortical surface area.

was associated with one MD tract (i.e., cingulate gyrus part of 
the cingulum tract of the left hemisphere).

Quantification of the Measurement Error

Accounting for measurement error only slightly increased 
the standard errors and did not alter the main conclusions 
(Appendix Table A10).

AIR POLLUTION EXPOSURE AND BRAIN FUNC-
TIONAL CONNECTIVITY

Higher exposure to NOx from birth to 2 years of age and 
from 2 to 5 years of age was related to 10 and 5 higher correla-
tion coefficients between brain areas, respectively (e.g., 0.06 
higher correlation coefficient between left STSd posterior area 
and left ventral diencephalon area [95% CI = 0.04 to 0.09]) per 
20-µg/m3 increase in NOx, from birth to 2 years of age (Figure 
7 and Appendix Table A11). Most of the brain connections 
associated with the exposure from birth to 2 years of age were 
interhemispheric. However, with exposure at 2 to 5 years of 
age, connections mainly occurred between brain regions of the 
same hemisphere. The identified regions for the two exposure 
windows were predominantly located in the auditory associa-
tion, premotor, orbital and polar frontal, inferior parietal, and 
posterior cingulate cortices, in the ventral diencephalon, and in 
the MT+ Complex and Neighboring Visual Areas.

Higher exposure to NO2 during pregnancy and from birth 
to 2 years of age was related to 12 and 8 higher correlation 
coefficients among brain areas, respectively (e.g., 0.08 higher 
correlation coefficient between left prostriate area and left V3A 
area [95% CI = 0.04 to 0.11] per 10-µg/m3 increase in NO2 during 
pregnancy) (Figure 7 and Appendix Table A11). Most brain 
connections during pregnancy occurred between brain regions 
of the same brain hemisphere. The identified regions were 
predominantly located in the auditory association, dorsolateral 
prefrontal, somatosensory and motor, anterior cingulate and 
medial prefrontal, dorsal stream visual, and insular and frontal 
opercular cortices.

Higher exposure to PMCOARSE from 2 to 5 years of age and from 
5 to 9 years of age was related to a higher brain correlation coef-
ficient only between 2 brain areas in both time periods. From 2 
to 5 years of age, connectivity between the right lateral occipital 
1 area and the right s32 area was 0.25 higher (95% CI = 0.15 to 
0.34) per 5-µg/m3 increase in PMCOARSE. From 5 to 9 years of age, 
connectivity was 0.23 higher (95% CI = 0.14 to 0.33) per 5-µg/
m3 increase in PMCOARSE (Figure 7 and Appendix Table A11). 
The identified regions were located in the anterior cingulate 
and medial prefrontal cortices and in the MT+ Complex and 
Neighboring Visual Areas region.

Higher exposure to PM2.5absorbance from birth to 2 years 
of age and from 2 to 5 years of age was related to 70 and 13 
higher correlation coefficients among brain areas, respectively 
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Figure 6. Adjusted associations in the twelve individual white matter tracts in pre-adolescents. Blue indicates negative coefficients and green 
indicates positive coefficients. Associations from linear regression models were adjusted for maternal and paternal education, ethnicity, age, 
height, body mass index, and psychological distress during pregnancy, maternal smoking and alcohol use during pregnancy, maternal parity, 
maternal intelligence quotient, family status, household income, and child’s genetic ancestry, sex, and age at the scanning session. The expected 
direction of the association was higher air pollution exposure during pregnancy and childhood and lower global fractional anisotropy and 
higher global mean diffusivity. CGC-L = cingulum bundle left; CGC-R = cingulum bundle right; CST-L = corticospinal tract left; CST-R = 
corticospinal tract right; FMI = forceps minor; ILF-L = inferior longitudinal fasciculus left; ILF-R = inferior longitudinal fasciculus right SLF-L = 
superior longitudinal fasciculus left hemisphere; SLF-R = superior longitudinal fasciculus right hemisphere; UNC-L = uncinated fasciculus left 
hemisphere; UNC-R = uncinated fasciculus right hemisphere.

(e.g., 0.14 higher connectivity between left primary motor 
cortex and left auditory 4 complex [95% CI = 0.07 to 0.21] 
per each 10−5m−1 increase of PM2.5absorbance, from birth to 2 
years of age) (Figure 7 and Appendix Table A11). Most brain 
connections using the exposure window from birth to 2 years 
of age group were interhemispheric. However, connections 
using the exposure window from 2 to 5 years of age mainly 
occurred between brain regions of the same brain hemi-
sphere. The identified regions were predominantly located in 
the insular and frontal opercular, auditory association, lateral 
temporal, somatosensory and motor, anterior cingulate and 
medial prefrontal, and posterior cingulate cortices, and in the 
MT+ Complex and Neighboring Visual Areas.

Exposure to PM10 and PM2.5 was not associated with brain 
functional connectivity.

DISCUSSION

MAIN FINDINGS

Air Pollution Exposure and Brain Structural Morphology

Exposure during pregnancy and childhood — brain volumes 
in school-age children and pre-adolescents    We found that 
exposure to air pollution during pregnancy or childhood was 
not associated with global brain volumes in 6- to 10-year-old 
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children and 9- to 12-year-old pre-adolescents. However, higher 
pregnancy or childhood exposures to several air pollutants 
were associated with a smaller corpus callosum and hip-
pocampus and a larger amygdala, nucleus accumbens, and 
cerebellum in pre-adolescents, but not in school-age children 
(Table 9).

Corpus callosum, the largest white matter structure of the 
brain, is crucial for proper brain functional connectivity and 
cognitive processing (Hinkley et al. 2012). The volume of cor-
pus callosum increases during the entire childhood (Durston 
et al. 2001), as we confirmed within our study population. 
We found that a higher exposure to the oxidative potential 
of PM2.5 during pregnancy and to OC during childhood was 
associated with a smaller volume of the corpus callosum 

in pre-adolescents. In line with our results, a recent study 
found the same association between exposure to PM2.5 during 
pregnancy and the corpus callosum in 8- to 12-year-old children 
(Mortamais et al. 2019). Another study in adults showed that 
cumulative exposure to PM2.5, but not to diesel PM, was also 
associated with a smaller volume of the corpus callosum in 
women of approximately 70 years of age (Chen et al. 2017). 
Results from experimental studies support these findings (Allen 
et al. 2017; Klocke et al. 2017; Morris-Schaffer et al. 2019). They 
demonstrate that exposure to air pollution was associated with 
an increase in inflammatory reactions in the corpus callosum. 
Moreover, these inflammatory responses were paired with alter-
ations in the size of the structure. It has also been shown that 
exposure to air pollution activates the hypothalamic–pituitary–12
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Table 7. Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and Childhood and Cortical 
Thickness and Cortical Surface in Pre-adolescentsa 

Brain Region – Hemisphere
/ Air Pollutant (per unit of change)

Pregnancy Exposureb Childhood Exposureb

Region Size 
(mm2) Coefficient (95% CI)

Region Size 
(mm2) Coefficient (95% CI)

Cortical thickness (mm)

Postcentral gyrus – Right

OC (1 μg/m3) 164 −0.06 (−0.11 to −0.01) — — —

Rostral middle frontal gyrus — Right

PM2.5absorbance (10−5m−1) 174 −0.07 (−0.13 to −0.01) — — —

Cu (5 ng/m3) 198 −0.12 (−0.21 to −0.03) — — —

Lingual gyrus – Left 

OPDTT (1 nmol DTT/min/m3) — — — 177 −0.15 (−0.28 to −0.03)

Cortical surface (mm2)

Precentral gyrus – Right 

Zn (10 ng/m3) — — — 240 0.01 (0.00 to 0.02)

OPESR (1,000 units/m3) — — — 157 0.02 (0.00 to 0.04)

Pars triangularis – Right 

PMCOARSE (5 μg/m3) — — — 180 −0.10 (−0.18 to −0.02)

Precuneus – Left 

Zn (10 ng/m3) — — — 177 0.02 (0.01 to 0.04)

Pericalcarine cortex – Left 

Zn (10 ng/m3) — — — 289 0.02 (0.01 to 0.03)

a The expected direction of the association was higher air pollution exposure during pregnancy and childhood and smaller cortical 
thickness and smaller cortical surface area. — = not significant. 

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal education, ethnicity, age, 
height, body mass index, and psychological distress during pregnancy; maternal smoking and alcohol use during pregnancy; maternal 
parity, maternal intelligence quotient, family status, and household income; and child's genetic ancestry, sex, and age at the scanning 
session. All brain regions survived the correction for multiple testing (built-in Monte Carlo null-Z simulation with 10,000 iteration, P value 
< 0.001).
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involved in emotional regulation and encoding of emotional 
memories (Richardson et al. 2004). They are particularly 
sensitive to the effects of stress hormones and are subject to 
developmental programming by early life stress. Specifically, 
early life stress has been associated with a smaller volume of 
the hippocampus (Coe et al. 2003) and a larger volume of the 
amygdala (Salm et al. 2004) in animal models. These findings 
are consistent with epidemiological associations (Buss et al. 
2012; Humphreys et al. 2019; Lupien et al. 2011). Finally, in 
the multipollutant model, higher exposure to PAHs and to OC 
during pregnancy was associated with a smaller volume of the 
amygdala, although these associations were not statistically 
significant in the single-pollutant analyses. One explanation 
for this unexpected result is that it could be a chance finding 
due to negative residual confounding of correlated exposures.

We observed an association between a higher exposure to Zn 
during childhood and a larger volume of the nucleus accumbens 
in pre-adolescents. The nucleus accumbens plays a key role in 
integrating cognitive and affective information (Floresco 2015), 
and its volume decreases across childhood (Wierenga et al. 
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Table 8. Adjusted Associations Between Exposure to Air Pollutants During Pregnancy and Childhood and Global Fractional 
Anisotropy and Mean Diffusivity in Pre-adolescentsa

Air Pollutant
(per unit of change)

Global FA Global MD

Pregnancy Exposureb,c

Coefficient (95% CI)
Childhood Exposureb,c

Coefficient (95% CI)
Pregnancy Exposureb,c

Coefficient (95% CI)
Childhood Exposureb,c

Coefficient (95% CI)

NOx (20 μg/m3) −0.11 (−0.20; −0.02) −0.14 (−0.23;−0.04)d 0.01 (0.00; 0.02) 0.02 (0.01; 0.03)

NO2 (10 μg/m3) −0.11 (−0.25; 0.03) −0.13 (−0.25; −0.01) 0.02 (0.00; 0.04) 0.02 (0.00; 0.03)

PM10 (10 μg/m3) −0.49 (−0.90; −0.08) −0.45 (−0.91; 0.01) 0.05 (0.00; 0.10) 0.07 (0.01; 0.12)

PMCOARSE (5 μg/m3) −0.05 (−0.37; 0.27) −0.29 (−0.63; 0.04) 0.03 (−0.01; 0.07) 0.04 (0.00; 0.09)

PM2.5 (5 μg/m3) −0.71 (−1.26; −0.16)d −0.46 (−1.14; 0.21) 0.09 (0.02; 0.15) 0.11 (0.03; 0.20)

PM2.5absorbance (10−5m−1) −0.29 (−0.51; −0.07) −0.27 (−0.51; −0.02) 0.04 (0.01; 0.06) 0.04 (0.01; 0.07)

PAHs (1 ng/m3) 0.01 (−0.19; 0.21)d 0.15 (−0.09; 0.38) 0.01 (−0.01; 0.04) 0.01 (−0.02; 0.04)

OC (1 μg/m3) −0.12 (−0.29; 0.05) −0.20 (−0.38; −0.03) 0.02 (−0.01; 0.04) 0.02  (−0.00; 0.04)

Cu (5 ng/m3) −0.32 (−0.71; 0.06) −0.22 (−0.65; 0.21) 0.05 (0.01; 0.10) 0.03 (−0.02; 0.09)

Fe (100 ng/m3) −0.20 (−0.54; 0.14) −0.22 (−0.53; 0.09) 0.05 (0.01; 0.09) 0.03 (−0.01; 0.07)

Si (100 ng/m3) −0.28 (−0.70; 0.15) −0.24 (−0.66; 0.19) 0.07 (0.02; 0.12)d 0.05 (0.00; 0.11)

Zn (10 ng/m3) −0.12 (−0.28; 0.04) −0.13 (−0.27; 0.02) 0.01 (−0.01; 0.03) 0.03 (0.01; 0.05)d

OPDTT(1nmol DTT/min/m3) 0.21 (−0.34; 0.75) −0.14 (−0.69; 0.42) 0.06  (−0.00; 0.13) 0.09 (0.02; 0.16)d

OPESR (1,000 units/m3) −0.19 (−0.55; 0.17) −0.21 (−0.57; 0.16) 0.04 (0.00; 0.09) 0.04  (−0.00; 0.09)

a The expected direction of the association was higher air pollution exposure during pregnancy and childhood and lower global FA and 
higher global MD.

b Coefficients and 95% confidence intervals from linear regression models were adjusted for maternal and paternal education, ethnicity, age, 
height, body mass index, and psychological distress during pregnancy; maternal smoking and alcohol use during pregnancy; maternal parity, 
maternal intelligence quotient, family status, and household income; and child's genetic ancestry, sex, and age at the scanning session

c Bolded values indicate P < 0.05.
d The association was identified in the multipollutant approach (see Appendix Table A6). PM10 was not included (see Statistical

Methods and Data Analysis) section.

adrenal axis and the neuroendocrine stress response (Thomson 
2019), and that early life stress is associated with reductions 
in corpus callosum size in both experimental (Jackowski et al. 
2011) and epidemiological studies (Teicher et al. 2004).

Higher exposure to PAHs during pregnancy and to the 
oxidative potential of PM2.5 during childhood showed asso-
ciations with a smaller volume of the hippocampus, while 
higher exposure to Si during pregnancy was associated with a 
larger volume of the amygdala in pre-adolescents. A previous 
epidemiological study in adults also found an association 
between a higher exposure to PM2.5 and a smaller volume of the 
hippocampus (Hedges et al. 2019). Moreover, an experimental 
study showed that a higher exposure to ultrafine particles was 
related to alterations of the amygdala (Allen et al. 2017). The 
hippocampus increases in volume during childhood (Durston 
et al. 2001), and we confirmed this trend in our study pop-
ulation. A larger volume of the amygdala has previously 
been associated with behavior problems in pre-adolescents 
(Jones et al. 2019). The hippocampus and the amygdala are 
two subcortical structures from the limbic system and are 
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Figure 7. Adjusted associations between exposure to air pollutants during each time period and brain functional connectivity in pre-adolescents. 
Green indicates positive coefficients; thickness of the connection represents the strengths of the association. Associations from linear regression 
models were adjusted for maternal and paternal education, ethnicity, age, height, body mass index, and psychological distress during preg-
nancy, maternal smoking and alcohol use during pregnancy, maternal parity, maternal intelligence quotient, family status, household income, 
and child’s genetic ancestry, sex, and age at the scanning session. All brain regions survived the correction for multiple testing using a false 
discovery rating. AA = auditory association; AB = nucleus accumbens; ACMP = anterior cingulate and medial prefrontal; AG = amygdala; CB = 
cerebellum; CD = caudate; DSP = dorsolateral prefrontal; DSV = dorsal stream visual; EA = early auditory; EV = early visual; HC = hippocampus; 
IF = inferior frontal; IFO = insular and frontal opercular; IP = inferior parietal; LT = lateral temporal; MT = medial temporal; MTC = MT+ 
complex and neighboring visual areas; OPF = orbital and polar frontal; PA = pallidum; PC = posterior cingulate; PLMC = paracentral lobular and 
mid cingulate; PM = premotor; PO = posterior opercular; PU = putamen; PV = primary visual; SM = somatosensory and motor; SP = superior 
parietal; TPOJ = temporo-parieto-occipital junction; TM = thalamus; VDC = ventral diencephalon; VSV = ventral stream visual. 
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Table 9. Summary Table of the Key Findings on the Associations of Exposure to Air Pollutants During Pregnancy and 
Childhood with Brain Structural Morphology, Structural Connectivity, and Functional Connectivity in School-Age 
Children and Pre-adolescents

Outcome

Direction of 
Association

Period

Pollutant Analysis

Expected Observed Single Pollutant Multipollutant 

Structural morphology

Corpus callosum volume −
−

−
−

Pregnancy
Childhood

OPESR 
OC 

OPESR 
OC 

Putamen volume + + Pregnancy PMCOARSE —

Pallidum volume − + Pregnancy PMCOARSE —

Hippocampus volume − − Pregnancy PAHs, Cu PAHs 

− − Childhood PMCOARSE, OPDTT OPDTT

Amygdala volume + + Pregnancy Si Si 

Nucleus accumbens volume + + Childhood Zn Zn 

Cerebellum volume − + Pregnancy PM10, PMCOARSE, PM2.5,
PM2.5absorbance 

PMCOARSE

Cortical thickness − − Pregnancy PM2.5, PMCOARSE, PM2.5absorbance, 
OC, Cu

NA 

− − Childhood OPDTT NA

Cortical surface area − + Pregnancy Zn, OPESR NA

− − Childhood PMCOARSE NA

Structural connectivity

Fractional anisotropy − − Pregnancy NOx, PM10, PM2.5,
PM2.5absorbance 

PM2.5 

− − Childhood NOx, NO2, PM2.5absorbance, OC NOx 

Mean diffusivity + + Pregnancy Si 

+ + Childhood

NOx, NO2, PM10, PM2.5, 
PM2.5absorbance,

Cu, Fe, Si, OPESR 

NOx, NO2, PM10, PMCOARSE, PM2.5,

PM2.5absorbance, Si, Zn, OPDTT
Zn, OPDTT 

Functional connectivity

? + Pregnancy NO2 NA

? + Childhood NOx, NO2, PMCOARSE,
PM2.5absorbance 

NA

a NA = not applicable (correction for multiple testing applied in the single-pollutant analysis due to the large number of suboutcomes 
analyzed (~140,000–320,000 depending on the outcome).
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2018), as we confirmed in our study population. The nucleus 
accumbens is also strongly impacted by stress signaling, 
receiving inputs from key stress-impacted regions of the brain, 
including the hippocampus and amygdala. Chronic stress 
has been associated with structural changes in experimental 
models (Bessa et al. 2013; Campioni et al. 2009; Muhammad et 
al. 2012) and with increased volume in individuals with major 
depressive disorder (Abdallah et al. 2017). A recent study has 
also found a cross-sectional association between exposure 
to PM2.5 and a larger volume of the left nucleus accumbens 
(Cserbik et al. 2020). Moreover, animal studies suggested that 
exposure to air pollution produces neurotoxicity, oxidative 
stress, and inflammation in the nucleus accumbens and the 
striatum (Cory-Slechta et al. 2019; Kim et al. 2018).

We found an association between exposure to PMCOARSE 
during pregnancy and a larger volume of the cerebellum in 
pre-adolescents. This finding was unexpected considering 
that the volume of the cerebellum increases during childhood 
and starts decreasing between the ages of 7 and 12 in girls, 
and around 15.5 years in boys (Tiemeier et al. 2010; Wierenga 
et al. 2014). Early exposure to stress has been associated with 
a number of functional and structural changes in the cerebel-
lum (Moreno-Rius 2019). In a controlled experimental study 
examining the impacts of early life stress, rhesus monkeys 
raised by peers instead of by their mothers had an enlarged 
cerebellar vermis (Spinelli et al. 2009). Several animal studies 
support a potential effect of exposure to air pollution on the 
cerebellum through oxidative stress and inflammation (Fagun-
des et al. 2015; Kim et al. 2018). Contrary to our findings, a 
recent study found an association between a higher exposure 
to PM2.5 during the first year of life and a smaller volume of 
the cerebellum in 12-year-old children (Beckwith et al. 2020). 
In the multipollutant model, a higher exposure to the oxida-
tive potential of PM2.5 during pregnancy was associated with 
a smaller volume of the cerebellum. However, this association 
was not statistically significant in the single-pollutant analy-
sis; thus, this result was most probably a chance finding due 
to negative residual confounding of correlated exposures.

We did not observe any associations of exposure to air 
pollution during pregnancy and childhood with global 
brain volumes in school-age children and pre-adolescents. 
However, other studies found associations with global brain 
measures both in children and adults (Beckwith et al. 2020; 
Calderón-Garcidueñas et al. 2008; Casanova et al. 2016; Chen 
et al. 2017; Erickson et al. 2020; Gale et al. 2020; Peterson 
et al. 2015; Wilker et al. 2015). Similarly, we did not find 
associations with any of the main basal ganglia structures 
(i.e., thalamus, caudate nucleus, putamen, pallidum), despite 
previous literature demonstrating such associations in human 
and animal studies (Brown et al. 2020; Casanova et al. 2016; 
Cserbik et al. 2020; Long et al. 2014; Mortamais et al. 2017; 
Power et al. 2018; Pujol et al. 2016a).

Exposure during pregnancy and childhood — cortical 
thickness and surface area in school-age children and pre- 

adolescents    A higher exposure to several air pollutants, such 
as PM2.5, PMCOARSE, PM2.5absorbance, OC, and Cu, during preg-
nancy was associated with a thinner cortex in various regions 
of the brain in 6- to 10-year-old children and 9- to 12-year-old 
pre-adolescents (Table 9). A higher exposure to the oxidative 
potential of PM2.5 during childhood was also associated with 
a thinner cortex in one region in pre-adolescents. Moreover, a 
higher exposure to air pollution, such as Zn and the oxidative 
potential of PM2.5, during childhood was associated with a 
smaller surface area of the cortex in various regions of the brain 
in pre-adolescents. An exception was represented by a region 
where a higher exposure to PMCOARSE was associated with a 
larger surface area of the cortex in pre-adolescents.

Regions with a thinner cortex showed an overlap between 
school-age children and pre-adolescents. They were located 
in the anterior and middle regions of the right hemisphere 
and in the posterior region of the left hemisphere. The sizes 
of the identified areas in our study were rather small in pre- 
adolescents in particular, compared with school-age children, 
because of the less stringent correction for multiple testing 
in the latter. Another study also demonstrated that higher 
exposure to PM2.5 during the first year of life was related 
with lesser cortical thickness in pre-adolescents (Beckwith 
et al. 2020). The identified cortical regions involved partially 
overlapped the regions identified in our study. However, a 
recent study found cross-sectional associations between 
higher exposure to PM2.5 and both lesser and greater cortical 
thickness in pre-adolescents (Cserbik et al. 2020). Moreover, 
one study did not find an association between personal 
exposure to PAHs during the third trimester of pregnancy and 
any measure of cortical thickness (Peterson et al. 2015). In 
summary, although different studies present contradictory 
results, it seems that exposure to air pollution affects the gray 
matter of specific regions of the brain instead of having a more 
widespread effect. This could be due to the different timing of 
the developmental process of each brain region across child-
hood. For example, the cortical volume of the frontal lobe 
showed a relatively stable trajectory in late childhood and 
an accelerated thinning in adolescence (Tamnes et al. 2017). 
However, the cortical thickness of the parietal and occipital 
lobes showed a decelerating thinning with increasing age.

In pre-adolescents, a higher exposure to Zn and the oxi-
dative potential of PM2.5 during childhood was associated 
with a larger surface area of the precentral gyrus of the right 
hemisphere and of the precuneus and pericalcarine regions of 
the left hemisphere. However, a higher exposure to PMCOARSE 
during childhood was related to a smaller surface area of the 
pars triangularis of the right hemisphere. Another study found 
cross-sectional associations of a higher exposure to PM2.5 with 
both larger and smaller surface areas in other brain regions of 
pre-adolescents (Cserbik et al. 2020). The observed discordant 
region-specific associations of air pollution with larger and 
smaller surface areas could reflect regional variations of the 
neurodevelopmental trajectories across early life.
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A thinner cortex is generally considered a marker of 
impaired cortical structure, often being associated with 
neuropsychological disorders such as depression or schizo-
phrenia (Marrus et al. 2015; van Erp et al. 2018). Nevertheless, 
the clinical implications of a larger or smaller surface area of 
the cortex in children are unclear. In the first years of life, an 
increase in the surface area of the brain is generally associated 
with healthy development. However, some patterns of brain 
maturation that take place between childhood and adoles-
cence involve dynamic changes in both gray and white matter, 
with the surface area showing steady decreases (Houston et 
al. 2014; Lenroot and Giedd 2006; Tamnes et al. 2017). Thus, 
a larger surface area of the cortex could be a sign of a delayed 
maturation of the brain or inadequate synaptic pruning, 
rather than of healthy development in pre-adolescents. Nev-
ertheless, many of the differences in brain structures observed 
at this age range could be of a transient nature (Sudre et al. 
2018). Further studies will require repeated assessments of 
neuroimaging across childhood and adolescence.

Exposure during pregnancy — cortical thickness and cogni-
tive function in school-age children    This was the first study 
showing that a higher exposure to PM2.5 during pregnancy 
was associated with an impaired inhibitory control, and that a 
thinner cortex in the precuneus and the rostral middle frontal 
regions partially mediated this association in 6- to 10-year-old 
children. Inhibitory control, a key component of executive 
functions, regulates the ability to resist temptations and 
impulsive actions and to perform attention-demanding tasks 
(i.e., selective attention) (Diamond and Ling 2016). Impaired 
inhibitory control has been related to several mental health 
problems such as addictive behaviors or attention deficit 
hyperactivity disorder (Jentsch and Pennington 2014; Ma et 
al. 2016). A previous study found that the white matter dis-
ruption partially mediated the association between a higher 
exposure to PAHs during pregnancy and a slower speed of 
information processing in children (Peterson et al. 2015). We 
hypothesize that exposure to air pollution exposure during 
pregnancy could lead to brain structural changes, and there-
fore, to specific cognitive delays. Unfortunately, we did not 
collect cognitive function assessments in pre-adolescents to 
test this hypothesis at later ages when more imaging parame-
ters were available.

Air Pollution Exposure and Brain Structural 
Connectivity

We observed associations of a higher exposure to PM2.5 

and Si during pregnancy and to NOx, Zn, and the oxidative 
potential of PM2.5 during childhood with the white matter 
microstructure of 9- to 12-year-old pre-adolescents. We also 
observed associations of these air pollutants with projection, 
commissural, and association fibers of the FA tracts and with 
limbic, commissural, and association fibers of the MD tracts 
(Table 9).

Generally, the development of normal white matter 
microstructure is characterized by gradually increasing FA 
and decreasing MD. Therefore, the opposite is considered an 
indicator for atypical development and it has previously been 
associated with a number of psychiatric and neurological 
disorders (Aoki et al. 2017; van Ewijk et al. 2012; White et 
al. 2008). FA describes the propensity for enhanced water 
diffusion in the white matter tracts; whereas MD expresses 
the average water diffusion in every direction within brain 
tissue (Alexander et al. 2007). A lower FA and higher MD 
can be a result of several determining factors, such as lower 
packing and disturbance of internal structure of axons, higher 
permeability of the membrane, and decreased myelination 
(Lebel et al. 2019).

To our knowledge, there has been only one previous epi-
demiological study of associations between air pollution and 
white matter microstructure (Pujol et al. 2016a). In that study, 
exposure to higher concentrations of Cu at school was associ-
ated with higher FA in regions adjacent to the caudate nucleus 
in 8- to 12-year-old children. Similar to Zn, Cu reflects air 
pollution due to brake linings (Viana et al. 2008). In our study, 
we did not find a significant association between exposure to 
Cu during pregnancy or childhood and FA. The discrepancies 
in the results between the study of Pujol and colleagues and 
ours might be attributable to differences in various aspects: 
(1) an assessment of the exposure with respect to location and 
timing (school levels at 8 to 10 years of age vs. residential 
levels during pregnancy and from birth until 9 to 12 years of 
age); (2) Cu concentrations (8.7 ng/m3 vs. 4.7 ng/m3); and (3) 
sample size (263 vs. 2,954 children).

In the multipollutant model, a higher exposure to PAHs 
during pregnancy was associated with a higher FA, although 
this association was not statistically significant in the single- 
pollutant analyses. This unexpected result is most probably 
a chance finding due to negative residual confounding of 
correlated exposures.

Air Pollution Exposure and Brain Functional 
Connectivity

A higher exposure to NO2 during pregnancy, to NOx, NO2, 
and PM2.5absorbance from birth to 2 years of age, to NO2, 
PMCOARSE, and PM2.5absorbance from 2 to 5 years of age, and to 
PMCOARSE from 5 to 9 years of age were associated with higher 
brain functional connectivity among several brain areas in 
9- to 12-year-old pre-adolescents (Table 9).

Areas with higher connectivity were located in regions that 
are part of the task negative, task positive, and somatosen-
sory/motor networks. On one hand, the task negative network 
is highly active in inner mental processes and is negatively 
correlated to networks participating in attention-demanding 
tasks (Fox et al. 2005). In line with these findings, some 
previous studies also found an association of exposure to air 
pollution with impaired attentional function and inhibitory 
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control, which was measured using neuropsychological or 
computer tests (Basagaña et al. 2016; Chiu et al. 2013; Guxens 
et al. 2018; Pujol et al. 2016a; Sentís et al. 2017; Sunyer et 
al. 2015, 2017). The task positive network is activated during 
tasks that demands external attention and deactivated in the 
resting state, and it is negatively correlated with the task 
negative network (Blumenfeld 2016). The task positive and 
task negative networks should have an opposite relationship 
(i.e., the activation of one network would inhibit the other, to 
avoid the other’s interference in the coordination of a neural 
process) (Cheng et al. 2020). Therefore, increased connectivity 
of the task positive network during resting conditions could 
be an indicator of functional brain connectivity impairment. 

The somatosensory/motor network is activated during 
motor tasks, such as finger tapping, indicating that the regions 
of this network may involve a premediated state that readies 
the brain to perform or coordinate a motor task (Biswal et al. 
1995). Consistent with these results, an association between 
exposure to air pollution and an impaired psychomotor 
function, in particular fine motor function, measured using 
neuropsychological tests or questionnaires, has been previ-
ously reported (Binter et al. [in review]; Guxens et al. 2014; 
Lubczyńska et al. 2017).

To our knowledge, previous evidence of an association 
between exposure to air pollution and brain functional 
connectivity has been limited to a single study that obtained 
results similar to ours (Pujol et al. 2016b). Higher exposure 
to NO2 and elemental carbon at school was associated with 
higher functional connectivity between regions close in 
space, indicating a lower network segregation. Also, they 
were related to lower deactivation in the supplemental motor 
area and somatosensory cortex.

We have identified pregnancy and the first years of life 
as sensitive periods of exposure to air pollution for brain 
functional connectivity. Consistent findings from both fetal 
and neonatal rs-fMRI studies suggested that the foundations 
of resting-state networks are already laid down before birth, 
with rapid neural growth in the last trimester of pregnancy 
(Doria et al. 2010). However, some networks appear to be 
more developed than others. For example, functional connec-
tivity of the visual and auditory networks is relatively mature, 
in comparison with other networks. Additionally, changes 
in network size, represented by the percentage change in 
brain volume, have been observed during the first years of 
life (Lin et al. 2008). Moreover, several resting-state networks 
exhibited a significant increase in functional connectivity and 
cerebral volumes of cortical connectivity. The development 
of connectivity networks during the early years of life could 
explain why exposures to air pollution during pregnancy 
and early childhood were related to more changes in brain 
functional connectivity during the rs-fMRI scan. From the 
age of two years onward, neurodevelopment is characterized 
by a gain in higher-order cognitive abilities, such as atten-

tion and memory; networks supporting these abilities show 
differences, reflecting a process of maturation (de Bie et al. 
2012). Finally, it has been demonstrated that the interhemi-
spheric functional connectivity between brain regions exists 
in healthy human fetuses from the last trimester of pregnancy 
(Thomason et al. 2013). This could explain why we found 
more interhemispheric connections in relation to exposure to 
air pollution during early childhood than during pregnancy.

Air Pollutants Related to Impaired Brain Development

In this project, we estimated the exposure to several air 
pollutants, and we applied a multipollutant approach with 
the aim to identify which air pollutants were related to 
impaired brain development in pre-adolescents. We observed 
that brain structural morphology, structural connectivity, 
or functional connectivity was associated with exposure to 
several air pollutants: NOx, NO2, PM of various size fractions 
(i.e., PM10, PMCOARSE, and PM2.5), PM2.5absorbance, PAHs, OC, 
three elemental components of PM2.5 (i.e., Cu, Si, Zn), and the 
oxidative potential of PM2.5.

In Europe, the predominant source of NOx and NO2 gasses in 
the air is an incomplete combustion of hydrocarbons, manly orig-
inating from diesel fuel (Le et al. 2010). Higher exposure to diesel 
exhaust has been linked to numerous adverse health effects, such 
as an increased risk of neuroinflammation (Block et al. 2012).

PM is comprised of components that are directly emitted 
or formed through atmospheric chemical reactions involving 
gaseous precursors (U.S. EPA 2019). Within an urban environ-
ment, most PM emissions are from anthropogenic sources and 
include a combination of industrial activities, motor vehicles, 
cooking, and fuel combustion (U.S. EPA 2019). A higher 
exposure to PM of various size fractions has been associated 
with health effects in neurological and neuropsychological 
domains, among many others (U.S. EPA 2019). Higher expo-
sure to PM2.5 has been related to oxidative stress and neuroin-
flammation (Block et al. 2012; U.S. EPA 2019); whereas higher 
exposure to PMCOARSE has been associated with an activated 
hypothalamic–pituitary–adrenal stress axis and altered gene 
expressions in the brain (U.S. EPA 2019).

PM2.5absorbance is a measure of the reflectance of the 
PM2.5 filter, and it is highly correlated with elemental or black 
carbon, also referred to as “soot” (Cyrys et al. 2003). In urban 
settings, the main sources of PM2.5absorbance are combustion 
engines (especially diesel) and residential wood burning 
(Janssen et al. 2012). Soot was one of the first air pollutants for 
which health effects were recognized (Bell and Davis 2001). 
In the last years, higher exposure to PM2.5absorbance, or a 
related measure, have been related to several health effects, 
including neurodevelopment (Janssen et al. 2012; Suades-
González et al. 2015).

PAHs are formed as a byproduct during an incomplete 
combustion of fossil fuels or other organic materials and 
have been linked to various acute and chronic health effects, 
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including neurological disorders (de Prado Bert et al. 2018; 
Kim et al. 2013; Suades-González et al. 2015).

OC is formed by incomplete combustion of diesel fuel and 
has been related to brain oxidative stress and cell inflamma-
tion (Manzo et al. 2010; Wilhelm et al. 2011).

Cu reflects air pollution due to brake linings (Viana et al. 
2008). Although this element is necessary for cellular metab-
olism, abnormal Cu levels lead to relevant brain impairment 
(Scheiber et al. 2014). The deleterious effect of an excess of Cu 
is well-known from Wilson disease, an inherited metabolic 
disorder affecting the basal ganglia (Bandmann et al. 2015).

Si has not been documented as a potential neurotoxin to 
date. However, Si may be a marker of exposure to resuspended 
road dust (Viana et al. 2008). Associations with Si may there-
fore reflect associations with exposure to high traffic, rather 
than exposure to Si specifically.

Zn reflects air pollution due to brake linings and tire wear 
(Viana et al. 2008). Zn is a vital trace element for proper brain 
development and brain function later in life (Gower-Winter 
and Levenson 2012). However, its accumulation in the brain 
can cause excitotoxicity, oxidative stress, and impair cellular 
energy generation (Gower-Winter and Levenson 2012).

The oxidative potential of PM2.5 is a quantification of 
the potentiality of fine particles to induce oxidative stress 
(Yang et al. 2015). The brain is an organ with a high oxygen 
depletion rate; it primarily comprises lipids, specifically in 
the white matter (O’Brien et al. 1964). Lipids are easily oxi-
dized; moreover, because the brain lacks the solid defenses of 
antioxidants, it is vulnerable to lesions induced by oxidative 
stress (Salim 2017).

While understanding the health effects of exposure to an 
isolated pollutant is necessary and important, it is also clear 
that such a scenario does not reflect the actual outdoor condi-
tions. Rather, humans are exposed to a mixture of pollutants, 
highlighting the importance of multipollutant approaches. 
Also, single-pollutant analyses may be affected by a high pro-
portion of false-positive findings. However, multipollutant 
approaches also lead to methodological considerations that 
need to be addressed. The LUR models used in this project 
were developed using land-use predictors mainly related to 
traffic, such as distance to major roads and number of vehicles 
per time unit (Beelen et al. 2013; de Hoogh et al. 2013; Eeftens 
et al. 2012a; Jedynska et al. 2014b; Montagne et al. 2015; 
Yang et al. 2015). Therefore, to a large degree, the modeled 
estimates of exposure represent pollutants from traffic as their 
main source of origin. This results in high, and occasionally 
remarkably high, correlations between pollutants, which hin-
ders the ability to identify the independent effects of specific 
pollutants in a complex mixture. Moreover, high correlations 
between pollutants increase the likelihood of collinearity 
when they are simultaneously analyzed. Collinearity has the 
tendency to increase the variance of one or more estimated 
regression coefficients (Vatcheva and Lee 2016). This might 

result in regression coefficients switching signs. To overcome 
this limitation, we applied the DSA algorithm as a multipol-
lutant approach. This method is based on a relatively good 
trade-off between sensitivity and false discovery proportion, 
in comparison with other methods (Agier et al. 2016). It is an 
iterative selection method, which selects the exposures that 
are most predictive of the outcome by cross-validation, con-
sidering the correlation matrix of air pollutants, and simul-
taneously correcting for multiple testing. However, several 
limitations arose. First, when two variables are competing as 
predictors in a regression model, the variable estimated with 
a lower measurement error will be selected, even if the other 
is the one causally related to the outcome (Zidek et al. 1996). 
Second, this algorithm is based on a cross-validation process 
that is subjected to random variations. We ran each model 
200 times and selected the final model based on the variables 
selected in at least 10% of the runs. However, these results 
might not be robust and stable, and the percentage of times a 
variable was selected should be considered when interpreting 
the results. Third, collinearity might still not be completely 
controlled, as we observed in some of our findings. 
Overall, our results might be less prone to false-positive 
findings, but they should be interpreted with caution and 
need to be replicated. Also, further research must apply 
other multipollutant approaches that consider interactions 
between air pollutants (Barrera-Gómez et al. 2017), evalu-
ate the joint effect of the entire pollutant mixture (Keil et 
al. 2019), or apply other selection methods.

LIMITATIONS

All the research presented in this report was based on a 
prospective population-based birth cohort with a follow-up 
from the fetal period onward. The prospective nature of birth 
cohorts allows one to adequately assess the relationship 
between early life exposures and long-term health effects. 
Therefore, this is a highly valuable study design in environ-
mental epidemiology. Nevertheless, we also encountered 
several limitations.

Air Pollution Exposure Assessment

Epidemiological studies require accurate data on exposure 
to correctly assess the relationships between exposure and 
health outcomes. In studies addressing health problems 
associated with air pollution, the exposure is often modeled 
to represent personal levels of the study population based 
on central measurements. Surely, personal monitoring of air 
pollution would be a more precise method to assess individ-
ual levels of exposure (Nieuwenhuijsen 2004). However, in 
cohort studies with many participants, the use of personal 
monitors would be highly labor-intensive and expensive 
(Nieuwenhuijsen 2004). Furthermore, since personal mon-
itors are carried only for short periods of time, they could 
be less representative of long-term exposure, in comparison 
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with estimations of individual exposure through appropriate 
models. Additionally, personal measurements may have an 
inaccurate reflectance of exposures to outdoor sources, due 
to the time participants spent indoors exposed to indoor 
sources (Weisskopf and Webster 2017). Also, the levels of 
air pollution from outdoor exposures are regulated, so their 
potential effects on health are the ones truly relevant from a 
public health and policy perspective. Nevertheless, modeled 
exposure to air pollution is more likely to be prone to mis-
classification. In our project, we modeled air pollution to the 
individual level of home addresses of each participant, using 
LUR models based on validated measurements (Beelen et al. 
2013; de Hoogh et al. 2013; Eeftens et al. 2012a; Jedynska et 
al. 2014b; Montagne et al. 2015; Yang et al. 2015). However, 
the temporal and spatial density of the sampling sites was 
quite limited. This could have impaired the accuracy of the 
estimates calculated from LUR models and may have led to 
over-smooth the prediction surfaces, particularly for some 
of the primary metals that likely have fine-scale variations. 
Also, LUR models were not fit using methods such as V-fold 
cross-validation to avoid overfitting and poor predictions at 
the home addresses of the participants. Another limitation 
was that sampling campaigns were carried out when children 
were between 3 and 8 years old. In most of the analysis, 
we did not perform temporal adjustments because we did 
not have historical pollutant data available. Therefore, we 
assumed that the spatial contrast of air pollution remained 
stable over time, although absolute levels may differ. This 
assumption was based on previous research supporting 
stability of spatial contrast in air pollution for periods up to 
18 years (Eeftens et al. 2011; Gulliver et al. 2013). However, 
this assumption could lead to exposure misclassification. 
Also, for the analysis in which we extrapolated the levels to 
the specific periods of interest, an exposure error could have 
been introduced. Another source of misclassification emerged 
when a participant spent time away from home during hours 
of the day when air pollution levels were higher (e.g., at 
work during pregnancy, at school during childhood, and in 
commuting routes). Overall, our findings could be affected 
by nondifferential misclassification, resulting in a possible 
underestimation or dilution of the true association (Pollack 
et al. 2013). Lastly, Rotterdam hosts one of the largest sea-
ports in the world with associated refineries located upwind 
of the study population. This could have had an impact on 
the pollution levels and mixtures. Nevertheless, LUR models 
were mainly built to capture pollutants deriving from road 
traffic sources. Therefore, they might have failed to accurately 
estimate the levels of air pollutants that were more affected by 
the emissions from the port.

Overall, one main limitation for the correct assessment 
for the exposure to air pollution is the possibility of intro-
ducing measurement error in the air pollution exposure 
estimates (Szpiro et al. 2011a). Measurement error is intro-
duced when the modeled exposures are different from the 

actual measured exposures and comprises classical-like 
and Berkson-like error. Classical-like error arises from the 
uncertainty related to selection of the parameters of the esti-
mation model for exposure, in our case the LUR model, and 
it may bias the estimates of the health effect. Also, it could 
potentially inflate the standard error of the health effect 
estimates. The Berkson-like error arises from smoothing 
the exposure surface. While it causes little to no bias in the 
measurements, it may inflate the standard error of the health 
effect estimates (Szpiro et al. 2011b). We investigated to 
what extent the measurement error affected the health effect 
estimates that we obtained from the association of exposure 
to air pollution during pregnancy and childhood with white 
matter microstructure. We took advantage of the availability 
of the actual measurements of most of the air pollutants 
to quantify the error in the LUR models that we used to 
estimate individual levels of exposure. This way, we quan-
tified the uncertainty in the exposure–outcome association 
(Szpiro et al. 2011b). We observed that the bias introduced 
in the estimated standard errors was small. However, these 
results may be influenced by the relatively small number of 
measurement sites included in our project.

Single Time Point for Outcome Data

One main limitation of our project is the lack of repeated 
measures. We performed two MRI waves, one at school-age 
and one at pre-adolescence, but information from both waves 
was only available for 387 children. Moreover, the use of a dif-
ferent scanner in each wave made the comparison between the 
measurements difficult. Repeated MRI measurements would 
have allowed us to analyze changes in brain morphology and 
connectivity related to the exposure over time; therefore, 
it would have increased the feasibility of causal inference 
(Rothman and Greenland 2005). The ongoing Generation R 
study just finished a third wave of MRI measurements on the 
same children who are now 13–17 years old, using the same 
scanner. This will allow us to pursue longitudinal analyses in 
the near future.

We aimed to establish a temporal relationship between 
exposure and outcome to represent exposures during preg-
nancy and during childhood prior to the MRI assessment. 
Moreover, we performed mediation analysis to understand 
whether the observed brain alterations could partially 
explain the association between exposure to air pollution 
and cognitive function in school-age children. Nevertheless, 
such approaches were insufficient to infer causality, as the 
dynamic processes of the brain could not be modeled. There-
fore, we cannot discard that the alterations observed in our 
study were already present at earlier ages.

Confounding

The prospective nature of birth cohorts allows one to 
generate a rich database of potential confounding variables, 
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including various socioeconomic and lifestyle characteristics 
of children and parents. In turn, this allows one to adjust the 
final models accordingly. Despite the availability of many 
potential confounding variables in our studies, we cannot 
discard the possibility of residual confounding. There might 
be variables that we either did not consider, or that we 
considered but were unable to include because of poor mea-
surement or lack of measurement. For example, we may not 
have a perfect control on the socioeconomic status, and on 
the genetic and family factors related to brain development. 
Therefore, residual confounding could have introduced bias, 
finally leading to incorrectly estimate the main associations 
and to further hinder causal inference (Weisskopf et al. 
2018). Also, although we performed multiple imputation of 
the missing potential confounding variables, some of them 
had a high level of missingness (30% to 50%). The validity 
of results from multiple imputation data relies on using 
appropriate models to impute the missing values. Therefore, 
we carefully generated the imputation models, using as pre-
dictors variables that were moderately to strongly correlated 
with the missing potential confounding variables. Moreover, 
we performed appropriate checks of the imputation models.

Generalizability

A goal of research in public health is to apply the results to 
the target population (i.e., the original population from which 
the study sample is selected). However, in most epidemiologi-
cal studies, the study sample is not randomly chosen from the 
target population, and this limits the generalizability of the 
results. In the Generation R study, the overall response rate at 
recruitment was 61% (Jaddoe et al. 2006). Educational level 
and house income of the participating mothers was higher in 
comparison to the target population, whereas ethnic distri-
bution only moderately differed (Jaddoe et al. 2006). In our 
project, we included two study samples, one selected among 
school-age children and one among pre-adolescents. None 
of them was randomly chosen from the population initially 
recruited in the cohort. The population of school-age children 
was oversampled based on certain maternal exposures during 
pregnancy and children’s behavior problems. The popula-
tion of pre-adolescents was represented by the families that 
agreed to participate in the brain MRI substudy. The resulting 
samples presented slightly different characteristics from the 
initial population; in particular, children were more likely to 
have parents who were older, had a higher education level, 
a higher household income, and Dutch ethnicity. However, 
school-age children included in the first sample did not differ 
from the initial population for characteristics like maternal 
smoking during pregnancy and psychological distress, 
thanks to the oversampling. On the contrary, pre-adolescents 
included in the second sample differed in these same char-
acteristics because of an attrition effect toward a healthier 
population. We applied inverse probability weighting to 
correct for selection bias and estimate unbiased inferences 

for the initial population in the cohort. However, we applied 
inverse probability weighting using the data collected in the 
study, and therefore it remains unknown whether we have 
fully eliminated this type of bias. Also, we were not able to 
calculate inverse probability weights considering the target 
population characteristics. This limited the generalizability 
of our results slightly.

CONCLUSIONS

We identified several air pollutants associated with brain 
structural morphology, structural connectivity, and func-
tional connectivity. These pollutants included NOx, NO2, 
PM of various size fractions (i.e., PM10, PMCOARSE, and PM2.5), 
PM2.5absorbance, PAHs, OC, three elemental components of 
PM2.5 (i.e., Cu, Si, Zn), and the oxidative potential of PM2.5.

In relation to brain structural morphology, we observed 
that exposure to air pollution during pregnancy or child-
hood was not associated with global brain volumes, neither 
in school-age children nor in pre-adolescents. However, it 
was related to alterations in region-specific volumes in pre- 
adolescents. We also found that exposure to air pollution 
during pregnancy or childhood was associated with a thinner 
cortex in both school-age children and pre-adolescents and 
with alterations of the cortical surface area in pre-adolescents. 
A thinner cortex mediated the association between exposure 
to air pollution during pregnancy and an impaired inhibitory 
control in school-age children.

In relation to brain structural connectivity, we observed 
associations of exposure to air pollution during pregnancy 
and childhood with white matter microstructure in pre- 
adolescents. Finally, in relation to brain functional connec-
tivity, we observed associations of exposure to air pollution 
mainly during pregnancy and early childhood with higher 
brain functional connectivity among several brain regions in 
pre-adolescents.

IMPLICATIONS OF FINDINGS

The results of this project suggest that exposure to air 
pollution during pregnancy and childhood plays an adverse 
role in brain development. We observed this relationship 
even at levels of exposure that were below the European 
Union legislations, such as the levels of exposure for PM2.5 
in most of our study population. Considering the ubiquity of 
air pollution and the involuntary nature of the exposure to it, 
policy makers should lower the current legislated standards 
and, above all, strive to lower the levels of air pollution.

Moreover, the air pollutants analyzed in this project origi-
nate mainly from traffic-related sources that are highly ubiq-
uitous in urban areas and that put a large number of children 
at risk. We acknowledge that identifying the effects of specific 
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pollutants was particularly challenging in our study setting. 
Also, most of our conclusions generally refer to traffic-related 
air pollutants. However, we did identify pollutants specifi-
cally originating from brake linings, tire wear, and tailpipe 
emissions from diesel combustion. The current direction 
toward innovative solutions for cleaner energy vehicles is a 
step in the right direction. However, our findings indicate that 
these measures might not be completely adequate to mitigate 
health problems attributable to traffic-related air pollution, as 
we also observed associations with markers of brake linings 
and tire wear.
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final remote audit of the final report and the data processing 
steps. The onsite audit was performed by Drs. Brown and 
Doraiswamy. The final remote audit was performed by Drs. 
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reviewed the following study components: progress reports, 
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quality data processing and documentation, health data pro-
cessing and quality checks, and backup procedures. Program 
codes were inspected to verify proper documentation. The 
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that methods are well documented, that the report is easy to 
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limitations. In addition, this review provided guidance on 
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be reviewed remotely. The data audit included (1) a remote 
live demonstration of selected data processing codes, and (2) 
the review of the codes for data reduction, processing and 
analysis, and model development. This specific portion of the 
audit was restricted to the key components of the study and 
associated findings. Selected scripts (in R/STATA) for expo-
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were sent to RTI. No data were sent to RTI due to data con-
fidentiality restrictions. Therefore, data inputs to the codes 
were not available.

The codes were reviewed at RTI to verify, to the extent 
feasible, linkages between the various scripts, confirmation of 
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appear to be consistent with the models and tables described 
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procedure described; the values themselves could not be gen-
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The remote live demonstration included a real-time exe-
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general matched with the values in the report when rounded 
off to the respective digit, except for few minor round-off 
discrepancies that do not impact the conclusions. No major 
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codes and the report.

Minor editorial comments and recommendations were 
made for improved clarity.

A written report was provided to HEI. The QA oversight 
audit demonstrated that the study was conducted according 
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the comments, appears to be representative of the study 
conducted.
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MATERIALS AVAILABLE ON THE HEI WEBSITE

Additional Materials 1 contains an appendix with supplemen-
tal figures and tables not included in the main report. It is available 
on the HEI website at www.healtheffects.org/publications. 
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INTRODUCTION

Interest in understanding the association between air pol-
lution and nervous system outcomes has been rapidly grow-
ing over the past several decades. It has long been known that 
inhaling pollutants, such as manganese and lead, can cause 
brain damage and can lead to severe neurotoxic symptoms 
similar to those of Parkinson disease in welders and to devel-
opmental delays and loss of IQ in children (Landrigan 2002; 
Levy and Nassetta 2003). The recent U.S. Environmental 
Protection Agency (U.S. EPA*) Integrated Science Assess-
ment (ISA) for particulate matter (PM) classified long-term 
PM2.5 exposure (PM with aerodynamic diameter ≤2.5 µm) 
as “likely to be causal” for nervous system outcomes, and 
“suggestive” for PMCOARSE (PM with aerodynamic diameter 
between 10 µm and 2.5 µm) and ultrafine particles (PM with 
aerodynamic diameter ≤0.1 µm.) (U.S. EPA 2019). Nervous 
system outcomes considered were brain inflammation and 
oxidative stress, morphalogical changes in the brain, cogni-
tive and behavioral outcomes, neurodegenerative diseases, 
and neurodevelopmental outcomes. It is worth noting that the 
evidence from studies of neurodevelopmental outcomes did 
not substantially contribute to the causality determination 
for nervous system effects (U.S. EPA 2019). A determination 
of “inadequate” was reached in the ISA of nitrogen dioxide 
(NO2) in 2016 for postnatal development (U.S. EPA 2016).

Mechanistic and animal studies have provided some 
biological plausibility for effects of PM on the brain. These 
studies have reported the occurrence of inflammation and 
oxidative stress that could affect the central nervous system 
by inducing neuronal death and synaptic toxicity. Increased 
concentrations of circulating cytokines due to systemic 
inflammation after a pro-inflammatory response in the lung 

might also have a peripheral effect on the brain. Furthermore, 
PM might also reach the brain after crossing the blood–brain 
barrier or more directly via the olfactory bulb and could itself 
be pro-inflammatory (U.S. EPA 2019). Regarding the prenatal 
period specifically, PM air pollution might translocate across 
the placenta (Bongaerts et al. 2020) and impair the placenta 
function (Saenen et al. 2019; van den Hooven et al. 2012), and 
thus disrupt neurodevelopment.

Although several epidemiological studies have assessed 
the association between air pollution exposure during 
early life and child neurodevelopment (de Prado Bert et 
al. 2018; Herting et al. 2019; Lopuszanska and Samarda-
kiewicz 2020), it is yet unclear whether brain structural 
alterations underlie the observed associations. Advances 
in neuroimaging that allow in vivo investigation of brain 
structure and function have emerged. Such studies provide 
additional information about the possible mechanisms and 
add biological plausibility to the nervous system outcomes 
reported in epidemiological studies. So far only a few 
studies have used magnetic resonance imaging (MRI) tech-
niques to evaluate the effect of air pollution on the brain 
in children, sampled from three cohorts in Spain, Mexico, 
and the United States (Alemany et al. 2018; Calderón-Gar-
cidueñas et al. 2011, 2012; Mortamais et al. 2017, 2019; 
Peterson et al. 2015; Pujol et al. 2016a,b).

In response to Request for Applications 15-1 “Walter A. 
Rosenblith New Investigator Award,” Dr. Monica Guxens of 
Barcelona Institute for Global Health (ISGlobal) submitted a 
proposal titled “Air Pollution, Autism Spectrum Disorders, 
and Brain Imaging Amongst Children in Europe.” Dr. Guxens 
proposed to assess the association between air pollution 
exposure at different time windows and the development 
of autism spectrum disorders and brain structural and func-
tional measures in children. She proposed two studies. One 
study would use an existing population-based birth cohort in 
Rotterdam, the Netherlands (Generation R), in which brain 
structural and functional imaging in children was conducted. 
The second study would be a new population-based case–
control study on autism spectrum disorders in Catalunya, 
Spain. The HEI Research Committee recommended Dr. 
Guxens’ application for funding because there had been few 
studies of air pollution and neurodevelopmental effects, 
and the use of MRI data was considered novel. In addition, 
evidence for a possible link between air pollution and autism 
was inconclusive.

Dr. Mònica Guxens’ 3-year study, “Air Pollution, Autism Spectrum Disor-
ders, and Brain Imaging Amongst Children in Europe” began in February 
2017. Total expenditures were $474,850. The draft Investigators’ Report 
from Guxens and colleagues was received for review in September 2020. 
A revised report, received in February 2021, was accepted for publication 
in February 2021. During the review process, the HEI Review Committee 
and the investigators had the opportunity to exchange comments and to 
clarify issues in both the Investigators’ Report and the Review Committee’s 
Critique.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, 
it may not reflect the views of these parties, and no endorsements by them 
should be inferred.

*A list of abbreviations and other terms appears at the end of this volume.
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During the course of the work, there were severe delays 
in setting up the new study on air pollution and autism in 
Catalunya, Spain. Hence the current report is focused solely 
on the analysis of brain structural and functional measures 
in Generation R. A final report on the Spanish study will be 
published at a later date.

This Critique provides the HEI Review Committee’s evalu-
ation of the study. It is intended to aid the sponsors of HEI and 
the public by highlighting both the strengths and limitations 
of the study and by placing the Investigators’ Report into a 
broader scientific perspective.

SCIENTIFIC BACKGROUND

Neuroimaging is a powerful tool that allows in vivo visu-
alization of brain structure and function. These techniques 
are noninvasive and free of ionization radiation, making them 
suitable for research applications in children. Dr. Guxens 
used various neuroimaging techniques, such as structural 
MRI, diffusion tensor imaging (DTI), and functional MRI, 
which are described in Box 1.

Advances in neuroimaging have ushered in a new era of 
developmental neuroscience. The development of the brain 
occurs through the interaction of several complex synchro-
nized processes, some of which are complete before birth, 
while others continue into adulthood. The brain of a newborn 
at 2–4 weeks of age is about 36% the size of an adult brain. 
The early postnatal period represents a time of dramatic 
change in brain structure and function. The brain grows to 
about 70% of its adult size by 1 year of age and to about 80% 
of adult size by age 2 years. Increases in brain volume during 
the first year of life is greatest in the cerebellum, followed by 
subcortical areas, and then the cerebral cortex. By age 5 years, 
brain size is about 90% of adult size. Substantial remodeling 
of gray and white matter continues, however, into the third 
decade of life. The brain is exceptionally complex and has a 
dynamic structure that is constantly evolving throughout life. 
The brain structure and function at any time is a product of 
interactions between genetic, epigenetic, internal physiologi-
cal environment, and external environmental factors (Lenroot 
and Giedd 2006; Tau and Peterson 2010). Box 2 summarizes 
the major structures and functions of the brain.

APPROACH

The study by Dr. Guxens assessed the possible relationship 
of air pollution exposure during pregnancy and childhood 
with brain outcomes in children. Brain structural and func-
tional measures were studied in Generation R — an existing 
birth cohort in Rotterdam, the Netherlands. Mother–child 
pairs were recruited during pregnancy or at birth from 
2002–2006 and followed up until 2015.

Dr. Guxens and colleagues used air pollution data and 
high-resolution neuroimaging data collected in about 800 

school-age children and in about 3,100 pre-adolescents. About 
400 children underwent imaging at two time points. Early 
life exposure was estimated at the residential address level 
for various air pollutants using existing land-use regression 
(LUR) models, mainly from the European ESCAPE project. 
They applied single pollutant regression models to assess the 
association between early life air pollution exposure and brain 
structural and functional measures corrected for important 
confounders. Additionally, they used multipollutant models 
using a deletion/substitution/addition (DSA) approach.

METHODS

The aims of the study are detailed in Critique Table 1. 
These aims were to investigate the possible relationship of 
air pollution exposure during pregnancy and childhood with 
brain outcomes in children by assessing:

• (Aim 1) brain structural morphology (brain volumes, cor-
tical thickness, and cortical surface area),

• (Aim 2) brain structural connectivity (white matter mi-
crostructure), and

• (Aim 3) brain functional connectivity (connectivity 
scores among brain areas).

Dr. Guxens and colleagues used high-resolution neuro-
imaging data collected in school-age children (age 6–10) 
and in pre-adolescents (age 9–12). MRI measurements of 
structural morphology were performed at both time points. 
Measurements of structural connectivity and of functional 
connectivity were performed at both time points as well, but 
for the Guxens study they used these data in pre-adolescents 
only. Thus, Aim 1 was pursued in both school-age children 
and pre-adolescents, whereas Aims 2 and 3 were investigated 
in pre-adolescents only. In both time points, they used a scan-
ning platform specifically dedicated for the study, though a 
different scanner was used for each time point. The Investiga-
tors’ Report provides the detailed protocol that was followed 
for the measurements.

In addition to the MRI measurements, cognitive function 
of the school-age children was assessed by using an array of 
tasks from the Dutch version of the Developmental Neuro-
psychological Assessment test (NEPSY-II). For this analysis, 
tests were chosen in the attention and executive functioning 
domain and the memory and learning domain.

Exposure was estimated at the residential address level for 
14 air pollutants using existing LUR models, mainly from the 
European ESCAPE project (e.g., Beelen et al. 2013; Eeftens et 
al. 2012). Those models were based on air pollution measure-
ments between February 2009 and February 2010 at 40 to 80 
sites spread across the Netherlands and Belgium. For some 
analyses, prenatal and childhood exposure was estimated 
using back and forward extrapolation methods based on a 
few continuous-reference monitoring sites to match the exact 
period of interest for six pollutants (nitrogen oxides [NOx], 
NO2, PM10, PMCOARSE, PM2.5, and PM2.5absorbance [absorbance 
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Box 1: Various Magnetic Resonance Imaging (MRI) Methods  
Used in the Guxens Studya

a Method description largely based on Horton et al. 2014.

a Largely based on Lenroot and Giedd 2006. From: https://openstax.org/
books/biology/pages/1-introduction. OpenStax. Available under Creative 
Commons license CC BY 4.0.

Structural or anatomical MRI generates static measure-
ments of morphological brain features by discriminating among 
gray matter, white matter, and cerebrospinal fluid. Images are 
formed from 3-dimensional volume elements called voxels. Each 
voxel is assigned a single value based on the relaxation time of 
the tissue. The size of the voxel determines the spatial resolution 
or fineness of detail that can be distinguished in an image. Clini-
cally, anatomical MRI is used for medical diagnosis and classifying 
disease stage (e.g., identifying tumors); researchers use anatom-
ical MRI to assess morphological features of the brain, including 
whole brain volume, volumes of specific regions or subregions, 
and cortical thickness.

Diffusion Tensor Imaging (DTI) provides in vivo data on 
white matter integrity and fiber connectivity between brain 
structures by characterizing myelination patterns and neuroana-
tomical changes in white matter microstructure. Water molecules 
diffuse through brain tissue in isotropic (equal in all directions) 
fashion in cerebral spinal fluid and cell bodies but anisotropic 
(greater in one direction vs. other directions) in white matter 
tracts. Diffusional anisotropy is increased in regions where white 
matter is coherent, highly myelinated, and tightly packed, and 
decreased in areas where white matter is not as organized. By 
measuring the direction and flow of anisotropy within a voxel, 

Box 2: Major Structures and Functions of the Braina

The brain can be 
divided into three 
basic structural 
units: the hind-
brain, the midbrain, 
and the forebrain. 
The hindbrain in-
cludes the upper 
part of the spinal 
cord, most of the 
brainstem, and the 
cerebellum. This 
part of the brain controls the body’s vital functions such as respira-
tion and heart rate. The cerebellum (little brain) coordinates move-
ment, posture, and balance. The midbrain is the uppermost part of 
the brainstem and controls some reflex actions and is part of the 
circuit involved in the control of eye movements and other volun-
tary movements. The forebrain is by far the largest part of the hu-
man brain and contains the entire cerebrum and several structures 
directly nestled within it, such as the thalamus.

Cerebrum. The cerebrum is the largest part of the forebrain 

and accounts for 
about two thirds of 
the total brain’s mass. 
It contains the cere-
bral cortex and sev-
eral subcortical struc-
tures, including the 
hippocampus, basal 
ganglia, and amygda-
la. Right beneath the 
cerebral cortex is the 
corpus callosum.

Corpus callosum. The most prominent white matter structure 
is the corpus callosum, which consists of about 200 million my-
elinated fibers, most of which connect homologous areas of the 
left and right cortex. The functions of the corpus callosum can 
generally be thought of as integrating the activities of the left and 
right cerebral hemispheres, including functions related to the uni-
fication of sensory fields, memory storage and retrieval, attention 
and arousal, enhancing language, and auditory functions.

Hippocampus. Located deep within the brain, the hippocam-
pus has a major role in learning and memory.

DTI provides an estimate of the neural fiber connectivity within 
each voxel. DTI scans produce two kinds of data: (1) an integrity 
measure, usually quantified using fractional anisotropy, which is 
linked to axon packing and myelination, and (2) mean diffusivity 
reflecting water content and density.

Functional MRI (fMRI) provides an indirect measure of neu-
ronal activity that is assessed by changes in oxygenation states 
of blood. Neuronal activation increases local deoxyhemoglobin 
concentration; the increase is rapidly followed by a surge of oxy-
hemoglobin through the neurovascular coupling system, which 
leads to an increase of the MRI signal above baseline. fMRI can be 
either conducted in a resting state or task related. Task-related 
fMRI assesses regional activation that occurs when a specific task 
is completed and seeks to identify those brain regions associ-
ated with the task-related activity. Resting state fMRI (rs-fMRI) 
was used in the current study. It measures activity in the brain 
when a participant is not performing an explicit task and de-
tects spontaneous synchronous activity between distant brain 
regions. Sets of regions that share temporally correlated activity 
at rest are believed to constitute functional networks including 
visual, sensorimotor, auditory processing networks, and default 
mode network. The latter network of interacting brain regions 
is active when a person is not focused on the outside world, and 
the brain is at wakeful rest.

(Box 2 continues next page)

https://openstax.org/books/biology/pages/1-introduction
https://openstax.org/books/biology/pages/1-introduction
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of the PM2.5 fraction]). For the remaining pollutants (polycy-
clic aromatic hydrocarbons [PAHs], organic carbon [OC], cop-
per [Cu], iron [Fe], silicon [Si], zinc [Zn], and two oxidative 
potential measures), assumptions were made that the contrast 
remained constant over time because there were no historical 
data available for those pollutants.

Guxens and colleagues applied single pollutant regres-
sion models to assess the association between early life air 
pollution and brain structural and functional measures cor-
rected for important potential confounders, such as maternal 
smoking, prepregnancy body mass index and socioeconomic 
status. Missing confounder data — for example, up to 41% of 
data on paternal psychological distress — were imputed using 
standard techniques. To increase statistical power in the first 
round, a potential sampling bias was introduced by deliber-
ately selecting more school-age children with child behavior 
problems and with mothers who reported certain exposures 
during pregnancy (e.g., exposure to drugs, nicotine, alcohol, 
and psychiatric medication). All analyses used inverse prob-
ability weighting to increase the chance the results would 
be representative for the study population initially recruited 
(about 9,600). In a sensitivity analysis for the global white 
matter microstructure outcomes, they applied a correction for 
exposure measurement error using the bootstrap method from 
Szpiro and colleagues (2011).

Critique Table 1 summarizes the data and analyses 
conducted by aim. Single-pollutant analyses were used for 
each brain outcome separately, with one pollutant from one 
exposure window added to the model at a time. The number of 
outcome measurements was very large — for example, for the 
cortical thickness and connectivity scores measures — about 
140,000 to 320,000 suboutcomes were analyzed depending on 
the brain measure. Hence, analyses of those brain outcomes 
were corrected for multiple comparisons using a Monte Carlo 
approach. In contrast, analyses of other brain outcomes, 
including brain volumes and white matter microstructure 
outcomes, were not corrected for multiple testing; for those 
outcomes, multipollutant models were run instead. Those 
multipollutant models consider the correlation matrix of air 

pollutants and simultaneously correct for multiple testing. 
The investigators chose multipollutant analyses using the DSA 
approach (Sinisi and van der Laan 2004). DSA uses an iterative 
selection algorithm to fit a generalized linear model predicated 
on the power of cross-validation to select the best predictive 
model for each brain outcome. They picked the pollutants in 
the multipollutant model using the criterion that any exposure 
variable selected in at least 10% of the runs would go into a 
final model; each DSA model was run 200 times.

SUMMARY OF RESULTS

Several air pollutants were associated with brain structural 
morphology, structural connectivity, and functional connec-
tivity in children. Critique Table 2 presents a summary of the 
results. In short, exposure to air pollution during early life 
showed the following associations:

• No associations with global brain volumes including total 
brain, gray matter, and white matter in school-age chil-
dren or pre-adolescents. Air pollution exposure during 
pregnancy and childhood was associated with some dif-
ferences in region-specific brain volumes in pre-adoles-
cents only, such as a smaller volume in the hippocampus 
and corpus callosum, but only for a few pollutants (e.g., 
PAHs, Cu, OC, and oxidative potential). Some unexpected 
associations were reported in some brain regions as well.

• Associated with a thinner cortex in various regions of the 
brain in both school-age children and pre-adolescents, 
for various air pollutants including PM2.5, PM2.5absor-
bance and PMCOARSE.

• Associated with impaired cognitive function in one do-
main (attention and executive function), in school chil-
dren, but only for PM2.5. No associations were observed 
for the other cognitive function outcomes, such as in the 
memory and learning domain.

• Associated with fractional anisotropy and mean diffusiv-
ity, both globally and in several individual white matter 
tracts in pre-adolescents. In particular, the global mea-
sures of structural connectivity was associated for almost 
half of the air pollutants under investigation, including 
PM2.5 and NO2.

Basal ganglia. The basal ganglia consist of the caudate nucleus, 
putamen, globus pallidus (palladium), subthalamic nucleus, nu-
cleus accumbens, and substantia nigra. The basal ganglia have 
long been known to play a role in the control of movement and 
muscle tone but more recently have been shown to be involved 
in circuits that mediate higher cognitive functions, attention, and 
affective states.

Amygdala. The amygdala is a small, almond-shaped complex 
of nerve cells that receive input from both the olfactory system 
and the cerebral cortex. It performs a primary role in the pro-
cessing of memory, decision-making, and emotional responses, 

including fear, anxiety, and aggression. The amygdala might be 
best known as the part of the brain that drives the fight or flight 
response. Although it is often associated with the body’s fear 
and stress responses, it also plays a pivotal role in memory.

Thalamus. The thalamus is a mostly a gray matter structure, 
located at the top of the brain stem, with many essential relaying 
roles that range from perception, movement, and the body’s 
vital functions. It acts as a two-way relay station, sorting, pro-
cessing, and directing signals from the spinal cord and midbrain 
structures up to the cerebrum in the forebrain and, conversely, 
from the cerebrum down the spinal cord to the nervous system.

Box 2 (Continued). Major Structures and Functions of the Braina
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• Associated with higher brain functional connectivity 
among several brain regions in pre-adolescents (NOx, NO2, 
PMCOARSE, PM2.5absorbance). No associations were report-
ed for PM10 and PM2.5. The identified areas with higher 
connectivity were located in regions that are part of the 
default mode network and the sensorimotor networks.

• The clinical relevance of the findings remain unclear.

HEI REVIEW COMMITTEE’S EVALUATION

In its independent review of the study, the HEI Review 
Committee complimented Dr. Guxens on her study and 
thought the research was well motivated and addressed 
important and novel questions about the potential relation-
ships between air pollution and the developing brain. This 
type of research is emerging but remains distinctive — with 
only a handful of MRI studies in children so far.

The Committee noted several major strengths of the 
study. First, it recognized the benefits of using of an existing 
birth cohort that has neuroimaging data for a large subset of 
the cohort — the largest sample to date — and the wealth of 
individual-level covariate data, including physical exams, neu-
ropsychological tests, and parent questionnaires that allow for 
a comprehensive assessment of confounding. The Committee 
thought the availability of high-resolution neuroimaging data 
was unprecedented, because MRI is a powerful tool that allows 
in vivo visualization of brain structure and function. Second, 
the large suite of air pollution exposure metrics estimated at the 
residential address level, while taking into account residential 
mobility, was considered another strength. The Committee also 
thought the analyses were comprehensive, straightforward, and 
clearly presented in the report. For example, the use of multiple 
imputation to account for missing covariate data, a correction 
approach to increase the chance that results would be repre-
sentative for the study population initially recruited, and an 
assessment of measurement error show the rigor of the research 
undertaken. In addition, the mediation analysis to investigate 
whether schoolchildren who had reduced cortical thickness 
showed cognitive impairment was appreciated because it shed 
some light on whether the findings are clinically relevant. The 
Committee considered Dr. Guxens an exceptional recipient of 
HEI’s Walter A. Rosenblith New Investigators Award and was 
impressed by her performance and successful completion of a 
pioneering project.

The study by Dr. Guxens documented associations between 
early life air pollution exposure and various measures of 
brain structural morphology, structural connectivity, and 
functional connectivity in children. For example, exposure 
to air pollution during early life was associated with a thin-
ner cortex in various regions of the brain in both school-age 
children and pre-adolescents. Moreover, in pre-adolescents, 
exposure to air pollution during early life was associated with 
various differences in region-specific brain volumes, such as 

a smaller volume in the hippocampus and corpus callosum. 
In addition, associations were documented between exposure 
and white matter microstructure and higher brain functional 
connectivity among several brain regions.

The current study is the largest so far and adds to a limited 
evidence base. The few earlier studies in children that inte-
grated air pollution epidemiology and neuroimaging suggest 
that various brain structures and functions could be affected 
by air pollution (de Prado Bert et al. 2018; Herting et al. 
2019; Lopuszanska and Samardakiewicz 2020). Observations 
included smaller white matter surface area (e.g., Peterson et 
al. 2015) and microstructure (Pujol et al. 2016b); smaller vol-
umes or less density or both within the caudate (e.g., Alemany 
et al. 2018; Mortamais et al. 2017; Pujol et al. 2016b); altered 
resting-state functional connectivity (Pujol et al. 2016a,b), and 
brain activity to sensory stimuli (Pujol et al. 2016a). Earlier 
MRI findings in children suggests air pollution exposure does 
not lead to differences in global brain volumes including total 
brain, gray matter, and white matter (Mortamais et al. 2017; 
Pujol et al. 2016a,b), which is consistent with the results of 
the current study. A new analysis of 186 children from the 
Brain Development and Air Pollution Ultrafine Particles in 
School Children (BREATHE) study in Barcelona, Spain, 
reported that prenatal exposure to PM2.5 might be associated 
with a decreased corpus callosum volume, which was asso-
ciated with a higher hyperactivity subscore. No associations 
were observed between PM2.5 and volume measures in other 
brain structures (gray matter, white matter, and lateral ventri-
cles), nor in measures of structural connectivity (Mortamais 
et al. 2019). The majority of MRI studies to date are based on 
subsets of children from two cohort studies: the BREATHE 
study in Barcelona and the Columbia Center for Children’s 
Environmental Health (CCCEH) cohort in New York City. 
Those studies are limited by the cross-sectional nature of the 
analyses and the small sample size, which is partly due to the 
high costs of the MRI measurements.

Although the Review Committee broadly agreed with 
the investigators’ conclusions, there are a few limitations 
identified by the Committee detailed below that should be 
considered when interpreting the results.

SUBSTANTIAL TEMPORAL AND SPATIAL MISALIGN-
MENT OF THE EXPOSURE DATA

The Committee had concerns about the exposure 
assessment because of the substantial temporal and spatial 
misalignment of the data. That issue is particularly important 
when studying the developing brain, which is exceptionally 
complex with potentially critical time windows of develop-
ment. The study relies on an historical exposure assessment 
that is temporally misaligned with the health data by about 
4–8 years later than the collection of the brain outcome data. 
Several issues of concern with the exposure assessment were 
noted by the Committee. First, the limited number of sites for 



 55

Review Committee    

the PM and PM species (40) does not afford strong data support 
for the modeling; this might have led to over-smoothing in 
the pollution surfaces, particularly for some of the metals that 
likely have fine-scale variations, such as Cu, Fe, and Zn. Sec-
ond, PM measurements were not measured simultaneously 
(with only 10 sites per round); this seems to have necessitated 
temporal adjustments that can introduce error because of 
differential accuracy in the temporal adjustment, depending 
on the spatial relationship between the research sites and the 
single continuous-reference monitor site. Third, the forward 
and back extrapolations used in some analyses to match the 
exact period of interest could introduce additional exposure 
error. Fourth, the Committee noted several general concerns 
regarding the use of standard linear regression for the exposure 
model development. For example, the algorithm may overfit 
the data when there are relatively few monitoring sites to train 
a model and a large number of potential predictor variables 
offered. Also, the algorithm could fail to capture potentially 
complex relationships within the data because it assumes the 
relationship between air pollution and a predictor is linear 
over the whole range of the predictor values and includes 
potential interactions among covariates to only a limited 
extent. Moreover, the algorithm could result in unstable and 
uninterpretable coefficient estimates when highly correlated 
predictors are included in one model. To try to alleviate those 
concerns, other modeling techniques have increasingly been 
applied to develop LUR models for air pollution exposure 
assessment, such as machine learning techniques. The few 
studies, however, that compared performance of different 
modeling techniques for exposure assessment report similar 
performance for the models, although those results may differ 
with the study setting, hampering a generic recommendation 
for one algorithm (e.g., Chen et al. 2019; Kerkhoffs et al. 2019; 
Weichenthal et al. 2016). Some, but not all, of these limita-
tions in the exposure assessment were noted in the discussion 
section of the Investigators’ Report and acknowledged by the 
study team. Although the Committee understands that Dr. 
Guxens and her team made best use of the exposure models 
available, the substantial temporal and spatial misalignment 
of the exposure data might have influenced the analysis of 
brain outcomes in unpredictable ways. An effort was made 
by the study team to adjust the analysis for exposure mea-
surements error by using the bootstrap method from Szpiro et 
al. 2011, which was laudable, but was limited to a few brain 
outcomes only, and it is unclear whether the method has 
sufficient data support to derive reliable corrections.

STATISTICAL ANALYSES

The Committee thought the statistical analyses pursued 
was comprehensive, straightforward, and clearly presented. 
The analysis was hypothesis driven rather than an explor-
atory discovery-based analysis, and the main analyses were 
based on simple regression. The Committee appreciated 
the hypothesis provided after each aim, and the expected 

direction of the relationship for the many brain outcomes 
indicated under each table in the Investigators’ Report. The 
Committee noted that the study was exploratory in many 
aspects, without much prior knowledge on which to build. 
For example, investigators had no expected direction for the 
relationship for some brain measure outcomes, such as for 
the connectivity scores for the different brain areas. In those 
cases, it was clearly stated by the investigators that there was 
no a priori hypothesis on the direction of the relationship.

The Committee noted two potential areas for future work to 
compliment the current analyses. They would recommend a 
broader exploration that uses some of the untargeted analyses. 
Those analyses could address some of the main challenges 
more fully, such as simultaneous testing of multiple hypothe-
ses and consideration of (a) multiple correlated exposures, (b) 
exposure interactions and nonlinear exposure–response rela-
tions, and (c) temporal factors in exposures. The Committee 
thought that one could borrow from some of the approaches 
currently used in omics analyses in studies of the exposome 
(Agier et al. 2016; Chadeau-Hyam et al. 2013; Staffogia et al. 
2017). Other valuable studies would be future longitudinal 
analyses with repeated MRI measurements to assess the effect 
of air pollution on the developmental trajectories of the brain 
outcomes included in the current cross-sectional analysis. 
The brain is exceptionally complex and has a dynamic struc-
ture that is constantly evolving throughout life and influenced 
by many factors (Lenroot and Giedd 2006; Tau and Peterson 
2010). The investigators are well positioned to pursue such 
longitudinal analyses in the near future. The ongoing Genera-
tion R just finished a third round of MRI measurements on the 
same children who are now 13–17 years old. They used the 
same scanner as in the second time point, and it is expected 
that the investigators will now have sufficient statistical 
power for such an analysis. Unfortunately, there are fewer 
children (about 400) that underwent imaging at both the first 
and second time points, and the use of different scanners has 
prevented a longitudinal analysis using those data.

Although the Committee thought the analyses were gener-
ally well done, all brain outcomes should have been corrected 
for multiple comparisons because of the large number of 
analyses. Multiple comparison corrections are an imperative 
step in reducing Type I error in MRI brain research (Bennett 
et al. 2009; Lindquist and Mejia 2015). For example, for the 
brain volume outcomes, the investigators ran 364 regression 
models (14 pollutants × 13 brain volume outcomes × 2 expo-
sure windows). The investigators justified their decision with 
their hypothesis-based approach to selecting only volumes in 
specific brain regions and argued that the use of the multipol-
lutant modeling alleviates multiple testing issues.

MULTIPOLLUTANT MODELING

The Committee was not convinced that the multipollutant 
approach added much. The use of the DSA algorithm in 
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modeling the effects of multiple exposures on brain outcomes 
is said to provide a compromise between sensitivity and 
false discovery proportion compared with other methods. 
How stable the identified specific exposure associations are, 
however, remains open to question. Each DSA model was 
run 200 times, and the final model was identified as the one 
in which any exposure variable was selected in at least 10% 
of the runs — suggesting strongly that these findings are not 
particularly stable.

In addition, the Committee thought that the DSA approach 
for multipollutant modeling was not reliable because of the 
vastly different performance and data support for the various 
exposure models. Optimizing the prediction could favor 
those pollutants that are better supported and predicted 
than others. The Committee preferred some further analysis 
of multipollutant models, for example, using a manually 
supervised selection and combinations of variables to the 
DSA approach implemented, given the limitations of the data 
and exposure models.

Multipollutant modeling in general remains difficult in the 
presence of high correlations among pollutants, irrespective 
of the method (Dominici et al. 2010). In particular PM10, 
PM2.5, NOx, NO2, and PM2.5absorbance were highly correlated 
(>0.7), as were Cu, Fe, and oxidative potential using electron 
spin resonance (>0.8), and Fe and Si (0.8). The correlation 
between PAHs and Cu was similarly high (0.7). Typically, 
somewhat lower correlations were reported for the other 
pollutant pairs. Likewise, the often-high correlation between 
prenatal and childhood exposure hampered the identification 
of a susceptible exposure window to tease out effects of preg-
nancy versus childhood exposure and an approach for how 
to allow for effects during both time periods. The correlation 
was typically around 0.60 between prenatal and childhood 
exposure. Thus, the Committee would like to emphasize 
that the individual pollutant results should be considered as 
indicators of the ambient air pollution mixture, and prenatal 
and childhood exposure should be viewed as indicators of 
early life exposure. Thus, when summarizing the results in 
this Critique, the Committee has focused on single pollutant 
results and did not distinguish between pregnancy and child-
hood exposures.

GENERALIZABILITY OF THE FINDINGS

The Committee had some concerns about the generaliz-
ability of the findings. On the one hand, some strengths are 
that in Generation R the overall response rate at recruitment 
was 61%, which is relatively high and laudable (Kooijman et 
al. 2016). In addition, all analyses used inverse probability 
weighting to increase the chance that the results would be 
representative for the study population initially recruited 
(about 9,600). The Committee appreciated this correction 

approach because indeed MRI data were available from only 
a subset of the cohort, which was due in part to the high cost 
of performing an MRI. Also, a potential sampling bias was 
introduced by deliberately selecting more school-age children 
with child behavior problems and with mothers who reported 
certain exposures during pregnancy (e.g., exposure to drugs, 
nicotine, alcohol, and psychiatric medication). Nevertheless, 
the Committee thought the generalizability of the results 
was still reduced because the current study population is a 
convenience sample. Particularly noteworthy is that 26% 
of mothers smoked and about 50% drank alcohol during 
pregnancy at recruitment — much higher rates than the 
average consumption during pregnancy in the Netherlands 
(Lanting et al. 2015). Moreover, participants were recruited 
from Rotterdam, which hosts one of the largest seaports in 
the world and has associated refineries located upwind of the 
population studied. Although those issues might not affect 
the internal validity, they could affect the generalizability of 
the findings.

SUMMARY AND CONCLUSION

Dr. Guxens and colleagues have conducted a novel study 
that uses data from an existing birth cohort (Generation R) 
in Rotterdam, the Netherlands, one of the few to address 
important and novel questions about the potential relation-
ships between air pollution and the developing brain. The 
availability of high-resolution neuroimaging data for a large 
subset of the cohort — the largest sample to date — was 
unprecedented; the wealth of individual-level covariate data 
and the large suite of air pollution exposure metrics estimated 
were considered to be strengths of the study. The study docu-
mented associations between early life air pollution exposure 
and various measures of brain structural morphology, struc-
tural connectivity, and functional connectivity in children. 
Although the Review Committee broadly agrees with the 
investigators’ conclusions, it noted a few limitations that 
should be considered when interpreting the results.

The Committee had concerns about the exposure assess-
ment because of the substantial temporal and spatial misalign-
ment of the data. That issue is particularly important when 
studying the developing brain, which is exceptionally com-
plex with potentially critical time windows of development. 
Furthermore, all brain outcomes, including brain volume 
outcomes, should have been corrected for multiple compar-
isons because of the large number of analyses. The Com-
mittee was not convinced that the multipollutant approach 
added much, because, for example, it remains unclear how 
stable the identified specific exposure associations in the 
multipollutant analyses really are. High correlations were 
noted among many pollutants in the analyses and between 
prenatal and childhood exposure. Thus, it was not possible 
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to tease out independent pollutant associations and identify 
a susceptible exposure window during pregnancy and early 
childhood. Additionally, some study design features affected 
the generalizability of the findings.

Overall, the insights drawn from the current study, along 
with a few other brain imaging studies in children, are 
noteworthy and should provide impetus for further research. 
Because the brain has a dynamic structure that is constantly 
evolving throughout life, longitudinal studies beginning as 
early as possible are the best means to assess the effect of 
air pollution on the developmental trajectories of the brain 
outcomes included in the current cross-sectional analysis. 
Also, further analyses should be encouraged, for example, 
to investigate whether children with worse brain outcomes 
showed poorer cognitive function or other adverse neurode-
velopmental outcomes. Those analyses would shed light on 
whether the brain outcome findings are clinically relevant, 
but this so far remains unclear.
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ABBREVIATIONS AND OTHER ITEMS

 CI confidence interval

 Cti estimated air pollution concentration at the 
time period ti

 Cu copper

 Cyearly estimated yearly air pollution concentration

 DSA deletion/substitution/addition

 DTI diffusion tensor imaging

 ESCAPE      European Study of Cohorts for Air Pollution 
Effects

 FA fractional anisotropy

 Fe iron

 fMRI functional magnetic resonance imaging

 ISA Integrated Science Assessment

 ISGlobal Barcelona Institute for Global Health 

 IRR incidence rate ratio

 LUR land-use regression

 MD mean diffusivity

 MRI magnetic resonance imaging 

 NDE natural direct effect

 NEPSY-II Developmental Neuropsychological 
Assessment test

 NIE natural indirect effect

 NO2 nitrogen dioxide

 NOx nitrogen oxides

 OC organic carbon

 OPDTT oxidative potential using dithiothreitol

 OPESR oxidative potential using electron spin 
resonance

 PAH polycyclic aromatic hydrocarbon

 PM particulate matter

 PM2.5 PM with aerodynamic diameter ≤2.5 µm

 PM2.5absorbance absorbance of the PM2.5 fraction 

 PM10 PM with aerodynamic diameter ≤10 µm

 PMCOARSE PM with aerodynamic diameter between 
10 µm and 2.5 µm

 QDEC Query, Design, Estimate, Contrast

 rs-fMRI resting-state functional magnetic 
resonance imaging 

 Si silicon

TRANSPHORM Transport related air pollution health 
effects integrated methodologies for 
assessing particulate matter

 U.S. EPA U.S. Environmental Protection Agency
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