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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with
both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years
to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal
imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize
the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenar-
ios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) provid-
ing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker

genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and
limitations of current methods, and propose directions for development of this research field.
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Background

Alzheimer’s disease (AD), as the most common form of
dementia, is an irreversible neurodegenerative disease.
Epidemiological investigations have reported that about
55 million people worldwide live with AD and other
types of dementia today [1]. The number is expected
to reach 78 million by 2030 (World Alzheimer Report
2021, www.alz.co.uk). The primary clinical manifesta-
tions of AD include progressive impairments in memory
and other cognitive functions, accompanied by several
pathophysiological changes, such as amyloid deposi-
tion and neurofibrillary tangle formation. However, the
aetiology and pathogenesis leading to heterogeneity in
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these manifestations among AD patients remain unclear.
In addition, no effective therapeutic strategies are avail-
able for AD [2]. High-throughput imaging and genomics
studies can provide valid information on AD pathology,
and gain insights into the early detection and treatment
of AD patients, and thus have attracted much attention
recently.

Genomic studies have been developed over three
decades [3-5]. In 1984, Glenner et al. [6] first isolated
amyloid-p (AB) peptide from plaques in AD patients,
and this peptide was shown to be generated from the
amyloid precursor protein (APP) through its sequential
cleavage by two enzymes: 3-secretase and y-secretase [3].
This finding was later confirmed by genetic mutations in
APP in 1991 [7] and presenilins (PSEN1 and PSEN2) in
1995 [8, 9]. The above genomic studies support an evi-
dent molecular mechanism underlying AD, resulting in
the amyloid hypothesis. Additionally, the apolipopro-
tein E (APOE) &4 allele has been reported to be asso-
ciated with AD risk [10]. APOE can bind to A, which
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influences the clearance of soluble AP and AP aggrega-
tion [11, 12], and regulates AP metabolism [13]. Notably,
APOE &4 binds more rapidly than APOE &3, resulting in
accelerated formation of fibrils [14]. Furthermore, with
the development of high-throughput sequencing tech-
nology, genome-wide association studies (GWAS) have
identified thousands of risk variants related to complex
diseases and traits, including AD [15-34]. These studies
have improved the understanding of genetic complex-
ity and provided insights into the molecular pathways
of AD pathogenesis. However, significant results are not
only dependent on sufficiently large sample sizes but also
require further analysis of gene-to-disease specificity.
Alternatively, neuroimaging technologies [35, 36] such
as structural magnetic resonance imaging (sMRI), func-
tional MRI (fMRI), diffusion tensor imaging (DTI), and
positron emission tomography (PET), enable noninvasive
detection of brain degeneration from the perspective of
brain structure and function. SMRI can provide accurate
in vivo quantification of specific regions with cortical and
subcortical grey matter (GM) atrophy and white matter
(WM) lesions associated with AD pathology, even at the
mild cognitive impairment (MCI) stage [37, 38]. DTI is
another MRI technique that is sensitive to translational
motion of water molecules throughout the brain, pro-
viding quantification of WM tissue microstructure and
visualization of WM tract abnormalities in AD patients.
FMRI can measure brain activity by detecting associated
changes in blood flow when no task is being performed,
and task fMRI focuses on activity activation. Moreover,
PET scans can demonstrate characteristic patterns of
amyloid load, tau burden and glucose metabolism in AD
patients by using specific molecular imaging tracers. The
advanced imaging technologies have played important
roles in quantitative assessment of biomarkers and under-
standing processes underlying AD. The National Institute
on Aging—Alzheimer’s Association (NIA—AA) outlined
in 2018 an unbiased descriptive AD biomarker classifica-
tion scheme, called the ATN (amyloid, tau, neurodegen-
eration) diagnosis framework [39]. However, due to the
complex heterogeneity of AD, the interactions among
accessible, objective imaging markers and the com-
plete pathological loop that is formed remain unknown.
The emerging field of imaging biomarker genomics that
combines multimodal imaging and high-throughput
sequencing technologies, is committed to analysing asso-
ciations between imaging phenotypes and genomics data
and using imaging phenotypes as intermediate pheno-
types between genetic variants and clinical diagnosis to
investigate the pathogenesis of AD. Hence, the imaging
biomarker genomics approach can overcome the short-
comings of separate genomics or imaging analysis, in that
it can confirm gene-to-disease specificity, promote the
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biological interpretability of pathological biomarkers, and
contribute to the diagnosis, treatment and prevention of
AD with multiscale imaging and genetic features.

When combined with clinical information, the imag-
ing biomarker genomics approach may even facilitate
precision medicine (Fig. 1). In this review, we provide a
comprehensive summary of the brain imaging biomarker
genomics approach, including (1) the basic analytical
framework of brain imaging biomarker genomics stud-
ies and (2) implementation of this approach in AD based
on the ATN framework, for exploring and validating AD
biomarkers/variants and performing AD diagnosis and
prognosis analysis. In particular, we introduce some key
considerations relevant to studies using the brain imag-
ing biomarker genomics approach and provide perspec-
tives on the integration of neuroimaging and multiomics
data and further methodological possibilities.

In particular, this study focuses on neuroimaging mark-
ers based on the ATN framework. Other biomarkers,
such as various cerebrospinal fluid (CSF) biomarkers,
electroencephalography (EEG) or magnetoencephalogra-
phy (MEG) markers, are excluded. In addition, other risk
factors for AD (e.g. sex, education, cognitive tests, etc.)
will not be discussed in this paper.

Methods

Literature was searched in Google Scholar and PubMed
databases. Only human studies in English language, pub-
lished from January 1991 (the publication year of earliest
gene cloning of APP mutations) to December 2021 were
reviewed. A total of 1095 records were yielded, of which
910 records were left after duplicate removal. A thorough
description of the search strategy is provided in Addi-
tional file 1.

The inclusion criteria were as follows: (1) studies that
identified AD candidate variants in large GWAS and
meta-analyses, or described imaging biomarker genom-
ics associations based on the ATN framework, such as
genome-wide associations, polygenic scores analyses,
AD classification diagnosis and prognosis, etc.; (2)
studies focused on quantitative analysis of neuroimag-
ing markers by using amyloid PET, tau PET, fluorode-
oxyglucose (FDG) PET, anatomic MRI, or other MRI
techniques including fMRI and DTTI; (3) studies focused
on single nucleotide polymorphism (SNP) genotype
analysis. Articles were excluded if they were: (1) case
reports, reviews, study-design protocols, books and
documents, thesis, editorials, communications, opinion
(methodological perspective) articles, and letters to the
editors; (2) animal studies; (3) focused on methodologi-
cal proposal and comparison, (4) not related to neuro-
imaging markers based on the ATN framework (e.g.,
various CSF biomarkers or EEG recording), or focused
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Fig. 1 Landscape of advances of the AD imaging biomarker genomics field. This field covers genomics, imaging, and clinical information,
ultimately pointing towards integrated diagnosis and precision medicine. CSF cerebrospinal fluid, CT computed tomography, MMSE mini-mental
state examination, MoCA montreal cognitive assessment, AVLT auditory-verbal learning test, AFT animal fluency test, BNT boston naming test, MES
memory and executive screening scale
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on other risk factors for AD (e.g., sex, education, cog-
nitive tests). Finally, 105 records were included in this
review. The detailed process of literature search and
screening is presented in Fig. 2.

Evolving technologies of brain imaging biomarker
genomics

The research field of brain imaging biomarker genom-
ics has been developing for two decades. Initially, twin-
based and family-based genetic designs were used to
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calculate the heritability of measures derived from neu-
roimaging, such as brain volume [40-42], functional
connectivity [43], and WM structure [44]. These studies
have confirmed that the brain imaging measures have a
moderate to strong genetic effect in AD [45], suggesting
the potential value of brain imaging biomarker genom-
ics studies in AD. In this section, we will introduce the
evolving technologies in this field and describe the tech-
nical frameworks used in AD research from both genetic
and imaging perspectives.

PubMed Records
(n=1529)

Google Scholar Records
(n=1566)

1095 merged records

Duplicates removed (7 = 185)

910 unique records

Article type excluded (7 = 253)

657 records

Title and Abstract screening:
Animals studies (n = 34)
Methodological articles (n = 258)
Out of topics (n = 236)

* No neuroimaging biomarkers

* No genotype data

e Focused on other risk factors for
AD genetic variants (sex,
education, cognitive tests, etc.)

* Secondary focus on AD

* Focused on other diseases

129 records

* Focused on other topics not

related to our aim

Full-text article eligibility:

o Out of topics (n =21)
* No full-text available (n = 3)

105 records

Fig. 2 A flowchart of the search and screening process for articles included in this review
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Analytical procedures for AD imaging
The systematic framework of brain imaging biomarker
genomics for AD is composed of three panels: imaging,
genomics and imaging biomarker genomics (Fig. 3).
Based on the ATN framework, the commonly used
imaging techniques for AD are MRI and PET. MRI
mainly includes sMRI, fMRI and DTI. PET imaging
includes ['®F] FDG PET, ['®F] AV45 or ['!C] Pittsburgh
compound B ([''C] PiB) amyloid PET, and ['F] AV1451
tau-PET. Advances in imaging technologies have led to
noninvasive or minimally invasive imaging of biomark-
ers, which may help capture all aspects of the disease
process, including amyloid deposition [46], tau pathol-
ogy [47], functional decline [48] and neuronal loss
[49]. Below are the calculation frameworks for imaging
analysis.
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Step 1Image preprocessing

High-resolution sMRI preprocessing includes realign-
ment, segmentation, spatial normalization and smooth-
ing. PET image processing includes realignment,
coregistration, partial-volume correction, spatial nor-
malization and smoothing. Resting-state fMRI preproc-
essing includes removal of unstable time points, slice
timing corrections, head-motion corrections, baseline
drift removal, spatial normalization and spatial smooth-
ing. DTI data preprocessing includes skull stripping,
background region filtering, and head-motion and eddy-
current corrections. Several toolboxes can be used for
this purpose, such as FSL (FMRIB’s Software Library)
that processes MRI images (task or resting-state fMRI,
sMRI, DTI, etc.) [50], Freesurfer that provides a series
of algorithms to quantify brain functional and structural
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Fig. 3 Systematic computational framework for studies in the field of AD brain imaging biomarker genomics. The top panel indicates the analytical
steps involved in imaging: image preprocessing, identification of regions of interest, feature extraction, feature selection, and model building and
evaluation. The middle panel represents genomics procedures: genetic preprocessing, feature extraction and dimension reduction, model building,
and statistical analysis. The bottom panel indicates integrated analysis methods in studies of imaging biomarker genomics, including association
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markers [51], and statistical parametric mapping (SPM)
that is used for PET image preprocessing [52, 53]. More
specifically, Data Processing & Analysis for Brain Imag-
ing (DPABI) provides a complete resting-state fMRI anal-
ysis pipeline [54]. Other toolkits, such as DPARSF (Data
Processing Assistant for Resting-State fMRI) and REST
(Resting-State fMRI Data Analysis Toolkit) are also useful
for fMRI analysis.

Step 2 Identification of regions of interest (ROIs) and feature
extraction

This step includes precise identification of ROIs and
extraction of imaging features [55, 56]. There are two
common approaches to locating ROIs in brain imaging
analyses: the voxel-based morphometry (VBM)-based
method and the atlas-based method. VBM can achieve
quantitative detection of differences in voxel-level imag-
ing characteristics between groups. The atlas-based
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method projects the partitioning information from the
standard brain atlas onto the images to identify specific
brain regions. The identification of ROIs is followed by
manual/automatic extraction of imaging features. The
detailed characterization and calculation of imaging fea-
tures are elaborated in Table 1. Feature extraction can
usually be carried out by using FSL, Freesurfer, DPABI,
SPM, the radiomics tool developed by Vallieres et al.
(https://github.com/mvallieres/radiomics), and the Brain
Connectivity Toolbox for graph theory-based brain net-
work analyses [57].

Step 3 Feature selection and model building

The aims of feature selection are to reduce feature redun-
dancy and remove irrelevant features. Common feature
selection methods include consistent stability analysis,
statistical tests (two-sample ¢-test and rank-sum test),
correlation analysis, sparse-group lasso, etc. There are

Table 1 Summary of imaging radiomics features and calculation formulas

Feature name

Calculation formula
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Skewness

Kurtosis

Variance

/ ~
SUVRmean — 7vgJ?O/L
avg_ref
\/(21 —10)2+ (A —23)?+ (o —43)?
2(A1+4r+43)?

Ng
wﬁgo—ufmo

Ng

o™ 160 — wp()] - 3
i=1

Ng

S (= w’pl)

i=1

Other First-order features: cortical thickness; grey matter volume (sMRI features); ALFF, fALFF, ReHo, FC (fMRI signals); MD,
radD, axD (DTl diffusion parameters); clustering coefficient, characteristic path length, small-worldness, global efficiency,
transitivity, assortativity coefficient, modularity (various network parameters); and so on
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Other High-dimensional features are based on other analytical methods

ALFF amplitude of low-frequency fluctuations, axD axial diffusivity, FA fractional anisotropy, fALFF fractional ALFF, FC functional connectivity, GLN/GLV grey-level non-
uniformity/variance, LRHGE long run high grey-level emphasis, MD mean diffusivity, radD radial diffusivity, ReHo regional homogeneity, SUVR standard update value
ratios. Where layg_goic is the average intensity of the brain regions, /gvg_,ef is the average intensity of the reference region, 41, 42, 43 means the DTl eigenvalues, Ny
denotes the number of grey levels, N, is the maximum distance of run lengths, p(/) denotes the number of pixels with grey level / in the normalized grey histogram,

and u denotes the mean value
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two types of model construction: classification/predic-
tion models and other statistical analysis models, such
as regression analysis, correlation analysis, and survival
analysis. Finally, model generalization capabilities are
evaluated in terms of accuracy, sensitivity, specificity,
correlation coefficient, and regression coefficient.

The above processes could also be carried out using
deep learning (DL) algorithms, which can automati-
cally extract quantitative and high-throughput features
from medical images by end-to-end deep neural net-
works, which avoids complex hand-coding and does not
need prior knowledge [58-61].

Analytical procedures for AD genomics

Early studies of brain genomics mainly focused on
linkage and association analyses [62], in which candi-
date genetic markers were selected typically based on a
hypothesis that implicates certain genes in AD patho-
genesis. Advances in large-scale genotyping technolo-
gies enable comprehensive, unbiased GWAS, which
can simultaneously test thousands of genetic markers.
Nevertheless, GWAS might not avoid statistical arte-
facts that arise from the large number of tests. System-
atic meta-analysis can alleviate this situation because
this approach can quantitatively synthesize published
genotype data for each polymorphism and produce a
summary risk estimate (called the odds ratio) that con-
tributes to the overall interpretation of association
studies independent of positive or negative outcomes.
Moreover, with the increase of sample sizes in GWAS
analyses, ploygenic scores (PGS) are emerging as a novel
statistical index that associates the collective individual
SNP genotypes with specific diseases [63, 64]. In sum-
mary, AD genomics studies are mainly concentrated on
traditional linkage and association analyses, large-scale
case—control GWAS, systematic GWAS meta-analyses
and recent PGS analyses, which facilitate identification
of novel AD susceptibility genes as well as early diag-
nosis and prevention. The calculation frameworks for
genomic analysis are mainly as follows.

Step 1 Genomic data preprocessing

As the first step, genomic data preprocessing includes
quality control and imputation of genotyping data.
Standard genotyping data quality control at the sample
and variant level can be performed following a previously
published pipeline [65, 66]. Genotyping data imputation
is performed based on the Haplotype Reference Consor-
tium (full panel) and the 1000 Genomes reference panel
(for indels only).
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Step 2 Feature extraction, selection and model building

This step aims at data mining and statistical analysis.
Data mining focuses on feature extraction and dimen-
sionality reduction, and constructs classification/pre-
diction and statistical models with consideration of
the complex nature of large genomics data. Statistical
analysis mainly refers to construction of threshold-
based association analysis models, including GWAS
and meta-analysis. Subsequently, replication studies are
always conducted to validate the results.

Step 3 Downstream analyses

Downstream analyses include conditional analysis, sta-
tistical fine-mapping analysis, colocalization with expres-
sion quantitative trait loci and metabolism quantitative
trait loci, functional annotation, network analysis, gene-
based analysis, gene set or tissue enrichment analysis,
linkage disequilibrium analysis, PGS analysis, gene plei-
otropy, heritability, genetic correlation calculation, etc.

Analytical procedures for AD imaging biomarker genomics
In general, the research field of AD imaging biomarker
genomics is mainly focused on univariate or multivari-
ate association analyses using imaging phenotypes as
an intermediate. For example, Kim et al. [67] investi-
gated genetic variants that influence cortical atrophy
in 919 participants from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database. They analyzed
correlations between 3,041,429 SNPs selected based
on GWAS and cortical thickness in the whole brain.
This study included three steps: (1) imaging/genomic
data preprocessing; (2) calculation of cortical thickness
as an imaging feature; and (3) statistical analysis. The
results of the study identified that rs10109716 in ST18
and rs661526 in NFIA are significantly associated with
the mean cortical thicknesses of the left inferior fron-
tal gyrus and left parahippocampal gyrus, respectively.
In addition, Ning et al. [68] employed a neural network
(NN) framework that combined both brain atrophic
measurements and SNP genotype data to distinguish
AD patients from healthy controls (HC). In this study,
volumes of 16 ROIs selected based on prior knowledge
on brain regions affected by AD were used as the imag-
ing feature, and genotypes of APOE &4 risk allele and
19 SNPs were used as the genetic features. The results
showed that the NN model with both imaging and
genetic features had an area under the receiver operat-
ing characteristic curve (AUC) of 0.99 in classifying AD
and HC subjects.



Li et al. Translational Neurodegeneration (2022) 11:42

Implementation of AD imaging biomarker
genomics studies

Findings from studies on candidate genetic variants for AD
Since imaging biomarker genomics studies rely in part
on prior knowledge of candidate genetic variants, we
summarize the candidate variants in accordance with
the timeline of identification in large GWAS and meta-
analyses. Initially, mutations of APP, PSEN1 and PSEN2
genes were found in molecular studies in 1993 and in
1995, which caused rare, Mendelian forms of the disease,
usually resulting in early-onset AD. APOE was recog-
nized as the strongest susceptibility gene for late-onset
AD (LOAD) in 1995. In studies to confirm new risk loci
related to LOAD, GWAS and meta-analyses further iden-
tified a series of loci relevant to LOAD. The first GWAS
study was conducted in 2007. Later, GWAS studies were
separately performed in four LOAD genetic consortia
(Genetic and Environmental Risk in Alzheimer’s Dis-
ease, European Alzheimer’s Disease Initiative, Cohorts for
Heart and Aging Research in Genomic Epidemiology, and
Alzheimer’s Disease Genetic Consortium), which identi-
fied a total of 11 loci, namely, CLU, PICALM, CR1, BIN1,
CD2AP, CD33, EPHAI, MS4A4A, ABCA7, MS4A6A,
and MS4A4E [16, 27-30]. Under the support from the
International Genomics of Alzheimer’s Project (IGAP), a
meta-analysis including 74,046 individuals of European
ancestry further identified 11 new susceptibility loci for
AD, which were HLA-DRBS, SORL1, PTK2B, SLC24A4-
RIN3, ZCWPWI1, NMES, FERMT2, CELF1, INPP5D,
MEF2C and CASS4 [31]. A case—control study of 85,133
subjects from the IGAP identified 3 rare coding variants
in PLCG2, ABI3, and TREM2, which are highly expressed
in microglia, highlighting the contribution of microglial-
mediated innate immunity to the development of AD
[32]. Given the difficulty of AD case confirmation, a case—
control genome-wide association study by proxy (GWAX)
was conducted with the UK Biobank dataset using fam-
ily history of disease (14,482 proxy cases, i.e., relatives of
affected individuals and 10,0082 proxy controls, i.e., rela-
tives of unaffected individuals). Meta-analysis of the previ-
ously published IGAP GWAS results combining with the
above-highlighted GWAX summary statistics identified
4 new risk loci associated with AD (HBEGF, ECHDC3,
SPPL2A, and SCIMP) [33]. In the following year, a second
meta-analysis of IGAP data and parental history of AD in
an expanded UK Biobank dataset (n=314,278) based on
the previous proxy-phenotype AD study by Liu et al. iden-
tified 3 new loci (ADAM10, KATS, and ACE) [34]. A larger
meta-analysis with clinically diagnosed AD and AD-by-
proxy (71,888 cases, 383,378 controls), using cohorts
collected by the Psychiatric Genomics Consortium Alz-
heimer, the IGAP, the Alzheimer’s Disease Sequencing
Project and AD-by-proxy from UK Biobank, yielded 8
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loci (ADAMTS4, HESX1, CLNK, CNTAP2, APH1B, ABI3,
ALPK2, and ACO74212.3) [21]. An expanded IGAP analy-
sis (n=94,437) confirmed 20 previous LOAD risk loci and
identified 5 new loci (IQCK, ACE, ADAMI10, ADAMTSI
and WWOX) [20], two of which (ACE and ADAM110) had
been recently identified in the study of Marioni et al. [34].
Following the meta-analysis of Lambert et al. and Mari-
oni et al, an updated meta-analysis of GWAX in the UK
Biobank with the latest GWAS for AD diagnosis was per-
formed and identified 37 risk loci and 4 new associations
(CCDC6, TSPAN14, NCK2 and SPRED2) [24]. Finally,
the most recent GWAS with 1,126,563 individuals, which
expanded on the basis of Jansen’s work and contained the
largest sample size thus far, identified 38 loci, including 7
loci (AGRN, TNIP1, TMEM106B, GRN, HAVCR2, NTN5
and LILRB?2) that had not been reported previously [25].
A detailed summary of the representative AD candidate
genes is shown in Table 2. Figure 4 depicts a circular dia-
gram of AD genetic risk factors according to several post-
genomics analyses based on animal and cellular models,
although the AD genetic background remains largely
unidentified.

Findings from studies on AD candidate imaging
biomarkers

In earlier studies, pairwise univariate analysis was per-
formed to identify associations between genetic markers
and imaging phenotypes. To accommodate more flex-
ible associations involving multiple genetic markers and
multiple imaging phenotypes, multiple regression and
multivariate models have been used in recent studies in
combination with machine learning (ML) methods [69].
In the following, we will review candidate-gene, genome-
wide and polygenic associations with imaging-derived
traits, according to the ATN framework for AD biomark-
ers proposed by NIA-AA in 2018 (Table 3) [39].

Imaging genomics analysis of “A” biomarker

Of the ATN framework, “A” refers to the AP plaque bio-
marker, including cortical amyloid PET ligand binding
and CSF AP, level. The deposition of amyloid plaques in
the brain is one of the two main pathological signs of AD.
As a reliable imaging phenotype of AD, amyloid PET can
selectively detect AP deposition in the brain. A number
of studies using amyloid PET have investigated how vari-
ous genetic variants influence AP burden.

At the candidate-gene level, Drzezga et al. [70] exam-
ined the effect of APOE genotype on the levels of ['!C]
PiB PET AP plaques in AD patients using the VBM-based
method and regression analysis. The results showed
higher levels of AP plaque deposition in e4-positive
patients in bilateral temporoparietal and frontal cortical
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Table 2 Summary of candidate genes used in AD pathology

Page 9 of 37

Year Author Dataset Methods Novel genes

1991 Goate et al. Gene Cloning Molecular studies APP gene

(71

1993 Corder et al. Gene Cloning Molecular studies APOE gene

[10]

1995 Sherrington et al. Gene Cloning Molecular studies 2 genes

(8,9 (PSENT and PSEN2)

2009-2011 Lambert et al. GERAD Meta-analysis 11 genes

[16,27-30] EADI (CLU, PICALM, CR1, BIN1, CD2AP, CD33, EPHAT, MS4A4A, ABCA7, MS4AG6A,
CHARGE and MS4A4E)
ADGC

2013 Lambert et al. IGAP Meta-analysis 11 genes

[31] (n=74,046) (HLA-DRB5, SORL1, PTK2B, SLC24A4-RIN3, ZCWPW1, NMES, FERMT?2,

CELF1, INPP5D, MEF2C and CASS4)

2017 Sims et al. IGAP Meta-analysis 3 genes

[32] (n=285,133) (PLCG2, ABI3, and TREM?2)

2017 Liuetal. UK Biobank Meta-analysis 4 genes

[33] (n=116,196) (HBEGF, ECHDC3, SPPL2A and SCIMP)

2018 Marioni et al. UK Biobank Meta-analysis 3 genes

[34] (n=314,278) (ADAM10, KAT8, and ACE)

2019 Jansen et al. PGC-ALZ Meta-analysis 8 genes

[21] IGAP (ADAMTS4, HESX1, CLNK, CNTAP2, APH1B, ABI3, ALPK2, ACO74212.3)
ADSP
(n=455,266)

2019 Kunkle et al. IGAP Meta-analysis 5genes

[20] (n=94,437) (IQCK, ACE, ADAM10, ADAMTS1, and WWOX)

2020 Schwartzentruber et al. UK Biobank Meta-analysis 4 genes

[24] (n=408942) (CCDC6, TSPANT4, NCK2, and SPRED?)

2021 Wightman et al. 1,126,563 individuals Meta-analysis 7 genes

[25] (AGRN, TNIP1, TMEM106B, GRN, HAVCR2, NTN5, and LILRB2)

areas. Apostolova et al. [17] investigated the associations
of the top 20 AD risk variants with brain amyloidosis
using ADNI datasets by multivariable linear regression
analysis. The results showed that the ABCA7 gene has
the strongest association with amyloid deposition, while
the APOE €4 and FERMT?2 genes show stage-dependent
associations with amyloid deposition, especially in the
MCI stage.

At the genome-wide level, Yan et al. [149] conducted a
GWAS meta-analysis using [''C] PiB PET imaging from
the ADNI datasets, and found that the APOE region
showed the most significant association with brain Ap
burden. Ramanan et al. [150] performed the first GWAS
of cortical Ap burden in humans using data from ADNI-2
and ADNI-Grand Opportunity and reported that APOE
and BCHE (BUCHE) are independent regulators of

amyloid deposition in the brain, accounting for nearly
15% of the variance in cross-sectional amyloid load. At
the polygenic level, Tan et al. [151] observed a strong
association between polygenic hazard scores and A
uptake. A detailed summary of these findings is shown in
Table 3.

Imaging genomics analysis of “T” biomarker

“T” refers to the tau biomarker, including CSF phospho-
rylated tau and cortical tau PET. The twisted strands of
the protein tau (tangles) inside neurons are the other
pathological marker of AD. Although tau pathology
serves as a primary brain pathology associated with cog-
nitive impairment in AD, most previous studies have
focused on CSF tau levels, which reflect tau production
rather than the amount of pathological tau deposition in

(See figure on next page.)

Fig. 4 Circular diagram of AD genetic risk factors. From outside to inside: (1) genomic loci in alphabetical order; (2) genes therein; (3) expression
profiles of these genes in different cell types of the brain (greyscale); and (4) pathways/processes/proteins to which these genes have been
functionally linked (colour lines). Adapted from Dourlen P et al. Acta Neuropathologica. 2019 Aug; 138 (2):221-236. Reprinted with permission from

Springer Nature
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the brain. The recent advent of AV1451 tau-PET imaging
has allowed the assessment of fibrillary tangles in the liv-
ing brain.

At the candidate-gene level, Smith et al. [83] reported
that the ['®F] AV1451 tau-PET imaging is strongly cor-
related with tau neuropathology in MAPT (microtu-
bule-associated protein tau) mutation carriers. After
that, Yan et al. [88] explored the association of sex and
APOE €4 with brain tau deposition and atrophy in older
adults with AD, and found that female APOE €4 carri-
ers (FACs) have elevated tau-PET SUVR in comparison
to non-FACs. Therriault et al. [86] and Neitzel et al. [89]
independently evaluated different datasets and reported
that APOE ¢4 is associated with higher tau accumulation
and that this association is independent of amyloid bur-
den. Regarding other AD candidate genes, Franzmeier
et al. [87, 90] and Neitzel et al. [91] suggested that the
BIN1 rs744373 SNP and Klotho-VS heterozygosity are
associated with higher and lower pathologic tau levels,
respectively, by analyses of variance and multiple linear
regression.

At the genome-wide level, Ramanan et al. [152] con-
ducted the first neuroimaging GWAS of tau pathology
in 754 individuals. The findings not only confirmed the
association of MAPT with tau burden, but also identified
the NTNG2-rs75546066 locus as having a novel protec-
tive effect against tau pathology.

At the polygenic level, Sun et al. [92] assessed PGS
values as a predictor of tau pathology in non-demented
individuals. The results showed that higher PGS values
were correlated with elevated tau-PET uptake values, and
the significance remained when APOE was regressed.

Imaging genomics analysis of “N” biomarker

“N” refers to neurodegeneration or neuronal injury,
including CSF total tau level, ['**F]JFDG PET hypome-
tabolism, and atrophy on sMRI. Among them, sMRI is
the most widely used technology in imaging biomarker
genomics studies to extract targeted imaging phenotypes,
with increased discriminative power and improved bio-
logical interpretability. [**F]JFDG PET can detect brain
glucose metabolism and provide important pathological
staging information. Several studies have also investi-
gated how various genetic variants influence brain glu-
cose metabolism.

At the candidate-gene level, the associations of APOE
with MRI genotypes have been investigated, especially
between €4 carriers and noncarriers. For example, Wolk
et al. [95] found that the APOE genotype affects cogni-
tive and anatomic phenotypic expression of AD, in that
the 4 carriers with mild AD show greater impairment
on measures of memory retention and greater MTL atro-
phy compared to noncarriers who are more impaired in
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working memory and show greater frontoparietal atro-
phy. Risacher et al. [153] found that the annual percent
change rate of MRI atrophy is influenced by the APOE
genotype. Morgen et al. [99] found that the genetic inter-
action between PICALM and APOE is associated with
brain atrophy and cognitive impairment using univari-
ate analysis of variance. Moreover, Biffi et al. [96] inves-
tigated the impact of multiple GWAS-validated and
GWAS-promising candidate loci on hippocampal vol-
ume, amygdala volume, WM lesion volume, entorhinal
cortical thickness, parahippocampal gyrus thickness and
temporal pole cortical thickness. The study indicated that
genetic variants that modulate AD risk as revealed in pre-
vious GWASs may influence neuroimaging measures. In
addition, BINI and CNTN5 were identified as two novel
loci that show associations with multiple MRI character-
istics, which are of interest for further studies. Regarding
brain glucose metabolism biomarkers, Lehmann et al.
[77] assessed the relationships between glucose metabo-
lism and APOE genotype in clinical AD patients, with
one-way analysis of variance and Tukey’s post-hoc test,
and found a greater degree of medial temporal hypome-
tabolism in APOE €4 carriers. Miller et al. [121] explored
and confirmed the associations between rare variants in
splicing regulatory element loci of EXOC3L4 and global
cortical glucose metabolism in the ADNI cohort. Nota-
bly, Seo et al. [123] analyzed the effects of 132 selected
susceptibility genes previously identified to be associ-
ated with LOAD, on neurodegenerative brain features
by using neuroimaging data from the KBASE (Korean
Brain Aging Study for Early Diagnosis and Prediction of
Alzheimer’s disease) cohort, including [''C]PiB PET, [**F]
FDG PET, and MRL In contrast to previous studies, this
study utilized five in vivo AD pathologies and associated
them with both common and rare genetic variants by
performing targeted sequencing of 132 candidate genes.

At the genome-wide level, Kong et al. [122] performed
the first GWAS examining brain FDG metabolism in
222 subjects from the ADNI cohort in 2018, and identi-
fied RBFOXI (RNA-binding Fox1) SNP rs12444565 to
have a strong association with brain glucose metabolism.
Wang et al. [124] identified two genome-wide significant
SNPs, rs4819351 in AGPAT3 (1-acylglycerol-3-phosphate
O-acyltransferase 3) and rs13387360 in LOC101928196,
that had strong protective effects against the longitudinal
metabolic decline in the right temporal gyrus and the left
angular gyrus, respectively. At the polygenic level, Desi-
kan et al. [102] reported that the polygenic hazard score
was associated with longitudinal MRI-derived volume
loss in the entorhinal cortex and hippocampus.

In addition to the above “N” biomarker, many other
advanced MRI technologies have also been applied to
study the influence of genetic variation on functional
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or WM alterations. Based on the DTI technology, WM
alterations have been found in AD and MCI, and APOE
may play a role in modulating these alterations [140, 141,
143, 144, 146-148]. Some researchers have reported dif-
ferences in WM integrity between healthy APOE &4
carriers and noncarriers by using diffusion parameters,
including fractional anisotropy, mean diffusivity, and
radial diffusivity. In addition, Gu et al. [146] performed
a meta-analysis of associations of the PSENI genotype
with WM integrity and brain metabolism, and indicated
that PSENI is associated with mean diffusivity increase
in DTI markers and decreased brain metabolism. Foley
et al. [106] analyzed associations between AD polygenic
risk scores and diffusion-weighted parameters in young
adults, and revealed that the fractional anisotropy of the
right cingulum is correlated with AD polygenic risk score.
Regarding fMRI, both resting-state fMRI and task-fMRI
were conducted to evaluate associations of brain activity
with APOE and other AD risk genes [129, 130, 133, 136].
Many of these studies were performed in healthy older
adults [125-128, 131, 132, 135] to investigate potential
risk-allele influences on functional brain activity. It is
worth noting that Jahanshad et al. [98] explored the her-
itability of various brain connections based on genome-
wide associations and discovered the SPON1 (F-spondin)
rs2618516 variant to affect dementia severity. Besides, Su
et al. [134] investigated the associations between AD PGS
and functional connectivity in the default mode network,
and found significant correlations in the temporal cortex.

Figure 5 illustrates the mapping of associations
between genomic data and brain functional networks,
which are classified into 7 brain networks according to
Yeo’s template, including visual network, somatomotor
network, dual attention network, salience network, lim-
bic network, frontoparietal network, and default mode
network. In summary, associative studies of AD brain
imaging biomarker genomics can provide new insights
into the pathological and genetic mechanisms underly-
ing AD. In addition, the number of genome-wide studies
is relatively small compared with candidate-gene asso-
ciation studies, which may be caused by the scarcity of
neuroimaging data. However, studies only focused on
selected candidate genes may ignore potential interac-
tions among multiple significant genetic variants, which
emphasizes the necessity of genome-wide interaction and
PGS analyses with improvement in multimodal imaging
databases.

AD diagnosis and prognosis based on brain imaging
biomarker genomics

Recent advances of artificial intelligence (AI) techniques
enable automatic combination of multimodal neuro-
imaging and genomics data to provide complementary
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and comprehensive information for AD diagnosis and
prognosis. Specifically, ML methods have been widely
implemented in computer-aided diagnosis of AD, includ-
ing traditional ML models and advanced DL algorithms.
The traditional classification models include support
vector machine (SVM), random forest (RF), linear dis-
criminant analysis (LDA) and regression models (RL).
De Velasco et al. [154] compared performances of ML
models least absolute shrinkage and selection operator
(LASSO), k-nearest neighbour (KNN), and SVM in pre-
dicting LOAD from genetic variation data, with SVM
showing the best performance (AUC=0.72). In addi-
tion, APOE genotype is the most commonly utilized
genomic data. For example, Gray et al. [155] performed
multi-modality classification based on joint embedding
of sMRI, FDG PET, CSF biomarkers, and APOE genotype
data, using a multimodal RF model and a fourfold cross
validation (CV) to predict AD, and achieved an accuracy
of 89% in classifying AD from healthy controls. Similarly,
by combining sMRI, FDG PET, CSF biomarkers, APOE
genotype, age, sex and body mass index, Kohannim et al.
[156] selected a SVM model and performed leave-one-
out CV for AD and MCI classification and prediction
of future cognitive decline within 1 year, and achieved a
maximum of 90% accuracy for AD vs healthy controls. To
distinguish between stable and progressive MCI, Dukart
et al. [157] used a plain Bayesian (naive Bayesian, NB)
algorithm based on APOE genotype, neuropsychological
assessment, sSMRI, and FDG PET, achieving an accuracy
of approximately 87%. Moreover, Bi et al. [158] com-
bined fMRI and SNP data and used the multimodal RF
algorithm to distinguish AD from normal control, and
finally obtained AD prediction accuracy of 87%. Varol
et al. [159] proposed the heterogeneity through discrimi-
native analysis (HYDRA) algorithm to predict AD based
on combined sMRI and SNP data, with the highest AUC
value being 0.942.

On the other hand, in the context of DL method, Liu
et al. [160] integrated DTT and SNP data with deep con-
volutional neural networks for prediction of AD, and
obtained AUC values of 0.8571, 0.8291, 0.8583, and
0.7756 at baseline, 6 months, 12 months and 24 months,
respectively. Similarly, combining sMRI and SNP data,
Ning et al. [68] used a neural network to predict AD
and achieved an AUC value of 0.992. Moreover, based
on sMRI, demographics, neuropsychological assess-
ment and APOE genotype data, Spasov et al. [161] used
the convolutional neural network model to distinguish
MCI patients who would develop AD within 3 years from
patients with stable MCI, with an AUC value of 0.925. By
combining sMRI, FDG PET and SNP data, Zhou et al.
[162] conducted three-stage deep feature learning and
fusion to simultaneously predict HC, MCI and AD, with



Li et al. Translational Neurodegeneration (2022) 11:42 Page 29 of 37
V02
\,OC\0
196
@
AGPAT3
154819351
BINj
15744373
S.
Nap.,5
4
rSJ&T[LM
179
> A . ® 4/0
& o F ® SN mDMN ® VN f
¥ P N e
& Q . ¢
¥ N ® DAN ©USMN ® FN ® Limbic % . Significant
Fig. 5 The relationship between genomic data and 7 specific brain networks from Yeo's template. These associations are respectively marked in
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an accuracy of 65%, which was higher than that of other
ML classification methods. In addition to the joint use
of imaging and clinical information, combination with
multiomics information is also an emerging trend in AD
research. Shigemizu et al. [163] integrated genomic data
and microRNA expression profiles to construct a propor-
tional hazards model-based prognostic model to identify
MCI individuals at high risk of AD. A consistency index
of 0.702 was obtained on an independent test set. A
detailed list of machine learning-based studies of imaging
biomarker genomics is provided in Table 4.

In summary, the above-mentioned studies show that
ML methods with multimodal data such as imaging,
clinical and multiomics data as input measures, are valu-
able tools for prognosis and risk stratification of AD with
improved accuracy.

Key considerations and perspectives regarding AD
imaging biomarker genomics

As a novel approach, the brain imaging biomarker
genomics technique still needs further optimization,
mainly in the following aspects.

Variable control in calculations

Calculations in AD imaging biomarker genomics can be
influenced by various factors. Differences in physiologi-
cal, demographic, and environmental factors can affect
heritability estimates and measurements of brain-related
features, which may obscure the disease-related effects
and limit the utility of brain-related features as endophe-
notypes. Some recent studies have investigated associa-
tions of APOE €4 status and sex with cognitive memory
[88, 95, 168—170]. Therefore, these potential confounding
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factors should be included as covariates to improve com-
parability and reliability of findings. In particular, sex,
education and APOE &4 status are always used as covari-
ates in large imaging—genomics GWAS and meta-analy-
ses. Another way to avoid these potential influences is to
carry out studies in healthy individuals or in a single eth-
nic or sex group. Ethnicity is another critical factor. Inde-
pendent replication and meta-analyses remain the most
reliable methods for reducing false-positive findings
[171]. Comprehensive and ethnicity-homogeneous data-
bases are needed to verify the generalizability and robust-
ness of significant results. Compared to candidate-gene
analyses which could not account for epistatic effects
between genes, genome-wide analysis is more unbiased,
thus underscoring again the significance of large samples
in the future.

Use of prior knowledge on calculations

Interpretation of results is a focus of brain imaging bio-
marker genomics for AD. The use of prior knowledge,
such as the Allen Human Brain atlas (AHBA), can facili-
tate calculations in brain imaging biomarker genomics
and correlate spatial variations at the molecular scale with
macroscopic neuroimaging phenotypes. For example,
Franzmeier et al. [90] and Neitzel et al. [91] have used the
AHBA to explore associations of BINI rs744373 and KL-VS
heterozygosity with tau accumulation, respectively. Moreo-
ver, Sepulcre et al. [172] have developed a novel graph the-
ory approach named directional graph theory regression
(DGTR) to investigate the intersection of tau/Af pathologi-
cal changes in the brain and the genetic transcriptome of
AHBA. This approach can potentially be applied to explore
more phenotype-genotype associations. Taken together,
increasing the sensitivity and power of genetic effects, ade-
quately utilizing ROIs, reliably stimulating responses, and
highlighting differences among individuals are extremely
necessary. For example, identifying differential masks first,
as ROIs on a unique dataset, will lead to higher sensitivity.

Generalization of multivariate approaches beyond GWAS
Currently, biomarkers derived from GWASs were usu-
ally identified based on clinical outcomes. This approach
has both advantages and disadvantages. Compared with
imaging phenotypes limited by the scarcity of neuroim-
aging data, it is easier and more feasible to obtain a large
number of clinical phenotypes, thus better meeting the
prerequisites of large-scale GWAS and reducing greatly
false-positive results. However, the accuracy of this
approach is influenced by the sample size and statistical
methods. In contrast, combining neuroimaging markers
with GWAS genetic phenotypes can explain potential
biological mechanisms in relatively small sample sizes.

Page 30 of 37

Therefore, imaging biomarker genomics studies are
gaining novel insights in comparison to traditional
GWAS analyses. For example, data-driven multivariate
approaches are emerging to explain more imaging-genetic
variants, such as sparse canonical correlation analysis and
parallel independent component analysis [69]. These mul-
tivariate approaches have provided increased detection
power and put forward new technical challenges, includ-
ing data dimensionality reduction and feature selection
strategies. Besides, the GWAS analysis pipelines are also
expected to be further optimized to process complex and
high-dimension genetic data automatically.

Combination of Al and brain imaging biomarker genomics
Currently, ML methods have been widely used for AD
diagnosis and prognosis. On the one hand, traditional ML
and advanced DL algorithms are relatively mature com-
putational methods in AD imaging studies and include
model building, feature processing and model evaluation.
On the other hand, combination of genomics calcula-
tions with ML algorithms has not been widely performed.
Applications of deep neural networks in genetic studies
are still scarce, although seminal studies have demon-
strated the accessibility of deep neural networks to DNA
sequencing data, resulting in generation of DeepBind,
DeepSEA and Basset networks [173-176]. Therefore,
more efforts should be focused on the development of
solutions for technical challenges especially for DL algo-
rithms, such as how to reduce dimensionality of multi-
modal data, how to integrate imaging and genomics data,
and how to interpret the effectiveness of DL features.

Integration of multiomics data

AD imaging biomarker genomics research has identi-
fied numerous novel genetic variants and gained insights
into disease mechanisms. However, the pathological
mechanisms underlying AD are still far from well under-
stood. Apart from the development of methods, the
integration of multimodal imaging data and genomics,
microRNAomics, metabolomics, proteomics, and tran-
scriptomics will continue to be an important research
direction. Genomics is now the most mature omic tech-
nology with development of high-throughput genotyping
arrays and sequencing strategies. Other omic technolo-
gies have also been incorporated into research domains.
For example, mass spectrometry-based proteomics has
driven deep profiling of the proteome in AD. The AD
proteomic review by Bai et al. [177] indicated that pro-
teomics-driven systems biology would be a promising
frontier to link genotype, proteotype, and phenotype and
accelerate improvement in AD models and treatment
strategies. Besides, neuroimaging markers are not limited
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Table 4 Application of machine learning based on imaging biomarker genomics in AD diagnosis and prognosis

Method Year Modality Model Dataset cv Neural location Results
Machine 2010[156] sMRI, FDG PET, CSF, SVM HC: 213 LOOCV Hippocampal, A maximum up to
learning APOE genotype, age, AD: 158 ventricular, 90% accuracy for AD
sex, body mass index MCl: 264 temporal lobe
2013 [155] sMRI, FDG PET, CSF, MRF HC: 35 Fourfold CV Whole brain An accuracy of 89%
APOE genotype AD: 37 for AD
MCl: 75
2014 [164] sMRI, FDG PET, SYM HC: 47 Tenfold Whole brain An accuracy of 71%
CSF, SNP AD: 49 cv among HC, MCl and
MCl: 93 AD
2016 [157] APOE genotype, NB HC: 112 independent test set  Whole brain An accuracy of 87% in
neuropsychological AD: 144 identifying pMCI from
assessment, SMRI, sMCl: 265 sMCI
FDG PET pMCl: 177
2017 [159] sMRI, SNP HYDRA HC: 139 - Hippocampus, The highest AUC
AD: 103 entorhinal cortex value of 0.942 for AD
frontal lobe
2017 [165] sMRI, SNP SVM HC: 204 Tenfold Whole brain An accuracy of 80.8%
AD: 171 cv identifying pMCI from
MCl: 362 sMCI
2019 [158] fMRI, SNP MRF HC: 35 - Olfactory cortex, An accuracy of 87%
AD: 37 insula, posterior AD prediction
cingulate gyrus and
lingual gyrus
2019[154] SNP LASSO, KNN, HC: 371 cv - The highest reached
SVM AD: 267 0.72 of the AUC
2019 [166] APOE, PET, PGS LR HC: 224 - Whole brain An AUC value of 0.69
AD: 174 using PGS and APOE
MCl: 344 to predict amyloid
state
2020[167] sMRI, FDG PET, Av45  MKL HC: 35 Loocv Whole brain An accuracy of
PET, DTI, resting-state AD: 33 sMCl: 30 96.9% in identifying
fMRI, APOE genotype pMCI: 31 pMCl from sMCl
Deep learn- 2017 [162] SNP, sMRI DFFF HC: 226 Twentyfold CV Whole brain An accuracy of 0.65
ing FDG PET AD: 190 among HC, MCl and
MCl: 389 AD
2018 [68]  sMRI, SNP NN HC: 225 Fivefold CV 16 ROIs (hippocam-  An AUC value of 0.992
AD: 138 pus, entorhinal cor-  using combined
MCl: 358 tex, parahippocam-  features
pal gyrus, amygdala,
precuneus, etc.)
2019[161] sMRI, demographic, ~ CNN HC: 184 Tenfold CV Whole brain An AUC value of 0.925
neuropsychological AD: 192 for pMCl prediction
assessment, APOE sMCl: 228
genotype data pMCI: 181
2019[160] DTI, SNP DCNN HC: 100 Fivefold CV Temporal lobes The highest AUC
AD: 51 (including the hip-  value of 0.858
pocampus) and the
ventricular system
2021 [61]  MRI, SNP, electronic CNN ADNI independent test set  Whole brain A maximum up to

health records

87% accuracy

CNN convolutional neural network, CV cross validation, DCNN deep CNN, DFFF deep feature learning and fusion framework, HYDRA heterogeneity through
discriminative analysis, LOOCV leave-one-out CV, MKL multiple kernel learning, MRF multimodal random forest, NN neural network, pMCl progressive MCl, sMCl stable

Mcl

to MRI and PET markers. During the last few decades,
EEG and MEG techniques have also been commonly
applied in AD studies. For instance, alterations of brain
rhythms and functional connectivity have been revealed
in EEG and MEG studies [178-180]. Relationships

between various AD genetic risk factors and EEG phe-
notypes have also been reported [181-184]. Hence,
compared with a single omics category, integration of
multiomics information allows systemic exploration at
multiscale layers to better understand the comprehensive
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biological information flow that underlies the disease and
to pave the way for precision medicine.

Conclusions

The field of brain imaging biomarker genomics has
made tremendous progress in the last decade to cap-
ture novel genetic variants and explore potential disease
pathophysiology mechanisms. Future studies in this
field are anticipated to move forward to precise medi-
cine, to identify significant findings that can be used
in clinical practice, and to achieve computer-aided AD
diagnosis and prognosis. Therefore, further develop-
ment of current research methods and integration of
information will continue to be an important research
direction. There is no doubt that unbiased genome-
wide approaches remain critical, and replication studies
are necessary. Advances in next-generation sequencing
approaches coupled with more refined brain mapping
(such as AHBA that maps genetic variants to brain tis-
sues) are increasingly promoting the interpretability of
findings from imaging biomarker gemonics. In addi-
tion, DL algorithms allow for integration of multiple
preprocessing steps into a single model to improve AD
diagnosis and prognosis. In summary, current studies in
the AD imaging biomarker genomics field have profiled
the brain mechanisms at an unprecedented scale, raising
new hypotheses for subsequent validation.
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