Skip to main content
. 2022 Sep 15;11:42. doi: 10.1186/s40035-022-00315-z

Table 4.

Application of machine learning based on imaging biomarker genomics in AD diagnosis and prognosis

Method Year Modality Model Dataset CV Neural location Results
Machine learning 2010 [156] sMRI, FDG PET, CSF, APOE genotype, age, sex, body mass index SVM

HC: 213

AD: 158

MCI: 264

LOOCV

Hippocampal, ventricular,

temporal lobe

A maximum up to 90% accuracy for AD
2013 [155] sMRI, FDG PET, CSF, APOE genotype MRF

HC: 35

AD: 37

MCI: 75

Fourfold CV Whole brain An accuracy of 89% for AD
2014 [164]

sMRI, FDG PET,

CSF, SNP

SVM

HC: 47

AD: 49

MCI: 93

Tenfold

CV

Whole brain An accuracy of 71% among HC, MCI and AD
2016 [157] APOE genotype, neuropsychological assessment, sMRI, FDG PET NB

HC: 112

AD: 144

sMCI: 265

pMCI: 177

independent test set Whole brain An accuracy of 87%  in identifying pMCI from sMCI
2017 [159] sMRI, SNP HYDRA

HC: 139

AD: 103

Hippocampus, entorhinal cortex

frontal lobe

The highest AUC value of 0.942 for AD
2017 [165] sMRI, SNP SVM

HC: 204

AD: 171

MCI: 362

Tenfold

CV

Whole brain An accuracy of 80.8% identifying pMCI from sMCI
2019 [158] fMRI, SNP MRF

HC: 35

AD: 37

Olfactory cortex, insula, posterior cingulate gyrus and lingual gyrus An accuracy of 87% AD prediction
2019 [154] SNP

LASSO, KNN,

SVM

HC: 371

AD: 267

CV The highest reached 0.72 of the AUC
2019 [166] APOE, PET, PGS LR

HC: 224

AD: 174

MCI: 344

Whole brain An AUC value of 0.69 using PGS and APOE to predict amyloid state
2020 [167] sMRI, FDG PET, AV45 PET, DTI, resting-state fMRI, APOE genotype MKL

HC: 35

AD: 33 sMCI: 30

pMCI: 31

LOOCV Whole brain An accuracy of 96.9%  in identifying pMCI from sMCI
Deep learning 2017 [162]

SNP, sMRI

FDG PET

DFFF

HC: 226

AD: 190

MCI: 389

Twentyfold CV Whole brain An accuracy of 0.65 among HC, MCI and AD
2018 [68] sMRI, SNP NN

HC: 225

AD: 138

MCI: 358

Fivefold CV 16 ROIs (hippocampus, entorhinal cortex, parahippocampal gyrus, amygdala, precuneus,  etc.) An AUC value of 0.992 using combined features
2019 [161] sMRI, demographic, neuropsychological assessment, APOE genotype data CNN

HC: 184

AD: 192

sMCI: 228

pMCI: 181

Tenfold CV Whole brain An AUC value of 0.925 for pMCI prediction
2019 [160] DTI, SNP DCNN

HC: 100

AD: 51

Fivefold CV Temporal lobes (including the hippocampus) and the ventricular system The highest AUC value of 0.858
2021 [61] MRI, SNP, electronic health records CNN ADNI independent test set Whole brain A maximum up to 87% accuracy

CNN convolutional neural network, CV cross validation, DCNN deep CNN, DFFF deep feature learning and fusion framework, HYDRA heterogeneity through discriminative analysis, LOOCV leave-one-out CV, MKL multiple kernel learning, MRF multimodal random forest, NN neural network, pMCI progressive MCI, sMCI stable MCI