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A B S T R A C T   

Stratifying patients according to disease severity has been a major hurdle during the COVID-19 pandemic. This 
usually requires evaluating the levels of several biomarkers, which may be cumbersome when rapid decisions are 
required. In this manuscript we show that a single nanoparticle aggregation test can be used to distinguish 
patients that require intensive care from those that have already been discharged from the intensive care unit 
(ICU). It consists of diluting a platelet-free plasma sample and then adding gold nanoparticles. The nanoparticles 
aggregate to a larger extent when the samples are obtained from a patient in the ICU. This changes the color of 
the colloidal suspension, which can be evaluated by measuring the pixel intensity of a photograph. Although the 
exact factor or combination of factors behind the different aggregation behavior is unknown, control experiments 
demonstrate that the presence of proteins in the samples is crucial for the test to work. Principal component 
analysis demonstrates that the test result is highly correlated to biomarkers of prognosis and inflammation that 
are commonly used to evaluate the severity of COVID-19 patients. The results shown here pave the way to 
develop nanoparticle aggregation assays that classify COVID-19 patients according to disease severity, which 
could be useful to de-escalate care safely and make a better use of hospital resources.   

1. Introduction 

Detection systems based on the aggregation of plasmonic nano-
particles have gained popularity due to the marked changes in color they 
produce, which can be evaluated by eye or with image processing 
software [1,2]. In these detection systems, the specific detection of a 
target molecule requires highly controlled assay conditions in order 

avoid nanoparticle aggregation in the absence of the analyte. For 
example, it is well established that citrate-capped nanoparticles tend to 
aggregate in solutions containing highly concentrated ions or when 
buffered at low pH values [3]. The presence of biomolecules in these 
solutions may stabilize or destabilize the colloids depending on their 
concentration, and may also be modulated by other factors such as the 
pH or the presence of multivalent ions [4,5]. For instance, proteins may 
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aggregate nanoparticles or protect them from aggregation depending on 
their concentration and isoelectric point, among other factors [6–8]. 
These observations have paved the way to develop a new family of 
sensors that detect changes in the composition of human plasma, which 
contains proteins and other solutes, using nanoparticle aggregation as-
says ‘[9,10]. For example, it has been shown that plasma samples from 
patients with acute COVID-19 have a different composition compared to 
samples from patients with less severe symptoms [11]. If these differ-
ences resulted in a different nanoparticle aggregation behavior, they 
could be used to identify patients that require critical care. While this 
approach would not reveal changes in the levels of specific biomarkers, 
being able to classify patients according to severity with a single mea-
surement could improve their management and make a better use of 
hospital resources [12]. 

In this article we show that, in a narrow plasma dilution range, gold 
nanoparticles aggregate depending on disease severity when exposed to 
samples obtained from COVID-19 patients (Fig. 1). Specifically, it will be 
shown that nanoparticles aggregate when the plasma was obtained from 
patients in the intensive care unit (ICU), but that, in the same conditions, 
do not aggregate so much when the plasma was obtained from patients 
that had been discharged from the ICU and were recovering in a hospital 
ward. Control experiments will demonstrate that plasma proteins are 
key to trigger the aggregation of the citrate-capped nanoparticles. Our 
method differs from previous approaches based on probing complex 
samples with colorimetric arrays of nanoparticles in that we use a single 
test to query the composition of the sample. Previously, a battery of 
nanoparticle aggregation conditions such as pH values, ionic strength, 
and surfactants, among others, were used to create an array of assays 
[10,13–19]. This yielded a color pattern that was related to the 
composition of the sample. Instead, we dilute the sample so that the total 
protein concentration is the same, and then query if nanoparticles 
aggregate or not with a single test consisting of adding the diluted 
sample to the nanosensors. While our approach provides no information 
about the identity of specific proteins in the sample, the test output is a 
single value, which makes it easier to interpret the results and to 
correlate them with other clinical variables. It will be shown that the test 
results have an excellent correlation with prognosis biomarkers that 
have been shown to be dysregulated in severe COVID-19 patients. The 
ability to classify hospitalized patients according to disease severity and 
inflammatory status with a single colorimetric test could be useful to 
plan hospital resources as well as to guide the de-escalation of patient 
care, which have been key issues during the management of the 
COVID-19 pandemic. 

2. Material and methods 

2.1. Nanoparticle synthesis 

Citrate-capped gold nanoparticles with a diameter around 40 nm 

were synthetized using the Turkevich method [7]. Briefly, 49 mg gold 
(III) chloride trihydrate dissolved in 1 mL of Milli-Q water was added to 
250 mL boiling Milli-Q water (final gold concentration 0.5 mM) and 
then sodium citrate was added to a final concentration of 0.75 mM for 
15 min while vigorously stirring. The resulting gold nanoparticles were 
let to cool down at room temperature and then stored at 4 ºC until used. 

2.2. Sample dilution protocol 

Serial dilutions of plasma samples in Milli-Q water were obtained as 
follows. The first working dilution involved diluting plasma 104 times. 
This was obtained using a 10-fold dilution series starting with 5 μL of 
plasma. Samples were then further diluted in the range between 
1:2500000 and 1:25000. 

2.3. Nanoparticle assays 

Nanoparticle assays were performed in 96-well plates (Thermo Sci-
entific) previously blocked with 2 % PBS-BSA for 90 min at 37 ºC fol-
lowed by rinsing 5 times with Milli-Q water. Each assay involved mixing 
100 μL of nanoparticles with 100 μL of diluted plasma. The final nano-
particle concentration was 0.105 nM (Fig. S1). Pictures were taken 
20–30 s afterwards using a homemade visible light transilluminator 
(Figs. S2 and S3). Pictures were taken with a dedicated 5MP Raspberry 
Pi camera module with Omnivision OV5647 CMOS sensor (model CMT- 
5MP-RP-OV5647-X010). The camera was controlled with a single board 
computer (Raspberry Pi Zero WH) and programmed to automatically 
upload images to a database at the push of a button. Extinction spectra 
were collected with a PowerWave HT plate reader (Biotek). 

2.4. Plasma samples 

Blood samples from patients admitted to the ICU were collected in 
vacuum tubes containing ethylenediaminetetraacetic acid (EDTA) as 
anticoagulant. Twenty samples were collected from SARS-CoV-2- 
positive patients admitted to the ICU for less than 10 days, whereas 19 
samples originated from patients already discharged from the ICU (ward 
patients). Gender distribution was similar across ICU and ward cohorts, 
with 30% and 36.8% females respectively (Fisher’s exact test p-val-
ue=0.74). Patients’ demographic and clinical variables at the time of 
sampling are provided in Table S1. All samples were collected after 
informed consent was obtained from the patient or a family member. 
The study was conducted according to the ethical guidelines of the 1975 
Declaration of Helsinki (Ethics and Scientific Committee approval IB 
4251/20 PI). Platelet-free plasma samples were obtained by following a 
double spin cycle. Briefly, whole blood samples were centrifuged at 
1500 g for 10 min and then the resulting plasma samples were trans-
ferred to new tubes and centrifuged at 2500 g for 15 min. Samples were 
stored at − 80 ◦C in the Biobank IdISBa and CIBERES Pulmonary Bio-
bank Consortium (integrated in the Spanish National Biobanks 
Network). In Fig. 5, the total protein concentration was determined in 
plasma samples diluted 1:2000 using a Bradford assay, whereas albumin 
levels in samples diluted 1:200,000 were determined with an ELISA test 
(reference RAB0603 purchased from Sigma-Aldrich). 

Experiments with deproteinized plasma samples were addressed 
after conducting the following deproteinization protocol. Briefly, 
plasma samples obtained from 3 ICU and 3 ward patients were diluted 
1:100 in Milli-Q water (final volume of 500 μL). These pre-diluted 
samples were incubated in a bath at 90 ºC for 10 min and then centri-
fuged at 3400 g for 5 min. Next, 400 μL of the deproteinized superna-
tants was filtered using Amicon® Ultra-0.5 centrifugal 10 K filters 
(Millipore) following the manufacturers’ instructions. 

2.5. Data analysis 

The pixel intensity in images was evaluated by quantifying the “a” 

Fig. 1. Schematic representation of COVID-19 severity evaluation with plasma- 
induced nanoparticle aggregation. Probing a well-defined plasma dilution with 
gold nanoparticles generates a colorimetric signal associated to disease severity. 

G. Santopolo et al.                                                                                                                                                                                                                              



Sensors and Actuators: B. Chemical 373 (2022) 132638

3

channel in the L*a*b color space in the region of interest with Adobe 
Photoshop. Statistical analysis was performed using GraphPad Prism 
software. The Mann-Whitney test was used to assess differences between 
colorimetric signals yielded by plasma samples from ICU and ward pa-
tients. A p value < 0.05 was considered statistically significant. Principal 
component analysis was done to evaluate relationships between pa-
tients’ clinical variables and colorimetric signals. 

3. Results and discussion 

The aggregation of gold nanoparticles in a solution that contains 
proteins depends on the protein concentration, among other factors 
(Fig. 2A). Therefore, we first endeavored to study the impact of the 
protein concentration on the aggregation of gold nanoparticles (40 nm 
diameter). To this end, we serially diluted plasma samples and then 

added nanoparticles at the same final concentration. Changes in the 
state of aggregation of the colloids were observed in the dilution range 
between 1:2,500,000 and 1:25,000. Fig. 2B shows a representative 
example of the results obtained from an ICU patient that had an initial 
total protein concentration value of 8 g⋅dL-1. In the proposed dilution 
range, when the concentration of proteins increases from 0 to 1.3 × 10-4 

g⋅dL-1 the color of the colloidal suspension changes from mauve to blue 
and gray, which indicates that the nanoparticles aggregate (Fig. 2B). In 
Fig. 2C, extinction spectra taken in this concentration range show that 
the localized surface plasmon resonance (LSPR) at 530 nm decreases 
and a new LSPR appears at lower wavelengths, which demonstrates that 
the nanoparticles are clustering together. This was further supported 
using nanoparticle tracking analysis (NTA) (supporting Fig. S4). In this 
concentration range, protein adsorption disturbs the homogenous dis-
tribution of negative charges around the colloids and destabilizes them, 

Fig. 2. Representative example of plasma-induced nanoparticle aggregation generated with a sample from a critical patient; A) Schematic representation of the 
impact of adding proteins (purple dots) at different concentrations to gold nanoparticles (yellow dots); B) Photographs of the colloidal suspensions after adding 
fifteen decreasing dilutions of a sample from a critical patient with an initial total protein concentration value of 8 g⋅dL-1 (superscripts indicate the protein con-
centration in diluted samples prior to nanoparticle addition in g⋅dL-1) C) Extinction spectra of tests highlighted in panel B; D) Extinction at 530 nm (Ex530); and E) 
Pixel intensity (PI) as a function of the protein concentration prior to nanoparticle addition in diluted samples. 
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as schematically shown in Fig. 2A. When the protein concentration in-
creases further the color of the suspension slowly transitions to blue and 
purple (Fig. 2B). The LSPR at 530 increases and the near-infrared LSPR 
progressively disappears, which demonstrates that nanoparticles are less 
aggregated (Fig. 2C). In this concentration range a protein corona is 
generated that stabilizes the colloids as depicted in Fig. 2A. Figs. 2D and 
2E show the evolution of the extinction value at 530 nm, as well as the 
pixel intensity measured from photographs taken with a raspberry pi 
camera. Both parameters decrease as the. 

concentration of protein increases, and then slowly increase after 
achieving a minimum. These experiments demonstrate that the plasma- 
induced aggregation of gold nanoparticles depends on the degree of 
sample dilution, which changes the concentration of proteins and other 
solutes within it. Changes in nanoparticle aggregation can be monitored 
by measuring the pixel intensity of a photograph (densitometry), which 
in the future could be performed with a dedicated instrument or 
smartphone app [20,21]. 

After studying the impact of protein concentration on nanoparticle 
aggregation, we sought to compare the aggregation pattern of nano-
particles after adding diluted plasma samples from patients. Fig. 3 shows 
the variation of the pixel intensity obtained from 20 ICU patients (red 
trace), as well as from 19 ward patients that were recovering after 
staying in the ICU (black trace). The same dilution protocol was applied 
to all samples. Results were then represented as a function of the actual 
protein concentration in each plasma sample, which was determined the 
same day that the sample was collected. In this Figure, the average 
minimum value of pixel intensity (PImin) is lower for ICU patients than 
for ward patients. This means that diluted plasma samples from ICU 
patients aggregate nanoparticles to a larger extent than plasma samples 
from ward patients. The average protein concentration at PImin (CPImin) 
is higher for ICU patients. This means that more concentrated proteins 
are required in order to achieve the highest level of aggregation 
compared to ward patients. Finally, the pixel intensity of ICU samples 
increases at a slower rate after PImin compared to samples from ward 
patients, which means that they stay highly aggregated in a larger range 
of protein concentrations. Due to this, the pixel intensity at a fixed total 
concentration value is lower for ICU patients than for ward patients in 
the range between 1 × 10-4 and 2 × 10-4 g⋅dL-1. For example, the pixel 
intensity from ICU patients differs from ward patients in most cases 
when the protein concentration is near 1.75 × 10-4 g⋅dL-1 (PI at C1.75). 

This. 
result indicates that a single aggregation assay at a fixed protein 

concentration could be enough to identify whether a patient requires 
critical care or not. This makes our approach different from previous 
methods based on analyzing the color of nanoparticle suspensions upon 
exposure to an array of aggregating stimuli [13–19,10]. 

Fig. 4A-4C show the distribution of PImin, CPImin, and the PI at C1.75 
(PI1.75) obtained from ICU and ward samples. Statistically relevant dif-
ferences are observed in all cases. Nevertheless, the parameter that 
better distinguishes both populations is PI1.75 because test results 
overlap to a lesser extent than when plotting the other parameters. 
Indeed, only one ICU patient is miscategorized using PI1.75, in agreement 
with our previous observation that a single test at a fixed protein con-
centration (1.75 g⋅dL-1) can stratify patients according to severity. 
However, calculating PI1.75 would require measuring the total protein 
levels first followed by readjusting the dilution protocol in order to test 
plasma samples at the same final concentration, which would be 
cumbersome. As an alternative, we investigated if plasma samples could 
be diluted following the same proto-col and then analyze one dilution 
irrespective of the initial protein concentration. Fig. 4D shows that the PI 
at dilution 1:31250 (PIdil) also differentiates both sample collections 
except for the same ICU specimen that overlapped with the ward sam-
ples when plotting PI1.75. These experiments demonstrate that the color 
of a single test performed at a fixed dilution can be used to distinguish 
COVID-19 patients in the ICU from those that do not require intensive 
care anymore. 

Next, we studied the origin of the differences in nanoparticle ag-
gregation behavior observed in Fig. 2. We first checked whether changes 
in the initial protein concentration or in the concentration of the most 
abundant protein in plasma (albumin) could be the source of the 
observed differences. In Fig. 5A and 5B, ICU and ward patients do not 
have statistically different total protein levels, and there is no correla-
tion between this parameter and PIdil. Similarly, there is no significant 
difference between the albumin levels of both patient populations, and 
there is no correlation between the albumin concentration and PIdil 
(Fig. 5C and 5D). These experiments demonstrate that, although the 
concentration of protein and albumin may influence the test results, they 
are not the only factor that determines the color of the test under the 
proposed conditions. It has been suggested that some drugs (e.g. ami-
noglycoside antibiotics) can trigger nanoparticle aggregation [22]. 
Critical patients often show higher lactic acid levels that could lead to 
small differences in pH [23], which is known to modulate nanoparticle 
aggregation [7,24]. To demonstrate that proteins, and not other solutes 
in plasma, are the key to the observed changes in aggregation behavior, 
we repeated the same experiments with deproteinized plasma samples 
from 3 ICU and 3 ward patients. Under this condition, no aggregation 
was observed in the whole range of dilutions proposed, which demon-
strates that proteins are essential in order to aggregate nanoparticles in 
Fig. 3 (Fig. 5E). Moreover, attempts to measure the pH of plasma sam-
ples diluted 1:25000 or more were not successful because the dilution 
factor was so high that the concentration of buffering molecules was 
negligible, and values fluctuated wildly. Nevertheless, no differences 
were observed when checking the mean pH after adding nanoparticles to 
3 diluted ICU (4.05 ± 0.02) or ward (4.07 ± 0.03) samples. These ex-
periments show that leftover citrate ions from the nanoparticle synthesis 
rather than intrinsic solutes in the highly diluted samples are responsible 
for the pH of the mixture. In summary these experiments demonstrate 
that, although solutes in the plasma may modulate the protein-induced 
nanoparticle aggregation, the biomolecules are essential to cluster the 
colloids together and yield the observed color changes. 

Fig. 6 shows a principal component analysis (PCA) comparing PIdil 
and clinical variables that are commonly used to evaluate disease 
severity and inflammatory status (see also Table S1). Fig. 6A shows two 
principal components clearly defined by hemostatic and inflammatory 
biomarkers (clustered in principal component 1, PC1), and albumin 
levels along with liver function (clustered in principal component 2, 

Fig. 3. Pixel intensity as a function of the protein concentration after adding 
diluted plasma samples from ICU (red) or ward patients (black) to gold nano-
particles. Dotted lines are a guide to eye. PImin: minimum value of pixel in-
tensity; CPImin: protein concentration at PImin; C1.75: indicates that the protein 
concentration is 1.75 × 10-4 g⋅dL-1. 
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PC2). In this Figure, PIdil is highly correlated with PC1 (loading value of 
0.901) and its correlation with PC2 is negligible (loading value of 
0.001), which reinforces the idea that albumin is not a relevant clus-
tering factor in the distribution of colorimetric data when comparing 
ICU and ward patients. This PCA demonstrates a well-defined negative 
correlation between PIdil and those clinical variables with which it forms 
nearly 180º angles (red-colored biomarkers in Fig. 6A). The strongest 
correlation is an inverse relationship between PIdil and the neutrophil- 
to-lymphocyte ratio (NLR, Fig. 6B) and the platelet-to-lymphocyte 
ratio (PLR, Fig. 6C). Indeed, high values of NLR and PLR have been 
associated to deterioration in COVID-19 patients, which agrees well 
with the low PIdil value found in ICU patients [25,26]. Other strongly 
correlated variables are biomarkers of inflammation and poor prognosis 
such as C-reactive protein (CRP), D-dimer (DD), ferritin (Ferr), and 
lactate dehydrogenase (LDH), which have also been shown to be more 
elevated in patients with severe or acute COVID-19 [27–30]. Coagula-
tion biomarkers such as the prothrombin time (International Normal-
ized Ratio, INR) were also inversely correlated with PIdil, which agrees 
well with reports on highly elevated INR levels in patients with severe 
COVID-19 [31]. Finally, PIdil values correlate positively with hemoglo-
bin levels (Hb, green-colored biomarker in Fig. 6A), which have also 
been reported to be dysregulated in patients with severe COVID-19 [32]. 
These data analyses support the idea that our test is detecting patients 
that require intensive care, which could be useful to stratify them ac-
cording to disease severity. We then hypothesized that PIdil values could 
be related to the number of dysregulated prognosis biomarkers that 
showed a strong correlation in Fig. 6A. To study this, we measured the 
number of these clinical variables that were out of normal range for ICU 
and ward patients (see Table S1) and plotted them against PIdil. In 
Fig. 6D there is a strong linear correlation between the number of 

dysregulated biomarkers and the test results, which further supports the 
idea that PIdil values are useful to determine disease severity. It should 
be noted that many patients in the ICU were younger than those in 
recovering in the ward, and therefore that the observed changes are not 
generated by higher inflammation levels originated by age (Table S1). 

4. Conclusions 

In conclusion, we have shown that diluted plasma samples from 
COVID-19 patients in the ICU aggregate gold nanoparticles differently 
than samples obtained from patients recovering in a hospital ward. In 
other words, the color of the colloidal suspension is different after 
adding plasma diluted to the same the extent from the proposed pop-
ulations. The presence of proteins in the samples is crucial to trigger 
nanoparticle aggregation, although the exact factor or combination of 
factors responsible for clustering the colloids is unknown. The test re-
sults correlate well with the levels of biomarkers commonly used to 
evaluate severity and prognosis in COVID-19. Indeed, there is a linear 
correlation between the number of dysregulated biomarkers and the test 
outcome, which reinforces the idea that the color of the test is associated 
to disease severity. Future experiments will aim at studying whether the 
test can differentiate other severe infections that may require intensive 
care (e.g., cases of bacterial sepsis or septic shock) [33]. Larger pop-
ulations will also be recruited to improve the statistical analysis and 
determine cut-off values. Using a dedicated tabletop instrument for 
plasma separation, liquid handling and test photographing along with 
software for automated color quantification could reduce the test vari-
ability and produce results within minutes, which would make our 
approach useful for making rapid decisions about patient stratification 
in hospitals. 

Fig. 4. Comparison between different parameters proposed here to differentiate patient populations; (A) PImin (minimum value of pixel intensity); (B) CPImin (protein 
concentration at PImin); (C) PI1.75 (pixel intensity at C1.75); and (D) PIdil (pixel intensity at plasma dilution 1:31250) yielded by plasma samples from ICU (red) and 
ward (black) patients. The dotted lines represent two standard deviations above the mean of ICU patients. Data are expressed as median with percentiles 25th and 
75th; *p-value was obtained with a Mann-Whitey test. 
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Llàtzer. He is a member of the Multidisciplinary Sepsis Group (Balearic Islands Health 
Research Institute, IdISBa). His research interest focuses into sepsis. 

Marcio Borges Coordinator of Multidisciplinary Sepsis Unit. Intensive Care Unit. Son 
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