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Abstract

Polygenic risk scores (PRSs) are useful for predicting breast cancer risk, but the prediction accuracy of existing PRSs in women of
African ancestry (AA) remains relatively low. We aim to develop optimal PRSs for the prediction of overall and estrogen receptor (ER)
subtype-specific breast cancer risk in AA women. The AA dataset comprised 9235 cases and 10 184 controls from four genome-wide
association study (GWAS) consortia and a GWAS study in Ghana. We randomly divided samples into training and validation sets. We
built PRSs using individual-level AA data by a forward stepwise logistic regression and then developed joint PRSs that combined (1)
the PRSs built in the AA training dataset and (2) a 313-variant PRS previously developed in women of European ancestry. PRSs were
evaluated in the AA validation set. For overall breast cancer, the odds ratio per standard deviation of the joint PRS in the validation set
was 1.34 [95% confidence interval (CI): 1.27–1.42] with the area under receiver operating characteristic curve (AUC) of 0.581. Compared
with women with average risk (40th–60th PRS percentile), women in the top decile of the PRS had a 1.98-fold increased risk (95% CI:
1.63–2.39). For PRSs of ER-positive and ER-negative breast cancer, the AUCs were 0.608 and 0.576, respectively. Compared with existing
methods, the proposed joint PRSs can improve prediction of breast cancer risk in AA women.

Introduction
Breast cancer is the most common cancer in women
in the United States and worldwide. It is a complex
genetic disorder caused by high-penetrance genes, multi-
ple common variants and non-genetic factors. In the last
10 years, genome-wide association studies (GWASs) have
identified >180 breast cancer susceptibility loci (1–4).
A polygenic risk score (PRS) is an additive linear combina-
tion of the effects of multiple single nucleotide polymor-
phisms (SNPs) from GWAS and can achieve a degree of
risk stratification that is useful for risk-based programs
of breast cancer screening and early detection. PRSs have
been developed to predict breast cancer risk in non-
Hispanic white, Asian and Latin American women (5–10).
Recently, a large study has developed a 313-variant PRS
for breast cancer risks in women of European ancestry
(5). This PRS model distinguished breast cancer cases
from controls [area under receiver operating character-
istic (ROC) curve (AUC) = 0.630 overall], with a better dis-
criminating capacity for estrogen receptor (ER)-positive
breast cancer (AUC = 0.641) than for ER-negative breast
cancer (AUC = 0.601).

African Americans have higher risk of developing early
onset breast cancer and about 40% higher breast cancer
mortality than other racial/ethnic groups in the United
States (11), so it is very important to have risk-stratified
screening in this population, especially for women aged
40–49 years. Currently, however, reliable PRS models do
not exist for women of African ancestry (AA), including
native Africans living in sub-Saharan Africa and the
Africa diaspora. Most GWASs of breast cancer were con-
ducted in women of European ancestry, and given the dis-
tinct allele frequencies and linkage disequilibrium (LD)
structures across populations, PRSs developed in Euro-
pean ancestry populations have an attenuated, though
statistically significant, predictive value when applied to
AA populations (12,13). Recently, we showed that the 313-
variant PRS exhibits reduced discriminating accuracy in
AA, with AUC being 0.571, 0.588 and 0.562 for overall, ER-
positive and ER-negative breast cancer, respectively (14).

To effectively use genetic information, such as allele
frequencies and LD, in AA data, we adopted a forward
stepwise logistic regression approach (5) to select genetic
variants and then construct PRSs for AA women using
individual genotypic and phenotypic data. The stepwise

approach can retain SNPs significantly associated with
the phenotype at a given threshold and effectively con-
trol the number of noise SNPs used for PRSs. As the
sample sizes of existing AA datasets are much smaller
than those from European-ancestry studies, using only
AA data to develop a PRS may have limited accuracy. To
further increase the prediction accuracy, we adopted the
method of Márquez-Luna et al. (15) to develop joint PRSs
by combining two components: (1) optimal PRS trained in
women of AA by the stepwise logistic regression method,
and (2) the 313-variant PRS that was previously devel-
oped in women of European ancestry. We used data in
women of AA from four breast cancer GWAS consortia
and the Ghana Breast Health Study (GBHS); the four
consortia were: ROOT (The GWAS of Breast Cancer in
the African Diaspora consortium), the African American
Breast Cancer Epidemiology and Risk (AMBER) consor-
tium, Breast Cancer Association Consortium (BCAC) and
African American Breast Cancer consortium (AABC) (see
Supplementary Material, Table S1).

Results
We have evaluated the three types of PRS methods
described in Materials and Methods: (1) PRSs built by
using genome-wide data in women of AA (PRSAFR), (2) the
313-variant PRS using effect sizes directly from previous
European ancestry studies (PRSEUR) and (3) the joint and
hybrid PRSs (PRSJoint). The evaluation was performed in
an AA validation dataset.

PRSs built using AA data only (PRSAFR)
We built PRS models using preset P-value thresholds
for filtering SNPs and selecting SNPs by a ‘hard-
thresholding’ forward stepwise logistic regression in the
AA training set (see Materials and Methods). Table 1
shows the comparison of the performance of these PRS
models developed using AA data only and evaluated
in an independent validation set. Using the forward
stepwise regression approach, the prediction accuracy of
PRSs increased as the P-value threshold increased from
10−5 to 0.1. The accuracy increased only slightly when
the P-value cut-off changed from 0.05 to 0.1, whereas the
number of SNPs selected for PRSs for three phenotypes
increased by about 1.6-fold. Therefore, we used the



Human Molecular Genetics, 2022, Vol. 31, No. 18 | 3135

Table 1. Comparison of the performance of PRS models developed using genome-wide approach in AA data: results in the validation set

P-value cut-offa SNPs entering model (n) SNPs selected (n) OR (95% CI)b AUC (95% CI)b

Overall breast cancer
<10−5 288 62 1.04 (0.99–1.10) 0.509 (0.495–0.524)
<10−4 2053 428 1.03 (0.98–1.09) 0.506 (0.489–0.522)
<10−3 19 067 2351 1.07 (1.01–1.13) 0.521 (0.507–0.535)
<10−2 175 161 10 647 1.12 (1.06–1.18) 0.535 (0.519–0.551)
<0.05 829 335 29 569 1.13 (1.07–1.19) 0.535 (0.519–0.551)
<0.1 1 615 762 46 854 1.15 (1.09–1.22) 0.541 (0.527–0.556)

ER-positive
<10−5 201 79 1.06 (0.99–1.13) 0.517 (0.499–0.536)
<10−4 2026 408 1.04 (0.97–1.12) 0.512 (0.491–0.534)
<10−3 20 186 2339 1.10 (1.03–1.18) 0.529 (0.508–0.550)
<10−2 178 697 10 493 1.19 (1.10–1.27) 0.543 (0.523–0.562)
<0.05 832 622 29 004 1.22 (1.13–1.31) 0.546 (0.527–0.566)
<0.1 1 624 378 45 997 1.22 (1.13–1.31) 0.546 (0.527–0.565)

ER-negative
<10−5 209 50 1.13 (1.04–1.22) 0.531 (0.508–0.554)
<10−4 1872 419 1.08 (0.99–1.17) 0.528 (0.506–0.550)
<10−3 16 751 2230 1.03 (0.95–1.11) 0.506 (0.482–0.531)
<10−2 160 097 10 138 1.14 (1.05–1.23) 0.535 (0.510–0.559)
<0.05 784 928 28 100 1.20 (1.11–1.31) 0.548 (0.525–0.572)
<0.1 1 552 045 44 889 1.23 (1.13–1.33) 0.551 (0.527–0.575)

aThe P-value cut-off used for selecting SNPs based on their marginal associations with cancer risk and then in stepwise regression in the training set. bOR per 1
SD for the PRS. OR for association with breast cancer in the validation set was derived using logistic regression adjusting for age, consortium/study and 10 PCs.
AUC of PRSs was calculated under the covariate-adjusted ROC model adjusting for age, consortium/study and 10 PCs of genotype data. PRS models highlighted
were used for further analysis.

PRS models with the P-value threshold of 0.05 for
further analysis. The covariate-adjusted AUCs of PRSAFR,
PRSAFR.ERp and PRSAFR.ERn were 0.535, 0.546 and 0.548
for overall, ER-positive and ER-negative breast cancer,
respectively (16); PRSAFR, PRSAFR.ERp and PRSAFR.ERn denote
the PRSs for overall, ER-positive and ER-negative using
29 569, 29 004 and 28 100 SNPs, respectively, selected by
stepwise forward regression in the AA training dataset.

The PRS previously developed in women of
European ancestry (PRSEUR)
Directly applying the PRS developed in data on women
of European ancestry (Supplementary Material, Table S2)
(PRSEUR) to our study sample of AA, we found that it
was significantly associated with breast cancer risk, with
varying prediction accuracy for the three breast cancer
phenotypes (Table 2). We noticed that the PRSs trained in
women of European ancestry (PRSEUR) had almost no cor-
relation with the PRS developed with ‘hard-thresholding’
approach (PRSAFR) that used AA data only, suggesting that
additional predictive power could be gained if combining
these PRSs together (Supplementary Material, Table S3).

The joint and hybrid PRS models
A joint PRS is a weighted linear combination of the two
components PRSs, i.e. PRSJoint = α1 PRSAFR + α2 PRSEUR (see
Materials and Methods). Table 3 shows the prediction
performance of the joint and hybrid PRS models in the
validation set. For each phenotype, the two-component
joint PRS model performed better than individual PRSs.
For overall breast cancer, adding the PRS developed in
European ancestry population (PRSEUR) to the base model

developed using the ‘hard-thresholding’ stepwise regres-
sion approach (PRSAFR), the AUC increased from 0.535
to 0.577. Similar results were observed for ER-positive
and ER-negative breast cancer. Interestingly, the PRSs
developed in European ancestry population contributed
more to the two-component joint PRS model for overall
(69%) and ER-positive breast cancer (65%). In contrast,
the PRS developed using AA data (47%) has a similar
contribution to the joint PRS of ER-negative disease as the
PRS developed in European ancestry population (53%).
The odds ratio (OR) per unit standard deviation (SD) was
1.49 [95% confidence interval (CI): 1.39–1.60] for the joint
PRS of ER-positive breast cancer and 1.31 (95% CI: 1.21–
1.43) for the joint PRS of ER-negative disease.

The joint PRS for overall breast had lower predic-
tion accuracy (AUC = 0.577) than the joint PRSs for ER-
positive (AUC = 0.608) and almost the same accuracy for
ER-negative disease (AUC = 0.576). Therefore, we calcu-
lated the hybrid PRS for overall breast cancer that com-
bines the PRSs of ER-positive and ER-negative diseases
weighted by subtype proportions. The OR per SD of the
hybrid PRS was 1.34 (95% CI: 1.27–1.42) with an AUC of
0.581. The SNPs and corresponding joint effect sizes used
for the final joint and hybrid PRSs for the three pheno-
types are listed in Supplementary Material, Tables S4–S6.

The contributing weights αk (k = 1, 2) of the two com-
ponent PRSs (PRSAFR and PRSEUR) in the joint PRS models
(Table 2) were estimated in the validation set with a logis-
tic regression model, including the two-component PRSs,
so there might be an overfitting problem. For the two-
component joint PRS of overall breast cancer, the liability
scale-adjusted R2 was 1.86%, which was very similar
to the raw R2 of 1.91%. For ER-positive joint PRS, the

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac102#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac102#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac102#supplementary-data
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Table 2. Performance of ancestry-specific and joint prediction PRS models in the validation set

Weight (αk) for
each predictora

OR (95% CI)a P AUC (95% CI)a

Overall breast cancer
PRSAFR (genome-wide threshold P < 0.05) 1.13 (1.07–1.19) 7.8 × 10−06 0.535 (0.519–0.551)
PRS from European ancestry (PRSEUR)b 1.30 (1.23–1.37) 2.8 × 10−21 0.571 (0.557–0.585)
α1PRSAFR +α2PRSEUR α1=0.31, α2=0.69 1.34 (1.27–1.41) 3.4 × 10−25 0.577 (0.561–0.593)
PRShybrid

c 1.34 (1.27–1.42) 3.0 × 10−26 0.581 (0.566–0.597)
ER-positive

PRSAFR.ERp (genome-wide threshold P < 0.05) 1.22 (1.13–1.31) 2.7 × 10−7 0.546 (0.527–0.566)
PRS from European ancestry (PRSEUR.ERp)b 1.43 (1.33–1.53) 6.1 × 10−24 0.597 (0.577–0.617)
α1PRSAFR.ERp +α2PRSEUR.ERp α1=0.35, α2=0.65 1.49 (1.39–1.60) 1.1 × 10−28 0.608 (0.588–0.627)

ER-negative
PRSAFR.ERn (genome-wide threshold P < 0.05) 1.20 (1.11–1.31) 1.1 × 10−5 0.548 (0.525–0.572)
PRS from European ancestry (PRSEUR.ERn)b 1.23 (1.13–1.34) 8.7 × 10−7 0.557 (0.534–0.581)
α1PRSAFR.ERn + α2PRSEUR.ERn α1= 0.47, α2= 0.53 1.31 (1.21–1.43) 1.1 × 10−10 0.576 (0.553–0.598)

aWeight (αk) in the joint PRSs was estimated in validation set with a logistic regression model, including two-component PRSs (PRSAFR and PRSEUR) as predictors,
and adjusting for age, consortium/study and 10 PCs; OR per 1 SD. AUC of PRSs was calculated under the covariate-adjusted ROC model adjusting for age,
consortium/study and 10 PCs of genotype data. bFor the 313 SNPs reported by Mavaddat et al. (5) for PRS in women of European ancestry, 307 SNPs appeared in
our data of African ancestry. cPRShybrid for overall cancer risk is a linear combination of the two joint PRSs for ER-positive and ER-negative breast cancer, with a
weight of 0.62 for ER-positive and 0.38 for ER-negative cancer.

Table 3. Associations between PRS percentiles and breast cancer risk in the validation set

PRS category No. control Overall breast cancer ER-positive ER-negative

No. case OR (95% CI)a No. case OR (95% CI)a No. case OR (95% CI)a

<5% 156 100 0.79 (0.59–1.05) 35 0.61 (0.41–0.92) 26 0.74 (0.47–1.18)
5–10% 155 102 0.82 (0.62–1.09) 28 0.52 (0.34–0.81) 39 1.09 (0.73–1.63)
0–10% 311 202 0.81 (0.65–1.00) 63 0.57 (0.42–0.78) 65 0.92 (0.67–1.27)
10–20% 313 180 0.73 (0.58–0.91) 77 0.72 (0.53–0.97) 58 0.84 (0.60–1.18)
20–40% 624 422 0.85 (0.72–1.02) 185 0.82 (0.66–1.04) 111 0.80 (0.61–1.06)
40–60% (ref.) 624 486 1 (ref.) 222 1 (ref.) 141 1 (ref.)
60–80% 624 595 1.22 (1.03–1.44) 266 1.18 (0.95–1.46) 184 1.36 (1.06–1.74)
80–90% 312 350 1.45 (1.19–1.76) 192 1.64 (1.29–2.09) 94 1.39 (1.03–1.87)
90–100% 311 467 1.98 (1.63–2.39) 256 2.20 (1.74–2.77) 127 1.80 (1.37–2.38)
90–95% 155 216 1.83 (1.44–2.34) 107 1.82 (1.35–2.45) 55 1.61 (1.12–2.32)
>95% 156 251 2.12 (1.67–2.69) 149 2.58 (1.95–3.42) 72 2.13 (1.52–3.00)

aOR (95% CIs) were adjusted for age, consortium and 10 PCs.

adjusted and raw R2 were 3.60 and 3.66%, respectively.
For ER-negative joint PRS, the adjusted and raw R2 were
1.13 and 1.21%, respectively. These analyses suggested
that the bias owing to overfitting is minimal.

Table 3 showed associations between breast cancer
risk and percentiles of the joint and hybrid PRSs. Women
in the top 10 and 5% of the hybrid PRS had a 1.98-fold
(95% CI: 1.63–2.39) and a 2.12-fold (95% CI: 1.67–2.69) ele-
vated overall breast cancer risk compared with women at
average risk (PRS in 40th–60th percentiles), respectively.
For ER-positive breast cancer, compared with the popula-
tion average, women in the top 10 and 5% of the joint PRS
had a 2.20-fold (95% CI: 1.74–2.77) and a 2.58-fold (95%
CI: 1.95–3.42) increased risk, respectively. For ER-negative
breast cancer, those in the top 10% and 5% of the joint PRS
had a 1.80-fold (95% CI: 1.37–2.38) and a 2.13-fold (95%
CI: 1.52–3.00) increased risk, respectively, compared with
women at average risk.

The joint and hybrid PRSs were significantly associated
with breast cancer risk in women with and without fam-
ily history of breast cancer (Table 4). We did not see any

significant interaction between PRS and family history of
breast cancer. In addition, family history was associated
with about 1.76- to 2.05-fold increased risk of overall or
subtype-specific breast cancer. We only observed slight
attenuation of the association of family history with
overall breast cancer and ER-negative cancer risk after
adjusting for PRS (Table 4).

We did not observe a statistically significant interac-
tion between the joint/hybrid PRSs and age at diagnosis
for overall or subtype-specific breast cancer risk (Sup-
plementary Material, Fig. S1), although the association
between PRS and overall or ER-positive breast cancer risk
was weak for women aged 70 years or older.

We examined association of PRSs and breast cancer
risk in two populations: Africans versus African Ameri-
cans and African Barbadians. In both populations, PRSs
were associated with breast cancer risk and there was
no statistically significant interaction (Supplementary
Material, Table S7). There was no significant interaction
between ancestry groups (<80% AA vs. > 80% AA) and
PRSs. There was a marginally significant heterogeneity

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac102#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac102#supplementary-data


Human Molecular Genetics, 2022, Vol. 31, No. 18 | 3137

Table 4. Associations between PRS and breast cancer risk by family history of breast cancer in the validation set

Model Overall breast cancer ER-positive ER-negative
OR (95% CI)a OR (95% CI)a OR (95% CI) a

Association of PRS and cancer risk by family history
PRS unadjusted for family history 1.31 (1.24–1.39) 1.45 (1.35–1.56) 1.31 (1.20–1.44)
PRS in women without family history 1.30 (1.22–1.39) 1.45 (1.33–1.57) 1.31 (1.19–1.45)
PRS in women with family history 1.34 (1.15–1.56) 1.45 (1.21–1.74) 1.29 (1.04–1.60)

P for testing interaction between PRS and family history 0.829 0.965 0.779
Association of family history and cancer risk

Family history unadjusted for PRS 1.79 (1.52–2.11) 2.05 (1.70–2.49) 1.76 (1.39–2.23)
Family history adjusted for PRS 1.76 (1.49–2.08) 2.05 (1.68–2.49) 1.72 (1.35–2.18)

aFor PRS, ORs (95% CI) per 1 SD were presented. For family history, the OR comparing women with versus without family history of breast cancer. In all logistic
regression models, age, consortium and 10 PCs were adjusted for.

effects of the PRSs for overall breast cancer and ER-
negative breast cancer across the five consortia/studies
but not for ER-positive PRS (Supplementary Material, Fig.
S2). For overall breast cancer, the PRS had a moderate
association in the ROOT and AABC consortia and had a
stronger association in the AMBER consortium.

Absolute risk of developing breast cancer
according to the PRS
Figure 1 shows the estimated lifetime and 10-year abso-
lute risks of breast cancer for African Americans accord-
ing to percentile of the PRSs. The absolute risk of overall
breast cancer by age 80 years was 18.8% for women
in the 99th percentile of the hybrid PRS and was 4.3%
for women in the lowest first percentile. The absolute
risk of ER-positive breast cancer by age 80 ranged from
2.3% in the lowest percentile of PRS to 17.6% in the
highest percentile of PRS. For ER-negative breast cancer,
the absolute risk by age 80 ranged from 1.3 to 4.8%. In
contrast, the absolute risk of overall breast cancer by
age 80 ranged from 3.2 to 31.3% for European American
women in lowest and highest percentiles of the 313-
variant PRS of European ancestry (5) (Supplementary
Material, Fig. S3). The absolute risk by age 80 ranged
from 2.4 to 31.6% for ER-positive and from 0.5 to 3.3%
for ER-negative breast cancer among European Ameri-
cans. The dotted line in Figure 1D illustrates the age at
which women at different categories of the PRS reach
a threshold of 10-year risk of 2%, which corresponds to
the average risk for women aged 45 years in the United
States. This threshold was reached at 35, 38 and 39 years
for women whose PRSs were >99th, 95–99th and 90–95th
percentiles, respectively.

Discussion
In this study, we developed and validated joint PRSs of
breast cancer among women of AA by pooling multi-
ple studies and leveraging an existing PRS developed in
European ancestry population. We adopted the method
of Márquez-Luna et al. (15) to develop the joint PRSs that
combined the PRS developed with only data from AA and
the 313-variant PRS developed in women of European
ancestry (5). With AUCs of 0.581, 0.608 and 0.576 for

overall, ER-positive and ER-negative breast cancer, the
joint PRSs provide a better predictive value than previous
PRS models in AA women. Allman et al. evaluated a 77-
variant PRS in African Americans and reported an AUC
of 0.55 for overall breast cancer risk (12). Wang et al.
reported an AUC of 0.531 for a 34-variant recalibrated PRS
in women of AA (13). Recently, Du et al. evaluated the 313-
variant PRS using the same dataset as the current study
and reported AUCs of 0.571, 0.588 and 0.562 for over-
all, ER-positive, and ER-negative breast cancer, respec-
tively (14). Although comparing with previous models,
the improvements in AUCs are not large, the current
PRSs can provide better risk stratification, making them
suitable for clinical use.

The improved prediction value of the joint PRS mod-
els in women of AA may be because it has leveraged
the strengths of two types of PRSs. The 313-variant PRS
was developed with very large sample size of 94 075
breast cancer cases and 75 017 controls of European
descent in BCAC (5), so it achieves high precision. The
PRS model developed using ‘hard-thresholding’ genome-
wide approach in AA datasets has the advantage that
the training and validation dataset have the similar LD
patterns. Of note, the contribution of the individual PRSs
to the joint PRSs varied by breast cancer phenotypes.
The 313-variant PRS has a better performance in predict-
ing ER-positive than ER-negative breast cancer in both
European and AA populations (5,14). Consistently, it also
contributed more to the ER-positive joint PRS in this
study. This may reflect that about 80% of breast cancer
patients of European ancestry have ER-positive disease,
so GWAS data in the BCAC contain more genetic infor-
mation on ER-positive disease. In contrast, patients of
African descent have a higher proportion of ER-negative
disease than other populations. Probably because of this,
the PRS trained in our combined AA dataset had about
half contribution to the joint PRS for ER-negative risk.

We also observed that the subtype-specific PRSs per-
formed better than the PRS for overall breast cancer risk.
This is probably because of breast cancer etiology het-
erogeneity; many genetic variants have different effects
on ER-positive and ER-negative breast cancers (4,17,18).
Therefore, we generated a hybrid PRS for overall breast
cancer risk, which is a weighted average of ER-positive
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Figure 1. Cumulative lifetime and 10-year absolute risk of developing breast cancer among African Americans according to percentiles of the polygenic
risk scores (PRSs). Cumulative lifetime absolute risk of developing (A) overall breast cancer, (B) estrogen receptor (ER)–positive breast cancer, and (C)
ER-negative breast cancer. 10-year absolute risk of developing (D) overall breast cancer, (E) ER-positive breast cancer, and (F) ER-negative breast cancer.
The pink dotted line in (d) demonstrates the 2% risk threshold that could be used to recommend screening age.

and ER-negative joint PRSs. We found that the hybrid PRS
had higher prediction accuracy than the corresponding
joint PRS for overall breast cancer risk. If the finding that
‘the sum of the parts is greater than the whole’ can be
confirmed in future studies, it could be a good strategy
to estimate omnibus risk of breast cancer (19). Although
an overall breast cancer risk model and an ER-negative
model may be useful for clinical decision making regard-
ing timing and frequency of breast cancer screening,
an ER-positive model has the additional advantage of
potentially identifying high-risk women who may benefit
from chemoprevention with endocrine agents.

Although the joint PRS models have a better predictive
performance than previous PRS models in AA women,
the prediction accuracy is still lower than models
reported for other racial/ethnic populations. Mavaddat
et al. reported AUCs of 0.63 and 0.64 for their 313-variant
and 3820-variant PRSs, respectively, for predicting overall
breast cancer in women of European ancestry (5). Shieh
et al. examined the performance of 71- and 180-variant
PRS for overall breast cancer in a large Latino study and
reported AUCs of 0.61 to 0.63 (10). Wen et al. examined
a 67-variant PRS for overall breast cancer in East Asians
and reported an AUC of 0.61 (9). In another PRS study of
Asians, Ho et al. examined a 287-variant PRS and reported
an AUC of 0.613 for overall breast cancer (20). The weaker
performance of PRS in people of AA has been observed
in other disease phenotypes (21). One study found that
the prediction accuracy was 4.9-fold lower in Africans
on average compared with that in European populations
for 17 phenotypes, whereas the reduction in accuracy
was 1.6-fold in Hispanic/Latino Americans, 1.7-fold in

South Asians and 2.5-fold in East Asians (21). These
observations are consistent with previous studies that
showed that poorer PRS performance is related to genetic
divergences between training and target populations
(22,23). Therefore, several factors could account for
this disparity, including relatively limited sample size,
different LD patterns, allele frequencies and possible
heterogeneity in effect sizes between populations.

To further improve the prediction accuracy of PRS in
people of AA, it is important to include more racially/
ethnically diverse individuals in medical genomic
research. The ongoing Confluence project led by the
US National Cancer Institute has prioritized large-scale
genotyping for diverse populations (https://dceg.cancer.
gov/research/cancer-types/breast-cancer/confluence-
project), so it could improve the prediction accuracy
of breast cancer PRS. Advances in methodologies in
statistical genetics could also help to develop a better
PRS utilizing information hidden in the existing GWAS
datasets. For example, sophisticated methods that
integrate additional biological information, genetic
architecture and LD information can be promising
to apply to diverse populations (24–26). For African
Americans, an admixed population, global admixture
proportion could help to predict cancer risk (15,27). We
found the proportion of European ancestry was not
associated with overall and ER-negative breast cancer
(P > 0.3) but marginally significantly associated with
ER-positive breast cancer (OR = 1.14 per a 25% increase
in European ancestry, P = 0.011). Global admixture is
essentially the same as the first principal component
(PC) (r = 0.996), which was used to control for population
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stratification, so we did not use global admixture in our
risk prediction model building. However, local ancestry,
which is robust to population stratification, could also
be tapped in future studies to gain statistical power to
improve accuracy of genetic risk prediction (28–30).

The AUC, a discriminating accuracy metric, of the new
PRS model is moderate, but the model could still provide
meaningful risk stratification in the population. Women
in the top fifth percentile of the new PRS have >2-fold
elevated breast cancer risk compared with women at
average risk. For women at average risk, the American
Cancer Society strongly recommends initiating regular
screening mammography at age 45 years, whose 10-year
risk of developing breast cancer is about 2% (31). Based on
the PRS, we estimated that about 10% of African Amer-
ican women have 10-year risk of 2% before they reach
the age of 40. These women could start breast cancer
screening earlier than age 40 and are possibly eligible for
intensive screening programs or chemoprevention trials.

In summary, we proposed joint breast cancer PRSs in
women of AA, which have moderate prediction value
but are still not optimal. We found that the joint model
can gain more information on ER-positive breast cancer
prediction from the existing PRS developed in European
ancestry population, while GWAS data from AA con-
tribute more information to the prediction of ER-negative
breast cancer.

Materials and Methods
Study participants and genotyping
This study included women of AA from four breast can-
cer GWAS consortia and a study in Ghana, with a com-
bined sample size of 19 419 participants, including 9235
breast cancer cases and 10 184 controls. Data collec-
tions for individual studies of these consortia have been
described previously (18,32–35). Sample size and selected
characteristics for each consortium and study are sum-
marized in Supplementary Material, Table S1. Women
in the study sites in United States and Barbados were
self-identified as African American or African Barbadian,
whereas women in the African study sites were implied
to be of AA. AA was confirmed using GWAS data. For
each consortium/study in this project, individual proto-
cols were approved by the relevant Institutional Review
Boards (IRBs) at the participating centers. All participants
provided written informed consent in accordance with
the local IRBs.

Each consortium/study utilized a different GWAS
array. Genotyping and quality control (QC) procedures
have been described in detail in Supplementary Material,
Table S1. The GWAS of Breast Cancer in the African
Diaspora consortium (ROOT) consists of study partici-
pants from six studies (18), and samples were genotyped
using the Illumina HumanOmni 2.5-8v1 array. After QC,
1657 cases (404 ER-positive, 374 ER-negative) and 2028
controls from the ROOT consortium remained in the
analysis. AABC consists of nine epidemiological studies
(32,36,37). Samples in AABC were genotyped using the

Illumina Human 1M-Duo BeadChip. After QC, a total of
3005 cases (1517 ER-positive, 986 ER-negative) and 2713
controls remained in the analysis. AMBER consists of
three studies (33). The AMBER samples were genotyped
using the Illumina MEGA array, and after QC, 1406 cases
(951 ER-positive, 385 ER-negative) and 2407 controls
remained in the analysis. Nine studies with cases and
controls of AA contributed samples to BCAC. Genotyping
for BCAC was performed using Illumina OncoArray (with
260 K GWAS backbone) (38). After removing overlapped
samples between BCAC (OncoArray) with AABC, AMBER
and ROOT, a total of 2268 cases (1127 ER-positive,
613 ER-negative) and 1406 controls remained for the
analysis. GBHS includes 899 cases (296 ER-positive, 277
ER-negative) and 1630 controls (34,35). Samples in GBHS
were genotyped using Illumina Global Screening Array.

Training set and validation set
For pooling the samples from these studies, we con-
ducted uniformed imputation using the cosmopolitan
reference panel in the 1000 Genomes Project (1KGP)
(Phase III release) within each consortium/study by
the IMPUTE2 software (http://mathgen.stats.ox.ac.uk/
impute/impute_v2.html) (39). After imputation, we
filtered in variants (∼15 million SNP or indel) with
average minor allele frequency (MAF) > 0.01 and average
imputation information score > 0.85. The distribution
of imputation info across GWAS array is described in
Supplementary Material, Table S1. We pooled datasets
from the four AA consortia and the Ghana study into a
combined dataset. PCs of genotype data were estimated
using EIGENSTRAT in the pooled dataset (40,41). As
shown in the scatter plots of the top five eigenvectors
from the PC analysis (Supplementary Material, Fig. S4A
and B), the first PC can distinguish participants from
different continents (Africa vs. North America) and can
indicate essentially the global proportion of AA. The third
and fifth PCs can distinguish countries in Africa. We
then randomly split the combined dataset into a training
set (n = 13 598; 70%) and a validation set (n = 5821; 30%).
Model development was conducted in the training set,
while the performance of the PRS models were evaluated
in the validation set.

Development of PRSs using genome-wide data
in women of African ancestry
A PRS can be expressed as

PRS = β1G1 + β2G2 + . . . βkGk + · · · + βKGK, (1)

where βk is the per-allele log OR for breast cancer asso-
ciated with SNP k and serves as the weight in PRS cal-
culation, Gk is the allele dosage for SNP k and K is the
total number of SNPs included in the PRS. This form
of PRS assumes a log-additive genetic model for indi-
vidual SNPs, which was considered as appropriate in
previous PRS development (5–10). To find an optimal PRS,
we need to determine which SNPs among all genome-
wide variants should be included in the PRS according

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac102#supplementary-data
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to association test results from the training dataset. We
used a modified version of the model selection strategy
outlined by Mavaddat and colleagues (5), which used a
‘hard-thresholding’ forward stepwise logistic regression.
First, we performed single SNP-based association tests
using multivariable logistic regression in the training set,
adjusting for age, consortium/study and the top 10 PCs
of genotype data. The per-allele log-ORs estimated in the
single SNP-based analyses are called as ‘marginal’ effect
sizes. We estimated the association for each of the three
phenotypes (overall, ER-positive and ER-negative breast
cancer) in parallel. The model development was also
separately for each phenotype. In the ‘hard-thresholding’
approach, we selected SNPs in three steps. In step 1, we
split each chromosome into 5 Mb bins and sorted SNPs
by P-value within each bin. To avoid collinear problem
in logistic regression, we filtered SNPs based on LD such
that highly correlated SNPs (LD r2 > 0.9) with larger P-
values were removed. In step 2, we selected SNPs by a
series of stepwise forward logistic regression in 5 Mb
bin. Only SNPs passing the prespecified P-value thresh-
olds were included in the multivariable models. The
SNP with the smallest (conditional) P-value was added
sequentially to the model until no further SNPs could
be added. We set P-value thresholds to be 10−5, 10−4,
10−3, 10−2, 0.05 and 0.1. In step 3, bins of the same
chromosome were combined. SNPs on the boundary of
two bins (2 Mb boundary) were filtered using LD and
stepwise logistic regressions as described in steps 1 and
2. Finally, marginal beta coefficients for all selected SNPs
across the genome were compiled together to calculate
a PRS according to Eq. (1). We labeled this PRS as PRSAFR.
For a high P-value threshold (e.g. 0.05), there are many
(uncorrelated) SNPs on one chromosome and our sample
size is limited, so the logistic model, including all SNPs,
cannot be fit reliably.

The 313-variant PRS using effect sizes from
European ancestry population (PRSEUR)
The 313-variant PRS was developed previously using data
of European ancestry (5). Although its performance in
AA populations is not optimal, it still offers moderate
discriminatory ability (14). Therefore, we directly applied
the weights (beta coefficients) from the 313-variant PRS
in the validation set. Of the 313 variants, 6 variants were
removed because of low MAF or imputation score, and
the remaining 307 variants are shown in Supplementary
Material, Table S2. Here, we use PRSEUR, PRSEUR.ERp and
PRSEUR.ERn to denote the PRSs for overall, ER-positive and
ER-negative phenotypes, respectively, where subscript
‘EUR’ indicates the weights are from European ancestry
population.

Joint and hybrid PRS models
To improve risk prediction in diverse populations,
Márquez-Luna et al. (15) proposed a multiethnic PRS
method. The method combines PRS based on European
training data with PRS based on training data from the

target population (such as African Americans). Márquez-
Luna and colleagues showed that the derived multiethnic
PRS significantly improve prediction accuracy in the
target population and is robust to overfitting (15). Here,
we adapted this method to construct a joint PRS as a
weighted linear combination of two PRSs:

PRSJoint = α1 PRSAFR + α2 PRSEUR, (2)

where PRSAFR and PRSEUR are PRSs described before, and
the weights α1 and α2 are estimated in the validation set
using a logistic regression model, including PRSAFR and
PRSEUR as predictors, and adjusting for age, consortium/s-
tudy and 10 PCs of genotypes. If we let α1 + α2 = 1, the
weights represent the proportional contribution of the
two PRSs on the joint PRS.

As the prediction accuracy of the joint PRS for overall
breast cancer was relatively low compared with that
of the joint PRS for ER-positive and very close to that
of the joint PRS for ER-negative breast cancer, we also
developed a hybrid PRS as a linear combination of the
joint PRSs for ER-positive and for ER-negative breast
cancer: PRShybrid = η PRSJoint.ERp + (1 − η) PRSJoint.ERn, where
η = 0.62 was the proportion of ER-positive cases in our
study samples.

Model evaluation in the validation set
For each PRS model described before, we evaluated its
performance in the validation set. As the measure of the
discriminating accuracy of a PRS, we calculated adjusted
AUC using covariate-adjusted ROC regression (16) in
which age, consortium and the top 10 PCs were adjusted
for. The adjusted AUC quantifies the pure discriminating
accuracy of a PRS without confounding from other
covariates. In the evaluation of joint PRSs, we calculated
liability scale-adjusted R2 (42), which roughly corrects
for overfitting problem from estimating the contributing
weights α1 and α2 in the validation set.

To estimate the strength of association, we fit mul-
tivariable logistic regression models and calculated OR
and 95% CI per unit SD of PRS, adjusting for age, con-
sortium and the top 10 PCs. We also categorized PRSs
by percentile (<5, 5–10, 10–20, 20–40, 40–60, 60–80, 80–
90, 90–95, > 95%) in controls and calculated adjusted OR
for each category with 40–60% as the reference group.
All analyses were done for overall, ER-positive and ER-
negative breast cancer separately.

We examined whether age or first-degree family
history of breast cancer modified the association
between PRS and breast cancer risk by adding interaction
terms in logistic regression models. We further examined
whether the effect of PRS varied between Africans and
African Americans/African Barbadians, between groups
defined by African ancestry percentage (<80 vs. >80%)
and between the five consortia/studies.

Calculation of absolute risks
We calculated the lifetime and 10-year absolute risks of
developing breast cancer (overall and subtype-specific
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disease) based on population incidence rates and relative
risk estimates for different PRS categories after taking
into account the competing risk of dying from causes
other than breast cancer, as described previously (6).
The theoretical ORs for women in different PRS cate-
gories versus women in the 40th–60th percentiles were
calculated using the method of Wen et al. (9) in which
PRS was modeled as continuous predictor of breast can-
cer risk. Other inputs included age-specific breast can-
cer incidence rates in African Americans from Surveil-
lance, Epidemiology and End Results (SEER, 2000–2017)
(43) and the non-breast cancer mortality rates from Cen-
ters for Disease Control and Prevention (1999–2018) in
the United States (44). Similarly, we calculated absolute
risk of ER-positive and ER-negative breast cancer using
subtype-specific incidence rates from SEER (43) and with-
out accounting for the competing risk of other subtype.
As a contrast, we also calculated the lifetime and 10-year
absolute risks of developing breast cancer (overall and
subtype-specific disease) for European Americans using
existing PRS model in women of European ancestry (5)
and breast cancer incidence rates in European Ameri-
cans (43). Further details are provided in the Supplemen-
tal Material and Methods.

We conducted the analyses using R v.3.6.0 and Stata
v.16. All tests of statistical significance were two-sided.

Supplementary Material
Supplementary Material is available at HMGJ online.
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